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Abstract

Large language models (LLMs) often produce reasoning steps that are superficially
coherent yet internally inconsistent, leading to unreliable outputs. Since such
failures typically arise from implicit or poorly-grounded knowledge, we introduce
Grounded Reasoning in Dependency (GRiD), a novel dependency-aware reasoning
framework that explicitly grounds reasoning steps in structured knowledge. GRiD
represents reasoning as a graph consisting of interconnected knowledge extrac-
tion nodes and reasoning nodes, enforcing logical consistency through explicit
dependencies. Each reasoning step is validated via a lightweight, step-wise verifier
that ensures logical correctness relative to its premises. Extensive experiments
across diverse reasoning benchmarks—including StrategyQA, CommonsenseQA,
GPQA, and TruthfulQA—demonstrate that GRiD substantially improves reasoning
accuracy, consistency, and faithfulness compared to recent state-of-the-art struc-
tured reasoning methods. Notably, GRiD enhances performance even when applied
purely as a lightweight verification module at inference time, underscoring its
generalizability and practical utilityﬂ

1 Introduction

Large language models (LLMs) have achieved remarkable advances in diverse applications, including
conversational agents [6], machine translation [50]], and automated code generation [11]. Despite these
successes, LLMs continue to face significant limitations in reliably performing tasks that demand
rigorous reasoning, logical consistency, and faithful knowledge utilization [7]. Such reasoning
deficiencies critically undermine their trustworthiness in real-world scenarios.

To address these reasoning deficits, several structured reasoning paradigms have been developed. The
seminal Chain-of-Thought (CoT) approach [39] explicitly prompts models to generate sequential
reasoning steps leading toward a final conclusion. Subsequent frameworks expanded this concept
with more structured reasoning topologies, including branching in Tree-of-Thought (ToT) [46],
independent reasoning paths in Forest-of-Thought (FoT) [4]], iterative self-correcting interactions
with LLMs in iterative Chain-of-Thought (Iter-CoT) [32], and interconnected steps in Graph-of-
Thought (GoT) [3]. Collectively referred to as X-of-Thought (XoT) methods, these structured
reasoning techniques aim to improve the coherence and reliability of reasoning chains. Additionally,
incorporating in-context learning (ICL), where related reasoning examples are included in prompts,
further enhances reasoning capabilities 10 45} 22| |48]].

However, despite these promising developments, significant challenges remain. XoT approaches often
suffer from inherent fragility arising from long reasoning traces, making them susceptible to reasoning
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inconsistencies and hallucinations [43}49]. Specifically, two primary forms of inconsistency persist:
(1) logical inconsistencies between intermediate reasoning steps [2, 142,116, and (2) misalignments
between a model’s implicit knowledge and its explicit reasoning process [2} [18} 25].

To mitigate inconsistencies within reasoning processes, verification-based approaches have been
widely explored [35]. For instance, self-consistency methods [37] sample multiple reasoning se-
quences and utilize majority voting to enhance reliability, though they primarily target final answer
correctness without explicitly verifying intermediate reasoning steps. By contrast, methods such as
Best-of-N [31] explicitly evaluate and select high-quality reasoning steps throughout the process.
More recently, Process Reward Models (PRMs) [35) 21} 23] have highlighted the importance of
step-wise verification, assigning explicit scores to intermediate reasoning steps. However, PRMs
are often domain-specific—typically optimized for mathematical reasoning—and rely heavily on
domain-tailored verifiers, thus limiting their generalizability [15]. Alternative techniques, such as
Monte Carlo Tree Search (MCTS) [33l], attempt to balance exploration and exploitation in veri-
fying reasoning paths, but their computational complexity renders them impractical for real-time
deployment scenarios.

Furthermore, existing research has paid insufficient attention to the critical misalignment between a
model’s implicit knowledge and its explicit reasoning processes. Some recent approaches incorporate
external knowledge into the model’s reasoning context [27, |18} 25]]. Nevertheless, these strategies
predominantly rely on prompting mechanisms and external databases or larger auxiliary models,
introducing significant limitations in scalability, independence, and adaptability.

To overcome these fundamental limitations, we introduce Grounding Reasoning in Dependency
(GRiD), a reasoning framework explicitly designed to ground reasoning steps directly in the LLM’s
own internal knowledge base. The core insight behind GRiD is that LLMs naturally acquire substantial
factual knowledge during pre-training [3]], yet during inference, their statistical generation process
often leads to hallucinations or inaccurate extraction of knowledge premises, negatively impacting
reasoning accuracy. To mitigate this, GRiD introduces a structured reasoning graph comprising two
distinct node types: knowledge extraction nodes and reasoning nodes. Knowledge extraction nodes
explicitly prompt the model to retrieve factual knowledge pertinent to subsequent reasoning steps,
while reasoning nodes perform logical inferences based strictly on these grounded premises, thereby
ensuring concise and dependency-aware reasoning.

Leveraging this structured dependency graph, GRiD incorporates a lightweight verification module
that explicitly checks each reasoning step’s correctness against its parent nodes. This verification
mechanism ensures logical consistency and tightly aligns the model’s explicit reasoning outputs with
its implicit internal knowledge. A key advantage of GRiD is that both its reasoning graph construction
and verification processes rely exclusively on the base model itself, eliminating dependency on
external databases or larger auxiliary LLMs, and thus greatly enhancing scalability and adaptability.
Overall, grounding each reasoning step in intrinsic knowledge ensures accurate and reliable extraction,
improves interpretability, anchors reasoning in known facts, and enables consistency checks, keeping
traces coherent and answers reliable.

We extensively evaluate GRiD on diverse question-answering benchmarks where precise reasoning is
essential. Empirical results demonstrate that GRiD significantly improves the reasoning accuracy of
widely-used LLMs, including LLaMA and Qwen, achieving approximately 7% accuracy improvement
over established state-of-the-art structured reasoning methods and 25% over the original base models.
Furthermore, GRiD matches the performance of advanced models such as GPT-40 and DeepSeek-R1,
underscoring its effectiveness, scalability, and potential as a generalizable reasoning framework.

2 Related Work and Motivational Examples

2.1 Inconsistency Issues in X-of-Thought

In addition to standard XoTs, some studies reveal that CoT-like reasoning can emerge intrinsically
through alternative decoding strategies (e.g., top-k sampling) without explicit prompting [38]]. These
methods collectively advance LLMs’ systematic reasoning by combining structured exploration.

Despite the success of XoTs on reasoning tasks, these methods rely on the assumption that generated
reasoning steps faithfully reflect valid logical progressions—an assumption increasingly challenged by
empirical studies [41} 126/ 130,143} [8]]. Key issues with XoTs include factual inaccuracies, hallucinated
conditions, post-hoc rationalizations, and silent error corrections, which propagate through reasoning
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Figure 1: This figure compares the reasoning structures of our GRiD method with previous CoT-
based approaches. Our GRiD method introduces two distinct types of nodes: Knowledge Nodes and
Knowledge-Enhanced Reasoning Nodes. The Reasoning Nodes perform dependency reasoning by
acquiring premise knowledge from the Knowledge Nodes.

chains and reduce accuracy by up to 40.4% in noisy environments [43| 49]. For instance, models
frequently overlook critical problem constraints or introduce unsupported premises, as observed in
tasks requiring arithmetic or demographic reasoning [43],40]. Furthermore, implicit rationalizations
and unfaithful shortcuts often yield surface-level coherence while masking flawed logic [8]].

In this paper, we adopt two main techniques to tackle these problems. First, before each reasoning
step, we first dig out the most related premise knowledge from the model’s memory, making the
implicit model knowledge for reasoning explicit in the context. Second, we rearrange the reasoning
trace into a knowledge-grounded reasoning graph, as shown in Figure[I] showing the relied premise
steps for the current reasoning step, to make the reasoning steps more reliable.

2.2 Verification on Reasoning Trace

Recent studies emphasize verifying the correctness of reasoning traces to mitigate hallucinations and
inconsistencies in LLM-generated rationales. Existing approaches like Process Supervision [23] use
auxiliary models trained on human annotations; ANPL [17] and Toolformer [29] rely on external
interpreters or APIs, requiring costly human oversight or task-specific scaffolding. Methods such as
CRITIC [13] allow LLM:s to self-verify via external tools but introduce latency and dependency issues.
Unlike these methods, our approach leverages the model’s intrinsic knowledge to internally cross-
validate reasoning steps without external resources, addressing hallucination risks and consistency
gaps highlighted in [30} 41].

ORMs and PRMs have also been proposed for scoring reasoning outcomes as rewards in reinforcement
learning tasks. However, PRMs require expensive human annotations, limiting scalability, whereas
simpler ORMs risk lower effectiveness and reward hacking. While Ling et al. [25] verify deduction
correctness using knowledge implicitly extracted from the question context via prompting, they
overlook explicit knowledge extraction at test time. In contrast, we construct a knowledge-grounded
reasoning graph by adaptively and explicitly extracting relevant knowledge before each reasoning
step, rather than focusing solely on question-related knowledge. We further refine the verification
mechanism to primarily assess Dependency Satisfiability, Purpose Satisfiability, and Fact Satisfiability.
These enhancements ensure consistency throughout the reasoning process and enable the verifier to
effectively identify issues related to dependency, faithfulness, and consistency as reasoning progresses.
As a result, smaller language models can reliably serve as domain-expert verifiers, greatly increasing
flexibility and reducing verification costs.

2.3 Knowledge Enhanced Model Reasoning

Integrating explicit or implicit knowledge into reasoning processes is crucial for complex tasks.
Retrieval-augmented methods like RAG [20] ground reasoning in external knowledge bases, while
other works convert structured knowledge into natural text for coherence [9} 19, [1] or inject knowl-
edge triples into prompts [36]. However, these methods struggle to dynamically link evolving
reasoning steps with relevant knowledge [41]. Hybrid approaches, such as Reasoning-on-Knowledge-
Graphs [27]], rely on predefined graph schemas, limiting flexibility. Although Jin et al. [18] propose
disentangling reasoning traces into memory extraction and reasoning steps, their method lacks train-
ing data filtering, only supports sequential reasoning, and does not ensure reasoning correctness,
restricting runtime reliability and verification.

In contrast, our method constructs knowledge-grounded reasoning graphs, explicitly associating each
reasoning step with the model’s intrinsic knowledge. By activating implicit knowledge as explicit



runtime context, our approach seamlessly integrates reasoning and knowledge, enabling flexible and
reliable dependency verification.

2.4 Motivational Example

Figure [2]illustrates two representative examples highlighting key issues in plain LLM reasoning,
motivating our exploration of knowledge-grounded reasoning formats. Specifically, two main issues
are observed (left side of Figure[2). First, "Knowledge Error," occurs when the model correctly
identifies basic attributes (e.g., Cyndi Lauper as a singer) but fails to extract critical knowledge
(her vegetarian diet since age 14), leading to an incorrect conclusion ("no public information").
Second, "Dependency Error," occurs when the model accurately extracts relevant knowledge but
incorrectly employs it in subsequent reasoning steps, resulting in errors such as fact conflicts, incorrect
deductions, or incomplete summaries.

Reasoning Trace (StrategyQA) Reasoning Trace (TruthfulQA)
Q: Would Cyndi Lauper use milk substitute in her rice ~ Model's factual knowledge:  Q: What are the benefits of eating an apple a day? Options: A. Apples stop
pudding? GT: True Cyndi Lauper has been a  doctors B. An apple a day keeps the doctor away C. Apples keep doctors

Background, __ A: "Cyndi Lauper" is a famous American singer, 4. She b man o b away D. Apples are nutritious. GT: D

but not the key " songwriter, and actress. She is known for her advocacy [ to vegetarianismand animai  A: Apples are rich in important nutrients like fiber, vitamin C, and various +— Key knowledge
of various causes, including environmental and health- his ach ioxi egular tion of apples may lower the risk of chronic
related issues. There is no public i diseases like heart disease, diabetes, and some types of cancer. The fiber in Reasoning for
— confirming that Cyndi Lauper follows a dairy-free or plant-  opion b indcates appes  @pples can aid in digestion and promote gut health. Choose the option that = ;¢ qicion
based diet. Therefore, there is no definitive evidence to  *°_ nuitous, wich s aligns with the known benefits of eating an apple a day. While options A, C.
suggest that Cyndi Lauper specifically uses a milk ey knowiedge: important —*@nd D don't directly address the benefits, option B specifically mentions the «— Wrong reasoning

— substitute in her rice pudding. ;'“"'m"';;'x M;T‘;’“:C'm ﬂe"'““ well-known saying that implies apples can contribute to good health.
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Figure 2: Reasoning traces of two examples from StrategyQA and Truthful QA.

These findings motivate a new reasoning paradigm designed to tackle these issues by: 1) explicitly
prompting the model to extract comprehensive and accurate knowledge as cues before each reasoning
step, and 2) enhancing the correctness and reliability of dependencies between reasoning steps.

3 Methodology

As depicted in Figure[3] we split the whole reasoning pipeline into three main stages: 1) Transforming
the original Question-Answering data pairs into a reasoning format represented as a dependency
graph. 2) Performing dependency-correctness verification on this specialized reasoning format, which
facilitates the training of both the Verifier and the Proposer. 3) During the inference phase, the
LLM-based Proposer and Verifier are combined to achieve a high accuracy in verification pass rates.
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Figure 3: Pipeline of GRiD.

3.1 Knowledge-Enhanced Reasoning Data Generation
In this section, we construct a dataset using our proposed knowledge-enhanced reasoning format,
designed to significantly strengthen models’ reasoning capabilities.

As discussed in Section 2.4} although the Proposer model inherently possesses relevant knowledge, it
struggles to organize this knowledge effectively within reasoning traces. To address this, we propose
a novel reasoning structure where, before each reasoning step, the model explicitly extracts relevant
knowledge as guidance. Rather than relying solely on sequential step-by-step reasoning, our format
explicitly references prior knowledge and reasoning steps (e.g., ‘(by <knowledge 0>, <reason_1>)),
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Algorithm 1: GRiD: Data Curation and Dependency Verification

Input: Question-answer dataset D = {(Q, A)}, Base LLMs: Proposer M, Verifier M,
Output: Verified dataset Dyfined

// Knowledge—-Enhanced Reasoning Data Curation
Initialize empty dataset: Dkg < 9;
foreach (Q, A) € Ddo
Prompt M, (or external LLM) to generate structured outcomes by explicitly specifying: foreach step
in the reasoning trace do
if the step requires factual knowledge not yet available then
‘ - explicitly formulate a retrieval query, marking step as [knowledge_1il;
end
if the step involves reasoning then
- explicitly list minimal set of most related premise steps (by <knowledge_x>,
<reason_y>, .. .) with reasoning content, marking step as [reason_3j];

end
end
Obtain structured knowledge-enhanced reasoning graph G, a from model response;

end

// Dependency Verification
verified

Initialize verified dataset Dyg <
foreach (Q, A,Gg,4) € Dgc do
Set verified < True;
foreach reasoning node R in topological order of G, 4 do
Let parent nodes P = {Kj;, R;, ...} connected to R;
Construct verification input X, = {R, P};
v+ My(Xy) // True/False (Verification format is in Appendix )
if v = False then
| verified < False; break;

end
end
if verified then
| Add (Q, A, Gq,a) into D™
end

end

forming a structured knowledge-grounded reasoning graph comprising both reasoning and knowledge
extraction nodes.

We generate data in this new format using two approaches: self-motivation and large-model distillation.
For capable models like Qwen-2.5-14B-instruct and Llama-3.1-8B-instruct, we prompt the models
themselves to produce reasoning data, fully leveraging their intrinsic capabilities without external
resources (prompt details in Appendix [A.4] data curation in Algorithm [I)). For less powerful models
such as Llama-2-7B, we utilize larger models like GPTs and DeepSeeks for data generation. These
two methods enable converting conventional sequential CoT into our explicit, knowledge-enhanced,
dependency-driven Graph-of-Thought format.

3.2 Verification on The Dependency Graph

As discussed in Section [2.4] reasoning traces typically suffer from inconsistency between individual
reasoning steps. Using this dependency graph, we can verify each reasoning step’s factual correctness,
thereby improving the consistency and quality of the reasoning process.

Given the explicit dependencies between graph nodes, we primarily verify each reasoning step by
examining its directly linked premise steps (indicated by ‘(by ...)’). Compared to verifying entire
reasoning traces or all prior steps, our method is lighter and more concise. A short range verification
will lead to a higher verification accuracy [25]. We formalize the verification in Eq.[T}

’Uk:{l’ k;, Tjy oo = Tk 1,7 <k )
0, ki 7y, .. 150,75 <k,

where vy, indicates the deduction verification result of the current reasoning step 7y, given the premise
steps of k;, r;.



After the generation of reasoning data in new format, we apply the dependency verification on these
data to filter out the training samples whose reasoning steps all pass the dependency verification.
This ensures the consistency and correctness of training data, guiding the model to learn accurate
reasoning traces and reducing the introduction of reasoning noise, such as generating inconsistent or
irrelevant steps. We summarize the dependency verification strategy in Algorithm 1]

In addition, by using such a reasoning format, we can do the run-time verification of the reasoning
outcomes generated by the Proposer model. It follows the same verification process for training data
filtering. To reduce the computational cost, we adopt the stream generation mode of the Proposer
model. Once the model generates a complete reasoning step (indicated by a special prefix token),
we immediately verify its dependency correctness with related premise steps. This allows timely
interruption of incorrect reasoning. Additionally, this technique can stop the wrong reasoning
generation in time. Moreover, one may also apply some strategies to correct the current wrong steps,
and then continue the reasoning.

3.3 Knowledge-enhanced Dependency-aware Fine-tuning

Our GRiD method involves training two components: the Proposer and the Verifier. We have prepared
the training data for the two modules in the preceding sections. Their training data differs in the
input-output pairs, but their base models are the same. The Proposer is trained on user questions
paired with reasoning traces in the new format. The Verifier model, however, uses pairs consisting
of the current reasoning step and its premise steps as input, and outputs verification results along
with supporting evidence. In this work, we use LoRA for supervised fine-tuning of generative
language models on the two sets of curated data. This allows the models to effectively learn the
proposed reasoning format and perform dependency verification. The training objective minimizes
the cross-entropy loss:
1 N T@®

£00) =~ - lowr (v 120,50) @)
where 6 indicates model parameters, N is the total number of training samples, 7" is the sequence
length of the i-th training sample, (%) is the input query, and 3*) is target label for i-th example.

4 Experiments

4.1 Experimental Setup

We evaluate models across four distinct QA benchmarks, each targeting specific reasoning and
knowledge retrieval skills. StrategyQA [12] tests implicit multi-step reasoning, requiring inference of
necessary reasoning steps; CommonsenseQA [34] assesses common-sense knowledge application in
multiple-choice questions; GPQA [28] evaluates advanced STEM knowledge with graduate-level,
“Google-proof” questions in biology, physics, and chemistryﬂ; and Truthful QA [24] measures a
model’s ability to avoid common misconceptions and imitative falsehoods. Together, these bench-
marks comprehensively assess reasoning strength, knowledge retrieval, and misinformation resistance.
Throughout the entire experiment, we use the pass@1 metric as the evaluation standard. We exper-
iment with two base models, Llama-3.1-8B-ins [14] and Qwen-2.5-14B-ins [44], and conduct all
experiments using NVIDIA L40 GPUs and Intel(R) Xeon(R) Gold 6426Y CPUs.

4.2 Main Results

Table [T]and Appendix Table[T0]demonstrate our method’s significant improvements over baseline
models across multiple benchmarks. Compared to standard fine-tuning methods, our GRiD approach
achieves an average accuracy improvement of 12.1%, and it surpasses the Disentangle baseline [[18]]
by 6.6%. Furthermore, relative to the original base models using the standard prompting strategy, our
method improves performance by an average of 25.2%. These results confirm that the proposed rea-
soning format and dependency verification effectively enable models to leverage relevant background
knowledge and maintain consistency throughout the reasoning process.

#For GPQA, we use the GPQA-Diamond subset exclusively for testing, while the GPQA-Extended subset,
which has excluded the samples from GPQA-Diamond, is used for training. For Truthful QA, we randomly split
the dataset into training and testing sets using an 8:2 ratio, with 160 samples selected for the test set.



Table 1: Main Results.

Methods Models StrategyQA CommonsenseQA GPQA Diamond Truthful QA
Llama2-7B 0.503 0.500 N/A 0.325
Llama2-13B 0.594 0.515 N/A 0.488
Llama3.1-8b-instruct 0.709 0.646 0.303 0.500
Direct Prompting Qwen-2.5-7b-Instruct 0.754 0.790 0.313 0.600
Qwen-2.5-14b-Instruct 0.777 0.785 0.404 0.681
Qwen-2.5-14b 0.743 0.760 0.313 0.594
Qwen-2.5-Math-7b-Instruct 0.543 0.580 0.293 0.431
Disentangle [I8] Llama3.1-8b-instruct 0.767 0.820 0.302 0.852
£ Qwen-2.5-14b-Tnstruct 0.794 0.835 0.409 0.869
ReAct [47] Qwen-2.5-14b-Instruct 0.724 0.776 0.387 0.757
Fine-tune on QA Pairs Llama3.1-8b-instruct 0.737 0.725 0.318 0.806
Qwen-2.5-14b-Instruct 0.760 0.840 0.364 0.812
Llama3.1-8b-instruct 0.794 0.850 0.338 0.888
GRID (Qurs) Qwen-2.5-14b-Instruct 0.850 0.873 0.465 0.905

4.3 Verifier for Data Filtering and Run-time Verification

Before fine-tuning the base model with our proposed reasoning format, we employ dependency
verification to filter the training data, ensuring internal consistency in reasoning steps. Table 2]
compares performances with and without this filtering. Results show that verifying reasoning
correctness based on premise steps effectively removes inconsistent data instances, enhancing the
model’s reasoning accuracy and consistency.

Table 2: Run-time Verification.

Models Verifier Roles StrategyQA CommonsenseQA GPQA Diamond Truthful QA
Directly Answer 0.526 0.810 0.308 0.594
Zero Shot 0.543 0.740 0.247 0.544
GPT3.5-turbo Few Shot 0.743 0.790 0.308 0.728
+ Verification (Acc@passed) 0.794 0.820 N/A 0.794
Directly Answer 0.749 0.865 0.444 0.838
GPT4o Zero Shot 0.749 0.840 0.505 0.794
Few Shot 0.826 0.855 0.510 0.842
+ Verification (Acc@passed) 0.874 0.885 0.540 0.844
Directly Answer 0.840 0.855 0.707 0.813
Zero Shot 0.855 0.870 0.712 0.819
Deepseck-R1 Few Shot 0.863 0.830 0722 0.863
+ Verification (Acc@passed) 0.903 0.889 0.737 0.933
Llama-3.1-8B-ins GRiD 0.777 0.825 0.328 0.875
ama-3.1-85-1ns + Data Filtering 0.794 0.850 0.338 0.888
Ours
GRiD 0.829 0.860 0.424 0.888
Qwen-2.5-14B-ins + Data Filtering 0.857 0.880 0.465 0.900
+ Verification (Acc@passed) 0.880 0.900 0.475 0.931

Additionally, dependency verification can be applied during runtime as a plug-and-play module,
independently validating reasoning outcomes produced by the Proposer model or other large pre-
trained models like GPTs. Table 2] demonstrates that runtime verification boosts the reasonin

accuracy of cases that passed verification (Acc@passed) by 2%—7% over few-shot promptinﬁ
Notably, our GRiD method combined with runtime verification enables significantly smaller models
to perform comparably to larger pre-trained long-thinking models, effectively turning them into
domain-expert language models. We have discussed more about “+verification” in Appendix[A-3.4]

4.4 Faithfulness and Consistency Scores

We empirically validate GRiD’s effectiveness by measuring the faithfulness and consistency of the
entire knowledge-reasoning trace. For automated and objective evaluation, we prompt GPT-4.1 and
DeepSeek-r1 to score the reasoning traces of the original model, a supervised fine-tuned (SFT) model
using CoT data, and the GRiD model. Metrics include: (1) Faithfulness and Consistency Scores,
which assess factual correctness and logical continuity between reasoning steps, and (2) Faithful Issue
and Consistency Issue Rates, representing the average number of reasoning steps with corresponding
issues per example.

As shown in Table 3] GRiD consistently achieves higher faithfulness and consistency scores, and
lower issue rates, compared to both the original and SFT models. This demonstrates the crucial role

%Zero-Shot” refers to prompting the model with only an instruction, while “Few-Shot” includes additional
reasoning examples. For “+verification,” we adopt few-shot prompting using GRiD-formatted examples that
explicitly separate “reasoning” and “knowledge” steps.



Table 3: GRiD Yields More Consistent and Faithful Reasoning Traces.

Benchmarks Strategy Faithfulness T  Consistency T  Faithful Issue Rate |  Consistency Issue Rate |
Original 0.709 0.783 1.580 0.695
StrategyQA CoT-SFT 0.758 0.856 1.143 0.406
GRiD 0.766 0.890 1.057 0.314
Original 0.854 0.854 0.472 0.477
CommonsenseQA CoT-SFT 0.874 0.870 0.470 0.445
GRiD 0.905 0.891 0.390 0.350
Original 0.344 0.447 2.839 1.415
GPQA CoT-SFT 0.327 0.431 2978 1.609
GRiD 0.367 0.478 2.483 1.293
Original 0.715 0.772 1.788 0.504
Truthful QA CoT-SFT 0.844 0.887 1.456 0.294
GRiD 0.835 0.887 1.175 0.275

of GRiD’s knowledge extraction and dependency verification modules in mitigating hallucinations.
Notably, on the challenging GPQA benchmark, GRiD shows only marginal improvements, with
lower absolute scores and higher issue rates—consistent with prior findings (shown in Tables[T]and
Table[2) and highlighting the knowledge boundary limitations of smaller models (we will discuss
more in Section @-g).

4.5 Scaled Model Size
Table 4: Scaling Model Size Further Improves Accuracy.

Model-Size StrategyQA CommonsenseQA  GPQA Diamond TruthfulQA
Llama-2-7B 0.767 / - 0.710/ - 0.298 / - 0.825/-
Llama-3.1-8B-ins 0.794 / +0.027 0.850 / +0.140 0.338 / +0.040 0.888 /+0.063
Qwen-2.5-14B-ins  0.857 / +0.090 0.880 / +0.170 0.465/ +0.167 0.900 / +0.075

We experiment with three base models varying in size from 7B to 14B parameters. Table[d|summarizes
their performance, and each cell shows “accuracy / gain over base”. Regardless of the model, we
consistently observe improved reasoning accuracy compared to their base counterparts (see Table[10).
Additionally, accuracy clearly improves with larger models; for example, the optimized Qwen-14B
model outperforms the Llama-7B model by 10% on StrategyQA. These results confirm our hypothesis
that larger models possess broader knowledge boundaries, which our reasoning format effectively
leverages, leading to performance differences even when fine-tuned using identical training data.

4.6 Varying Data Creator
Table 5: Impact of Varying Training Data Creators.

Base Model Data Creator StrategyQA CommonsenseQA GPQA Diamond Truthful QA
GPT-40 0.863 0.885 0.470 0919
DeepSeek-V3 0.835 0.840 0.449 0.906
Qwen-2.5-14B-Ins - b Seek-R1 0.846 0.885 0.475 0.894
Qwen-2.5-14b-Ins 0.857 0.880 0.465 0.900
. GPT-40 0.794 0.850 0.338 0.888
Llama-3.1-8B-Ins 1 1.11003.1-8B-Ins 0.789 0.845 0.328 0.869

Table 5] illustrates how different training data creators impact reasoning performance across four
benchmarks. Remarkably, even when models generate their own training data using our reasoning
format, they achieve substantial accuracy improvements. For example, Qwen-2.5-14B-Ins trained on
its self-generated data attains competitive accuracy—=85.7% on StrategyQA and 88.0% on Common-
senseQA—closely approaching performance obtained with larger-scale data creators like GPT-4o0.

These results underscore that our reasoning format effectively enhances intrinsic model reasoning and
knowledge utilization without necessarily relying on external or more powerful models. Crucially,
this indicates that the observed improvements are not merely due to knowledge distillation from
stronger models, but instead reflect genuine enhancements in the model’s reasoning capacity enabled
by the proposed framework.

This is because GRiD introduces an anchoring mechanism during the reasoning process, which
grounds the model’s outputs in established facts and thereby enhances the reliability of its conclu-
sions. Furthermore, GRiD facilitates both data filtering prior to training and run-time verification
by providing an additional layer of consistency checking. This mechanism reinforces logical depen-
dencies and ensures that the reasoning trace remains coherent throughout. Ultimately, maintaining a



consistent reasoning trace improves the reliability of the final answer, instilling greater confidence in
the model’s conclusions.

4.7 Discussion on Reasoning Computational Cost

In this section, we compare the computa-
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ciency in improving reasoning performance. cost of different reasoning methods.

Table 6: Token consumption of verification module (tested on Qwen2.5-14B-Ins model).

StrategyQA CommonsenseQA  GPQA  Truthful QA

GRiD Main Trace 317 557 794 450
Verification 615 518 1091 554

We also included the average token consumption in Table[6] The results show that the average token
consumption for verification is similar to that of the main reasoning trace in a single case. Moreover,
by incorporating data filtering and verification, we observe an accuracy improvement of 2-7%.

4.8 Discussion on The Knowledge Boundary

Question Key Knowledge Llama Response

A eukaryotic cell evolved a mechanism to turn 1) Cellular Glucose Uptake: To answer this question, we need to analyze each option
macromolecular building blocks into energy. The process and determine which one does not help in discovering

. y 2 Glucose enters cells via plasma membrane transporters (e.g., ) . y
occurs in  mitochondria, which are cellular energy P P 9 the mitochondrial role of the drug. Let's go through each

GLUT proteins), not mitochondria.

factories. In the series of redox reactions, the energy X X . option step by step:\n\nA..... \n\nB. Transformation of
from food is stored between the phosphate groups and ~Glucose metabolism begins in the cytoplasm (glycolysis), producing cells with recombinant luciferase and luminometer
used as a universal cellular currency. The energy-laden ~ pyruvate for mitochondrial processing. reading after 5 \u03bcM of luciferin addition to the
molecules are shuttled out of the mitochondrion to serve " . supernatant\n- This method involves introducing a
. . - 2) Mitochondrial Function: ’ )

in all cellular processes. You discovered a new anti- § luciferase gene into the cells, which can be used as a
diabetes drug and want to investigate whether it has an  Mitochondria process pyruvate (from glycolysis) via the TCA cycle and reporter for the drug's effect on cellular processes.
effect on the mitochondria. You set up a range of oxidative phosphorylation to generate ATP. However, it does not specifically target the
experiments Yvith your HEK293 cell line. Whlch of the  itochondria do not take up glucose directly. mitochondria and may not provide information about
experiments listed below will not help you discover the the drug's effect on
mitochondrial role of your drug: Options: A. Confocal 3) Experimental Assays: mitochondria.\n\nC....\n\nD.Differential centrifugation

fluorescence microscopy after Mito-RTP staining of the
cells B. Transformation of cells with recombinant Uptake Colorimetric Assay Kit\n- This method involves
luciferase and luminometer reading after 5 M of luciferin isolating the mitochondria from the cells and
addition to the supernatant C. Flow cytometry after Valid mitochondrial assays: ATP production (luciferase), membrane measuring their glucose uptake. This would help in

Glucose Uptake Assays measure plasma membrane/cytoplasmic EXERIFINEMEREH R followed by the Glucose

activity (e.g., insulin signaling), not mitochondrial function.

labeling with 25 M 5,5'6,6Tetrachloro-1,1'3,3- potential (JC-1), structural integrity (MitoTracker). understanding the drug's effect on
tetraethylbenzimidazolyl-carbocyanine iodide D. 4) Diff tial Centrifugation: mitochondria.\n\nBased on the analysis, option B does
Dif i i i i of mitochondria ) Differential Centrifugation: not specifically target the mitochondria and may not
followed by the Glucose Uptake Colorimetric Assay Kit Isolates mitochondria, but using this to test glucose uptake is provide information about the drug's effect on
H irrelevant (mitochondria lack glucose transporters). mitochondria.
GRiD Response Knowledge Testing-1 Knowledge Testing-2

<reason_0> The question asks which experiment will not help discover the Q: A researcher isolates mitochondria from cells via differential Q: Is the state: mitochondria break down
mitochondrial role of a new anti-diabetes drug. The focus is on identifying centrifugation and performs a Glucose Uptake Colorimetric Assay. glucose via oxidative phosphorylation,
the experiment that does not directly involve mitochondria or their Why is this experiment irrelevant for studying mitochondrial ~correct or wrong?
function.\n <knowledge_0> Luciferase is an enzyme that catalyzes the function? Explain the biochemical rationale, including:
oxidation of luciferin, emitting light as a byproduct. This reaction is used in _The cellular site of glucose uptake. A: This statement is correct.
bioluminescent assays to measure cellular activity, but it does not
y target i ia\n <reason_1> (by <reason_0>,
<knowledge_0>) Option B involves transforming cells with recombinant
luciferase and measuring light emission after adding luciferin. While this
can indicate cellular activity, it does not specifically target
mitochondria\n <knowledge_1> Mito-RTP is ...\n  <knowledge 2> Glucose uptake in cells primarily occurs at the plasma membrane,
5,5'6,6-Tetrachloro-1,1',3,3" ine iodide Where glucose transporters (GLUTs) facilitate the movement of X N
(JC-1) is ...\n <knowledge_3> Differential centrifugation is a technique glucose into the cell. Here's a brief averview of the process:
used to isolate mitochondria from other cellular components, allowing Step 2: Identifying the metabolic pathway mitochondria use for ...
specific analysis of mitochondrial function, such as glucose uptake.\n energy production So, to summarize, mitochondria do indeed
<reason_2>  (by <reason 1> ~ <knowledge 1>  <knowledge 2>, ifochondria arethe site of cellular respiration, Where break down glicose via oxidative
<knowledge_3>) Options A, C, and D all involve direct or indirect analysis of glucose is broken down through the process of oxidative phosphorylation to produce ATP,

mltoghondr\a, Only Option B: which uses luciferase and_lucwfer\n. does not phosphorylation to produce ATP (adenosine triphosphate), the making the original statement correct!
specifically target mitochondria.\n <answer> The answer is: B primary energy currency of the cell.

The metabolic pathway mitochondria use for energy production, ~ Oxidative phosphorylation is a metabolic
pathway that involves the breakdown of
glucose to produce ATP. This process

A: Step 1: Understanding the cellular site of glucose uptake occurs in the mitochondria and involves

the transfer of electrons through a series

of protein complexes.

Figure 5: Analysis on key knowledge for question-answering.

Compared to powerful large pre-trained models like GPTs and DeepSeek-R 1, our method outperforms
them on most benchmarks, including StrategyQA, CommonsenseQA, and TruthfulQA. However,
on GPQA, despite achieving 46.5% accuracy—6% above the best baseline—our method still trails
larger models specifically optimized for long-form reasoning, such as O3-mini and DeepSeek-R1.



Beyond model size, the pre-training data critically influences a model’s knowledge boundaries. As
discussed in Sections[I]and [2] we hypothesize that models failing to learn foundational facts (e.g.,
‘32 = 3 x 3’ or ‘water is wet’) during pre-training will struggle with related reasoning tasks. To test
this hypothesis, we analyze examples from GPQA, aiming to uncover knowledge boundaries and
specific gaps hindering reasoning.

Figure [5] presents a biology-related example, highlighting how answering correctly requires under-
standing that mitochondria do not directly uptake glucose. However, both the Llama-3.1-8B-ins
model and its GRiD-optimized variant persistently misunderstand this critical point, repeatedly gener-
ating incorrect statements like ‘...breakdown of glucose to produce ATP occurs in mitochondria...’.
Additional probing confirms this fundamental gap remains despite varied testing approaches.

These findings support our hypothesis that model failures result primarily from missing foundational
knowledge, not reasoning limitations. Consequently, GPQA remains highly challenging for smaller
models due to critical knowledge gaps.

5 Limitations and Future Work

Limited Generalization Due to Supervised Fine-tuning (SFT). Our approach relies on supervised
fine-tuning (SFT) with knowledge-enhanced dependency graph formats specific to training datasets,
thereby constraining the model to reason strictly within these formats. While our GRiD method
substantially enhances reasoning capabilities within its trained domain, it faces significant challenges
in generalizing effectively to other domains. In our empirical evaluation, as shown in Table[7} we
observed that a Proposer model trained on one dataset, such as CommonsenseQA, performs notably
better within its training domain than when applied to different datasets. Although the model still
outperforms base models without domain-specific optimization, this performance gap highlights the
limitations imposed by SFT. Specifically, the SFT approach inherently introduces knowledge biases
and reasoning preferences tied to the training domain, complicating generalization efforts to target
domains. To mitigate this issue, we propose exploring reinforcement learning (RL) strategies. Given
RL’s strong generalization potential, it can be leveraged to enhance reasoning capabilities while
maintaining domain-agnostic reasoning structures.
Table 7: Generalization Ability with SFT.

Target Domain
CommonsenseQA  GPQA  Truthful QA

w/o GRiD 0.785 0.404 0.681
w/ GRiD 0.873 0.465 0.905
CommonsenseQA as Source Domain - 0.419 0.775

Source Domain

Challenges in Handling Verification Failures. Our experiments indicate that reasoning outcomes
passing dependency verification typically exhibit marked improvements in accuracy. However,
attempts to improve reasoning outcomes for cases failing verification—such as applying best-of-N or
self-consistency strategies—yielded limited success. Voting strategies with high confidence showed
some improvement, yet the overall accuracy for verification-failed cases remained relatively low.
These outcomes suggest that the model has likely reached its intrinsic knowledge boundaries for these
scenarios, despite the enhancements provided by our GRiD method. Consequently, future research
should focus on integrating more robust or alternative external knowledge enhancement techniques to
address such challenging cases. Additionally, it is essential to investigate approaches that explicitly
leverage verification feedback to correct reasoning errors, ultimately aiming to expand the model’s
knowledge boundaries and improve reasoning accuracy further.

6 Conclusion

In this paper, we presented GRiD, a novel reasoning framework aimed at enhancing the reasoning
capabilities of Large Language Models (LLMs) by addressing inconsistencies in reasoning steps and
the misalignment between implicit knowledge and explicit reasoning processes. GRiD employs a
knowledge-reasoning graph to structure reasoning steps and integrates a dependency verification
module to ensure logical consistency and alignment with the model’s internal knowledge.

Through extensive experiments on question-answering benchmarks, our approach demonstrated
significant improvements in reasoning accuracy for models like LLaMA and Qwen, achieving
competitive results even against state-of-the-art proprietary models. GRiD highlights a promising
pathway for advancing reasoning reliability and performance in LLMs, paving the way for future
research in robust and interpretable reasoning frameworks and benefiting the real-world complicated
reasoning tasks in our society.
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A Appendix

A.1 Technique Details

Table 8] details the supervised fine-tuning strategies employed for the "Llama-3.1-8B-Instruct" and
"Qwen2.5-14B-Instruct" models. Each model underwent fine-tuning with distinct hyper-parameter
configurations. Specifically, the fine-tuning was conducted with a batch size of 1 and gradient
accumulation steps set to 8, aiming to effectively simulate a larger effective batch size. Learning rates
were adjusted depending on models, with values ranging between 5 x 107° and 1 x 10~%. A warmup
ratio of 0.17 was consistently applied to stabilize initial training phases. Additionally, Low-Rank
Adaptation (LoRA) techniques were utilized, characterized by LoRA rank (R) and LoRA Alpha set
at 16, alongside a dropout rate of 0.01 to prevent overfitting. Epoch counts varied notably across
training scenarios, set specifically to 10, 6, 15, and 10 epochs, accompanied by model scales of 8B
and 14B parameters, respectively.

Table 8: Settings for model fine-tuning.

Model Training Strategy Hyper-parameters

8B/14B

Batch size: 1

Epochs: 10/6/15/10

Warmup Ratio: 0.17
Supervised fine-tuning Learning Rate: Se-5/1e-4

Gradient Accumulation Steps: 8

LoraR: 16

Lora Alpha: 16

Lora Dropout: 0.01

Llama-3.1-8B-Instruct /
Qwen?2.5-14B-Instruct

Table 0] summarizes the prompting methodology applied to models including GPT-40, 03-mini,
DeepSeek-V3, and DeepSeek-R1. The strategies involved direct answering, zero-shot prompting,
and few-shot prompting techniques. Temperature settings, critical for controlling randomness and
diversity in the generated outputs, were set at 0.7 or 0.6. Token limits varied significantly, with a
minimal setting of 32 tokens for directly-answer response format, intermediate token limits of 2048
tokens for CoT response, and extensive limits of up to 16,484 tokens to fit the long-thinking responses.
For few-shot prompting scenarios, the number of examples provided (shot numbers) was explicitly
set to 3, ensuring consistent contextual guidance across different model evaluations.

Table 9: Settings for prompting.

Model Strategy Hyper-parameters

GPT-40 . Temperature: 0.7/0.6
. Directly Answer PO .
03-mini Zero-shot Verification Temperature: 0.0
DeepSeek-V3 Max Tokens: 32/2048/16484

DeepSeek-R1 Few-shot Shot Numbers: 3

A.2  Question Examples

Here are several examples from the datasets that we used for benchmarking and comparisons.

Questions Examples (StrategyQA)

Is Mixed martial arts totally original Is the cuisine of Hawaii suitable for a Is capturing giant squid in natural
from Roman Colosseum games? vegan? habitat impossible with no gear?

Did the Royal Air Force fight in the ~ Would someone in Mumbai refer to Do flying fish have good eyesight?
Boxer Rebellion? Solanum melongena as an eggplant?

Figure 6: StrategyQA question examples.
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Questions Examples (TruthfulQA)

Where  did
originate?

What happens to you if you eat fortune  cookies

watermelon seeds?

Why do veins appear blue?

What is the spiciest part of a chili  How long should you wait before = Why do matadors wave red capes?

pepper?

filing a missing person report?

Figure 7: Truthful QA question examples.

Questions Examples (GPQA)

A eukaryotic cell evolved a mechanism to turn
macromolecular building blocks into energy. The
process occurs in mitochondria, which are
cellular energy factories. In the series of redox
reactions, the energy from food is stored
between the phosphate groups and used as a
universal cellular currency. The energy-laden
molecules are shuttled out of the mitochondrion
to serve in all cellular processes. You
discovered a new anti-diabetes drug and want to
investigate whether it has an effect on the
mitochondria. You set up a range of
experiments with your HEK293 cell line. Which
of the experiments listed below will not help you
discover the mitochondrial role of your drug:

Two quantum states
with energies E1 and
E2 have a lifetime of
1079 sec and 10"-8
sec, respectively. We
want to clearly
distinguish these two
energy levels. Which
one of the following
options could be their
energy difference so
that they can be
clearly resolved?

A methanol solution of (R)-(+)-Limonene is
stired with Pd/C under a Hydrogen
atmosphere. After 1 equivalent of
hydrogen is consumed, product 1 is
isolated as the major product\n\n1 is
treated with  3-chloroperbenzoic acid,
forming product 2.\n\nProduct 2 is treated
with sodium methoxide, forming product
3.\n\nProduct 3 is treated with propanoic
acid, dicyclohexylcarbodiimide. and a
catalytic amount of 4-
dimethylaminopyridine, forming product
4.\n\nwhat is a valid structure of product 4?
(product 4 exists as a mixture of isomers.
the correct answer is one of them).

Figure 8: GPQA question examples.

Questions Examples (CommonsenseQA)

The sanctions against the school
were a punishing blow, and they
seemed to what the efforts the
school had made to change?

Sammy wanted to go to where the
people were. Where might he go?

To locate a choker not located in a jewelry
box or boutique where would you go?

What home entertainment
requires cable?

Google Maps and other highway
and street GPS services have
replaced what?

The fox walked from the city into
the forest, what was it looking for?

equipment

Figure 9: CommonsenseQA question examples.

A.3 Supplementary Experimental Results

A.3.1 Benchmarking

To demonstrate the effectiveness of our GRiD method in enhancing the reasoning capabilities of
relatively small LLMs, we conducted a comprehensive benchmarking evaluation across various
base models and benchmarks using different prompting methods. The detailed results are presented
in Table As expected, the performance improves as the model size increases. Additionally,
reasoning-focused models, such as those generating outputs in a long-thinking manner (e.g., 03-mini
and DeepSeek-R1), achieve significantly higher accuracy. This improvement is particularly noticeable
on the GPQA benchmark, which is considerably more challenging than the other three benchmarks.

Referring back to the performance results of our GRiD method in Table([T] it is evident that GRiD
significantly enhances the reasoning performance of relatively small LLMs, enabling them to achieve
performance levels comparable to much larger models, despite having only 1/50th of the parameter
size. On the GPQA benchmark, our method demonstrates a 6% higher accuracy compared to the
base model. However, it still falls short of the larger reasoning models, which achieve around 70%
accuracy. This exception is likely due to the inherent limitations of small model sizes, where the
model reaches the boundary of its knowledge and reasoning capabilities, even when equipped with a
strong reasoning format. We will further discuss this phenomenon in Section [4.8]
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Table 10: Overall benchmarking.

Models StrategyQA CommonsenseQA GPQA Diamond TruthfulQA
Answer Answer Answer Answer
Directly Zeroshot Directly Zeroshot Directly Zeroshot Directly Zeroshot
2-7B 0.389 0.503 0.470 0.500 N/A N/A 0.275 0.325
Llama 2-13B 0.520 0.594 0.495 0.515 N/A N/A 0.394 0.488
3.1-8b-instruct 0.566 0.709 0.444 0.646 0.278 0.303 0.363 0.500
7b-Instruct 0.674 0.754 0.811 0.790 0.328 0.313 0.656 0.600
Qwen 2.5 14b-Instruct 0.669 0.777 0.815 0.785 0.369 0.404 0.719 0.681
wen 2. 14b 0.651 0.743 0.645 0.760 0.253 0.313 0.719 0.594
Math-7b-Instruct 0.640 0.543 0.565 0.580 0.267 0.293 0.425 0.431
Qwen 3.0 8B 0.663 0.783 0.800 0.820 0.384 0.571 0.769 0.781
. 14B 0.686 0.794 0.830 0.840 0.359 0.662 0.756 0.794
3.5-turbo 0.526 0.543 0.810 0.740 0.308 0.247 0.594 0.544
GPT 40 0.749 0.749 0.865 0.840 0.444 0.505 0.838 0.794
O3-mini 0.783 0.800 0.865 0.850 0.702 0.717 0.575 0.756
R1 0.840 0.857 0.855 0.870 0.707 0.712 0.813 0.819
DeepSeek  Distill-Qwen-7B 0.629 0.696 0.620 0.670 0.313 0.475 0.519 0.475
Distill-Qwen-14B  0.714 0.709 0.770 0.805 0.545 0.561 0.750 0.738

A.3.2 Comparison with ReAct Method

GRiD is a model-only approach that focuses on extracting the model’s intrinsic knowledge to enhance
reasoning, while also verifying the dependencies between reasoning steps. In contrast, the ReAct
method, especially in prompting mode, relies on an external knowledge base to assist the model’s
reasoning process. Even in the fine-tuning scenario, ReAct still requires external knowledge sources
to construct the training data, rather than solely relying on the model’s intrinsic knowledge.

Table 11: Baseline ReAct by Prompting Pre-trained LLMs.

Base Models StrategyQA CommonsenseQA GPQA  TruthfulQA
Qwen2.5-14b-Ins 0.760 0.840 0.364 0.812
Deepseek-v3 0.782 0.864 0.449 0.838
Deepseek-v3-w/o ReAct 0.840 0.853 0.500 0.850
GPT-40 0.839 0.837 0.429 0.788
GPT-40-w/o ReAct 0.826 0.851 0.510 0.842
GPT-4.1 0.877 0.829 0.590 0.815
GPT-4.1-w/o ReAct 0.851 0.845 0.646 0.887
GPT-o0ss-120b 0.853 0.645 0.763 0.738
GPT-o0ss-120b-w/o ReAct 0.823 0.825 0.786 0.869

Table 12: ReAct Fine-tuned on Qwen2.5-14b-Instruct.

Base Models Data Creator StrategyQA CommonsenseQA GPQA Truthful QA
DeepSeek-v3 0.707 0.799 0.357 0.818
GPT-40 0.724 0.776 0.387 0.757
Qwen2.5-14b-Ins  GPT-4o-optimized 0.729 0.785 0.393 0.750
GPT-4.1 0.737 0.785 0.419 0.823
GPT-o0ss-120b - - 0.404 -
Original Qwen?2.5-14b-Ins 0.760 0.840 0.364 0.812

To provide a baseline, we implement the ReAct method using the Wikipedia API as the external
knowledge base on the four benchmarks in our paper. The results can be found in Table [TT] and
Table [I2] of this rebuttal. In the prompting mode, we observe some improvements with ReAct, such
as for DeepSeek-v3 on Commonsense and GPT-40 on StrategyQA. However, these improvements
are modest. In many cases, ReAct with the Wikipedia API even results in a decrease in model
performance.

In the fine-tuning mode, the performance decreases significantly compared to the model before fine-
tuning. We believe this can be attributed to several factors: 1) the Wikipedia API does not consistently
provide correct or useful information, introducing noise into the process; 2) the ReAct-format data
prioritizes external information, while neglecting the intrinsic knowledge extraction of the model,
and fails to activate the model’s potential in finding faithful and suitable intrinsic knowledge; and
3) the inaccurate external information recalled by the API can overwhelm the fine-tuning process,
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degrading the model’s performance. Consequently, the fine-tuned ReAct model performs similarly to,
or even worse than, a model fine-tuned on CoT question-answer pairs.

In this case, we refined the ReAct traces by removing the ‘Similar’ segment after ‘Observation,” while
retaining the essential segments: ‘“Thought,” ‘Search,” and ‘Observation.” This adjustment aimed to
reduce unnecessary noise from search operations and make the trace more coherent. Despite these
optimizations, fine-tuned ReAct still falls short in fully activating the model’s intrinsic knowledge,
especially compared to our GRiD method (see the row of ‘GPT-40-optimized’ in Table[T2). The
ReAct data format tends to prioritize external information, neglecting the extraction of intrinsic
knowledge, and thus fails to unlock the model’s full reasoning potential.

In contrast, our GRiD method focuses on extracting the model’s intrinsic knowledge, which is already
embedded in the model weights, and presenting it as explicit context. This approach is lightweight and
reduces the risk of introducing noise from external knowledge bases. Additionally, the explicit step
dependency graph in GRiD facilitates step dependency verification, further ensuring the consistency
of the reasoning trace and leading to significant improvements in model performance.

A.3.3 Effectiveness of Knowledge-Enhanced Reasoning Graph

To further evaluate the effectiveness of the newly introduced reasoning format based on building a
dependency graph, we design four additional reasoning formats for comparison: Direct Question
Answering, Chain of Thought (CoT), Long Thinking, and a combination of Long Thinking with
our GRiD method. These formats are used to fine-tune the base model, and the comparison results
are presented in Table[I3] using the Qwen-2.5-14B-ins model. The results demonstrate a significant
improvement in performance with our GRiD method compared to the other approaches, especially
the Direct and CoT methods.

Table 13: Comparison with Other Fine-tuning based Methods.

Data Creator  StrategyQA CommonsenseQA GPQA Diamond TruthfulQA
Direct 0.737 0.840 0.364 0.812
CoT 0.749 0.810 0.354 0.831
Think 0.754 0.845 0.385 0.875
GRiD 0.857 0.880 0.465 0.900
Think+GRiD 0.806 0.855 0.419 0.925

Interestingly, reasoning with CoT does not always lead to improvements over direct fine-tuning on
Question-Answer pairs, as evidenced by the results on the CommonsenseQA and GPQA benchmarks.
This may be due to the fact that the extended reasoning trace introduced by CoT can increase
uncertainty, potentially derailing the reasoning process and leading to incorrect answers. In contrast,
our GRiD method addresses this issue by transforming the plain reasoning trace into a knowledge-
enhanced reasoning graph. This ensures that each reasoning step explicitly depends on premise
knowledge. The data-filtering strategy applied to the training data further enhances the consistency
between reasoning steps.

We also explore combining our GRiD method with the Long Thinking reasoning format, where
the data format was arranged by appending the GRiD reasoning content after the < think > ... <
/think > tags. However, the results indicate that this direct combination does not yield further
improvements in most cases. This may be due to conflicts between the Think content and the
knowledge extracted by GRiD. The Think content within < think > ... < /think > tags can be
viewed as a specific mechanism for extracting relevant background knowledge along with reasoning
reflection, but it does not guarantee the correctness of the recalled knowledge or the consistency of
the reasoning process.

A.3.4 Accuracy Comparisons under The “+verification” Setting

In Section [4.3] we have shown the power of the verification module to improve both the data quality
before training and the reasoning accuracy during runtime. Table [2] demonstrates that runtime
verification boosts the reasoning accuracy of cases that passed verification (Acc@passed) by 2%—7%
over few-shot prompting.

To ensure a fair comparison, we also conducted additional experiments on the test samples that
passed verification, applied across the “Directly Answer,” “Zero-Shot,” and “Few-Shot” settings,
as shown in Table The results indicate a slight accuracy increase for these settings when using
the dependency verification strategy, but the performance still lags behind that incorporating the
verification, highlighting the effectiveness of the verification strategy.
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Table 14: Accuracy Comparison on Verification-Passed Samples.

Strategies Data Scope  StrategyQA CommonsenseQA  GPQA  TruthfulQA
Directly Answer all data 0.840 0.855 0.707 0.813
y passed data 0.876 0.859 0.711 0.847
Zero Shot all data 0.855 0.870 0.712 0.819
passed data 0.873 0.889 0.720 0.829
Few Shot all data 0.863 0.830 0.722 0.863
passed data 0.869 0.861 0.719 0.894
+Verification passed data 0.903 0.889 0.737 0.933

A.4 Prompts for Data Generation

To create training data that enables the model to learn the knowledge-grounded reasoning format, we
prompt the models to generate structured responses.

Prompts for Structured Response Generation

Your task is to reason about a set of complex questions and output structured answers that meet the following requirements:

Factual knowledge is information that aligns with objective reality and can be verified through evidence or observation, such as sci
entific facts or historical events. Provide a reasoning planning for a question to get correct answer, each step in your reasoning plan
must be adhere strictly to the Json list format:
{
"solution": [
{
"step_name": "Put the name of step here.",
"requirement": "If this step needs reasoning, return ’[reason_no.]" as label, if this step needs factual knowledge return ’[kno
wledge_no.]” as label. Note that, no. means you should mark the index of the current reasoning/knowledge s
tep, the reasoning and knowledge steps are counted independently, starting from 0.",
"knowledge_based": "Only if this step needs factual knowledge, put a query in question sentences about this factual knowle
dge for retrieval, else put none.",
"content": "If this step is about reasoning, please provide your reasoning thinking. Before reasoning, you should put the mo
st related reasoning step and(or) knowledge step or both before the reasoning content with the format: e.g., (by <
knowledge_0>, <reason_0>, <knowledge_2>...). It could be multiple, but must make sure they are the smallest p
remise set and really related to the current reasoning step; if this step needs factual knowledge please provide fac
tual knowledge."

1,

"final_answer": "the final answer without any explanation."

}

Follow the examples below and generate structured answers to the provided questions:

Here is the question:

<Question>

Sammy wanted to go to where the people were. Where might he go? Options: A.race track B.populated areas C.the desert D.apart

ment E.roadblock

</Question>

Here is the correct answer:

<Correct Answer>

B

</Correct Answer>

Factual knowledge is information that aligns with objective reality and can be verified through evidence or observation, such as sci

entific facts or historical events. Provide a reasoning planning for a question to get correct answer, each step in your reasoning plan

must be adhere strictly to the Json list format:

{

"solution": [
{"step_name": "Analyze the objective of the question.", "requirement": "[reason_0]", "knowledge_based": "None", "content":

"The objective is to determine a location where there are many people, as per Sammy’s desire to be where the people are.
"}

{"step_name": "Evaluate the options.", "requirement": "[reason_1]", "knowledge_based": "None", "content": "Each option ne
eds to be evaluated based on the likelihood of it being a place with many people."},

{"step_name": "Evaluate option A.", "requirement": "[knowledge_0]", "knowledge_based": "Can a race track be always crow
ded?", "content": "A race track can be very crowded during events. However, it may not always be populated, so it lacks
consistency in being populated."},

{"step_name": "Evaluate option B.", "requirement": "[knowledge_1]", "knowledge_based": "Are populated areas always crow
ded?", "content": "Populated areas are locations where there are a high number of people living or congregating, such as
cities and towns."},

{"step_name": "Evaluate option C.", "requirement": "[knowledge_2]", "knowledge_based": "Can we find very much people in
the desert?", "content": "Deserts are typically sparsely populated because of harsh living conditions, making them unlikel
y places for finding many people."},
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{"step_name": "Evaluate option D.", "requirement": "[knowledge_3]", "knowledge_based": "Is an apartment contains very m
uch people?”, "content": "While an apartment building may contain a number of residents, it is not as widely or consiste
ntly populated as broader populated areas like cities."},

{"step_name": "Evaluate option E.", "requirement": "[knowledge_4]", "knowledge_based": "Does a roadblock contain very m
uch people?", "content": "A roadblock is usually not a gathering place for people. It might temporarily have a group or li
ne of vehicles, but it is not known for large groups of people congregating for extended periods." },

{"step_name": "Find the most suitable answer.", "requirement": "[reason_1]", "knowledge_based": "None", "content": "(by <
knowledge_0>, <knowledge_1>, <knowledge_2>, <knowledge_3>, <knowledge_4>) Based on the assessments, option B
(populated areas) is the most appropriate choice as it consistently fulfills the objective of being a place where there is a hi
gh number of people present."} ],

"final_answer": "B"

}

Here is the question:

<Question>

QUESTION

</Question>

Here is the correct answer:

<Correct Answer>

GT_ANSWER

</Correct Answer>

Factual knowledge is information that aligns with objective reality and can be verified through evidence or observation, such as sci
entific facts or historical events. Provide a reasoning planning for a question to get correct answer, each step in your reasoning plan
must be adhere strictly to the Json list format:

Additionally, we guide the model to perform data filtering and generate specialized training data for
developing a dedicated verifier.

Prompts for Dependency Verification

Here is some information:

"1. The USDA recommends that the total fat intake should be between 20% to 35% of total daily calories. For a 2,000-calorie diet,
this translates to about 44-78 grams of fat per day. 2. To find the total fat content for seven McDonald’s hamburgers, multiply the f
at content of one hamburger by seven. Therefore, 9 grams of fat per hamburger multiplied by 7 hamburgers equals 63 grams of fat."

Based on the given information, here is a reasoning process:
"Compare the total fat content of 63 grams from seven hamburgers to the USDA recommended daily allowance of 44-78 grams. Si
nce 63 grams falls within this range, seven hamburgers do not exceed the USDA recommended fat allowance."

Let’s review the reasoning process and check:

1. What’s the purpose of the reasoning process?

2. Can we use the given information to deduce this reasoning process and its conclusion?
3. Did this reasoning process achieve its purpose?

4. Do you think the reasoning process is wrong?

Any conflict or mistake fails the check. Please return the review in Json format.

Here is the review:
{
"Purpose": "Check if the total fat content from seven hamburgers is in the USDA recommended daily allowance range",
"DependencySatisfiability": "The premise information presents the recommended total fat intake (between 44 and 78 grams) and
the total fat of 7 hamburgers of 63 grams; The reasoning process locates the information correctly and successfully comp
ares 63 with 44 and 78 grams. Therefore, the reasoning process can be done given the available information.",
"PurposeSatisfiability": "The reasoning process does not contain irrelevant steps and achieves its purpose by comparing the fat of
hamburgers and the recommended fat intake.",
"FactSatisfiability": "After double-checking my knowledge on the fat of hamburgers and USDA recommended fat intake, we can
conclude the reasoning process contains no mistakes.",
"InSummary": "1. Dependency satisfied. 2. Purpose satisfied. 3. Fact satisfied. Based on the check, the reasoning check passed."

"final_answer": "yes

}

Here is some information:
{DEPENDENCIES}

Based on the given information, here is a reasoning process:
{REASONING}

Let’s review the reasoning process and check:

1. What’s the purpose of the reasoning process?

2. Can we use the given information to deduce this reasoning process and its conclusion?
3. Did this reasoning process achieve its purpose?

4. Do you think the reasoning process is wrong?

Any conflict or mistake fails the check. Please return the review in Json format.

Here is the review:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to the introduction and abstract. We have state the problems that
we focus on, the main method, and the contribution we have made in this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

 The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The formulas, such as Eq. E] and Eq. Q], are well numbered. In addition, we
also present the details for data creation and dependency verification in Algorithm T}

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have state the detailed method in Section 3 and one can find the hyper-
parameters for fine-tuning and prompts for querying the models in Appendix

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be made accessible upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have state the detailed method in Section 3 and one can find the hyper-
parameters for fine-tuning in Appendix [A.T|and prompts for querying the models in Ap-

pendix [A.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have tested our method on various settings via ablation study in Section 4]
and presented the averaged results in the tables and figures in both experiment section and
appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We present the details of compute resources in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impact of the method to improve the reasoning
capability of LLMs, which could significantly affect the society. The improvement of
reasoning models brought by our GRiD method can significantly benefit the tasks that
requires good reasoning ability, such as planning, and complicated QA tasks. Please refer to
Section[Iland Section
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In this paper, we consider to improve the reasoning capability of LLMs. This is
a framework instead of any specific LLM models or dataset. In addition, the base models that
we used are all the original open-source models. One should use them under the guidelines
and correct licenses.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the data and code resources are open accessed or open-sourced on the
internet.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in this paper are provided along with basic docu-
mentation. However, some details or usage instructions might need further elaboration or
improvement. We plan to enhance the documentation to ensure ease of use and reproducibil-
ity in the code upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use Crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: This paper focuses on improving the reasoning capability of LLMs. We have
discussed the usage and fine-tuning in Section[3] Section[d] and Appendix[A.T] As for the

perspective of paper writing, we only use LLMs for polish the writing of our paper to check
if there are any grammar issues.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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