
Schrödinger Bridge Matching for Tree-Structured
Costs and Entropic Wasserstein Barycentres

Samuel Howard
Department of Statistics

University of Oxford

Peter Potaptchik
Department of Statistics

University of Oxford

George Deligiannidis
Department of Statistics

University of Oxford

Abstract
Recent advances in flow-based generative modelling have provided scalable meth-
ods for computing the Schrödinger Bridge (SB) between distributions, a dynamic
form of entropy-regularised Optimal Transport (OT) for the quadratic cost. The
successful Iterative Markovian Fitting (IMF) procedure solves the SB problem via
sequential bridge-matching steps, presenting an elegant and practical approach
with many favourable properties over the more traditional Iterative Proportional
Fitting (IPF) procedure. Beyond the standard setting, optimal transport can be
generalised to the multi-marginal case in which the objective is to minimise a cost
defined over several marginal distributions. Of particular importance are costs
defined over a tree structure, from which Wasserstein barycentres can be recov-
ered as a special case. In this work, we extend the IMF procedure to solve for
the tree-structured SB problem. Our resulting algorithm inherits the many ad-
vantages of IMF over IPF approaches in the tree-based setting. In the case of
Wasserstein barycentres, our approach can be viewed as extending the widely used
fixed-point approach to use flow-based entropic OT solvers, while requiring only
simple bridge-matching steps at each iteration. Our code is available at https:
//github.com/samuel-howard/Tree_SB_Matching_Barycentres.

1 Introduction
Transporting mass between two distributions is a ubiquitous problem with numerous applications
in machine learning and beyond. Optimal Transport (OT) (Santambrogio, 2015; Peyré and Cuturi,
2019) provides a principled approach for such problems, by seeking to minimise the total cost of
transportation according to a chosen cost function. Since the introduction of Sinkhorn’s algorithm
(Cuturi, 2013) and more recent neural approaches (Makkuva et al., 2020), computational OT has
seen great success across many domains such as biology (Schiebinger et al., 2019; Bunne et al.,
2023), and extensively in machine learning (Genevay et al., 2018; Cuturi et al., 2019; Corenflos
et al., 2021). Recently, ideas from the powerful flow-based approaches that have revolutionised
generative modelling (Song et al., 2021; Peluchetti, 2022; Lipman et al., 2023; Liu et al., 2023; Al-
bergo and Vanden-Eijnden, 2023) have been leveraged to solve the entropy-regularised dynamic OT
problem, known as the Schrödinger Bridge (SB). Such approaches provide significant scalability ad-
vantages, enabling approximation of OT maps between high-dimensional continuous datasets such
as image data. Early flow-based SB solvers were based on the classical Iterative Proportional Fitting
(IPF) scheme (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al., 2022), but such methods have
since been superseded by those based on the Iterative Markovian Fitting (IMF) scheme (Shi et al.,
2023; Peluchetti, 2023) due to its many superior properties.

Beyond the standard OT problem between two marginals, multi-marginal OT aims to find a joint
coupling over multiple marginals while minimising the total cost. Tree-structured costs are often

Corresponding author: howard@stats.ox.ac.uk

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/samuel-howard/Tree_SB_Matching_Barycentres
https://github.com/samuel-howard/Tree_SB_Matching_Barycentres

(a) Reciprocal process Π: The YS (×) are sampled
from the current coupling ΠS over S. Conditional
on the YS , points (×) at unknown marginals V\S
are sampled as YSc|S ∼ QSc|S . Brownian bridges
are drawn along the edges between the samples.

(b) Markovianised process P: Vector fields are
trained by bridge-matching along each edge. Sam-
ples (×) from the next coupling ΠS are obtained by
simulating the resulting SDEs along the tree struc-
ture, started at one of the known marginals.

Figure 1: The two stages of TreeIMF. On this tree, the marginals at the leaf vertices S (blue) are
fixed. The marginal at the vertex in V\S (red) is not fixed, and can change during the procedure.

considered (Haasler et al., 2021), as they frequently arise in applications while also allowing for im-
proved scalability by leveraging the tree structure. Of particular significance are star-shaped trees,
as these correspond to the prominent Wasserstein barycentre problem (Agueh and Carlier, 2011).
The Wasserstein barycentre provides a natural notion of ‘average’ for probability distributions, and
is widely studied due to its importance in applications, including in Bayesian learning (Srivastava et
al., 2018), clustering (Ye et al., 2017), and representation learning (Singh et al., 2020) to name a few.
Computing barycentres is notoriously challenging (Altschuler and Boix-Adserà, 2022). Many suc-
cessful approaches approximate the solution with a finite set of points, but these in-sample methods
struggle to scale well as dimensionality increases. Alternative methods aim to provide continuous
approximations (Li et al., 2020) using neural parameterisations, and often require multi-level opti-
misation procedures (Fan et al., 2021; Korotin et al., 2022). Of particular relevance to our work is the
diffusion-based approach of Noble et al. (2023) which extends the IPF-based Diffusion Schrödinger
Bridge (DSB) method of De Bortoli et al. (2021) to the tree-based SB setting, and is (to our knowl-
edge) currently the only neural ODE/SDE approach for barycentre computation.

One of the most successful and elegant approaches for Wasserstein-2 barycentre computation is the
iterative fixed-point approach, which involves iteratively updating a candidate barycentre ν by solv-
ing for the OT map from ν to each marginal µi and updating ν according to the induced coupling.
This approach was popularised by the seminal work of Álvarez-Esteban et al. (2016) and has formed
the basis of many algorithmic developments, including in machine learning (Korotin et al., 2022). It
has strong performance, and has been observed to converge quickly in only a few iterations (Lind-
heim, 2023). However, the procedure requires solving a complete OT problem to each marginal at
each iteration, which is expensive as solving even a single OT problem can be challenging.

Contributions In this work, we extend the IMF procedure to the tree-based SB problem (Haasler
et al., 2021). Our TreeDSBM algorithm provides an IMF counterpart to the TreeDSB method from
Noble et al. (2023), closing a clear gap in the existing literature (see Table 1) and translating the
many benefits of IMF over IPF to the tree setting. For the specific case of Wasserstein barycentre
computation, our algorithm can be viewed as extending the commonly used fixed-point approaches
to the case of flow-based entropic OT solvers. In particular, we show that the iterations of the
IMF scheme and the fixed-point barycentre solvers can be elegantly combined into a single iterative
procedure, yielding a fixed-point-style algorithm that requires only inexpensive bridge-matching
at each iteration. We demonstrate significantly improved empirical performance over TreeDSB,
and show that flow-based barycentre solvers can offer competitive performance against existing
algorithms for continuous Wasserstein-2 barycentre computation.

Table 1: Positioning of our TreeDSBM algorithm in the literature.
SB TreeSB (Haasler et al., 2021)

IPF DSB (De Bortoli et al., 2021) TreeDSB (Noble et al., 2023)
IMF DSBM (Shi et al., 2023; Peluchetti, 2023) TreeDSBM (Ours)

2

2 Background
2.1 Schrödinger bridges, optimal transport, and Wasserstein barycentres
We begin by reviewing the standard Schrödinger Bridge (SB) problem between two distributions,
and its relation to Optimal Transport (OT). For notation used in the paper, see Appendix A. Given
an initial and final measure µ0 and µT of a population, the SB problem aims to identify the most
likely intermediate dynamics of the population under the assumption that the movement is driven by
a stochastic reference process Q. The resulting dynamic SB problem is defined as

PSB = argmin
P∈P (C)

{KL(P∥Q) | P0 = µ0,PT = µT }. (1)

The static SB problem instead considers only the coupling over the endpoints,

ΠSB
0,T = argmin

Π0,T∈P(Rd×Rd)

{KL(Π0,T ∥Q0,T) | Π0 = µ0,ΠT = µT }. (2)

Under mild assumptions, the two problems are equivalent; the dynamic SB solution can be expressed
as a mixture of bridges over the static SB coupling, PSB = ΠSB

0,TQ·|0,T (Léonard, 2013).

Connection to quadratic OT The reference path measure Q is usually considered to be that of a
Brownian motion (σBt)t∈[0,T]. In this case, the static SB problem can be rewritten as

ΠSB
0,T = argmin

Π∈P(Rd×Rd)

{E∥X0 −XT ∥22 − 2σ2TH(Π) | Π0 = µ0,ΠT = µT }, (3)

which is the entropy-regularised OT problem for the quadratic ground-cost c(x0, xT) = 1
2∥x0 −

xT ∥2 and ε = σ2T (see the Appendix for an overview of OT). In the sequel, we assume that the
reference process is a Brownian motion (σBt)t∈[0,T].

Wasserstein barycentres A key motivation for the tree-structured setting that we will consider
is the important Wasserstein barycentre problem (Agueh and Carlier, 2011), which provides a nat-
ural notion of ‘average’ for probability distributions. Given ℓ measures (µ1, ..., µℓ) and weights
(λ1, ..., λℓ) summing to 1, the Wasserstein-2 barycentre is defined as

ν∗ = argmin
ν

∑
i

λiW
2
2 (µi, ν), (4)

where W 2
2 (µi, ν) denotes the optimal transport cost between µi and ν for the quadratic ground-cost.

The Wasserstein barycentre problem is notoriously difficult to solve, as it involves several OT sub-
problems for which one of the marginals can change in the optimisation. An elegant approach
leverages the fixed-point property x =

∑
i λiTi(x) which holds at the solution (under mild as-

sumptions), where each Ti is the OT map from ν to µi (Agueh and Carlier, 2011; Álvarez-Esteban
et al., 2016). Intuitively, this states that ‘each point in the support of the barycentre is the average
of the corresponding points in the marginals’. This property has motivated an iterative fixed-point
approach for barycentre computation, which involves iteratively updating a candidate barycentre ν
by solving for the OT maps Ti and constructing the next iterate as T̄#ν using the pushforward map
T̄ (x) =

∑
i λiTi(x). Such methods have been shown to be highly successful in practice (Álvarez-

Esteban et al., 2016; Korotin et al., 2022; Lindheim, 2023; Tanguy et al., 2024).

2.2 Iterative Markovian Fitting
We now outline recent flow-based generative modelling approaches for solving for the SB problem,
which will form the basis for our approach. The SB solution PSB can be characterised as the unique
path measure that is both Markov, and a mixture of bridges PSB = PSB

0,TQ·|0,T , that has correct
marginals PSB

0 = µ0,PSB
T = µT (Léonard, 2013). This property motivates the Iterative Markovian

Fitting (IMF) procedure (Shi et al., 2023; Peluchetti, 2023), which solves for the SB solution by
alternately projecting between Markovian processes and processes with the correct bridges. We
refer to Shi et al. (2023) for full details of the IMF procedure, but recall here the basic presentation.
We recall the following definitions.

Definition 2.1 (Reciprocal class, Reciprocal projection). A path measure Π ∈ P(C) is in the
reciprocal class R(Q) of Q if it is a mixture of bridges of Q conditional on their values at the
endpoints, Π = Π0,TQ·|0,T . For a path measure P ∈ P(C), the reciprocal projection is defined to
be the mixture of bridges according to its induced coupling, projR(Q)(P) = P0,TQ·|0,T .

3

Definition 2.2 (Markovian class, Markovian projection). Let M denote the set of Markovian
path measures associated to a diffusion of the form dXt = v(t,Xt)dt + σtdBt, with v, σ locally
Lipschitz. For reference process (σBt)t∈[0,T], the Markovian projection of a measure P ∈ R(Q) is
defined to be (when well-defined) the path measure associated to the SDE

dXt =

[
EPT |t [XT |Xt]−Xt

T − t

]
dt+ σdBt, X0 ∼ µ0. (5)

It can be shown that, under mild conditions, these definitions coincide with the following minimisa-
tion problems over path measures (Shi et al., 2023),

projR(Q)(P) = argmin
Π∈R(Q)

KL(P∥Π), projM(Π) = argmin
M∈M

KL(Π∥M). (6)

The IMF iterations are defined below, and converge to a unique fixed point which is the SB solution.
P2n+1 = projM(P2n), P2n+2 = projR(Q)(P2n+1). (7)

Training via bridge-matching The IMF procedure requires learning the vector field correspond-
ing the Markovian projections projM(Π). This is done by training a neural network vθ with a
bridge-matching loss objective (Peluchetti, 2022), for which the drift in (5) is the optimum,

L(θ) =
∫ T

0
E

(X0,XT)∼Π0,T

Xt∼Q(·|X0,XT)

∥vθ(Xt, t)−
XT −Xt

T − t
∥2dt. (8)

Comparison to Iterative Proportional Fitting Traditionally, the standard way to solve the SB
problem is via the Iterative Proportional Fitting (IPF) procedure (Fortet, 1940; Kullback, 1968;
Rüschendorf, 1995), which minimises the KL divergence between subsequent iterations while alter-
nating the endpoint measure that is fixed.

P2n+1 = argmin
P:PT=µT

KL(P∥P2n), P2n+2 = argmin
P:P0=µ0

KL(P∥P2n+1). (9)

This method was implemented using diffusion model-based approaches in De Bortoli et al. (2021),
giving the Diffusion Schrödinger Bridge (DSB) method (see also Vargas et al. (2021), Chen et al.
(2022)). While allowing for arbitrary reference measures Q, this approach suffers from several
shortfalls, such as only preserving both marginals at convergence (in comparison to IMF, which
preserves both marginals at each iteration), as well as expensive trajectory caching, and ‘forgetting’
of the original reference measure (Fernandes et al., 2022). As a result, IPF approaches have largely
been superseded by IMF approaches which avoid these issues.

2.3 Tree-structured Schrödinger bridge
In this work, we consider the tree-structured Schrodinger Bridge problem (Haasler et al., 2021). In
particular, we extend the IMF procedure to the dynamic Tree SB setting of Noble et al. (2023).

Stochastic processes on the tree In order to explain the dynamic Tree SB problem, we first need
to define stochastic processes on a tree. We will consider trees T = (V, E , ℓ) with vertex set V
and edge set E , where ℓ : E → R>0 is an edge-length function. One can extend the tree to a
uniquely arcwise-connected metric space in the natural way; the arc connecting the two endpoints
of an edge e is identified with a line segment of corresponding length T e = ℓ(e), and they are
connected according to the graph structure. Via a slight abuse of notation we will also denote this
metric space as T . As such, we can define the space C(T ,Rd) of continuous paths from T into Rd,
and we let P(CT) := P(C(T ,Rd)) denote the space of probability measures over such paths. We
will present the methodology according to a directed tree Tr rooted at a vertex r, for which we can
choose an ordered edge set Er corresponding to a depth-first traversal (though we will often omit
the dependence on r in the notation). While this presentation may appear somewhat complex, the
construction is quite natural; for an illustration of processes on a tree-structure, see Figures 1 and 4.

We will consider running SDEs along each edge according to the ordering Er in the directed tree
structure. We sample Xr ∼ Pr and then sequentially simulate SDEs along each edge as we traverse
the directed tree. For each edge e = (u, v) ∈ Er, we run an SDE dXe

t = ve(t,Xe
t)dt+ σe

tdB
e
t for

time t ∈ [0, T e] initialised at Xe
0 = Xu, and after simulation we let Xv = Xe

T e . Such stochastic
processes induce a path measure P ∈ P(CT) over the whole tree. Note that when the tree is a branch
with 2 vertices and 1 edge, this recovers the standard case described earlier.

4

Tree-structured Schrödinger bridges Now that we have constructed stochastic processes on the
tree, the tree-structured Schrödinger Bridge problem is defined analogously to the standard case.
However, now the marginals may be fixed only at a subset of vertices S ⊂ V (see Figure 1). For a
reference measure Q ∈ P(CT), the dynamic and static TreeSB problems are defined respectively as

PSB = argmin
P∈P(CT)

{KL(P∥Q) | Pi = µi ∀i ∈ S}, (TreeSBdyn)

ΠSB
V = argmin

Π∈P((Rd)|V|)

{KL(Π∥QV) | Πi = µi ∀i ∈ S}. (TreeSBstat)

As in the standard case, using the chain rule for KL divergence gives (under mild conditions) equiv-
alence of the two problems; the dynamic SB solution can be expressed as a mixture of bridges over
the static SB coupling, PSB = ΠSB

V Q·|V . In this work, we aim to solve the TreeSBdyn problem.

Connection to multi-marginal optimal transport In the remainder of the work, we will consider
the reference measure Q to be associated with running Brownian motions (σBe

t)t∈[0,T e] along each
edge e. The induced reference coupling QV over the vertices is characterised by having independent
Gaussian edge increments Yu−Yv ∼ N (0, σ2T (u,v)). By evaluating the KL term, the static TreeSB
problem can therefore be rewritten as

ΠSB
V = argmin

Π∈P ((Rd)|V|)

{
EXV∼Π

[∑
(u,v)∈E

1
T (u,v) ∥Xu −Xv∥22

]
− 2σ2H(Π)|Πi = µi ∀i ∈ S

}
. (10)

This is precisely an entropy-regularised multi-marginal OT problem with a tree-structured quadratic
cost function c(xV) =

∑
(u,v)∈E

1
T (u,v) ∥xu − xv∥22 and entropy-regularisation ε = 2σ2 (see Ap-

pendix A for an overview). Note that each weight is the reciprocal of the corresponding edge length.

Connection to Wasserstein barycentres There are many ways to define entropy-regularised
Wasserstein barycentres (see Appendix A for an overview). The work of Chizat (2023) unifies
several of these, combining ε-regularised OT costs with an entropic penalty term on the barycentre
weighted by τ . Noble et al. (2023) show that the following doubly-regularised barycentre problem

ν∗ = argmin
ν

{∑
i

λiW
2
2,ε/λi

(µi, ν) + (ℓ− 1)εH(ν)
}
, (11)

is recovered from the TreeSB setting by considering a star-shaped tree with fixed marginals on the
leaves and cost function c(x0:ℓ) =

∑ℓ
i=1 λi∥x0 − xi∥22.

3 Iterative Markovian Fitting for tree-structured costs
In this work, we generalise the IMF procedure to the tree-based setting. Recall that standard IMF
proceeds by iteratively Markovianising a mixture of bridges, where each bridge is a stochastic pro-
cess conditioned on endpoints x0 and x1, and the mixing coupling Π0,1 is over the endpoint values
x0, x1. Similarly, we consider Markovianising mixtures of bridges, but instead the mixing coupling
is a joint distribution ΠS over values at the observed vertices S, and the bridging processes are con-
ditioned on these values. In the following, we justify that the IMF procedure extends to this setting.
We then explain how the bridging and Markovianisation can be performed in practice.

3.1 Markovian and reciprocal processes on the tree
Recall that the IMF procedure is motivated by the characterisation of the SB as the unique Markov
measure that is a mixture of its bridges. Our first contribution is to extend this characterisation to
the tree-based setting. We begin with the following definitions, akin to those in the standard case.

Definition 3.1 (Markov class). Let MT denote the set of Markov path measures on the tree T ,
defined via a diffusion along each edge of the form dXe

t = ve(t,Xt)dt+σe
tdB

e
t , with ve, σe locally

Lipschitz.

Definition 3.2 (Reciprocal class). Π ∈ P(CT) is in the reciprocal class RS(Q) of Q for observed
vertices S if Π = ΠSQ·|S . That is, Π is a mixture of bridges of Q conditioned on the values at S.

Observe that compared to the corresponding Definition 2.1 in standard IMF, the bridges are now
conditioned on the values at vertices in S, rather than on only the endpoints of a single edge. We
now state the following result characterising the TreeSB solution.

5

Theorem 3.1 (TreeSB characterisation). Under mild assumptions (in the Brownian case, namely
that

∫
∥x∥2dµi(x) < ∞ and H(µi) < ∞ for each i ∈ S), there exists a unique solution to the

dynamic TreeSB problem (TreeSBdyn). The solution is the unique process P that is both Markov
and in RS(Q) with correct marginals Pi = µi for i ∈ S.

3.2 Iterative Markovian Fitting on the tree
Theorem 3.1 suggests that an analogous Iterative Markovian Fitting procedure could be used to
solve the dynamic TreeSB problem; in this section, we show that this is indeed the case. The
constructions and proofs proceed in much the same way as in Shi et al. (2023), but crucially rely
on the following simple decomposition of the KL divergence according to the tree structure, which
applies for measures in MT and RS(Q).

Lemma 3.2 (KL decomposition along tree). Take path measures P, P̃ that share a marginal at the
root, Pr = P̃r, and factorise along the tree. Under mild assumptions, we have the KL decomposition

KL(P∥P̃) =
∑

(u,v)∈Er

EXu∼Pu

[
KL(P(u,v)(·|Xu)∥P̃(u,v)(·|Xu))

]
. (12)

To extend the IMF procedure to the TreeSB problem, we require to extend the definitions and propo-
sitions from the standard case to the tree-based setting. The definition of the reciprocal class pro-
jection remains much the same as in the standard case, the difference being that now the bridging
processes are conditioned on their values at vertices in S.

Definition 3.3 (Reciprocal projection). For a process P ∈ P(CT), the reciprocal projection is
defined to be the induced mixture of bridges Π∗ = projRS(Q)(P) = PSQ·|S .

Proposition 3.3. For P ∈ P(CT), the reciprocal projection Π∗ = projRS(Q)(P) solves the minimi-
sation problem Π∗ = argminΠ∈RS(Q) KL(P∥Π).

The Markovian projection requires some alterations to account for the tree structure.

Definition 3.4 (Markovian projection). For Π ∈ RS(Q), the Markovian projection onto M, de-
noted M∗ = projM(Π), is defined as

M∗ =
∏
T

projMe
(Πe). (13)

Πe denotes the restriction of Π to edge e, projMe
(Πe) denotes its Markovian projection (Defini-

tion 2.2), and
∏

T denotes the composition of the resulting measures according to the tree structure.

Proposition 3.4. Under mild assumptions, the Markovian projection M∗ = projM(Π) solves the
minimisation problem M∗ = argminM∈MT

KL(Π∥M).

The TreeIMF procedure is then defined via the usual iterations, started from an initialisation
P0 ∈ RS(Q) such that P0

i = µi for i ∈ S:

P2n+1 = projMT
(P2n), P2n+2 = projRS(Q)(P2n+1). (14)

Note that this procedure recovers standard IMF when the tree has a bridge structure (2 vertices, 1
edge), just as TreeDSB recovers DSB in this setting.

We now state the following result, which shows convergence of the IMF iterates to the TreeSB
solution. This resembles Theorem 8 in Shi et al. (2023), and the proof proceeds in largely the
same way using the appropriate modifications and in particular leveraging the KL decomposition in
Lemma 3.2. We defer the details to Appendix B.

Theorem 3.5 (Convergence of TreeIMF). Under mild conditions, the TreeSBdyn solution P∗ is
the unique fixed point of the TreeIMF iterates Pn, and we have limn→∞ KL(Pn∥P) = 0.

6

3.3 Implementation
We have established the convergence of the TreeIMF procedure to the TreeSB solution. We now
explain how the procedure can be implemented in practice.

Constructing the bridge processes Recall that the reciprocal projection relies on constructing
bridges of the reference process Y associated to Q, conditioned on the values at vertices in S. Due
to the tree structure and the Brownian dynamics of Q, such bridges can be constructed by first
sampling the values of YSc|S ∼ QSc|S at the unseen vertices in Sc = V\S, and then sampling
Brownian bridges along each edge (u, v) ∈ E between Yu and Yv .

Note in particular that the conditional coupling QSc|S is tractable because the static coupling QV is a
multivariate Gaussian. Specifically, QV is characterised via independent Gaussian edge increments
Yu − Yv ∼ N (0, σ2T e), so QV(Y) ∝ exp(−

∑
(u,v)∈E

1
2σ2T e ∥Yu − Yv∥2) ∝ exp(− 1

2Y
⊤LY)

where L is the precision matrix given by

Lu,v =


∑

e∈E(u)
1

σ2T (u,v) if u = v, where E(u) is set of edges incident to u,

− 1
σ2T (u,v) , if (u, v) ∈ E

0 otherwise.

Using the formula for conditional multivariate Gaussians in terms of the precision matrix, we have
YSc |YS = yS ∼ N (µ̃, Σ̃), using the block matrix expressions µ̃ = −(LScSc)−1LScSyS and
Σ̃ = (LScSc)−1. Based on the structure of the tree, we can therefore obtain a sample of the bridging
process by: (1) calculating this conditional joint distribution QSc|S over the unseen vertices, (2)
sampling YSc|S according this distribution, and then (3) drawing Brownian bridges between Yu and
Yv along each edge in the tree.

Performing the Markovian projection The above construction allows us to construct samples
from a reciprocal process Π. Recall from Definition 3.4 that the Markovian projection then proceeds
by performing individual Markovian projections along each edge. We therefore maintain a neurally-
parameterised drift function vθe for each edge e = (u, v), each of which is trained according to the
bridge-matching loss

L(θe) =
∫ T e

0

E(Xu,Xv)∼Π(u,v)

Xt∼Qe
·|Xu,Xv

∥Xv −Xt

T e − t
− vθe(Xt, t)∥2dt. (15)

Bidirectional training After training the vector fields, let M denote the path measure of the re-
sulting Markov process on T . Constructing the next reciprocal process requires samples from M,
which can be obtained by running the learned diffusions from the root node r ∈ S along the tree.
Note that while in theory we have Mi = µi for each i ∈ S, errors will accumulate in practice. We
therefore follow Shi et al. (2023) and learn both forward and backward diffusion processes along
each edge, which give equivalent representations of the path measures via the corresponding time-
reversals (see Appendix C for details). This enables simulation along the tree from any vertex in S
to obtain samples from the coupling, helping to mitigate errors accumulating in the marginals. Note
also that all edges train independently, so can be learned in parallel for faster computation.

Algorithm 1: TreeDSBM
Input: Initial coupling Π0

S (e.g. independent),
number of iterations N .

Let Π0 = Π0
SQ·|S ;

for n ∈ {0, . . . , N − 1} do
Learn 2|E| vector fields using (15) with
Π = Πn, to obtain Markovian process Mn+1;

Simulate Mn+1 from a chosen root r ∈ S to
obtain samples from Mn+1

S ;
Let Πn+1 = Mn+1

S Q·|S using obtained
samples from Mn+1

S ;
end

In keeping with previous naming conven-
tions, we call the proposed algorithm Tree
Diffusion Schrödinger Bridge Matching
(TreeDSBM). The method is summarised
in Algorithm 1 with full implementation
details in Appendix C, and we provide an
illustration of the two-step procedure in
Figure 1. The algorithm can be initialised
at any coupling Π0

S over S with correct
marginals; a standard choice would be
the independent coupling Π0

S =
⊗

i∈S µi.
We provide a simplified and more explicit
version of the algorithm when used for
barycentre computation in Appendix C.

7

Figure 2: Comparison of the learned barycentre for
TreeDSBM (6 IMF iterations) against TreeDSB (50
IPF iterations) and WIN. TreeDSB and TreeDSBM
samples are generated from each leaf vertex k, and for
WIN we plot samples using the weighted-pushforward
expression for the barycentre. Also displayed is a close
approximation to the ground-truth, using the in-sample
method of Cuturi and Doucet (2014).

Table 2: Sinkhorn divergence to the
‘ground-truth’ barycentre, for barycen-
tre samples generated from each leaf
vertex k. The Sinkhorn divergence is
computed with entropy regularisation
0.01, using 5000 generated samples and
1500 points approximating the ground-
truth (mean±std, over 5 runs).

Method k = 0 k = 1 k = 2

TreeDSBM
(6 IMF)

1.14
± 0.07

1.05
± 0.07

1.08
± 0.11

TreeDSB
(50 IPF) 2.35 4.04 2.35

WIN
(
∑

i λiTi)#ν
1.17

3.4 Connection to fixed-point Wasserstein barycentre algorithms
Recall that the unregularised Wasserstein-2 barycentre can be computed using the iterative fixed-
point method, where each iteration proceeds by pushing-forward the current iterate through the
map

∑
i λiTi. In our setting, the barycentre problem corresponds to a star-shaped tree with fixed

marginals on the leaves. In this case, the bridges of Q are conditioned on each of the leaf vertices and
the only unknown point is Y0 at the centre vertex, so the conditional distribution QSc|S simplifies to

Y0 ∼ N
(∑

λiYi, σ
2Id

)
.

Our method can therefore be viewed as a natural counterpart of fixed-point methods for barycentre
computation, adapted to the case of flow-based entropic OT solvers. While a naive approach might
consider using IMF to solve each OT sub-problem in the fixed-point scheme, resulting in nested iter-
ations, our approach shows that the IMF and fixed-point iterations can in fact be elegantly combined
into a single iterative procedure, along with a well-understood theoretical grounding. In particular,
the expensive OT map computations required for the fixed-point procedure can instead be switched
out for inexpensive bridge-matching procedures. Each iteration is therefore cheap, and empirically
we found the TreeDSBM algorithm to retain the fast convergence property of the fixed-point proce-
dure in terms of the number of iterations required.

4 Experiments
Synthetic 2d barycentre We first examine the performance of TreeDSBM in a low-dimensional
synthetic example, using the experimental setup of Noble et al. (2023). We compute the (13 ,

1
3 ,

1
3)-

barycentre of a moon, spiral, and circle dataset with ε = 0.1 (recall σ =
√

ε
2). We compare

TreeDSBM ran for 6 IMF iterations against TreeDSB ran for 50 IPF iterations (using checkpoints
provided by Noble et al. (2023)). In Figure 2, we plot the obtained samples from both methods,
and for comparison also display the barycentre obtained using the in-sample method from Cuturi
and Doucet (2014) to give a close approximation to the ground-truth. To quantitatively assess per-
formance, we report the Sinkhorn divergence (Genevay et al., 2018) relative to this ‘ground-truth’
in Table 2. The results show that TreeDSBM significantly improves over TreeDSB in this setting,
approximating the barycentre to a high degree of accuracy and at a much lower computational cost
(with good convergence after only a few IMF iterations). It is able to successfully capture the
complex nature of the barycentre in this challenging example (previously suggested as a potential
limitation of dynamic solvers in Noble et al. (2023)), and the barycentres generated from different
vertices k exhibit improved consistency. For details of the experimental setup, see Appendix D.1.

We additionally report results for the iterative WIN method (Korotin et al., 2022). We see that
TreeDSBM performs competitively with this strong baseline for continuous Wasserstein-2 solvers.
The results reported for WIN are for the combined map (

∑
i λiTi)#ν, as in our experiments the

barycentre generator ν = G#ρ was unable to fit the true barycentre accurately, nor were the maps
T−1
i #µi. Additionally, we applied the W2CB (Korotin et al., 2021) and NOTWB (Kolesov et al.,

8

2024a) algorithms to this example, but were unable find hyperparameters to make the algorithms
to converge to the correct solution. We hypothesise that the neural maps may struggle to model
the discontinuous transports well, and also that this challenging example may result in difficult loss
landscapes. We found TreeDSBM to exhibit stable training despite this challenging problem setting,
and to also be the fastest of the algorithms to converge to the solution. We provide a runtime analysis,
along with further results and discussion, in Appendix D.1.

(a) TreeDSB
(ε = 0.5)

(b) TreeDSBM
(ε = 0.02)

Figure 3: Samples from the 2,4,6
MNIST barycentre.

MNIST 2,4,6 barycentre We also compare performance of
TreeDSBM with TreeDSB on a higher dimensional image
dataset, computing the (13 ,

1
3 ,

1
3)-barycentre between MNIST

digits 2, 4, and 6 (LeCun et al., 2010). In this setting, TreeDSB
is reported in Noble et al. (2023) to exhibit training instability
for low entropy regularisation ε, causing it to struggle to match
the marginal measures at the vertices. In contrast, the IMF
approach of TreeDSBM ensures matching of these marginals,
thus allowing the use of much smaller regularisation values. In
fact, using a large regularisation for TreeDSBM would limit
sample quality, because of the noise added when sampling
from QSc|S in the reciprocal process construction. We there-
fore use ε = 0.02 for TreeDSBM with 4 IMF iterations, and display a visual comparison with
results reported in Noble et al. (2023) in Section 4. While it is difficult to validate the accuracy
of such solutions, the obtained samples from TreeDSBM appear to display a greater resemblance
to state-of-the-art barycentre methods for similar problems (see e.g. Kolesov et al. (2024a)), while
again requiring significantly less computational cost than TreeDSB. We remark that the TreeDSBM
samples in Figure 3b contain a small amount of noise, which is to be expected as we are solving for
an entropy-regularised problem. In Appendix D.2 we also display samples with the noise reduced
or removed, along with full experimental details and additional results.

Subset posterior aggregation The previous experiments have shown TreeDSBM to improve over
its IPF counterpart TreeDSB. We now provide a more detailed comparison with existing strongly-
performing methods for continuous Wasserstein-2 barycentre estimation, namely WIN (Korotin et
al., 2022), W2CB (Korotin et al., 2021), and NOTWB (Kolesov et al., 2024a). As a real-world
applications experiment, we compare the algorithms in the subset posterior aggregation setting, a
standard experiment in the barycentre literature (Staib et al., 2017; Li et al., 2020; Fan et al., 2021;
Korotin et al., 2021). The barycentre of subset posteriors is known to be close to the true posterior
(Srivastava et al., 2018), and as such it can be efficient to compute posteriors on only subsets of
datasets before aggregating them using a barycentre algorithm. We consider the experimental setup
and dataset used in Korotin et al. (2021) (the same dataset was also used previously in Li et al.
(2020) and Fan et al. (2021)), which uses Poisson and negative-binomial regressions on a bike-
rental dataset (Fanaee-T, 2013), and report results for the BW2

2−UVP metric. We ran TreeDSBM
for 4 IMF iterations with ε = 0.001; for full experimental details, see Appendix D.3.

From Table 3, we see that all methods perform strongly. Given that we do not have perfect access
to the ground truth barycentre, it is difficult to conclusively say which performs best, but we see
that TreeDSBM certainly performs competitively with these state-of-the-art approaches. Moreover,
we found TreeDSBM to display fast training—both TreeDSBM and NOTWB obtained good results
after only around 3 minutes of training, while W2CB took approximately 10 minutes and WIN took
around 45 minutes. For more details regarding runtimes, see Appendix D.3.

Higher-dimensional Gaussian experiments We also report results for computing the barycentre
of Gaussian distributions, in increasingly high dimensions. This is a standard experiment in the
literature, because in this setting the ground-truth barycentre is also Gaussian and the parameters
can be calculated accurately using a fixed point method (Álvarez-Esteban et al., 2016).

We follow the experimental setup previously used in (Korotin et al., 2021, 2022; Kolesov et al.,
2024a), in which 3 Gaussian distributions and its ground-truth (13 ,

1
3 ,

1
3)-barycentre are randomly

generated, for each dimension in {64, 96, 128}. We report results for the BW2
2−UVP and L2−UVP

metrics. We see that all the methods again perform well in this setting. For the BW2
2−UVP metric,

W2CB and NOTWB appear to have a slight edge, but TreeDSBM is only slightly higher and is
comparable with results for WIN. For the L2−UVP metric, results for TreeDSBM are higher than
for W2CB and NOTWB, though the results are still low and are again comparable with WIN.

9

Table 3: BW2
2−UVP,% for different algorithms on the subset posterior aggregation experiment in

Korotin et al. (2021), evaluated using 100,000 samples.

WIN W2CB NOTWB TreeDSBM (Ours)
↓ Poisson 0.014 0.026 0.023 0.008
↓ Negative Binomial 0.009 0.024 0.018 0.012

Table 4: L2−UVP,% and BW2
2−UVP,% for different algorithms on the high-dimensional Gaus-

sian experiment, evaluated using 100,000 samples.

WIN W2CB NOTWB TreeDSBM (Ours)
d = 64 0.20 0.04 0.08 0.14

↓ BW2
2−UVP,% d = 96 0.30 0.07 0.10 0.15

d = 128 0.38 0.12 0.14 0.27

d = 64 0.96 0.17 0.10 1.18
↓ L2−UVP,% d = 96 1.20 0.20 0.10 1.13

d = 128 1.46 0.25 0.13 1.23

5 Discussion
Related work Beyond the IPF and IMF approaches, other approaches for the SB problem include
adversarial solvers (Kim et al., 2024; Gushchin et al., 2023), parameterisation via potentials for
Gaussian mixtures (Korotin et al., 2024; Gushchin et al., 2024), and variational approaches (Deng
et al., 2024). For Wasserstein barycentre computation, standard approaches ensure tractability by
representing the solution with a finite set of points (either updating only weightings (Benamou et
al., 2015; Solomon et al., 2015; Cuturi and Peyré, 2016; Staib et al., 2017; Dvurechenskii et al.,
2018), or also the positions of the points in the support (Rabin et al., 2012; Cuturi and Doucet, 2014;
Claici et al., 2018; Luise et al., 2019)). Such approaches are effective in lower dimensions but scale
poorly, cannot be used to generate new samples, and do not capture the true continuous nature of the
barycentre. To address these limitations, recent work has focused on learning continuous approxi-
mations. Li et al. (2020) optimise for the regularised dual potentials for general costs, while others
parameterise Wasserstein-2 potentials with convex neural architectures using adversarial losses (Fan
et al., 2021) or additional cycle-consistency regularisation (Korotin et al., 2021). Korotin et al.
(2022) leverage the fixed-point property in Álvarez-Esteban et al. (2016). We also highlight a recent
line of works of Kolesov et al. (2024b,a) which consider bi-level adversarial approaches for general
cost functions. Our approach utilises non-adversarial bridge-matching loss objectives, which pro-
vide stable training but requires multiple sequential IMF iterations. Finally, we emphasise that our
approach tackles the tree-structured SB problem (Haasler et al., 2021; Noble et al., 2023), and thus
is applicable beyond only barycentre problems (we consider a toy example in Appendix E.3).

Limitations Our method shares the same limitations as other flow-based SB solvers. It is re-
stricted to quadratic cost functions for OT, and introduces an entropic bias. Inference is expensive in
comparison to methods that use a single function evaluation, and our method is not sampling-free,
requiring simulations of the current learned processes at each iteration. Future advances in the flow
and SB literatures can aid in addressing these limitations. We also provide an additional experi-
ment in Appendix E that highlights a possible limitation of our method in scenarios where there is a
simple shared structure between the known marginals and the barycentre.

Conclusion and future work We have extended the IMF procedure to the tree-structure SB prob-
lem, providing a scalable flow-based approach that in particular can be used for entropic Wasser-
stein barycentre computation. Our TreeDSBM algorithm displays improved performance over its
IPF counterpart TreeDSB, and demonstrates that flow-based approaches for barycentre estimation
can offer a compelling alternative to established continuous Wasserstein-2 barycentre algorithms.
Future directions can investigate improved architectures and implementation techniques inspired by
progress in the flow-matching literature, as well as extensions to other data modalities.

10

Acknowledgements
SH is supported by the EPSRC CDT in Modern Statistics and Statistical Machine Learning [grant
number EP/S023151/1]. PP is supported by the EPSRC CDT in Modern Statistics and Statistical
Machine Learning [EP/S023151/1], a Google PhD Fellowship, and an NSERC Postgraduate Schol-
arship (PGS D). GD was supported by the Engineering and Physical Sciences Research Council
[grant number EP/Y018273/1]. The authors would like to thank James Thornton for helpful discus-
sions.

References
Martial Agueh and Guillaume Carlier (2011). “Barycenters in the Wasserstein Space”. In: SIAM

Journal on Mathematical Analysis 43.2, pp. 904–924.

Michael Samuel Albergo and Eric Vanden-Eijnden (2023). “Building Normalizing Flows with
Stochastic Interpolants”. In: International Conference on Learning Representations.

Jason M. Altschuler and Enric Boix-Adserà (2022). “Wasserstein Barycenters Are NP-Hard to Com-
pute”. In: SIAM Journal on Mathematics of Data Science 4.1, pp. 179–203.

Pedro C. Álvarez-Esteban, E. del Barrio, J.A. Cuesta-Albertos, and C. Matrán (2016). “A fixed-
point approach to barycenters in Wasserstein space”. In: Journal of Mathematical Analysis and
Applications 441.2, pp. 744–762.

Brandon Amos, Lei Xu, and J. Zico Kolter (2017). “Input Convex Neural Networks”. In: Interna-
tional Conference on Machine Learning.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré (2015).
“Iterative Bregman Projections for Regularized Transportation Problems”. In: SIAM Journal on
Scientific Computing 37.2, A1111–A1138.

V. I. Bogachev, T. I. Krasovitskii, and S. V. Shaposhnikov (2021). “On uniqueness of probability
solutions of the Fokker-Planck-Kolmogorov equation”. In: Sbornik: Mathematics 212.6, p. 745.

David Bolin, Alexandre B. Simas, and Jonas Wallin (2024). Markov properties of Gaussian random
fields on compact metric graphs. arXiv: 2304.03190 [math.PR].

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang (2018). JAX: composable transformations of Python+NumPy programs. Version 0.3.13.

Charlotte Bunne, Stefan G. Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch (2023). “Learning
Single-Cell Perturbation Responses using Neural Optimal Transport”. In: vol. 20. Nature Meth-
ods, pp. 1759–1768.

Tianrong Chen, Guan-Horng Liu, Molei Tao, and Evangelos Theodorou (2023). “Deep Momentum
Multi-Marginal Schrödinger Bridge”. In: Advances in Neural Information Processing Systems.

Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou (2022). “Likelihood Training of
Schrödinger Bridge using Forward-Backward SDEs Theory”. In: International Conference on
Learning Representations.

Yongxin Chen, Giovanni Conforti, Tryphon T. Georgiou, and Luigia Ripani (2019). “Multi-marginal
Schrödinger Bridges”. In: Geometric Science of Information. Springer International Publishing,
pp. 725–732.

Lénaı̈c Chizat (2023). Doubly Regularized Entropic Wasserstein Barycenters. arXiv: 2303.11844
[math.OC].

Sebastian Claici, Edward Chien, and Justin Solomon (2018). “Stochastic Wasserstein Barycenters”.
In: International Conference on Machine Learning.

Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet (2021). “Differen-
tiable particle filtering via entropy-regularized optimal transport”. In: International Conference
on Machine Learning.

11

https://arxiv.org/abs/2304.03190
https://arxiv.org/abs/2303.11844
https://arxiv.org/abs/2303.11844

Marco Cuturi (2013). “Sinkhorn Distances: Lightspeed Computation of Optimal Transport”. In:
Advances in Neural Information Processing Systems.

Marco Cuturi and Arnaud Doucet (2014). “Fast Computation of Wasserstein Barycenters”. In: In-
ternational Conference on Machine Learning.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul (2022). “Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein”. In:
arXiv preprint arXiv:2201.12324.

Marco Cuturi and Gabriel Peyré (2016). “A Smoothed Dual Approach for Variational Wasserstein
Problems”. In: SIAM Journal on Imaging Sciences 9.1, pp. 320–343.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert (2019). “Differentiable ranking and sorting
using optimal transport”. In: Advances in Neural Information Processing Systems.

Paolo Dai Pra (1991). “A stochastic control approach to reciprocal diffusion processes”. In: Applied
Mathematics and Optimization 23.1, pp. 313–329.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet (2024). “Schrodinger
Bridge Flow for Unpaired Data Translation”. In: Conference on Neural Information Processing
Systems.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet (2021). “Diffusion
Schrödinger Bridge with Applications to Score-Based Generative Modeling”. In: Advances in
Neural Information Processing Systems.

Wei Deng, Weijian Luo, Yixin Tan, Marin Bilos, Yu Chen, Yuriy Nevmyvaka, and Ricky T. Q. Chen
(2024). “Variational Schrödinger Diffusion Models”. In: International Conference on Machine
Learning.

Prafulla Dhariwal and Alexander Nichol (2021). “Diffusion Models Beat GANs on Image Synthe-
sis”. In: Advances in Neural Information Processing Systems.

Pavel Dvurechenskii, Darina Dvinskikh, Alexander Gasnikov, Cesar Uribe, and Angelia Nedich
(2018). “Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters”. In: Ad-
vances in Neural Information Processing Systems.

Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen (2021). “Scalable Computations of Wasser-
stein Barycenter via Input Convex Neural Networks”. In: International Conference on Machine
Learning.

Hadi Fanaee-T (2013). Bike Sharing. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5W894.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty
(2021). Minibatch optimal transport distances; analysis and applications. arXiv: 2101.01792
[stat.ML].

David Lopes Fernandes, Francisco Vargas, Carl Henrik Ek, and Neill D. F. Campbell (2022). “Shoot-
ing Schrödinger’s Cat”. In: Fourth Symposium on Advances in Approximate Bayesian Inference.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, AurÃ©lie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, LÃ©o Gau-
theron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine
Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong,
and Titouan Vayer (2021). “POT: Python Optimal Transport”. In: Journal of Machine Learning
Research 22.78, pp. 1–8.

Robert Fortet (1940). “Résolution d’un système d’équations de M. Schrödinger”. In: Journal de
Mathématiques Pures et Appliquées 9e série, 19.1-4, pp. 83–105.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach (2016). “Stochastic Optimization
for Large-scale Optimal Transport”. In: Advances in Neural Information Processing Systems.

Aude Genevay, Gabriel Peyré, and Marco Cuturi (2018). “Learning generative models with
Sinkhorn divergences”. In: International Conference on Artificial Intelligence and Statistics.

12

https://arxiv.org/abs/2101.01792
https://arxiv.org/abs/2101.01792

Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin (2024). “Light and Op-
timal Schrödinger Bridge Matching”. In: International Conference on Machine Learning.

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev
(2023). “Entropic Neural Optimal Transport via Diffusion Processes”. In: Advances in Neural
Information Processing Systems.

Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson (2021). “Multimarginal Optimal
Transport with a Tree-Structured Cost and the Schrödinger Bridge Problem”. In: SIAM Journal
on Control and Optimization 59.4, pp. 2428–2453.

Ben Hambly and Terry Lyons (2008). Some notes on trees and paths. arXiv: 0809 . 1365
[math.CA].

L.V. Kantorovich (1942). On translation of mass. Proceedings of the USSR Academy of Sciences,
37.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine (2022). “Elucidating the Design Space of
Diffusion-Based Generative Models”. In: Advances in Neural Information Processing Systems.

Beomsu Kim, Yu-Guan Hsieh, Michal Klein, marco cuturi, Jong Chul Ye, Bahjat Kawar, and James
Thornton (2025). “Simple ReFlow: Improved Techniques for Fast Flow Models”. In: Interna-
tional Conference on Learning Representations.

Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye (2024). “Unpaired Image-to-
Image Translation via Neural Schrödinger Bridge”. In: International Conference on Learning
Representations.

Diederick P Kingma and Jimmy Ba (2015). “Adam: A method for stochastic optimization”. In:
International Conference on Learning Representations.

Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Evgeny
Burnaev, and Alexander Korotin (2024a). “Estimating Barycenters of Distributions with Neural
Optimal Transport”. In: International Conference on Machine Learning.

Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Anasta-
sis Kratsios, Evgeny Burnaev, and Alexander Korotin (2024b). “Energy-Guided Continuous En-
tropic Barycenter Estimation for General Costs”. In: Advances in Neural Information Processing
Systems.

Alexander Korotin, Vage Egiazarian, Lingxiao Li, and Evgeny Burnaev (2022). “Wasserstein It-
erative Networks for Barycenter Estimation”. In: Conference on Neural Information Processing
Systems.

Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev (2024). “Light Schrödinger Bridge”. In:
International Conference on Learning Representations.

Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev (2021). “Continuous
Wasserstein-2 Barycenter Estimation without Minimax Optimization”. In: International Confer-
ence on Learning Representations.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2023). “Neural Optimal Trans-
port”. In: International Conference on Learning Representations.

S. Kullback (1968). “Probability Densities with Given Marginals”. In: The Annals of Mathematical
Statistics 39.4, pp. 1236–1243.

Yann LeCun, Corinna Cortes, and CJ Burges (2010). “MNIST handwritten digit database”. In: ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2.

Christian Léonard (2012). “Girsanov Theory Under a Finite Entropy Condition”. In: Séminaire de
Probabilités XLIV. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 429–465.

Lingxiao Li, Aude Genevay, Mikhail Yurochkin, and Justin M Solomon (2020). “Continuous Reg-
ularized Wasserstein Barycenters”. In: Advances in Neural Information Processing Systems.

Johannes von Lindheim (2023). “Simple approximative algorithms for free-support Wasserstein
barycenters”. In: Computational Optimization and Applications 85.1, pp. 213–246.

13

https://arxiv.org/abs/0809.1365
https://arxiv.org/abs/0809.1365

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le (2023).
“Flow Matching for Generative Modeling”. In: International Conference on Learning Represen-
tations.

Xingchao Liu, Chengyue Gong, and Qiang Liu (2023). “Flow Straight and Fast: Learning to Gener-
ate and Transfer Data with Rectified Flow”. In: International Conference on Learning Represen-
tations.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang (2015). “Deep Learning Face Attributes in
the Wild.” In: ICCV. IEEE Computer Society, pp. 3730–3738.

Giulia Luise, Saverio Salzo, Massimiliano Pontil, and Carlo Ciliberto (2019). “Sinkhorn Barycenters
with Free Support via Frank-Wolfe Algorithm”. In: Advances in Neural Information Processing
Systems.

Christian Léonard (2013). A survey of the Schrödinger problem and some of its connections with
optimal transport. arXiv: 1308.0215 [math.PR].

Christian Léonard, Sylvie Roelly, and Jean Zambrini (Jan. 2014). “Reciprocal processes. A measure-
theoretical point of view”. In: Probability Surveys 11.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee (2020). “Optimal transport
mapping via input convex neural networks”. In: International Conference on Machine Learning.

Gaspard Monge (1781). “Mémoire sur la théorie des déblais et des remblais”. In: Histoire de
l’Académie Royale des Sciences, pp. 666–704.

Maxence Noble, Valentin De Bortoli, Arnaud Doucet, and Alain Durmus (2023). “Tree-Based Diffu-
sion Schrödinger Bridge with Applications to Wasserstein Barycenters”. In: Conference on Neural
Information Processing Systems.

Marcel Nutz (2021). Introduction to Entropic Optimal Transport. Lecture Notes.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Stefano Peluchetti (2022). Non-Denoising Forward-Time Diffusions.

Stefano Peluchetti (2023). “Diffusion Bridge Mixture Transports, Schrödinger Bridge Problems and
Generative Modeling”. In: Journal of Machine Learning Research 24.374, pp. 1–51.

Gabriel Peyré and Marco Cuturi (2019). “Computational Optimal Transport”. In: Foundations and
Trends in Machine Learning 11 (5-6), pp. 355–602.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T. Q. Chen (2023). “Multisample Flow Matching: Straightening Flows with Mini-
batch Couplings”. In: International Conference on Machine Learning.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot (2012). “Wasserstein Barycenter and Its
Application to Texture Mixing”. In: Scale Space and Variational Methods in Computer Vision.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 435–446.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015. Cham: Springer International Publishing, pp. 234–241.

Ludger Rüschendorf (1995). “Convergence of the Iterative Proportional Fitting Procedure”. In: The
Annals of Statistics 23.4, pp. 1160–1174.

Filippo Santambrogio (2015). Optimal transport for applied mathematicians. Birkhauser.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh,
Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S. Lander (2019).
“Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajecto-
ries in Reprogramming”. In: Cell 176.4.

14

https://arxiv.org/abs/1308.0215

Yunyi Shen, Renato Berlinghieri, and Tamara Broderick (2025). “Multi-marginal Schrödinger
Bridges with Iterative Reference Refinement”. In: International Conference on Artificial Intel-
ligence and Statistics.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet (2023). “Diffusion
Schrödinger Bridge Matching”. In: Conference on Neural Information Processing Systems.

Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, and Martin Jaggi (2020). “Context Mover’s
Distance & Barycenters: Optimal Transport of Contexts for Building Representations”. In: Inter-
national Conference on Artificial Intelligence and Statistics.

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen,
Tao Du, and Leonidas Guibas (July 2015). “Convolutional wasserstein distances: efficient optimal
transportation on geometric domains”. In: ACM Trans. Graph. 34.4.

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher (2014). “Wasserstein Prop-
agation for Semi-Supervised Learning”. In: International Conference on Machine Learning.

Max Sommerfeld, Jörn Schrieber, Yoav Zemel, and Axel Munk (2019). “Optimal Transport: Fast
Probabilistic Approximation with Exact Solvers”. In: Journal of Machine Learning Research
20.105, pp. 1–23.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever (2023). “Consistency Models”. In:
International Conference on Machine Learning.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole (2021). “Score-Based Generative Modeling through Stochastic Differential Equations”. In:
International Conference on Learning Representations.

Sanvesh Srivastava, Cheng Li, and David B. Dunson (2018). “Scalable Bayes via Barycenter in
Wasserstein Space”. In: Journal of Machine Learning Research 19.8, pp. 1–35.

Matthew Staib, Sebastian Claici, Justin M Solomon, and Stefanie Jegelka (2017). In: Advances in
Neural Information Processing Systems.

Eloi Tanguy, Julie Delon, and Nathaël Gozlan (2024). Computing Barycentres of Measures for
Generic Transport Costs. arXiv: 2501.04016 [math.NA].

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio (2024a). “Improving and generalizing flow-based genera-
tive models with minibatch optimal transport”. In: Transactions on Machine Learning Research.

Alexander Y. Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio (2024b). “Simulation-Free Schrödinger Bridges via Score
and Flow Matching”. In: International Conference on Artificial Intelligence and Statistics.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence (2021). “Solving
Schrödinger Bridges via Maximum Likelihood”. In: Entropy 23.9.

Jianbo Ye, Panruo Wu, James Z. Wang, and Jia Li (2017). “Fast Discrete Distribution Clustering
Using Wasserstein Barycenter With Sparse Support”. In: IEEE Transactions on Signal Processing
65.9, pp. 2317–2332.

15

https://arxiv.org/abs/2501.04016

Appendix
The Appendix is structured in the following way. In Appendix A, we define the notation used and
provide further background information regarding the problems discussed in the paper. In Appendix
B, we provide the proofs of the results stated in the main body. In Appendix C, we describe in more
detail how to implement the TreeDSBM algorithm, and also discuss extensions of the methodology
for improving convergence speed. In Appendix D, we give a full overview of the experimental
setups in the main body, and include further discussions of the findings. In Appendix E we provide
additional experiments that could not be included in the main body due to space constraints. Finally,
Appendix F includes the licenses for assets used in this work.

A Background
A.1 Notation
We denote by T a tree with an edge length function, T = (V, E , ℓ), or its associated metric space
via associating edges e with the line segment of length T e = ℓ(e) (see Section 2.3). We let P(C) =
P(C([0, T],Rd)) and P(CT) := P(C(T ,Rd)) denote the space of path measures on the interval
[0, T] and T respectively. For the interval [0, T], M denotes the set of Markov measures, and R(Q)
denotes the reciprocal class for a reference measure Q ∈ M (see Definitions 2.1 and 2.2). For a path
measure Q ∈ P(C), Qt denotes the marginal distribution at time t, and Q·|0,T denotes the diffusion
bridge conditional on values at 0, T . We use Π = Π0,TQ·|0,T ∈ P(C) to denote mixtures of bridges
Π(·) =

∫
Rd×Rd Q·|0,T (·|x0, xT)Π0,T (dx0, dxT). Similarly on the tree T , MT denotes the set of

Markov measures, and RS(Q) denotes the reciprocal class for a reference measure Q ∈ MT and
observed vertices S ⊂ V (see Definitions 3.1 and 3.2). For a path measure Q ∈ P(CT), Qv denotes
the marginal at vertex v ∈ V , QV denotes the induced joint distribution over a set of vertices V , and
Q·|S denotes the bridge process conditional on values at vertices S. We denote mixtures of bridges as
Π = ΠSQ·|S ∈ P(CT), defined similarly to above. Finally, KL(π∥π̃) denotes the Kullback-Leibler
divergence between measures π, π̃, and H(π) denotes the differential entropy.

A.2 Optimal transport
We here provide a brief overview of optimal transport; for more details we refer to Santambrogio
(2015), Peyré and Cuturi (2019).

Monge For two measures µ0 and µ1, the original OT formulation given by Monge (1781) aims to
find a map T ∗ : Rd → Rd pushing µ0 onto µ1, that is µ1 = T ∗#µ0, while minimising the total cost
of transportation according to a given cost function c : Rd × Rd → R,

min
T :T#µ0=µ1

∫
Rd

c(x, T (x))dµ0(x). (16)

Kantorovich While intuitive, the Monge formulation of OT is restrictive in that it does not permit
splitting of mass in the transportation. Instead, it is common to consider the more general Kan-
torovich formulation (Kantorovich, 1942), which searches over joint distributions π ∈ P(Rd ×Rd)
with the correct marginals,

min
π:π0=µ0,π1=µ1

∫∫
Rd×Rd

c(x, y)dπ(x, y). (17)

Entropic regularisation The entropy-regularised OT problem adds an entropic penalty term to
the Kantorovich objective, which smooths the resulting transport plan.

min
π:π0=µ0,π1=µ1

{∫∫
Rd×Rd

c(x, y)dπ(x, y)− εH(π)

}
.

The resulting problem has many desirable properties; it enables differentiability with respect to the
inputs, relaxes constraints on the corresponding potentials (Genevay et al., 2016), and for discrete
measures enables efficient computation using Sinkhorn’s algorithm (Cuturi, 2013).

16

A.3 Multi-marginal optimal transport
One can generalise the above optimal transport problem to the case of multiple marginal distribu-
tions. For a cost function c : (Rd)ℓ+1 → R and an ‘observed’ set S ⊂ {0, ..., ℓ}, multi-marginal op-
timal transport (mmOT) searches over joint distributions π ∈ P((Rd)ℓ+1) matching the prescribed
marginals on S to minimise the objective,

min
π:πi=µi ∀i∈S

∫
(Rd)ℓ+1

c(x0:ℓ)dπ(x0:ℓ). (18)

As in the standard case, one can define an entropy-regularised version of the mmOT problem,

min
π:πi=µi ∀i∈S

{∫
(Rd)ℓ+1

c(x0:ℓ)dπ(x0:ℓ)− εH(π)

}
. (19)

Multi-marginal Schrödinger bridges We emphasise here the distinction between the multi-
marginal OT and corresponding SB problem that we consider in this work, compared to the multi-
marginal SB problem that has been considered recently in works such as Chen et al. (2019), Chen
et al. (2023), and Shen et al. (2025) to name a few. These lines of works aim to find processes that
evolve in time while fitting to known marginals at several different timepoints, and are motivated by
inferring population dynamics from snapshot data. We rather consider costs defined according to a
tree structure, in which the marginals at some of the vertices may not be known (as considered in
Haasler et al. (2021) and Noble et al. (2023)), with a particular focus on applications to Wasserstein
barycentre problems.

A.4 Wasserstein barycentres
Given ℓ measures (µ1, ..., µℓ) and weights (λ1, ..., λℓ) summing to 1, the Wasserstein-2 barycentre
(Agueh and Carlier, 2011) is defined as

ν∗ = argmin
ν

∑
i

λiW
2
2 (µi, ν), (20)

where W 2
2 (µi, ν) denotes the minimum attained by the OT solution in (17) for quadratic cost func-

tion c(x, y) = 1
2∥x−y∥22. Observe that this can be cast as an mmOT problem by using a star-shaped

cost function c(x0:ℓ) =
∑ℓ

i=1 λi∥x0 − xi∥22, where the marginals are prescribed on the leaf nodes
S = {1, ..., ℓ} and the centre vertex 0 is an unobserved measure (which at the solution is the barycen-
tre). The Wasserstein barycentre is widely studied due to its importance in applications, including in
Bayesian learning (Srivastava et al., 2018), clustering (Ye et al., 2017), and representation learning
(Singh et al., 2020) to name a few.

Types of regularised barycentre There are many different ways to define an entropy-regularised
formulation of the Wasserstein barycentre problem. Some formulations add inner regularisation,
which replaces the Wasserstein distances with an entropy-regularised version, while others also
consider outer regularisation in which an entropic penalty on the barycentre is added. The (ε, τ)-
doubly-regularised barycentre of Chizat (2023) unifies many of these problems, and aims to min-
imise the objective

min
ν

{∑
i

λiW
2
2,ε(µi, ν)− τH(ν)

}
, (21)

where W 2
2,ε(µi, ν) = minπ:π0=µi,π1=ν

{ ∫∫
1
2∥x − y∥2dπ(x, y) + εKL(π∥µ ⊗ ν)

}
. We refer

to Chizat (2023) for more details regarding the different types of entropy-regularised Wasserstein
barycentres.

Tree-structured costs The case of tree-structured costs for multi-marginal optimal transport is
often specifically studied in the literature (Haasler et al., 2021; Noble et al., 2023), as it recovers
Wasserstein barycentres as a special case as described above, and also arises in the Wasserstein
propagation problem (Solomon et al., 2014, 2015). In the discrete setting, Haasler et al. (2021)
show that the tree structure can be leveraged to design an efficient Sinkhorn-based algorithm.

The metric space T Recall from Section 2.3 that we identify a tree T (with vertices, edge set, and
length function (V, E , ℓ)) with a metric space, by associating each edge e with the interval [0, ℓ(e)],
which are connected according to the tree structure. The same construction is used in Noble et
al. (2023) for defining the dynamic TreeSB problem that we study in this work. For a rigorous
description of such constructions, see for example Hambly and Lyons (2008), Bolin et al. (2024).

17

B Proofs
In this section, we give proofs of the results stated in the main paper. We first provide the proof of
the TreeSB characterisation in Theorem 3.1. We will follow the presentation and proof techniques
of Léonard (2013), making the appropriate changes to extend to the tree-structured case. We then
prove the convergence of the TreeIMF procedure stated in Theorem 3.1, following the presentation
and proof techniques of Shi et al. (2023).

B.1 Existence and uniqueness of TreeSB solution
We first provide results pertaining to the existence and uniqueness of the TreeSB solution. Note that
while we follow the presentation of Léonard (2013), one could instead rely on the existence results
in Noble et al. (2023).

Let us define another static minimisation problem only over observed vertices in S as

ΠSB
S = argmin

Π∈P((Rd)|S|)

{KL(Π∥QS) | Πi = µi ∀i ∈ S}. (TreeSBS
stat)

We note here that the reference measures that we consider in the various SB problems are un-
bounded, as we consider the reference Brownian motions to be in stationarity. We will make use
of properties of the KL divergence defined relative to these measures; see the Appendix of Léonard
(2013) for a justification of why these properties still hold when the reference measures are un-
bounded.

We first provide a result detailing the relationships between the dynamic and static tree-structured
SB problems.

Proposition B.1 (Compare to Proposition 2.3 in Léonard (2013)). The tree-structured Schrödinger
Bridge problems (TreeSBdyn), (TreeSBstat), and (TreeSBS

stat) admit at most one solution
PSB ∈ P(CT), ΠSB

V ∈ P((Rd)|V|), and ΠSB
S ∈ P((Rd)|S|) respectively.

If PSB solves (TreeSBdyn), then PSB
V solves (TreeSBstat). Conversely, if ΠSB

V solves (TreeSBstat),
then (TreeSBdyn) is solved by mixing Brownian bridges along each edge as PSB = ΠSB

V Q·|V .

Moreover, if PSB solves (TreeSBdyn), then PSB
S solves (TreeSBS

stat). Conversely, if ΠSB
S solves

(TreeSBS
stat), then (TreeSBdyn) is solved by the corresponding mixture of Q-bridges conditioned

on values at S, PSB = ΠSB
S Q·|S .

Proof. The first statement follows from the strict convexity of the (TreeSBstat), (TreeSBdyn), and
(TreeSBS

stat) problems.

The second follows by using the chain rule for KL divergence, conditioning on the values at the
vertices V . We obtain

KL(P∥Q) = KL(PV∥QV) +

∫
(Rd)|V|

KL(P(·|XV)∥Q(·|XV))dPV(XV). (22)

We see that KL(P∥Q) ≥ KL(PV∥QV), with equality if and only if P(·|XV) = Q(·|XV) for PV -
a.e. XV (assuming KL(P∥Q) < ∞). Therefore, P solves the dynamic problem if and only if it
decomposes as a mixture over bridges Q·|V according to the coupling PV solving the static problem,
i.e. PSB = ΠSB

V Q·|V (if this were not true, then PSB
V Q·|V would be a valid solution with lower KL

divergence relative to Q, contradicting optimality of PSB). Note that such bridges just consist of
Brownian bridges along the individual edges.

The third part follows similarly to the second. Consider the KL decomposition but instead condi-
tioning only on the values on the observed vertices S,

KL(P∥Q) = KL(PS∥QS) +

∫
(Rd)|S|

KL(P(·|XS)∥Q(·|XS))dPS(XS). (23)

Now we have KL(P∥Q) ≥ KL(PS∥QS), with equality if and only if P(·|XS) = Q(·|XS) for
PS -a.e. XS (assuming KL(P∥Q) < ∞). So in particular, we have that PSB must be a mixture of
Q-bridges according to its own coupling over S, i.e. PSB = PSB

S Q·|S .

18

In the following, we will utilise this equivalence between the (TreeSBdyn) and (TreeSBS
stat) prob-

lems. We now present an auxiliary result giving a criterion for the tree-structured SB problems to
have a solution, in the vein of Lemma 2.4 in Léonard (2013). This is a technical result required to
deal with the fact that we are considering an unbounded reference measure Q.

Lemma B.2 (Compare to Lemma 2.4 in Léonard (2013)). Let B : Rd → [0,∞) be a measurable
function such that

zB :=

∫
(Rd)|S|

exp
(
−
∑
i∈S

B(xi)
)
QS(dxS) < ∞, (24)

and for each i ∈ S take a µi ∈ P(Rd) such that
∫
Bdµi < ∞.

Note that inf(TreeSBS
stat) = inf(TreeSBdyn) ∈ (−∞,∞] (from the previous result). The static

and dynamic tree-structured SB problems (TreeSBS
stat) and (TreeSBdyn) for the µi have a (unique)

solution if and only if inf(TreeSBS
stat) = inf(TreeSBdyn) < ∞ (that is, if and only if the marginals

µi are such that there exists some Π0 ∈ P((Rd)|S|) satisfying Π0
i = µi for each i ∈ S, and

KL(Π0∥QS) < ∞).

Proof. In light of the equivalence in Proposition B.1, we can consider just the static prob-
lem (TreeSBS

stat). Since the marginals µi are tight on Rd, it easily follows that the closed
constraint set Γ({µi}i∈S) := {Π ∈ P((Rd)|S| : Πi = µi ∀i ∈ S} is uniformly tight
and thus compact in P((Rd)|S|. From the characterisation of KL divergence with respect
to the unbounded measure QS (see Léonard (2013), Appendix A), we have KL(Π∥QS) =
KL(Π∥QB

S) −
∫
(Rd)|S|

∑
i∈S B(xi)dΠ(xS) − zB , where QB

S is the normalised measure QB
S =

1
zB

exp(−
⊕

S B)QS . For Π ∈ Γ({µi}i∈S), we have

KL(Π∥QS) = KL(Π∥QB
S)−

∑
i∈S

∫
Rd

Bdµi − zB .

The lower-semicontinuity of Π 7→ KL(Π∥QB
S), and the assumption

∫
Bdµi < ∞ for each

i ∈ S, together imply that KL(Π∥QS) is lower bounded and lower semi-continuous on the
compact set Γ({µi}i∈S). Thus the static problem (TreeSBS

stat) admits a solution if and only if
inf (TreeSBS

stat) < ∞.

In light of Lemma B.2, we can state the following result which provides conditions for the existence
of the (TreeSBdyn) solution. Recall we will consider an unnormalised Brownian reference measure,
which satisfies Qi = Leb for each i ∈ S, so the following result applies with m = Leb.

Proposition B.3 (Compare to Proposition 2.5 in Léonard (2013)). Suppose that Qi = m for each
i ∈ S, for a positive measure m. We have the following results.

(a) For (TreeSBS
stat) and (TreeSBdyn) to have a solution, it is necessary to have

KL(µi∥m) < ∞ for each i ∈ S.

(b) For sufficient conditions: Suppose there exists measurable functions A,B : Rd → R≥0

satisfying

(i) QS(dxS) ≥ exp
(
−
∑

i∈S A(xi)
)
dm⊗S (xS),

(ii)
∫
(Rd)|S| exp

(
−
∑

i∈S B(xi)
)
QS(dxS) < ∞,

(iii)
∫
Rd(A+B)dµi < ∞ for each i ∈ S.

(iv) KL(µi∥m) < ∞ for each i ∈ S.

Then there exists a unique solution to the SB problems (TreeSBS
stat) and (TreeSBdyn).

Proof. The first statement (a) follows by applying the result in Lemma B.2 and using the fact that
KL(µi∥Leb) ≤ KL(Π0∥QS) < ∞.

19

For the second, we take the independent coupling Π0
S =

⊗
i∈S µi, and observe that (under the

above assumptions) it satisfies the conditions in Lemma B.2. Clearly, it has the correct marginals
Π0

i = µi by construction, so it remains only to check that KL(Π0
S∥QS) < ∞. By expanding the

KL divergence and using the inequalities in (i) and (iii), one sees that the inequalities in (iv) are
sufficient to ensure KL(Π0

S∥QS) < ∞.

B.2 Characterisation of TreeSB solution
We now show the characterisation of the solution to Equation (TreeSBdyn) stated in Theorem 3.1,
upon which the IMF procedure depends. We first recall that the solution PSB is a mixture of bridges
of Q, conditional on the values at vertices in S.

Proposition B.4 (Reciprocal process). The solution PSB to (TreeSBdyn) (if it exists) is in the
reciprocal class RS(Q), i.e. PSB = PSB

S Q·|S .

Proof. This is a consequence of the third part of Proposition B.1.

We now show that for a Markov reference process Q, the (TreeSBdyn) solution is also Markov. Fol-
lowing Léonard (2013), to present the results we will use the following characterisation of Marko-
vianity for a path measure P on the tree structure. Consider an edge e ∈ E and a time te ∈ [0, T e].
Consider the time te as splitting the continuous tree into two distinct sections (note that such a split-
ting may not be unique, as the chosen point may correspond to a vertex; in such cases consider any
such split into two distinct parts). Denote the restrictions of a process X to these two parts as X≤
and X≥. Then we say P is Markov to mean that P(X≤ ∈ ·, X≥ ∈ ··|Xe

t) = P(X≤ ∈ ·|Xe
t)P(X≥ ∈

· · |Xe
t) for any such split (together with the technical assumption that some time-marginal of P is

σ-finite; see discussion in Léonard (2013)). Note that the Brownian reference process considered in
the main paper is Markov.

Proposition B.5 (Markov process). For Markov reference measure Q, the solution PSB to
(TreeSBdyn) (if it exists) is Markov.

Proof. The proof follows that of Proposition 2.10 in Léonard (2013). We outline the following
changes to the notation for our setting, then the argument follows the same way.

Consider an edge e ∈ E and a time te ∈ [0, T e], along with a corresponding split of the tree at
time te as described above. We define the following notation: Let C≤

T = {ω≤ : ω ∈ CT } and
C≥
T = {ω≥ : ω ∈ CT } be the spaces of continuous paths on the two sections of the tree respectively.

For a path measure P ∈ P(CT), let Pte,z = P(·|Xe
te = z) ∈ P(CT) be the measure conditioned on

the process X taking value x at the time te, and moreover define its restrictions to the two sections
as Pte,z

≤te
and Pte,z

≤te
respectively.

Similarly to Léonard (2013) we now make the following claim, from which the result follows.

Claim B.6. Fix a time on the tree te as described above. Fix a z ∈ Rd, a measure µ ∈ P(Rd),
and path measures on the ‘before’ and ‘after’ sections P̃te,z

≤ ∈ P(C≤
T ∩ {Xte = z}) and P̃te,z

≥ ∈
P(C≥

T ∩ {Xte = z}). Consider minimising KL(·∥Q) over path measures P ∈ P(CT) constrained
to satisfy Pte = µ, Pte,z

≤ = P̃te,z
≤ , and Pte,z

≥ = P̃te,z
≥ . Then the objective KL(·∥Q) attains its unique

minimum at P∗(·) =
∫
Rd P̃te,z

≤ ⊗ P̃te,z
≥ µ(dz).

Given the claim, the result follows according to the following argument: Suppose for a contradiction
that the SB solution, here denoted P̃, was not Markov. Then, there exists some time te and a cor-
respond split of the tree such that P̃(·|Xe

te) ̸= P̃≤(·|Xe
te)⊗ P̃≥(·|Xe

te). Applying the above claim
with µ = P̃te , we see that P∗ and P̃ have the same marginals at all time-points on the tree, but P∗

attains a strictly lower KL divergence KL(P∗∥Q) < KL(P̃∥Q), contradicting the optimality of P̃.

The proof of the claim uses Jensen’s inequality and proceeds exactly as the proof of Claim 2.11 in
Léonard (2013), with the appropriate notation changes.

20

We now provide the characterisation of the TreeSB solution in Theorem 3.1. While the previous re-
sults have been for a general reference measure Q, we present the following results for Q associated
to running Brownian motions (σBe

t)t∈[0,T e] along each edge, as considered in the main paper.

Theorem 3.1 (TreeSB characterisation). Under mild assumptions (in the Brownian case, namely
that

∫
∥x∥2dµi(x) < ∞ and H(µi) < ∞ for each i ∈ S), there exists a unique solution to the

dynamic TreeSB problem (TreeSBdyn). The solution is the unique process P that is both Markov
and in RS(Q) with correct marginals Pi = µi for i ∈ S.

Proof. As we are considering a Brownian reference process, the assumptions in question are that∫
∥x∥2dµi(x) < ∞, and H(µi) < ∞ for each i ∈ S. One can then verify (as in De Bortoli et al.

(2024), Lemma D.2) that the criteria in Proposition B.3 hold by taking functions A and B to be
quadratic, from which uniqueness and existence of the solution follow. From Proposition B.4 we
have that the solution is in RS(Q), and from Proposition B.5 we have that it is Markov.

We now need to show that if a measure P0 is Markov and in RS(Q), and has the correct marginals
P0
i = µi for i ∈ S, then it is the TreeSB solution. Note first that as P0 is Markov and reciprocal, its

restriction to each edge e = (u, v) is also Markov and reciprocal along that edge. Thus, by Theo-
rem 2.14 in Léonard et al. (2014) (noting that the required criterion holds for the Brownian reference
measure) we have that dP0

e

dQe
= fu(Xu)fv(Xv), Qe-a.e. for some non-negative measurable functions

fu, fv . Recall that the path measures are a composition of the path measures along each edge ac-
cording to the tree structure, so this means that dP0

dQ =
∏

i∈V fi(Xi), Q-a.e. for some non-negative
measurable functions fi (via relabelling of the functions). Note too that P0 is in RS(Q), so we can
also express the Radon-Nikodym derivative as dP0

dQ = h({Xi}i∈S) for some non-negative measur-
able function h. Equating the two expressions, we see that we in fact must have a decomposition
only over vertices in S, dP0

dQ = dΠ0

dQV
=

∏
i∈S fi(Xi), Q-a.e. for some non-negative measurable

functions fi (where Π0 denotes the static coupling of P0 over the vertices V).

The remainder follows the standard argument characterising the SB solution using the decomposi-
tion according to potentials (see e.g. Nutz (2021)). Consider static couplings in the constraint set
Π ∈ Γ({µi}i∈S) := {Π ∈ P((Rd)|V| : Πi = µi ∀i ∈ S} such that KL(Π|QV) < ∞. By the
above, we have that EΠ[log(

dΠ0

dQV
)] =

∑
i∈S

∫
log fidµi, which is in particular independent of the

choice of Π (for a precise statement taking care regarding the integrability of the potentials, follow
the argument of Proposition 2.17 in Nutz (2021)). Therefore, for any such Π we have

KL(Π∥QV) ≥ KL(Π∥QV)−KL(Π∥Π0) (25)

= EΠ[log(
dΠ0

dQV
)] (26)

= EΠ0
[log(dΠ

0

dQV
)] (27)

= KL(Π0∥QV). (28)

and we thus see that Π0 is the minimiser of the (TreeSBstat) problem.

B.3 Properties of the tree-structured projections
We now move on to proving properties of the TreeIMF procedure. We follow the presentation of
Shi et al. (2023). We begin by proving the properties of the reciprocal and Markovian projections
defined in Definitions 3.3 and 3.4. For a full set of required assumptions, see the assumptions A.1,
A.2 and A.3 in Shi et al. (2023) Appendix C.2, which are standard in the literature and we assume
to hold along each edge.

The following result follows similarly to the standard IMF case.

Proposition 3.3. For P ∈ P(CT), the reciprocal projection Π∗ = projRS(Q)(P) solves the minimi-
sation problem Π∗ = argminΠ∈RS(Q) KL(P∥Π).

21

Proof. This follows from the KL decomposition used in Proposition B.1, conditioning on the values
on the observed vertices S:

KL(P∥Π) = KL(PS∥ΠS) +

∫
(Rd)|S|

KL(P(·|XS)∥Π(·|XS))dPS(XS). (29)

Given we are optimising Π over the reciprocal class RS(Q), we have that the bridges Π(·|XS) =
Q(·|XS) are fixed. Thus, the minimiser is achieved by taking ΠS = PS , that is Π = projRS(Q)(P).

To prove subsequent results, we require the following decomposition of the KL divergence according
to the tree structure. Note that we consider Markov and reciprocal processes on the tree, both of
which factorise according to the tree structure so the following decomposition can be applied.

Lemma 3.2 (KL decomposition along tree). Take path measures P, P̃ that share a marginal at the
root, Pr = P̃r, and factorise along the tree. Under mild assumptions, we have the KL decomposition

KL(P∥P̃) =
∑

(u,v)∈Er

EXu∼Pu

[
KL(P(u,v)(·|Xu)∥P̃(u,v)(·|Xu))

]
. (12)

Proof. This is a consequence of the iterative application of the chain rule for KL divergence applied
according to the tree structure, and the conditional independence caused by the tree structure. By
first applying the chain rule for the KL divergence conditional on the value at the root vertex r, we
have

KL(P∥P̃) = KL(Pr∥P̃r) + EXr∼Pr

[
KL

(
P(·|Xr)∥P̃(·|Xr)

)]
(30)

= EXr∼Pr

[
KL

(
P(·|Xr)∥P̃(·|Xr)

)]
. (31)

Recall that the edge set E is depth-wise ordered. We can again apply the KL chain rule to the term
inside the expectation, now conditioned on the process along the first edge e1.

KL
(
P(·|Xr)∥P̃(·|Xr)

)
= KL

(
Pe1(·|Xr)∥P̃e1(·|Xr)

)
+ EXe1∼Pe1 (·|Xr)

[
KL

(
P(·|Xe1 , Xr)∥P̃(·|Xe1 , Xr)

)]
. (32)

We can iteratively apply similar decompositions as we traverse the edges according to the ordered
edge set.

KL
(
P(·|Xek , ..., Xe1 , Xr)∥P̃(·|Xek , ..., Xe1 , Xr)

)
= KL

(
Pek+1(·|Xek , ..., Xe1 , Xr)∥P̃ek+1(·|Xek , ..., Xe1 , Xr)

)
+ EXek+1∼Pek+1 (·|Xek ,...,Xe1 ,Xr)

[
KL

(
P(·|Xek+1 , ..., Xe1 , Xr)∥P̃(·|Xek+1

, ..., Xe1 , Xr)
)]
(33)

= KL
(
Pek+1(·|Xs(ek+1))∥P̃

ek+1(·|Xs(ek+1))
)

+ EXek+1∼Pek+1 (·|Xek ,...,Xe1 ,Xr)

[
KL

(
P(·|Xek+1 , ..., Xe1 , Xr)∥P̃(·|Xek+1 , ..., Xe1 , Xr)

)]
,

(34)

where in the second line we use the factorisation property along the tree structure (here, s(e) denotes
the starting vertex of an edge e). Applying such decompositions for each edge in the ordered edge
set E , one obtains

KL(P∥P̃) =
|E|∑
k=1

EXek−1
∼Pek−1 (·|Xek−2 ,...,Xe1 ,Xr)

...
Xe1

∼Pe1 (·|Xr)
Xr∼Pr

[
KL

(
Pek(·|Xs(ek))∥P̃

ek(·|Xs(ek))
)]

(35)

=
∑

(u,v)∈Er

EXu∼Pu

[
KL(P(u,v)(·|Xu)∥P̃(u,v)(·|Xu))

]
. (36)

as required.

22

We now consider the Markov projection defined in Definition 3.4. Note that the restriction of the
TreeSB solution to each edge is itself an SB (because it is Markov and reciprocal), and thus can be
associated with an SDE (Dai Pra, 1991). In the definition of the Markov class in Definition 3.1 we
define the Markov class MT via considering SDEs with locally Lipschitz drifts. The restriction to
locally Lipschitz drifts is a technical requirement for applying the entropic version of Girsanov’s
theorem; this is standard in the literature and does not affect our methodology. Following Shi et al.
(2023), we now provide a result showing that the Markov projection also solves a minimisation
problem.

Proposition 3.4. Under mild assumptions, the Markovian projection M∗ = projM(Π) solves the
minimisation problem M∗ = argminM∈MT

KL(Π∥M).

Proof. Applying the KL decomposition in Lemma 3.2, we have

KL(Π∥M) =
∑

e=(u,v)∈E

EXu∼Πu

[
KL(Πe(·|Xu)∥Me(·|Xu))

]
. (37)

We now analyse the individual KL expressions KL(Πe(·|Xu)∥Me(·|Xu)) along each edge e =
(u, v), using the proof techniques of Proposition 2 in Shi et al. (2023).

In particular, applying the argument in the proof of Proposition 2 in Shi et al. (2023), one sees that
each conditional process Πe

·|0 is Markov and can be associated with (Xe
t)t∈[0,T e] given by

Xe
t = σ2

∫ t

0

EΠe
Te|s,0

[∇ logQe
T e|s(X

e
T e |Xe

s)|Xe
s , X

e
0]ds+ σ

∫ t

0

dBe
s . (38)

Therefore, letting the restriction of the Markov process to edge e (denoted above as Me) be associ-
ated with a process dY e

t = ve(t, Y
e
t)dt+ σdBe

t such that KL(Πe(·|Xu)∥Me(·|Xu)) < ∞, with ve
locally Lipschitz, then (using e.g. Léonard (2012), Theorem 2.3) one obtains

KL(Πe(·|Xu)∥Me(·|Xu)) =
1

2σ2

∫ T e

0

EΠe
t|0

[
∥σ2EΠe

Te|t,0
[∇ logQT e|t(X

e
T e |Xe

t)|Xe
t , X

e
0]

−ve(t,X
e
t)∥2

]
dt. (39)

Thus, substituting back into (37) we have

KL(Π∥M) =
∑

e=(u,v)∈E

EXu∼Πu

[
KL(Πe(·|Xu)∥Me(·|Xu))

]
(40)

=
∑
e∈E

EXu∼Πu

[
1

2σ2

∫ Te

0

EΠe
t|0

[
∥σ2EΠe

T |0,t

[
∇ logQe

T |t(X
e
T |Xe

t)|Xe
t , X

e
0

]
− ve(X

e
t , t)∥2

]
dt
]

(41)

=
∑
e∈E

1
2σ2

∫ Te

0

EX0,Xt∼Πe
0,t

[
∥σ2EΠe

T |0,t

[
∇ logQe

T |t(X
e
T |Xe

t)|Xe
t , X

e
0

]
− ve(X

e
t , t)∥2

]
dt.

(42)

This expression is minimised by taking v∗e(t, x) = σ2EΠe
T |t

[
∇ logQe

T |t(X
e
T |Xe

t)|Xe
t = x

]
along

each edge e ∈ E . This corresponds to performing a Markovian projection along each edge e ac-
cording to the coupling Πe, which is exactly the definition of the tree-based Markovian projection
in Definition 3.4.

We also note that, as an instance of bridge matching, along each edge the process Πe
t and its cor-

responding Markovian projection Me,∗
t satisfy the same Fokker-Planck equation (Peluchetti (2022),

Theorem 2). Thus by the uniqueness of the solutions of the Fokker-Planck equations under A.1
and A.3 in Shi et al. (2023) (see e.g. Bogachev et al. (2021)), they share the same marginals
Me,∗

t = Πe
t .

23

B.4 TreeIMF convergence
We follow the presentation of convergence in Shi et al. (2023), but with the appropriate modifications
to the proofs for the tree-based setting.

Lemma B.7 (Pythagorean property, compare to Shi et al. (2023), Lemma 6). Take a Markovian
process M ∈ MT and a reciprocal process Π ∈ RS(Q). Under mild assumptions, if KL(Π∥M) <
∞ then we have

KL(Π∥M) = KL(Π∥ projM(Π)) + KL(projM(Π)∥M). (43)
If KL(M∥Π) < ∞ then we have

KL(Π∥M) = KL(Π∥ projRS(Q)(Π)) + KL(projRS(Q)(Π))∥M). (44)

Proof. Proof of (43): The first identity follows from algebraic manipulations of expressions for the
relevant KL divergences. From the proof of Proposition 3.4, we have

KL(Π∥M) =
∑
e∈E

1
2σ2

∫ Te

0

EΠe
0,t

[
∥σ2EΠe

T |0,t

[
∇ logQT |t(XT |Xt)|Xt, X0

]
− ve(Xt, t)∥2

]
dt

(45)
(where we suppress the superscript e on the Xt for notational convenience). Likewise, it can be
shown that

KL(projM(Π)∥M) =
∑
e∈E

1
2σ2

∫ Te

0

EXt∼Πe
t

[
∥σ2EΠe

T |t

[
∇ logQT |t(XT |Xt)|Xt

]
− v(Xt, t)∥2

]
dt.

(46)
From another application of the expression in Proposition 3.4, we have

KL(Π∥ projM(Π)) =
∑
e∈E

1
2σ2

∫ Te

0

EX0,Xt∼Πe
0,t

[
∥σ2EΠe

T |0,t

[
∇ logQT |t(XT |Xt)|Xt, X0

]
− σ2EΠe

T |t

[
∇ logQT |t(XT |Xt)|Xt

]
∥2
]
dt (47)

=
∑
e∈E

σ2

2

∫ Te

0

EX0,Xt∼Πe
0,t

[
∥EΠe

T |0,t

[
∇ logQT |t(XT |Xt)|Xt, X0

]
∥2
]

− EXt∼Πe
t

[
∥EΠe

T |t

[
∇ logQT |t(XT |Xt)|Xt

]
∥2
]
dt, (48)

where to obtain the second line, we have expanded out the square and taken expectations over X0 in
the cross-term.

Using these expressions, by applying the same algebraic manipulations as the proof of Lemma 6 in
Shi et al. (2023) to each term in the summations, one obtains

KL(Π∥ projM(Π)) + KL(projM(Π)∥M) = KL(Π∥M) (49)
as required.

Proof of (44): The second part also follows similarly to Shi et al. (2023), but instead conditioning
on the values at S. Let Π∗ = projRS(Q)(P) = PSQ·|S . Using the change of measure formula for
KL divergence and the fact that Π and Π∗ have the same bridges conditional on S,

KL(P∥Π) = KL(P∥Π∗) +

∫
CT

log(
dΠ∗

dΠ
(ω))dP(ω) (50)

= KL(P∥Π∗) +

∫
(Rs)|S|

log(
dΠ∗

S
dΠS

(xS))dPS(xS) (51)

= KL(P∥Π∗) +

∫
(Rs)|S|

log(
dΠ∗

S
dΠS

(xS))dΠ
∗
S(xS) (52)

= KL(P∥Π∗) + KL(Π∗∥Π) (53)
as required. Note that in the second line we have used the fact that Π and Π∗ have the same bridges
conditional on S, and in the third line we have used that PS = Π∗

S by construction.

24

Algorithm 2: TreeDSBM for Wasserstein barycentre computation

Input: Initial coupling Π0
S over measures µi (e.g. independent),

Number of IMF iterations N ,
Entropic regularisation parameter σ.

Construct initial reciprocal process as Π0 = Π0
SQ·|S . That is,

• Sample YS from the initial coupling Π0
S over the marginals µi;

• Sample from the unknown central marginal as Y0 ∼ N
(∑

λiYi, σ
2Id

)
;

• Training samples are obtained from Brownian bridges along each edge i between Yi and Y0.
for n ∈ {0, . . . , N − 1} do

Learn 2|E| vector fields using bridge-matching loss (15) along each edge, using samples
from current reciprocal process Πn, to obtain Markovian process Mn+1;
Construct next reciprocal process Πn+1 = Mn+1

S Q·|S using samples from Mn+1
S . That is,

• Simulate Mn+1 starting from a chosen root r ∈ S (one of the known measures µi) to obtain
samples YS from Mn+1

S ;
• Sample from the unknown central marginal as Y0 ∼ N

(∑
λiYi, σ

2Id
)
;

• Training samples are obtained from Brownian bridges along each edge i between Yi and Y0.
end

We can finally state the result regarding convergence of the TreeIMF iterates to the TreeSB solution.

Theorem 3.5 (Convergence of TreeIMF). Under mild conditions, the TreeSBdyn solution P∗ is
the unique fixed point of the TreeIMF iterates Pn, and we have limn→∞ KL(Pn∥P) = 0.

Proof. In light of the Pythagorean property in Lemma B.7, this follows from the same compactness
argument as in Proposition 7 and Theorem 8 in Shi et al. (2023).

C Implementation details and extensions
Algorithm for barycentre setting In Algorithm 2, we provide a simplified and more explicit
version of Algorithm 1 for the case of computing Wasserstein barycentres.

Illustration of TreeDSBM The TreeDSBM procedure for Wasserstein barycentre computation
(that is, for a star-shaped tree) is illustrated in Figure 1. We also provide a diagram for a more
general tree structure in Figure 4.

C.1 Implementation details and design choices
We implement the TreeDSBM procedure using the JAX framework (Bradbury et al., 2018). Below,
we outline some of the design considerations for implementing the method.

Vector field parameterisation In our implementation, we use separate neural networks to param-
eterise the vector fields for each direction along each edge, totalling 2|E| networks in total. Note
that one could alternatively use a shared network along each edge with an additional binary input
indicating the direction; this parameterisation was used in De Bortoli et al. (2024).

Loss function We incorporate both the forwards and backwards losses in Equation (15) into a
single loss function, and thus optimise the forward and backwards directions simultaneously. One
could incorporate all edges into a single loss function and train simultaneously, or alternatively could
parallelise the edge optimisations across devices because the edges are optimised independently.
This is a strength of our approach and can lead to large speed-ups in training, as training time does
not need to increase in proportion to the number of edges.

Simulation As we train both directions along each edge, simulation of the SDEs along the tree
structure can be initialised from any of the observed nodes in S. Following Shi et al. (2023), one
can rotate the starting vertex between IMF iterations. This helps to mitigate any drift that accumu-
lates in the marginals, as the coupling samples will only use true samples from the current starting
marginal; for an analysis of this, see De Bortoli et al. (2024). In our experiments, we often did

25

(a) Reciprocal process Π: The YS (×) are sampled
from the current coupling ΠS over S. Conditional
on the YS , points (×) at marginals V\S are sampled
as YSc|S ∼ QSc|S . Brownian bridges are drawn
along the edges between the samples.

(b) Markovianised process P: Vector fields are
trained by bridge-matching along each edge. Sam-
ples (×) from the next coupling ΠS are obtained by
simulating the resulting SDEs along the tree struc-
ture, started at one of the known marginals.

Figure 4: The two stages of the TreeIMF procedure, for a non-star-shaped tree structure. On this
tree, the marginals at the leaf vertices S = {1, 3, 5, 6, 7} (blue) are fixed. The marginals at vertices
V\S (red) are not fixed, and change during the procedure.

not observe noticeable drift in the marginals, and instead generated samples in the coupling by ini-
tialising equally across the observed vertices in S. In our sampling, we used an Euler-Maruyama
discretisation scheme with 50 uniformly-spaced steps.

Initial coupling Unless otherwise stated, we used the independent coupling Π0
S =

⊗
i∈S µi as

the initial coupling. We note that any coupling over V with correct marginals on S could be used,
and we discuss some possible alternatives in subsequent sections.

Architectures Other than image experiments, we use a basic MLP-based vector field model. It
consists of an MLP spatial embedding with hidden layers [128, 256] to embed into dimension 32,
a time embedding consisting of a sine positional-encoding and an MLP with hidden layers [128,
256] also embedding into dimension 32, before concatenating the embeddings and passing through
an MLP with hidden layers [512, 256, 128]. This is the same architecture used in De Bortoli et al.
(2021) and Noble et al. (2023). In image experiments, we use the UNet architecture (Ronneberger et
al., 2015) with the improvements from Dhariwal and Nichol (2021), using the JAX implementation
from Song et al. (2023). For all experiments, we use the Adam optimiser (Kingma and Ba, 2015)
with default parameters 0.9 and 0.999.

We note that for pointcloud experiments, capacity of the neural networks is not a limiting fac-
tor—any sufficiently-expressive network will work similarly well and fairly small MLP networks
suffice, so using several networks for the different edges does not pose issues. One could also use
a single network across the edges and additionally condition on the edge. This makes particular
sense for problems with shared structure between edges, such as those for image data (and indeed
these are settings for which the networks would be larger, and maintaining multiple networks could
become a computational bottleneck).

Memory requirements The parallel nature of the TreeDSBM algorithm during training provides
practitioners with a trade-off between memory consumption and wall-clock time. Namely, one can
train the edges simultaneously if compute allows (either on a single GPU if enough memory, or
parallelised across GPUs). If this cannot be done, one can train sequentially instead (in which
case memory requirements for training would be comparable with standard bridge-matching). We
report GPU consumption for different experiments in Table 5 (for sequential and joint training), for
the hyperparameters used in the paper. These can of course be changed significantly by changing
hyperparameters such as batch size. We note that in some of these experiments (e.g. the Gaussian
experiments), peak GPU usage is due to the simulation and storage of the training samples for
subsequent IMF steps, rather than during the network training. This can be reduced significantly
by simulating in smaller batches, or by updating the cache during training rather than simulating all
beforehand.

26

Table 5: Comparing memory usage (in MB) for sequential and joint training, for the hyperparame-
ters used.

Sequential Training (MB) Joint Training (MB)
2d 447 687
Data Aggregation (Poisson) 705 1219
Gaussian (d = 64) 1239 1239
MNIST 2,4,6 4683 6407

We remark that TreeDSBM has improved memory requirements compared to TreeDSB. In
TreeDSB, training a time-reversal along an edge requires saving entire trajectories simulated along
the reverse direction, whereas TreeDSBM only requires storing endpoints (this is one of the most
significant benefits of IMF over IPF).

Alternative reference measures We have presented the methodology according to using Brow-
nian reference measures along each edge. However, the methodology extends to other reference
process, as long as the respective bridging processes conditioned on the values at S are tractable (for
example, this is true for Ornstein-Uhlenbeck processes). The connection to quadratic-cost optimal
transport is however less simple beyond the Brownian case. See Shi et al. (2023) for a more detailed
treatment of this general case.

C.2 Methodology extensions for improving convergence speed
We now discuss possible extensions of the TreeDSBM algorithm to improve convergence speed, in
the vein of existing extensions of Schrödinger bridge methodology for the standard two-marginal
setting.

Warmstarting with minibatch mmOT couplings The TreeIMF procedure can be initialised with
any coupling Π0

S over S with correct marginals. For the standard SB problem, Tong et al. (2024b)
note that the SB solution is a mixture of bridges mixed by a static ε-OT solution, and thus pro-
pose a single iteration of bridge matching on samples generated by a static ε-OT solver applied on
minibatches (see also Pooladian et al. (2023), Tong et al. (2024a), and Fatras et al. (2021)).

Similarly, one can initialise TreeIMF using samples obtained from static mmOT solvers applied to
minibatches. Such a procedure can speed up convergence to the TreeSB solution by initialising
closer to the true solution. We remark, however, that such minibatching approaches can incur large
errors (particularly in higher dimensions or for small minibatches; for example the Wasserstein-1
error grows as O(B−1/(2d)) (Sommerfeld et al., 2019)), and so the advantages of such methods are
lessened as dimensionality increases.

Flow-based IMF on the tree Iterative Markovian Fitting presents a mathematically elegant ap-
proach for solving the SB problem, with significant practical improvements over the IPF procedure.
However, the iterative nature of the algorithm remains a downside - each iteration of the two-step
procedure involves first simulating the current Markovian process, and then retraining a neural net-
work with the bridge-matching loss. In practice, one might wonder if it is possible to perform the
simulations and bridge-matching procedure simultaneously to avoid the expensive iterative nature
of the algorithm. The recent work of De Bortoli et al. (2024) answered this in the affirmative and
propose the α-IMF procedure, which instead corresponds to a discretisation of a continuous flow of
processes that converge to the SB. We anticipate one could design an analogous methodology for
the tree-based setting that we consider; we leave such extensions for future work.

D Experimental details
Here, we provide experimental details and additional results and discussion regarding the experi-
ments included in the main body.

D.1 Synthetic 2d barycentre
Datasets We follow the experimental setup of Noble et al. (2023). The marginals consist of moon,
circle, and spiral datasets from scikit-learn (Pedregosa et al., 2011), centred and scaled by a factor
of 7.0. We aim to learn the (13 ,

1
3 ,

1
3)-barycentre of the dataset. This is a challenging problem—the

27

Figure 5: TreeDSBM samples in the 2d experiment, com-
paring different regularisation values ε.

Figure 6: Progression of
TreeDSBM (ε = 0.1) barycen-
tre approximations through the IMF
iterations.

Table 6: Progression of the Sinkhorn divergence to the ground truth, and the average Sinkhorn
divergence to the marginals, during the IMF iterations (mean±std, over 5 runs).

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6
Fit to solution 17.7 ± 0.2 1.28 ± 0.04 1.21 ± 0.07 1.13 ± 0.05 1.12 ± 0.05 1.09 ± 0.06
Fit to marginals 0.16 ± 0.03 0.17 ± 0.03 0.18 ± 0.04 0.19 ± 0.03 0.19 ± 0.03 0.20 ± 0.02

lower-dimensional and discontinuous structures in the marginals mean that the barycentre has a
complex and fragmented support, and the transport maps to the barycentre are highly discontinuous.

Hyperparameters For TreeDSBM, we use ε = 0.1 and run for 6 IMF iterations. For training the
vector fields, we use 10,000 training steps and a batch size of 4096. We use the Adam optimiser (with
default parameters 0.9, 0.999) with learning rate 1e-3 and exponential moving average parameter of
0.99. At inference we use the Euler-Maruyama scheme with 50 steps. We generate a batch of 10,000
training couplings for subsequent TreeIMF iterations (a third simulated from each marginal). For
the other algorithms, we use their default parameters provided in their respective codebases.

Comparison with alternative algorithms For the ground-truth, we use the in-sample free-support
barycentre algorithm of Cuturi and Doucet (2014) implemented in Python Optimal Transport (Fla-
mary et al., 2021), with 1500 datapoints. Note that the aim of this experiment is not to outperform
in-sample methods; it is known that such approaches perform well in low dimensions, but do not
scale well as dimension increases. The in-sample method is used here to provide a close approxima-
tion to the ground-truth, allowing us to judge the success of the continuous Wasserstein-2 barycentre
approaches that we compare.

For TreeDSB, we use the checkpoints provided by Noble et al. (2023) which were trained for 50 IPF
iterations.

We also report results for the WIN algorithm from Korotin et al. (2022). This is an iterative algorithm
inspired by Álvarez-Esteban et al. (2016); it pushes forward a source latent distribution ρ through
a function G to give a generative model ν = G#ρ for the barycentre, and also learns maps Ti

and T−1
i transporting from the generated barycentre to and from the marginals respectively. In our

experiments, the barycentre generator ν = G#ρ was unable to fit the true barycentre accurately, nor
were the maps T−1

i #µi. We hypothesise that the neural maps struggle to model the discontinuous
transports well. However, the combined map (

∑
i λiTi)#ν was able to give a good approximation

of the true barycentre, which are the results we report in Figure 2 and Table 2.

Additionally, we applied the W2CB (Korotin et al., 2021) and NOTWB (Kolesov et al., 2024a)
algorithms to this example, but were unable find hyperparameters to make the algorithms to converge
to the correct solution. Again, this may be due to the difficulty in modelling the discontinuous
transports with neural networks. We also anticipate that the loss landscapes caused by this complex

28

(a) Barycentre samples,
ε = 0.02.

(b) Samples as∑
i λiYi, ε = 0.02.

(c) Barycentre samples,
ε = 0.001.

Figure 7: (a) The true TreeSB solution will have noise present due to
entropy-regularisation. If one wishes to reduce this, one can instead
(b) construct samples as

∑
i λiYi, or (c) use a smaller ε value.

example may have caused these methods to get stuck in local minima. It appears that the iterative
schemes of TreeDSBM, TreeDSB, and WIN aid in overcoming such issues.

Convergence speed In Figure 6, we demonstrate the progression of the TreeDSBM barycentre
approximation as we run the IMF iterations. We run with ε = 0.1, and plot samples generated from
leaf 0. In Table 6, we also show how the Sinkhorn divergence to the ground truth evolves as the IMF
iterations progress. After only two IMF iterations, TreeDSBM already gives a good approximation
to the solution. Such behaviour reflects similar results reported in Lindheim (2023), which observes
that iterative fixed-point approaches (Álvarez-Esteban et al., 2016) exhibit very fast convergence to
the solution. TreeDSBM performs only a single bridge-matching iteration along each edge before
updating the barycentre, rather than computing full OT maps (which would be expensive). As such,
it strikes a good balance between the efficiency of iterative fixed-point-based approaches, without
requiring full OT map computations before updating the barycentre approximation.

Runtime analysis We report approximate runtimes for the three methods that converged. All
experiments were ran on a single Nvidia GeForce RTX 2080Ti GPU.

Our TreeDSBM implementation took approximately 1 minute for each IMF iteration when training
the edges jointly, and took around 7 minutes to run the 6 IMF iterations. Note that one could also
obtain good results using fewer IMF iterations or fewer training steps.

In contrast, the alternative methods were significantly slower. WIN required around 8000 training
steps to obtain a good barycentre approximation, which took approximately 1 hour 20 minutes. The
provided checkpoint for TreeDSB is for 50 IPF iterations, each of which would require 6 time-
reversal training procedures, and would thus take significantly longer to train than TreeDSBM.

Additional results In Figure 5, we plot TreeDSBM samples obtained for different values of
entropy-regularisation ε. As expected, increasing ε leads to a slight blurring bias in the solution. In
Table 6 we also report the quality of fit to the marginals, calculated by simulating from the ‘moon’
marginal to the centre and then out to the other leaf nodes, and averaging the resulting Sinkhorn
divergences to ground-truth samples from these marginals. We see that in this experiment there is
negligible drift accumulation in the marginals.

We overall found TreeDSBM to perform strongest in this experiment. Its bridge-matching objectives
and iterative nature provide fast and stable training in what is a complex and challenging problem
setting, and its dynamic-transport approach means that it is able to model the discontinuous transport
maps accurately.

D.2 MNIST 2,4,6 barycentre
We also follow the experimental setup of Noble et al. (2023) and compute the (13 ,

1
3 ,

1
3)-barycentre

of the 2,4 and 6 digits in the MNIST dataset (LeCun et al., 2010).

Hyperparameters We use the UNet architecture of Song et al. (2023), with 64 channels, channel
multiples of (1,2,2), attention at layers (16,8), and 2 residual blocks at each layer. We train each
bridge-matching procedure with 10,000 steps with batch size 64, at a learning rate of 1e-4 and with

29

exponential moving average weight of 0.999. For subsequent IMF iterations, we simulate 8,192
coupling samples. We run for 4 IMF iterations, beyond which we did not see much change between
iterations. The TreeDSB samples plotted in Section 4 are those displayed in Noble et al. (2023), as
we did not have the computational resources to run TreeDSB to convergence in this setting.

Role of ε In Section 4, the TreeDSBM barycentre has some noise present in the samples. We
remark here that this noise should be present in an accurately computed solution, as we are solving
for the ε-TreeSB solution which adds entropic regularisation. If one wishes for less noise in the
samples, one can run with a smaller entropy-regularisation value ε. Alternatively, one could generate
samples by sampling Yi according to the learned coupling, and weighting them as

∑
i λiYi (though

note that would not be clear what kind of barycentre such samples would be from). We plot results
for a smaller ε = 0.001, and for the weighted coupling samples

∑
i λiYi for ε = 0.02 in Figure 7,

to demonstrate that TreeDSBM can generate samples with minimal noise if so desired.

Convergence speed We provide an analysis of the convergence speed of TreeDSBM in terms
of the number of IMF iterations required. Unfortunately there is no ground-truth barycentre to
compare to in this example; this makes quantitative evaluation of the obtained barycentre difficult.
We therefore instead assess the fit to the marginals (from which we have true samples) as a proxy
for the success of the algorithm, along with the transport cost — the transport cost provides an
indication of the optimality of the maps, while if the marginals are not fitted accurately, then the
resulting barycentre will be unreliable. While not an ideal measure of the ‘quality’ of the barycentre
itself, this does provide a quantitative and, importantly, tractable proxy for the ‘success’ of the
algorithm.

To this end, we report in Table 7 the transport cost and FID values for samples from the marginals,
for the 4 IMF iterations (note that we train a classifier and use the obtained features for the FID
calculation, so these values should not be compared with those in other works). We initialise the
sampling from 1000 unseen test samples of the digit 6, and report the FID values of the obtained
2s and 4s (averaged). We see that, as expected, the transport cost decreases as the IMF iterations
proceed, indicating that the barycentre approximation is improving. We also observe that the FID
scores increase slightly (though there is little visible difference) — this is a consequence of the drift
that can accrue in the marginals, and is consistent with the expected behaviour of DSBM from which
this effect is inherited (this can be reduced by training for longer or using the techniques discussed
in Appendix C.1).

Table 7: Progression of the total transport cost and fit to the marginals (as measured by FID), during
the IMF iterations. Note that the FID values are obtained using a trained classifier, so should not be
compared to values in other works.

IMF 1 IMF 2 IMF 3 IMF 4
Transport cost 431 402 389 378
Ave. FID (2s and 4s) 61 82 89 93

D.3 Subset posterior aggregation
The previous experiments have shown TreeDSBM to improve over its IPF counterpart TreeDSB. In
the following experiments, we provide a more detailed comparison with current strongly-performing
methods for continuous Wasserstein-2 barycentre estimation, by reporting results for standard ex-
periments in the literature. We include comparisons against the methods WIN (Korotin et al., 2022),
W2CB (Korotin et al., 2021), and the recent method NOTWB (Kolesov et al., 2024a). These meth-
ods have demonstrated strong empirical performance in their respective works, and are chosen here
to be representative of different approaches in the literature—WIN is an iterative method inspired by
Álvarez-Esteban et al. (2016), W2CB is an Input Convex Neural Network-based approach (Amos et
al., 2017; Makkuva et al., 2020), and NOTWB is based on recent Neural OT methodology (Korotin
et al., 2023). We use the implementations in their publicly available code, to which we provide the
links in Section F. We note that, as ever in barycentre studies, it is somewhat challenging to assess
the performance of solvers due to the lack of the ground-truth solution (other than in certain specific
examples). Here, we report results on standard experiments used in the literature.

30

Experimental setup We work with the experimental setup and dataset used in Korotin et al. (2021)
(the same dataset was also used previously in Li et al. (2020) and Fan et al. (2021)), which uses
Poisson and negative-binomial regressions on a bike-rental dataset (Fanaee-T, 2013). The aim is
to predict the hourly number of bike rentals using features including day of the week, weather
conditions, and more. The dataset is 8-dimensional and is split into 5 distinct subsets each of size
100,000. The ‘ground-truth’ barycentre consists of 100,000 samples from the full dataset posterior.

Following the literature, we report the BW2
2−UVP metric between the ‘ground-truth’ and the ob-

tained samples in Table 3. For methods that generate from each marginal, we report the average over
generations from each marginal, and for WIN we report results for the barycentre generator. The
BW2

2−UVP metric is defined as

BW2
2−UVP(ν, ν̃) = 100 · BW

2
2(ν, ν̃)

1
2Var(ν̃)

%, (54)

where the Bures-Wasserstein metric is defined as BW2
2(ν, ν̃) = W 2

2 (N (mν ,Σν),N (mν̃ ,Σν̃)) for
the respective means and covariances of the distributions.

Hyperparameters For TreeDSBM, we use ε = 0.001 and run for 4 IMF iterations. For training
the vector fields, we use 2000 training steps and a batch size of 4096. We use the Adam optimiser
(with default parameters 0.9, 0.999) with learning rate 1e-3 and exponential moving average pa-
rameter of 0.99. At inference we use the Euler-Maruyama scheme with 50 steps. We generate a
batch of 50,000 training couplings for subsequent TreeIMF iterations (10,000 simulated from each
marginal).

For W2CB, we use a learning rate of 1e-4 in the negative binomial setting. For WIN, in the negative
binomial case we rescale the source z-sampler by a factor of 10.0 to match the scale of the data better;
without this, it did not appear to converge. We run W2CB and WIN for 10000 training iterations, and
NOTWB for 2500 iterations. Other than those mentioned, we use the default parameters provided
in the respective codebases.

Runtime analysis: We report approximate runtimes for the different approaches; all experiments
were ran on a single Nvidia GeForce RTX 2080Ti GPU. To compare approximate time taken, we
report time taken to for the methods to converge close to their final output - chosen by monitoring the
BW2

2−UVP metric and choosing the time beyond which it no longer decreases significantly (note
these are not the amount time used in Table 3, which we trained using the hyperparameters described
above). This is somewhat subjective, but is a fairer comparison than just reporting times for running
with default parameters. We remark that it may be possible to improve these runtimes with further
hyperparameter tuning and by optimising the algorithm implementations, but investigating such
optimisations is beyond the scope of this work.

The W2CB algorithm appeared to give good results after approximately 1000 training steps in both
cases, which took around 10 minutes in our experiments. WIN converged after around 2500 itera-
tions, which took around 45 minutes. NOTWB converged quickly after only around 200 iterations,
which took around 2 minutes.

In both experiments, each TreeIMF iteration for our TreeDSBM implementation took approximately
20 seconds when training the edges jointly. TreeDSBM converged well using 4 IMF iterations, and
training took around 2 minutes 30 seconds (including time for simulating training samples for the
next iteration). This is comparable with NOTWB, the fastest of the alternative methods.

Convergence speed We provide the values of the BW2
2−UVP metric as the IMF iterations

progress in Table 8, and again we observe very fast convergence.

Table 8: Progression of the BW2
2−UVP metric during the IMF iterations, for the subset posterior

aggregation experiment (mean±std, over 5 runs).

IMF 1 IMF 2 IMF 3 IMF 4
↓ Poisson 31.1 ± 0.03 0.0085 ± 0.0003 0.0075 ± 0.0006 0.0076 ± 0.0005
↓ Negative Binomial 31.0 ± 0.01 0.0123 ± 0.0003 0.0118 ± 0.0007 0.0121 ± 0.0004

31

D.4 Higher-dimensional Gaussian experiments
Experimental setup We follow the experimental setup previously used in (Korotin et al., 2021,
2022; Kolesov et al., 2024a), in which 3 Gaussian distributions and its ground-truth (13 ,

1
3 ,

1
3)-

barycentre are randomly generated, for each dimension in {64, 96, 128}. We report results for
BW2

2−UVP (which measures the quality of the overall generated barycentre) as described above,
and additionally report the L2−UVP metric, which measures the quality of the individual maps to
the barycentre and is defined for each marginal as

L2−UVP(T̂ , T ∗) = 100 · ∥T̂ − T ∗∥2

Var(ν̃)
%, (55)

where T̂ denotes the learned map from the marginal to the barycentre, and T ∗ is the known ground
truth mapping. Again, we provide the averages over the marginals.

Hyperparameters For TreeDSBM, we use ε =1e-4 and run for 4 IMF iterations. For training the
vector fields, we use 10,000 training steps and a batch size of 4096. We use learning rate 1e-3 and
exponential moving average parameter of 0.99. We generate a batch of 50,000 training couplings
for subsequent TreeIMF iterations (simulated equally from each marginal). Results reported for
TreeDSBM are the average over 5 runs.

For the alternative methods, we run W2CB with learning rate 1e-4, and otherwise use the default
parameters provided in their respective codebases.

Convergence speed We provide the values of the BW2
2−UVP metric as the IMF iterations

progress in Table 8, and again we observe very fast convergence.

Table 9: Progression of the BW2
2−UVP and L2−UVP metrics during the IMF iterations, for the

Gaussian d = 64 experiment (mean±std, over 5 runs).

IMF 1 IMF 2 IMF 3 IMF 4

↓ BW2
2−UVP 16.0 ± 0.01 0.12 ± 0.01 0.13 ± 0.02 0.14 ± 0.03

↓ L2−UVP 16.7 ± 0.01 1.19 ± 0.02 1.18 ± 0.02 1.18 ± 0.03

Discussion of continuous Wasserstein-2 barycentre solver comparisons
Our experiments show that our TreeDSBM algorithm exhibits strong performance, and is competi-
tive against state-of-the-art methods for continuous Wasserstein-2 barycentre estimation in a range
of settings. In particular, TreeDSBM offers fast and stable training—even in complex settings—due
to its bridge-matching loss objectives, and comes with a well-understood theoretical analysis.

The best choice of barycentre algorithm may depend on the specific problem setting. For example,
if the transport maps exhibit complex behaviour (possibly due to lower-dimensional, manifold-like
structures in the datasets) then the flow-based approach of TreeDSBM will likely perform strongly
(such as in the 2d barycentre experiment in Section 4). Also, when fast training is required then
our experiments suggest TreeDSBM is a strong option. On the other hand, if fast inference is
important then a one-step-generation solver such as NOTWB might be preferable. Note that one
could incorporate distillation techniques from the flow-matching literature for improving the speed
of TreeDSBM inference after training.

Overall, TreeDSBM offers a compelling new addition to the taxonomy of continuous Wasserstein-2
barycentre solvers, with distinctly different characteristics to alternative approaches due to its flow-
based nature.

E Additional experiments
E.1 Further comments regarding computational considerations
Choice of entropy regularisation Choosing the entropy regularisation parameter ε is a perennial
question in entropic OT. Standard methods to choose this value in commonly used OT libraries
(for example, choosing in proportion to the costs) provide good guidance for choosing suitable

32

Table 10: Effect of entropy-regularisation parameter ε in the 2d and data aggregation experiments.

ε = 1.0 ε = 0.3 ε = 0.1
2d, Sinkhorn-divergence 1.24 0.99 1.02

ε =1e-3 ε =3e-4 ε =1e-4
Data Aggregation (Poisson), BW2

2−UVP 0.012 0.008 0.008

Table 11: Effect of batch size in the 2d and data aggregation experiments.

Batch size 64 246 1024 4096
2d, Sinkhorn-divergence 1.57 1.24 1.04 1.04
Data Aggregation (Poisson), BW2

2−UVP 0.032 0.017 0.013 0.012

values. Typically, one may want to choose ε as small as possible the reduce the entropic bias.
One advantage of TreeDSBM over TreeDSB is that it allows for much smaller epsilon (TreeDSB
does not converge for too-small ε, as simulated trajectories struggle reach the other marginals). We
provide a visualisation of the role of ε in the 2d example in Figure 5, and also for two values of ε
for the MNIST experiment in Figure 7. In Table 10, we also add some further quantitative results
for different ε values, in the 2d and subset posterior aggregation settings.

Fitting to the marginals One of the limitations of our approach is that errors can accumulate
in the marginals as IMF iterations proceed; this is a limitation inherited from standard IMF and
similar reflow methods. Standard techniques from the literature can be used to mitigate this (such
as rotating the starting marginal as in Shi et al. (2023), or using the projection methods in Kim et al.
(2025)). It is therefore important that the bridge-matching steps fit the marginals accurately, and
hyperparameters should be chosen accordingly. To provide an indication of how the learned bridge-
matching quality affects the overall solution, we provide results for varying batch size on the 2d and
data aggregation experiments in Table 11, for the hyperparameters used in the paper. We have also
provided results assessing how the fit to the marginals changes as the IMF iterations progress in the
2d and MNIST experiments in Tables 6 and 7 respectively.

E.2 Ave! Celeba benchmark
In this section, we provide an example that illustrates a potential limitation of our approach. As
previously discussed, it is difficult to evaluate performance of barycentre algorithms in high dimen-
sions due to the lack of a ground-truth. To combat this, Korotin et al. (2022) proposed the Ave,
celeba! barycenter benchmark, which consists of 3 distributions of transformed CelebA faces (Liu
et al., 2015), for which the (14 ,

1
2 ,

1
4)-Wasserstein-2 barycentre recovers the true CelebA dataset.

The resulting dataset consists of around 67k samples in each marginal, and each image is shape
64× 64× 3.

We consider applying the TreeDSBM in this example. It is known that performing bridge-matching
between complex datasets such as images can be challenging, so for the first step we instead pre-
train models using single bridge-matching iteration from a standard Gaussian to each marginal. To
obtain the next coupling for training, we run the process from one of of the marginals to the latent
representation in the Gaussian, and then out to the other marginals. This aids in learning, as there is
often good structure preserved between the obtained samples from each marginal. For subsequent
iterations we also warmstart the parameters from these pretrained models. The experiments were
conducted on Nvidia A100 GPUs on Google Colaboratory.

Hyperparameters We use the UNet architecture of Song et al. (2023), with 128 channels, channel
multiples of (1,2,2,2), attention at layers (32,16,8), and 4 residual blocks at each layer.

We use σ = 0.01 and train each bridge-matching procedure with batch size 32, at a learning rate
of 1e-4 and with exponential moving average weight of 0.999. For pretraining, we run for 20,000
training steps (which takes approximately 5 hours), and for subsequent IMF iterations we run for
10,000 steps (which each take around 2.5 hours).

33

Figure 8: Samples from TreeDSBM applied to the Ave! Celeba benchmark. Many samples are
transported well, but some pick up unwanted artifacts. We discuss the findings from this experiment
below.

For training subsequent IMF iterations along each edge, we generate samples from the coupling
from each datapoint in the corresponding marginal. This mitigates drift in the sample quality at the
marginals, as we always use true datapoints from the marginal during training. We run for 2 IMF
iterations, and did not see much change for subsequent IMF iterations beyond this.

Discussion of results TreeDSBM is able to scale to the high-dimensional setting, but the obtained
samples do not match the visual quality of state-of-the-art results such as those reported in Kolesov
et al. (2024a). Observe that some of the generated samples are good, but some contain additional
artifacts that should not be present. We anticipate that this is due to the initial pretraining cou-
pling. When generating samples Yi from the pretraining coupling, we simulate from one marginal
to the Gaussian latent, and then out to the other marginals. This often results in strong structural
similarities between the obtained Yi which yields good barycentre samples for training the next IMF
iteration. However, sometimes the coupling samples Yi do not resemble each other, and the resulting
barycentre sample consists of separate overlaid images. This appears to be difficult for the algorithm
to recover from, resulting in the artifacts visible in some of the generated images.

Overall this suggests a limitation of TreeDSBM for this particular benchmark—the true transport
maps are in fact very simple in this specific example (primarily just colour changes), but it is diffi-
cult for TreeDSBM to learn this because communication between the edges is infrequent and only
occurs after each IMF iteration. In contrast, state-of-the-art methods for this benchmark optimise
all the maps together and with much more interaction between them, which we anticipate is a better
inductive bias for the shared structure present in this benchmark. Note that the fact that TreeDSBM
optimises the edges separately is in fact a strength of the approach in many settings; it results in sta-
ble training without needing adversarial objectives, and allows for speed-ups by training the edges
simultaneously. However, this experiment suggests that this may be a limitation of our method in
scenarios where the true maps exhibit a lot of shared structure (as in the case in this example), as
communication between edges occurs too infrequently to recognise this shared structure.

We remark that we observed improved performance in this benchmark by using a shared architecture
over the edges (conditioning on the edge and the direction), compared to using a different network
along each edge. Such an architecture makes sense in this example, as there are shared features
along the edges that the network can learn and this reduces the computational and memory cost.
When using a shared architecture, the network also appeared to create more consistent samples from
the initial coupling. However, there are still unwanted artifacts present in many of the generated
samples, and so alternative methods such as Kolesov et al. (2024a) are likely more suitable for
settings such as these, as discussed above.

We anticipate that the performance of TreeDSBM in this setting could be improved through architec-
tural changes and other implementation tricks from the flow-matching literature (for example, using
preconditioned flow parameterisations (Karras et al., 2022), and techniques to mitigate marginal
drift in reflow methods (Kim et al., 2025)). Such investigations offer promising directions for future
work.

E.3 Beyond star-shaped trees
So far, we have demonstrated the empirical performance of TreeDSBM only on star-shaped trees,
as we have focused on computing Wasserstein barycentres. Finally, we demonstrate that our
TreeDSBM also works for non-star shaped trees, and thus has potential applications beyond only
barycentre computation. We consider a simple 2-dimensional example with the same tree structure

34

Figure 9: TreeDSBM applied to a non-star-shaped tree.

as shown in the TreeIMF diagram in Figure 4, with standard scikit-learn distributions on the ob-
served leaves and each edge having length 1. As in the previous 2-dimensional barycentre problem,
this is a challenging task due to the discontinuous transport maps and fragmented supports at the
solution. We run TreeDSBM for 4 IMF iterations with ε = 0.1, and train each edge for 10,000
iterations with learning rate 1e-3 and exponential moving average parameter of 0.99. We plot the
obtained measures in Figure 9, and see that TreeDSBM is again able to learn the complex mappings
required for this setting. While direct applications of non-star-shaped trees are less clear than in the
barycentre case, examples have been studied in Haasler et al. (2021) and Solomon et al. (2015), and
they could have potential applications for modelling temporal behaviour of population dynamics, for
example if populations were known to split according to a known structure. We leave investigating
possible applications of general tree-structured costs for future work.

F Licenses
The following assets were used in this work.

• TreeDSB (Noble et al., 2023), MIT License
https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge

• WIN, Ave! Celeba dataset (Korotin et al., 2022), MIT License
https://github.com/iamalexkorotin/WassersteinIterativeNetworks

• W2CB (Korotin et al., 2021), MIT License
https://github.com/iamalexkorotin/Wasserstein2Barycenters

• NOTWB (Kolesov et al., 2024a), MIT License
https://github.com/justkolesov/NOTBarycenters

• JAX Consistency Models (Song et al., 2023), Apache-2.0 License
https://github.com/openai/consistency_models_cifar10

• Bike Sharing, UCI Machine Learning Repository (Fanaee-T, 2013), CC BY 4.0 License
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

• MNIST digits classification dataset (LeCun et al., 2010), CC BY-SA 3.0 License

• OTT-JAX (Cuturi et al., 2022), Apache-2.0 License

• Python Optimal Transport (Flamary et al., 2021), MIT License

35

https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge
https://github.com/iamalexkorotin/WassersteinIterativeNetworks
https://github.com/iamalexkorotin/Wasserstein2Barycenters
https://github.com/justkolesov/NOTBarycenters
https://github.com/openai/consistency_models_cifar10
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we state that we extend the IMF procedure
to the tree-based SB setting. In Section 3 we demonstrate the theoretical soundness of our
proposed approach, and we explain how to implement it in Section 3.3. In Section 4 we
demonstrate the empirical performance of our approach, showing it inherits the benefits on
IMF over IPF in the tree-based setting.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our approach in Section 5. We also provide an
experiment illustrating a potential limitation of our approach in Appendix E.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present simple statements of the theoretical results in the main text, with
full assumptions and proofs included in Appendix B.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report full implementation details of our reported experiments in Ap-
pendix C for reproducibility, including neural architecture and hyperparameter choices and
data generation procedures.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code to run our experiments in the supplementary material. For
alternative algorithms, we use the open-source code provided by authors to which we pro-
vide links in Appendix F.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include these details in Appendix D.

7. Experiment statistical significance

36

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: It is not computationally feasible to include error bars for all results, due to
long training times for some of the algorithms. For the TreeDSBM algorithm, we report
results for mean±std over 5 runs in Appendix D.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are included in Appendix D.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and confirm that our work conforms
to these guidelines. We see no potential harmful consequences of our work, and include
extensive reproducibility details in Appendix D.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is mostly theory and methodology focused for the tree-structured
Schödinger Bridge problem. We do not see any immediate societal impacts, though certain
applications may share similar societal consequences as in flow-based generative models
upon which our approach is based.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines: Our work poses no such risks.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works that we use, and include the licenses of code and datasets
in Appendix F.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

37

https://neurips.cc/public/EthicsGuidelines

Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

38

	Introduction
	Background
	Schrödinger bridges, optimal transport, and Wasserstein barycentres
	Iterative Markovian Fitting
	Tree-structured Schrödinger bridge

	Iterative Markovian Fitting for tree-structured costs
	Markovian and reciprocal processes on the tree
	Iterative Markovian Fitting on the tree
	Implementation
	Connection to fixed-point Wasserstein barycentre algorithms

	Experiments
	Discussion
	Background
	Notation
	Optimal transport
	Multi-marginal optimal transport
	Wasserstein barycentres

	Proofs
	Existence and uniqueness of TreeSB solution
	Characterisation of TreeSB solution
	Properties of the tree-structured projections
	TreeIMF convergence

	Implementation details and extensions
	Implementation details and design choices
	Methodology extensions for improving convergence speed

	Experimental details
	Synthetic 2d barycentre
	MNIST 2,4,6 barycentre
	Subset posterior aggregation
	Higher-dimensional Gaussian experiments

	Additional experiments
	Further comments regarding computational considerations
	Ave! Celeba benchmark
	Beyond star-shaped trees

	Licenses

