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a b s t r a c t

When the neural element number n of neural networks is larger than the sample size m, the overfitting
problem arises since there are more parameters than actual data (more variable than constraints). In or-
der to overcome the overfitting problem, we propose to reduce the number of neural elements by using
compressed projection A which does not need to satisfy the condition of Restricted Isometric Property
(RIP). By applying probability inequalities and approximation properties of the feedforward neural net-
works (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain
instead of the original domain reduces the sample error at the price of an increased (but controlled) ap-
proximation error, where the covering number theory is used to estimate the excess error, and an upper
bound of the excess error is given.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In machine learning, feedforward neural networks (FNNs) and
radial basis function networks (RBFNs) are usually considered as a
hypothesis space for the study of the convergence performance of
learning algorithms. For example, Barron (1993) gave the conver-
gence rate of least square regression learning algorithm by using
the approximation property of FNNs. RBFNs have become one of
the most popular feedforward neural networks with applications
in regression, classification and function approximation problems
(see Bishop, 1997, Chen, Cowan, & Grant, 1991 and Haykin, 1994).

In 2006, Hamers and Kohler (2006) obtained the non-
asymptotic bounds on the least square regression estimates by
minimizing the empirical risk over suitable set of FNNs. Recently,
Kohler and Mehnert (2011) presented an analysis on the conver-
gence rate of least squares learning algorithms in set of FNNs for
smooth regression function. All these mentioned analysis on re-
gression learning algorithm are based on the assumption that the
sample size m is higher than the neural element number n. How-
ever, in many real situations, m is less than n. It will lead to the
overfitting problem. In other words, many minimizers of the em-
pirical risk exist.

To overcome the overfitting problem, several approaches
have been proposed in the literature. These approaches can be
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categorized as follows:

(1) Regularization. That is, the empirical error is combined with
a penalty term, for examples, ℓ1 norm (see Lasso (Tibshirani,
1994)), ℓ2 norm (see ridge-regression (Tikhonov, 1963)), ℓ1/2
norm (e.g. Xu, Chang, & Xu, 2012), group Lasso (e.g. Mairal,
Jenatton, Obozinski, & Bach, 2010 and Yuan & Lin, 2006) or
overlapping group Lasso (e.g. Yuan, Yin, & Ye, 2011) and many
others.

(2) Minimizing norm. That is, to find theminimizers of the empir-
ical error with minimal norm (ℓ1 or ℓ2) (e.g. Tsaig & Donoho,
2006). However, the regularization parameter in the regular-
ization termhas not been addressed theoretically. On the other
hand, for large n, finding solutions of minimal norm (for ℓ1 or
ℓ2-norm problem) is numerically expensive.

In the paper, we propose to study the minimizer of the empir-
ical error in the compressed hypothesis space instead of the orig-
inal hypothesis space. That is, we propose to find solutions in the
compressed hypothesis space. In recent years, dimension reduc-
tion and random projections in various learning areas has received
considerable interests. Zhou, Lafferty, andWasserman (2007) pro-
posed to use compressed linear regression, in which the data set Y
is compressed by the multiplication of a matrix A which satisfies
the ‘‘Restricted Isometric Property’’ in a linear regression model
Y = Xβ + ϵ where β is the coefficient and ϵ is noise. For the pur-
pose of classification, Calderbank, Jafarpour, and Schapire (2010)
studied an SVM algorithm in a compressed space and showed that
their algorithm has good generalization properties. They also gave
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some analysis on the Lasso estimator which built in these com-
pressed data.

Davenport, Wakin, and Baraniuk (2006) discussed how com-
pressed measurements may be useful to solve many detection,
classification and estimation problems without having to recon-
struct the signal. Interestingly, they made no assumption about
the signal being sparse. Blum (2006) and Rahimi and Recht (2007)
showed how to map a kernel k(x, y) = Φ(x) × Φ(y) into a low-
dimensional space, while they still approximately preserved the
inner products. Maillard and Munos (2009) studied the com-
pressed least squares regression and gave the upper bound of
the excess risk, using compressed projections. Motivated by those
mentioned jobs, we aim to study the regression estimate in neural
networks by the approximation property of neural networks and
compressed projection in the paper.

The main contributions of the paper include that (1) we prove
that the FNNs regression learning algorithm in the compressed
domain reduces the sample error but at the price of an increased
(but controlled) approximation error; (2) we give an estimation
on the excess error and an upper bound of the excess error for
the first time in literature for the compressed neural network
regression. The new results provide a profound understanding
of the overfitting problem and a mathematical estimation on
the accuracy that the compressed neural network regression can
reach. Moreover, the analysis applied in this paper also provides
a mathematical framework for analysing the error bounds in the
new network model, which has been studied little.

The rest of the paper is organized as follows. In Section 2,
we present a brief introduction of regression learning and neural
networks. In Section 3, we give the compressed projection of
regression learning algorithm and give the convergence rate of the
compressed regression learning algorithm. Section 4 concludes the
paper.

2. Preliminaries on neural networks and regression learning

In the paper, we use FNNs set as the hypothesis space. That is,
FNNswith one hidden layer and n hidden neurons. These FNNs can
be formulated as a real-valued function on Rd of the form

N(x) =

n
j=1

cjσ

αT
j x + βj


,

where σ : R → [0, 1] is called a sigmoidal function and αj ∈

Rd, βj, cj ∈ R (j = 1, 2, . . . , n) are the parameters that determine
the neural networks.

Let φj : Rd
→ R (j = 0, 1, . . . , n) be a family of real functions,

then we define

N(x) =

n
j=1

cjφj(x), cj ∈ R,

and

N d
n,φ =


N(x) : N(x) =

n
j=1

cjφj(x), cj ∈ R


.

Clearly,N(x) can be understood as amodel of FNNs. In form, it looks
quite similar to RBFNs (see Leonardis & Bischof, 1998 and Musavi,
Ahmed, Chan, Farms, & Hummels, 1992).

Neural computation research has developed powerful meth-
ods for approximating continuous or integrable functions on com-
pact subsets ofRd since 1980s.Most approximation schemes using
FNNs and RBFNs have been studied (e.g. Cybenko, 1989, Funahashi,
1989 and Musavi et al., 1992). In such schemes, function approxi-
mation capabilities critically depend on the activation function na-
ture of the hidden layer.
In the following, we introduce a class of activation function
φj : Rd

→ R, defined by

φj(x) = φj(x, B) =
e−Bρ(x,aj)

n
i=1

e−Bρ(x,ai)
, j = 1, 2, . . . , n,

where a1, . . . , an are the data in Rd, ρ(a, b) denotes the Euclidean
distance between two points a and b in Rd, and B > 0 is a param-
eter. Furthermore, we define the linear combination of φj(x, B) as

N(x) =

n
j=1

cjφj(x, B).

Obviously,N(x) can be understood to be a FNNwith four layers:
the first layer is the input layer, the input is x ∈ Rd; the second
layer is the processing layer for computing values ρ(x, aj) (j =

0, 1, . . . , n), between the input x and the prototypical input points
aj, and it is the input of the third layer that contains n+1 neurons;
φj(x, B) is an activation function of the jth neuron; the fourth layer
is the output layer, and the output is N(x).

It is well known that the sigmoidal function σ(x) =
1

1+e−x is a
logistic model. This model is important and has been widely used
in biology, demography and so on (see Brauer & Castillo-Chavez,
2001 and Hritonenko & Yatsenko, 2006). Naturally, the functions

φj(x) =
e−Bρ(x,aj)

n
i=1

e−Bρ(x,ai)
, j = 1, 2, . . . , n

can be regarded as a multi-class generalization of the logistic
model (see Section 10.6 in Hastie, Tibshirani, & Friedman, 2001),
which was also used in a regression model for the case of multi-
class in the classification problems. Although the functions φj(x)
are not sigmoidal, they possess some properties that common
sigmoidal functions do not have, for example

0 < φj(x) ≤ 1, j = 1, 2, . . . , n,
n

j=1

φj(x) = 1.

On the other hand, it follows from their structures that φj(x)
contain the information of the interpolation samples. The second
layer of the network composed of φj(x) can be regarded as the
processing layer and the input of the third layer, which is more
convenient for the study of network interpolations. Motivated by
those properties ofφj(x), we introduce functionsφj(x) as activation
functions in the hidden layer of networks. In Cao, Zhang, and He
(2009), we studied the convergence rate of neural networks N(x)
approximating continuous function by continuous modulus.

Let (X, d) be a compact metric space, Y = R and ρ be a prob-
ability distribution on Z = X × Y . Denote by z = {zi}mi=1 =

{(xi, yi)}mi=1 ∈ Zm a set of random samples, which are indepen-
dently drawn according to ρ. Let ρX , ρ(y|x) be margin probability
measure and condition probability measure of ρ respectively. In
the paper, we define the set Fm,n as the hypothesis space accord-
ing to the neural networks N(x):

Fm,n =


N(x) =

n
j=1

cjφj(x) : cj ∈ R,

n
j=1

|cj| ≤ M lnm


,

where M is a positive number.
Since every φj is bounded in absolute value by 1, the functions

in Fm,n are bounded in absolute value by M lnm. For f ∈ Fm,n, we
define the empirical square error

Ez(f ) =
1
m

m
i=1

(f (xi) − yi)2
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and the generalization square error

E(f ) =


Z
(f (x) − y)2dρ. (1)

The function fρ that minimizes the error (1) is called the
regression function. It is given by

fρ(x) =


Y
ydρ(y|x), x ∈ X . (2)

The aim of learning theory is to find an approximated function
fz:

fz = arg min
f∈Fm,n

1
m

m
i=1

(f (xi) − yi)2

of fρ such that the excess risk

E(fz) − E(fρ) =


X
(fz(x) − fρ(x))2dρX

=


E(fz) − inf

f∈Fm,n
E(f )


+


inf

f∈Fm,n


X
(f (x) − fρ(x))2dρX


(3)

is minimized.
The first term of (3) is called the sample error, and the second

one, which measures the distance between fρ and the neural
networks set Fm,n, is called the regularized error. We assume
that for some M ≥ 0, ρ(·|x) is almost everywhere supported on
[−M,M], that is, |y| ≤ M almost surely holds (with respect to ρ)
in the paper. It follows from the definition (3) of fρ that |fρ(x)| ≤ M
for every x ∈ X , i.e., ∥fρ∥∞ ≤ M .

3. Compressed regression learning algorithm

We now introduce the compressed neural networks set which
is obtained from the set by the compressed matrix A, i.e., the
compressed neural networks set:

Gk =


g =

k
i=1

βi

n
j=1

Ai,jφj, β = (β1, β2, . . . , βk)
T

∈ Rk


.

Let ϕi =
n

j=1 Ai,jφj for i = 1, 2, . . . , k. Obviously, the set Gk can
be written as

Gk =


g =

k
i=1

βiϕi, β = (β1, β2, . . . , βk)
T

∈ Rk,

k
i=1

|βi| ≤ M lnm


.

We define the estimator of the regression function fρ in Gk:

gz = argmin
g∈Gk

1
m

m
i=1

(g(xi) − yi)2.

Let A = {Ai,j}1≤i≤k,1≤j≤n be a k × n matrix of elements indepen-
dently drawn for some distribution µ. Three examples of distribu-
tions are as follows:

• Gaussian random variables N (0, 1/k),
• ± Bernoulli distributions, i.e. which takes values ±1/k with

equal probability 1/2,
• Distribution taking values ±

√
3/k with probability 1/6 and 0

with probability 2/3.
In the following, we give the upper bound of the approximation
error in compressed neural networks set Gk and compare it with
that of original neural networks set. In order to estimate the
approximation error, we need to introduce the following lemma:

Lemma 3.1 (See Achlioptas, 2003). For the matrix Ak×n, u ∈ Rn,
0 < ε < 1, we have

P

∥Au∥2

≥ (1 + ε)∥u∥2
≤ e−k(ε2/4−ε3/6)

P

∥Au∥2

≤ (1 − ε)∥u∥2
≤ e−k(ε2/4−ε3/6).

It is easy to see that the inequality

(Au)TAv ≤ uT v + ε∥u∥2∥v∥2 (4)

holds with probability at least 1 − 4ne−k(ε2/4−ε3/6) for u, v ∈ Rn.
Define f ∗

=
n

j=1 c
∗

j φj = argminf∈Fm,n


X (f (x) − fρ(x))2dρX .

From (4), we can obtain the following theorem.

Theorem 3.2. For δ ≥ 0, k ≥ 15 ln 8m
δ
, let A be a random k × n

matrix, and Gk be the compressed neural networks set by the matrix
projection A. Then the inequality

inf
g∈Gk


X
(g(x) − fρ(x))2dρX

≤
24(lnm)2 ln 4n

δ

k
+ 2 inf

f∈Fm,n


X
(f (x) − fρ(x))2dρX

holds with probability at least 1 − δ.

Proof. For f ∗
=
n

j=1 c
∗

j φj, wemaydefine g∗
=
k

i=1

n
j=1 Ai,jc∗

j

n
t=1 Ai,tφt


∈ Gk. The upper bound of the approximated error in

compressed neural networks set is as follows:

inf
g∈Gk


X
(g(x) − fρ(x))2dρX

≤


X
(g∗(x) − fρ(x))2dρX

≤ 2

X
(g∗(x) − f ∗(x))2dρX + 2


X
(f ∗(x) − fρ(x))2dρX

= 2

X
(g∗(x) − f ∗(x))2dρX + 2 inf

f∈Fm,n


X
(f (x) − fρ(x))2dρX ,

where the second inequality is obtained from the definition of fρ .
Let c∗

= (c∗

1 , c
∗

2 , . . . , c
∗
n )

T and φ(x) = {φ1(x), φ2(x), . . . , φn(x)}T ,
then


X (g

∗(x) − f ∗(x))2dρX may be written as
X
(g∗(x) − f ∗(x))2dρX

=


X


(Ac∗)T · Aφ(x) − (c∗)Tφ(x)

2
dρX .

Let u = c∗
= (c∗

1 , c
∗

2 , . . . , c
∗
n )

T , v = φ(x) = (φ1(x), φ2(x), . . . ,
φn(x))T . From (4), the inequality

(Ac∗)TAφ(x) − (c∗)Tφ(x) ≤ ε∥c∗
∥2∥φ∥2

holds with probability at least 1 − 4ne−k(ε2/4−ε3/6). Let δ =

4ne−k(ε2/4−ε3/6), then we obtain

ε2

4
−

ε3

6
=

ln 4n
δ

k
.
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For 0 < ε ≤ 1, we have ε2
≥ ε3 and ε2

≤
12 ln 4n

δ

k . Since g ∈ Gk,
every gi is a continuous function. Therefore,
X
(g∗(x) − f ∗(x))2dρX =


X


(Ac∗)TAφ(x) − (c∗)Tφ(x)

2
dρX

≤ sup
x∈X

((Ac∗)TAφ(x) − (c∗)Tφ(x))2

≤ sup
x∈X

12 ln 4n
δ

k
∥c∗

∥
2
2∥φ(x)∥2

2.

Now, it remains to estimate ∥c∗
∥
2
2 and ∥φ(x)∥2

2. According to the
definition of Fm,n, we know that ∥c∗

∥
2
2 ≤ (M lnm)2. Since φi =

e−Bρ(x,xi)n
j=1 e−Bρ(x,xj)

, we have

sup
x∈X

∥φ(x)∥2
2 = sup

x∈X

n
i=1


e−Bρ(x,xi)

n
j=1

e−Bρ(x,xj)


2

= sup
x∈X

n
i=1

e−2Bρ(x,xi)
n

j=1
e−Bρ(x,xj)

2

= sup
x∈X

n
i=1

e−2Bρ(x,xi)
n

j=1
e−Bρ(x,xj)

2 ≤ 1.

So the inequality
X
(g∗(x) − f ∗(x))2dρX ≤ sup

x∈X

12 ln 4n
δ

k
∥c∗

∥
2
2∥φ(x)∥2

2

≤
12(lnm)2 ln 4n

δ

k
holds with probability at least 1 − δ.

Therefore, there holds with probability at least 1 − δ

inf
g∈Gk

E(g) − E(fρ) ≤
24(lnm)2 ln 4n

δ

k
+ 2 inf

f∈Fm,n
{E(f ) − E(fρ)}. �

Theorem 3.2 gives the tradeoff in terms of the approximation
error of an estimator gz obtained in the compressed neural
networks set compared to an estimator fz obtained in the original
neural networks set:
(1) Since k < n, the upper bounds on the sample error of gz in Gk

are much smaller than that of fz in Fm,n.
(2) Theorem 3.2 shows that the approximation error in Gk

increases by at most 12(lnm)2 ln 4n
δ

k compared with that in Fm,n.

It remains to estimate the sample error E(gz) − infg∈Gk E(g) in
Gk by using the probability inequalities and covering number. We
give the upper bound of the sample error E(gz) − infg∈Gk E(g) in
Gk. Let g ′

= argming∈Gk E(g). We may divide the sample error
E(gz) − E(g ′) ≤ E(gz) − Ez(gz) + Ez(gz)

− Ez(g ′) + Ez(g ′) − E(g ′)

≤ {E(gz) − Ez(gz)} + {Ez(g ′) − E(g ′)}

= {E(gz) − E(fρ) − Ez(gz) + Ez(fρ)}

+ {Ez(g ′) − Ez(fρ) − E(g ′) + E(fρ)}. (5)
Here we use the definition of gz in the last inequality. In order to
estimate the sample error, we need the following lemma.
Lemma 3.3 (See Aad, Vaart, & Wellner, 1996). Let P be a probability
measure on Z = X × Y and set z1 = (x1, y1), . . . , zn = (xm, ym)
be independent random variables distributed according to P. Given
a function g : Z → R, set S =

m
i=1 g(zi), b = ∥g∥∞ and

σ 2
= mEg2. Then

Probz∈Zm {|S − ES| ≥ t} ≤ 2 exp


−

t2

2

σ 2 +

bt
3

 .

Using Lemma 3.3, we obtain the following theorem.

Theorem 3.4. For every 0 < δ < 1, with confidence 1 −
δ
2 , there

holds

|E(g ′) − E(fρ) − (Ez(g ′) − Ez(fρ))|

≤

8

3M +


3
k lnm

2
3m

ln
4
δ

+
1
2
D,

where D = E(g ′) − E(fρ).

The proof follows the proof of a similar result for regression al-
gorithms by Cucker and Smale (2001). In particular, the random
variable


E(g ′) − E(fρ) − (Ez(g ′) − Ez(fρ))


, representing the dif-

ference between the expected and empirical errors of theminimiz-
ing function g ′ in the hypothesis space Gk and the target function
fρ , is shown to satisfy the conditions of Lemma 3.3. The details of
proof are provided in Appendix A.

In the following, we estimate the second part of Eq. (5). Because
the random variable ξ = (gz(x) − y)2 − (fρ(x) − y)2 is involved
with the sample z, the estimation is difficult. We thus solve it by
using the covering number.

Definition 1 (See Cucker& Smale, 2001). Let S be ametric space and
η > 0, the covering number N (S, η) of S is the minimal integer
b ∈ N so that there exist b disks with radius η covering S.

The covering number has been extensively studied, see, e.g.
Pontil (2003) and Williamson, Smola, and Schǒkopf (2001). We
denote byN (η) the covering number of the unit ball of E inX . From
Cucker and Smale (2001), we know if d is the dimension of E, then
the ball BR = {f ∈ S : ∥f ∥∞ ≤ R} of the set E is

N (BR, η) ≤


4R
η

d

. (6)

Theorem 3.5. For all δ > 0, there holds

E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))

≤

16

3M + 2


3
k lnm

2 
k ln


32m


M +


3
k lnm

2
+ 1


3m

+D

with probability at least 1 −
δ
2 .

The proof of Theorem 3.5 uses Bernstein inequality in
Lemma 3.3 and is similar to that of Theorem3.4, with twomain dif-
ferences. First, Bernstein’s inequality is applied to obtain a bound
conditioned on a concrete function g ′ in Theorem3.4, and the prob-
ability inequality is applied to obtain a bound conditioned on the
hypothesis space Gk in Theorem 3.5. Second, the constants b and
σ 2 in the application of Bernstein’s inequality are different. Details
of the proof are provided in Appendix B.

Combining Theorems 3.2, 3.4 and 3.5, wemay obtain the excess
error of regression function fρ in neural networks set Fm,n.
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Theorem 3.6. For any δ > 0, there holds

E(gz) − E(fρ)

≤

16

3M + 2


3
k lnm

2
k ln


32m


M +


3
k lnm

2
3m

+
12(lnm)2 ln 4n

δ

k
+

16

3M + 2


3
k lnm

2
ln 4

δ

3m

+

8

3M +


3
k lnm

2
3m

ln
4
δ

+
5
2


inf

f∈Fm,n
E(f ) − E(fρ)


with probability at least 1 − δ.

For any g ∈ Fm,n, we have

inf
f∈Fm,n

E(f ) − E(fρ) = inf
f∈Fm,n


X
(f (x) − fρ(x))2dρX

≤ inf
f∈Fm,n

∥f − fρ∥
2
∞

≤ ∥g − fρ∥
2
∞

.

For any x ∈ X = [0, 1]2, we give the upper bound of |g(x) − fρ(x)|
if the regression function fρ satisfies some smoothness condition
in Cao et al. (2009).

4. Related work

In Section 3, we have studied the convergence performance of
least square learning algorithm in compressed neural networks
set. We have derived the upper bound of regression learning al-
gorithms by using the approximation property of neural networks
and covering number. In this section we discuss how our results
relate to other recent studies.

4.1. Comparison with generalization bounds for regression

Our convergence analysis of regression learning algorithms is
based on a similar analysis for regression algorithms by Kohler and
Mehnert (2011). There are two differences between our work and
that of Kohler and Mehnert. The first difference is that we analyze
the regression learning algorithm in the case that the number of
neurons is larger than the sample size. Secondly, we obtained a
different generalization bound. The difference between the bounds
is partly due to the difference in network model, and partly due to
a slight difference in decomposition of approximation property of
neural networks.

4.2. Comparison with the work of Maillard and Munos

The work that is closely related to ours is that of Maillard and
Munos (2009), in which the generalization properties of linear re-
gression algorithm using compressed projection in a linear space
span {ϕn : X → R, 1 ≤ n ≤ N} is studied. The sample setting
considered by Maillard and Munos (2009) is similar to ours: the
learner is given a sample set {(xi, yi)}mi=1, and the goal of the rank-
ing problem is to learn objection function which approximates the
regression function according to random samples and approxima-
tion property of hypothesis space.

Although uniform convergence bounds for regression learning
algorithms have replied on the smoothness of the regression
function, we have obtained the explicit upper bound of regression
learning algorithms. There are two important differences between
our work and that of Maillard and Munos (2009). First, Maillard
and Munos (2009) considered generalization properties of linear
algorithms by using compression projection in a linear space.
Although they have studied the generalization properties of
(a) The results obtained by the original NN method.

(b) The results obtained by the compressed NN method.

Fig. 1. In the figure, horizontal axis denotes data dimension; the left vertical
axis denotes sample number, and the right vertical axis denotes error. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

regression learning algorithms, the uniform convergence bounds
for regression learning algorithm have not been derived explicitly.

5. Experiments and analysis

In this section, we give some numerical experiments to verify
the feasibility and efficiency of compressed neural networks re-
gression learning. All the experiments in the following are carried
out in the Matlab 2012 environment running in Intel(R) Core(TM)
i3-M330 processor with the speed of 2.13 GHz. In the experiment
shown below, the regression performances between original neu-
ral networks and compressed neural networks methods are per-
formed on a smooth function

f (x) =

50000
j=1

cjσ(αT
j x)

where cj, 1 ≤ j ≤ 50000 are a set of coefficients which are sam-
pled from a normal distributionN (0, 1), eachαj ∈ R300 is sampled
from

300
k=1 N (−1, 0.5) and x ∈ R300. The sample number is set to

be 300, while white Gaussian noise with variance 0.05 is added to
the samples. In both of original neural networks and compressed
neural networksmethods, the number of hidden-layer nodes is set
to be 50000, and the sparse ratio of hidden-layer nodes is set to be
0.03 (that is, 97% of the coefficients are set to zero). The classical
FNN and the compressed FNNwere repeated 10 times respectively
on the samples and the regression results were averaged. The re-
sults are shown in the following figures and tables.

As shown in Fig. 1, the blue lines stand for the original data, the
regression results are represented by the red zones for better visual
effects, and the green lines show the error of regression. Therefore,
the milder the green line goes, the better regression ability the
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Table 1
RMSE comparison between original and the compressed method.

Method # Nodes RMSE

Original method 50000 6.5903e−05
Compressed method 1500 3.1474e−06

algorithm holds. It is obvious for us to find that, compared with
original neural networks methods, the regression performance
of compressed neural networks is quite satisfactory. The RMSE
comparison between the two methods can also demonstrate
the outstanding performance of compressed neural networks, as
shown in Table 1.

Generally speaking, the experimental results shown above are
consistent with the theoretical results claimed in this article. We
may draw conclusion that compressed neural networks regression
learning is feasible and effective in the sense that much less
number of neural elements used in compressed neural network
does not mean the scarification of generalization capability.

6. Conclusions

In this paper, we have studied the error bounds on the least
square learning algorithm in compressed neural networks set in
the case that the neuron number is larger than the sample size m.
Approximation property of neural networks and compressed pro-
jection were applied in the study, where the compressed projec-
tion was used to reduce the number of neurons (which does not
need to satisfy the condition of restricted isometric property). On
the other hand, the approximation properties of the FNNhave been
revealed by the application of some probability inequalities, and
the upper bound of the excess error were obtained explicitly in the
compressed domain instead of the original domain. Moreover, the
uniform convergence bounds for regression learning algorithms
have been explicitly obtained.
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Appendix A. Proof of Theorem 3.4

Proof. Since g ′
=
k

i=1 β ′

i

n
j=1 Ai,jφj


∈ Gk and the element of

thematrixA satisfies the abovedistributions in Section 3,weobtain

|g ′(x)| =

 k
i=1

β ′

i (x)


n

j=1

Ai,jφj


≤

k
i=1

β ′

i

  n
j=1

Ai,jφj


≤

k
i=1

β ′

i

max
i,j

|Ai,j|

 n
j=1

φj


≤


3
k
lnm.

Let h(z) =
1
m


(g ′(x) − y)2 − (fρ(x) − y)2


. Since |y| ≤ M ,

we obtain |fρ(x)| ≤ M for any x ∈ X. So we can obtain |h(z)|
≤
1
m


3M +


3
k lnm

2
. Then we have b = ∥h∥∞ ≤

1
m


3M +

3
k lnm

2
. So

Eh2
=

1
m2

E

(g ′(x) − y)2 − (fρ(x) − y)2

2
=

1
m2

E

g ′(x) + fρ(x) − 2y

2 g ′(x) − fρ(x)
2

≤
1
m2


3M +


3
k
lnm

2

E

g ′(x) − fρ(x)

2
=

1
m2


3M +


3
k
lnm

2

{E(g ′) − E(fρ)}

=


3M +


3
k lnm

2
m2

D.

Therefore

σ 2
= mEh2

≤


3M +


3
k lnm

2
m

D.

Now we apply Lemma 3.3 with t =
√

ε(ε + D) to h =
1
m ((g ′(x) −

y)2 − (fρ(x) − y)2). It asserts that for every ε > 0, with confidence
at least

1 − 2 exp


−

ε(ε + D)

2


3M+


3
k lnm

2

m D +


3M+


3
k lnm

2√
ε(ε+D)

3m




≥ 1 − 2 exp

−
3mε

8

3M +


3
k lnm

2
 ,

there holds
|E(g ′) − E(fρ) − (Ez(g ′) − Ez(fρ))|

E(g ′) − E(fρ) + ε
≤

√
ε.

Recall an elementary inequality:

ab ≤
1
2
(a2 + b2) ∀a, b ∈ R,

we have

|E(g ′) − E(fρ) − (Ez(g ′) − Ez(fρ))| ≤
ε

2
+

1
2
(D + ε)

= ε +
1
2
D.

Let δ
2 = 2 exp

−
3mε

8

3M+


3
k lnm

2

, then

ε =

8

3M +


3
k lnm

2
3m

ln
4
δ
.

Therefore, with confidence 1 −
δ
2 , there holds

|E(g ′) − E(fρ) − (Ez(g ′) − Ez(fρ))|

≤

8

3M +


3
k lnm

2
3m

ln
4
δ

+
1
2
D. �
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Appendix B. Proof of Theorem 3.5

Proof. For any g1, g2 ∈ Gk, we have

|(y − g1(x))2 − (y − g2(x))2|
= |(g1(x) − g2(x))(g1(x) + g2(x) − 2y)|

≤ 2


M +


3
k
lnm


∥g1 − g2∥∞.

So we can obtain

|E(g1) − Ez(g1) − E(g2) + Ez(g2)|

≤ 4


M +


3
k
lnm


∥g1 − g2∥∞, g1, g2 ∈ Gk.

Let U = {g1, g2, . . . , gl} ⊂ Gk be a γ -net of Gk with the size
l = N (Gk, γ ). So we have

sup
g∈Gk

|E(g) − Ez(g) − E(fρ) + Ez(fρ)|

≤ sup
g∈U

|E(g) − Ez(g) − E(fρ) + Ez(fρ)| + 4


M +


3
k
lnm


γ .

Using the similar way of Theorem 3.4, there holds for any gi ∈ U ,

Probz∈Zm{|E(gi) − E(fρ) − (Ez(gi) − Ez(fρ))| ≥ ε}

≤ 2 exp

−
3m


ε −

1
2D


8

3M + 2


3
k lnm

2
 ,

which implies that

Probz∈Zm

|E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))| ≥ ε


≤ Probz∈Zm


sup
g∈Gk

|E(g) − E(fρ) − (Ez(g) − Ez(fρ))| ≥ ε



≤ Probz∈Zm


sup
g∈U

|E(g) − E(fρ) − (Ez(g) − Ez(fρ))|

≥ ε − 4


M +


3
k
lnm


γ



≤ N (Gk, γ ) sup
g∈U

Probz∈Zm


|E(g) − E(fρ) − (Ez(g) − Ez(fρ))|

≥ ε − 4


M +


3
k
lnm


γ



≤ 2N (Gk, γ ) exp

−
3m


ε − 4(M + lnm)γ −

1
2D


8

3M + 2


3
k lnm

2
 .

We take γ =
ε

8

M+


3
k lnm

 , then
Probz∈Zm {|E(gz) − E(m) − (Ez(gz) − Ez(m))| ≥ ε}

≤ 2N

Gk,
ε

8

M +


3
k lnm



× exp

−
3m (ε − D)

16

3M + 2


3
k lnm

2
 .

For the compressed neural networks set

Gk =


g =

k
i=1

βiφi, β = (β1, β2, . . . , βk)
T

∈ Rk,

k
i=1

|φi| ≤ lnm


,

it is easy to see that the dimension of the minimal space that
includes the set Gk is k. From (6), we know that the covering
number of the set Gk can be bounded by

N (Gk, γ ) ≤

4


3
k lnm

ε

k

.

So we can obtain

lnN

Gk,
ε

8

M +


3
k lnm


 ≤ k ln

32

M +


3
k lnm

2
ε

.

Therefore

Probz∈Zm

|E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))| ≥ ε


≤ 2 exp

k ln
32

M +


3
k lnm

2
ε

−
3m (ε − D)

16

3M + 2


3
k lnm

2
 .

We discuss two cases for ε ≥
1
m and ε < 1

m .

(i) When ε ≥
1
m , we know that

Probz∈Zm

|E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))| ≤ ε


≥ 1 − 2 exp

k ln
32

M +


3
k lnm

2
ε

−
3m (ε − D)

16

3M + 2


3
k lnm

2


≥ 1 − 2 exp

k ln

32m


M +


3
k
lnm

2


−
3m (ε − D)

16

3M + 2


3
k lnm

2
 .

We take
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δ

2
= 2 exp

k ln

32m


M +


3
k
lnm

2


−
3m (ε − D)

16

3M + 2


3
k lnm

2
 ,

then

ε =

16

3M + 2


3
k lnm

2
k ln


32m


M +


3
k lnm

2
3m

+

16

3M + 2


3
k lnm

2
ln 4

δ

3m
+ D ≥

1
m

.

So there holds

E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))

≤

16

3M + 2


3
k lnm

2
k ln


32m


M +


3
k lnm

2
3m

+

16

3M + 2


3
k lnm

2
ln 4

δ

3m
+ D.

If ε ≤
1
m , then we have

E(gz) − E(fρ) − (Ez(gz) − Ez(fρ)) ≤
1
m

.

Combining the cases ε > 1
m with ε ≤

1
m , there holds

E(gz) − E(fρ) − (Ez(gz) − Ez(fρ))

≤

16

3M + 2


3
k lnm

2
k ln


32m


M +


3
k lnm

2
3m

+

16

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3
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ln 4

δ
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with probability at least 1 −
δ
2 . �
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