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ABSTRACT

StyleGAN is one of the most versatile generative models that have emerged in
recent times. However, when it is trained continually on a stream of data (potentially
previously unseen distributions), it tends to forget the distribution it has learned,
as is the case with any other generative model, due to catastrophic forgetting.
Recent studies have shown that the latent space of StyleGAN is very versatile,
as data from a variety of distributions can be inverted onto it. In this paper, we
propose to leverage this property to facilitate lifelong learning of StyleGAN without
forgetting. Specifically, given a StyleGAN trained on a certain task (dataset), we
propose to learn a set of dictionary vectors in its latent space, one for each novel,
unseen task (or dataset). Additionally, we also learn a relatively small set of shared
parameters (feature adaptors) in the weight space to complement the dictionary
learning in the latent space. During inference, given a dataset/task, our method
invokes the corresponding learned latent dictionary and the shared parameters for
that particular task. Our method avoids catastrophic forgetting because the set of
dictionary and the feature adaptor parameters are unique for each task. However,
the generator for each task shares all of the parameters except for the newly added
parameters of the feature adaptor. We demonstrate that our method, StyleCL,
achieves better generation quality on multiple datasets. Additionally, our method
requires significantly fewer additional parameters per task compared to previous
methods. This is a consequence of learning task-specific dictionaries in the latent
space, which has a much lower dimensionality compared to the weight space.
We also demonstrate that our method, StyleCL, offers the capability for positive
forward transfer for semantically similar tasks.

1 INTRODUCTION

Continual learning (CL) is a fundamental machine learning paradigm that focuses on the model’s
ability to learn and adapt to new tasks or evolving data streams over time while ensuring that
previously acquired knowledge remains intact. Extensive research has explored continual learning
within the context of discriminative models De Lange et al. (2022), but relatively less attention has
been devoted to the application of this paradigm in the realm of generative models. However, recent
progress in the field of generative modelling has brought them to the forefront of application domains.
Specifically, models such as Generative Adversarial Networks (GANs) Goodfellow et al. (2014) and
denoising diffusion models Ho et al. (2020) have found their utility in a wide variety of tasks such as
semantic editing Ling et al. (2021), image in-painting, Yu et al. (2018) etc. Thus, it is imperative to
consider the problem of continual learning in the context of generative models Lesort et al. (2019).

In particular, we direct our attention to continual learning in StyleGAN Karras et al. (2020b) which is
one of the most popular variants of GANs. We hypothesize, that StyleGAN is suited for such cases
because of its versatility, in that, a large variety of datasets can be inverted onto its extended latent
space (W+) as observed in Abdal et al. (2019). Motivated by these observations, we investigate
whether the latent space of StyleGAN can be exploited to generate data from a stream of datasets
without forgetting. Towards that end, we propose a method to learn a per-task, style-wise dictionary
of vectors that define a subspace in the latent space of StyleGAN. In addition to latent dictionary
learning, we also learn a set of shared parameters in the weight space, to accommodate a richer
knowledge in tandem with the learned latent subspace.
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Knowledge transfer, a cornerstone of continual learning, assumes a central role in StyleCL. StyleCL
utilises the latent space to identify the most similar task unlike GAN Memory Cong et al. (2020) and
CAM-GAN Varshney et al. (2021) where the most similar task is characterized using the most recent
task or the task with high Fisher information respectively. We also determine the nature of forward
knowledge transfer (positive or negative) by measuring the cosine similarity of dictionary vectors to
its projection onto the latent subspace of the most similar task which is then used to prevent negative
forward transfer.

Moreover, we expand the scope of generative continual learning to encompass real-world scenarios
where data from multiple tasks arrive simultaneously without task identification (task ID). Notably,
StyleCL adeptly extends its applicability to such settings with minimal adjustments to its training
strategy. StyleCL accomplishes this by segregating distinct tasks into distinct regions in the latent
space. Even in these scenarios where supervision on task ID is not available, StyleCL consistently
delivers high-quality generation capabilities.

The following is a summary of our contributions:

• Latent subspace learning for StyleGAN: We propose a latent subspace learning approach
that enables learning without forgetting for StyleGAN.

• Improved generation quality: By harnessing the versatility of StyleGAN’s latent space,
our method outperforms contemporary approaches like CAM-GAN and GAN Memory in
terms of generation quality, all while employing fewer parameters (28.95% reduction) and
FLOPs (11.6% reduction).

• Prevention of negative forward transfer: We further propose a simple way to identify the
most similar previous task and also characterize the nature of forward transfer between any
two tasks to prevent negative forward transfer.

• Extension to task ID free setting: We extend StyleCL to scenarios where task ID is not
available wherein StyleCL discovers different data distributions automatically.

2 RELATED WORK

Generative Continual Learning: Continual Learning methods are broadly categorized into three
categories: replay-based, regularization-based and parameter isolation-based methods. These cate-
gorizations are defined for a discriminative continual setting but they can be applied to generative
continual learning as well.

Chenshen et al. (2018) introduces MerGAN, a replay-based GAN that combines generated samples
from previous tasks with new task data to form an extended training dataset. They also introduce
a replay-alignment loss to ensure consistent generation for previous tasks as the number of tasks
increases. Zhai et al. (2019) presents Lifelong GAN for continual image-conditioned image gener-
ation, employing knowledge distillation and auxiliary data generation by creating patch montages
from training batches to mitigate catastrophic forgetting. However, replay-based approaches face
scalability issues due to cumulative inaccuracies when a single generator is incrementally updated.

Parameter isolation techniques like PiggybackGAN Zhai et al. (2020) freeze old task parameters and
introduce smaller new parameters for learning without forgetting. GAN memory Cong et al. (2020)
employs normalization parameters to adapt the generator’s weights to incoming data streams. CAM-
GAN Varshney et al. (2021) introduces adaptation modules via group-wise convolutions at the output
of each convolution layer in the base network. In contrast, StyleCL takes a different approach by
learning a latent subspace alongside shared weight space parameters, facilitating continual learning.

Even though few regularisation-based approaches like Liang et al. (2018) and Seff et al. (2017) use
regularisations to enable continual learning, their generation quality still degrades over time and thus
parameter isolation methods appear to be a better choice and have been receiving more attention.

Knowledge transfer in continual learning: Knowledge transfer is a crucial aspect of continual
learning, predicated on the notion that similar tasks inherently possess shared knowledge that can be
effectively transferred between them. However, previous approaches, like MerGAN Chenshen et al.
(2018), Lifelong GAN Zhai et al. (2019), and Piggyback GAN Zhai et al. (2020), often lack explicit
mechanisms to facilitate this positive knowledge transfer. While GAN Memory Cong et al. (2020)
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demonstrates promise in enabling knowledge transfer, it relies on the assumption that the most recent
task is invariably the most similar, a notion that does not consistently hold. In contrast, CAM-GAN
Varshney et al. (2021) quantifies task similarity by approximating the Fischer information matrix
(FIM) and posits that initializing the current task with parameters from the most similar task would
consistently yields positive forward transfer which may not always hold true. StyleCL distinguishes
itself by characterizing both the most similar task and the nature of forward transfer using the latent
space, thus effectively capturing the state of the generator while identifying the most similar task and
elucidating the nature of the forward knowledge transfer.

Continual Learning beyond GANs: Continual learning is a dynamic field that extends beyond
GANs. While Variational Autoencoders (VAEs) have been considered in the past, their subpar
generation quality has led to a recent decline in attention. In contrast, the exploration of continual
learning in Diffusion models represents an emerging paradigm. Recent studies, such as those by Gao
& Liu (2023) and Chen et al. (2023), have delved into the utility of diffusion models for replaying
previous data in the context of discriminative continual learning.

It is essential to note that Diffusion models offer remarkable generation quality enhancements, albeit
with a trade-off of increased inference time. On the other hand, GANs excel in efficiency, requiring
only a single forward pass. Furthermore, the introduction of GigaGAN, Kang et al. (2023) and
StyleGAN-T Sauer et al. (2023) have illustrated their ability to provide competitive generation
quality while maintaining faster inference speeds. Given these advantages, we turn our attention to
continual learning in GANs, leveraging their rapid inference capabilities while upholding competitive
performance compared to other generative models. Additionally, it is worth highlighting that many
recent state-of-the-art GANs for various tasks, as seen in works like Kang et al. (2023), Sauer et al.
(2023), and Fu et al. (2022), employ StyleGAN- based architectures. This inspires our investigation
into StyleGAN-based architectures for continual learning.

3 PROPOSED METHOD: STYLECL

3.1 PROBLEM SETTING AND METHOD OVERVIEW

Our setting is that a stream of datasets (or tasks) arrive sequentially with a unique task ID. We assume
that at any given time, only one dataset is available for training. Formally, let {X t}Tt=1 denote the
sequential stream of datasets where X t = {xtj}Nj=1, X t ∼ pt(x

t), with xtj denoting the jth instance
from the tth task/dataset.The objective is to train a GAN that can sample from the current dataset
without forgetting to sample from all the previously seen t− 1 distributions.

Our method starts by training a GAN as in Karras et al. (2020a) on the first (or base) dataset (task),
denoted by G1. The parameters of G1 are denoted by ϕ1 and are shared by all the subsequent tasks.
For each dataset X t, our method first selects the most similar previous task and the corresponding
generator Gk and learn the following components to obtain Gt: (i) A set of dictionary vectors Ut on
the latent space of Gk and (ii) a set of feature adaptor blocks ϕt (1× 1 convolutions) on the weight
space of Gk. To maintain simplicity, we make the assumption throughout this paper that the feature
adaptor ϕk of generator Gk encompasses ϕ1, the feature adaptor of task k, and the feature adaptors of
the most similar previous tasks of task k. It is noteworthy that in our method, the dictionary vectors
are unique for each task, whereas the feature adaptors are shared and added recursively based on the
similarity of tasks. Specifically, every Gt comprises ϕ1, the feature adaptor block of its own as well
as the feature adaptor block of the most similar previous tasks. Fig. 1 presents an overview of our
method, which we name ‘StyleCL’.

3.2 LATENT DICTIONARY LEARNING

We employ StyleGAN2 Karras et al. (2020a) architecture for the generators G that contains M style
blocks and for simplicity of discussion, we assume each of these style blocks comprises of just 1 layer.
The first stage of our method is to learn a set of dictionaries on the extended latent space

(
W+ space)

of the StyleGAN. Given a dataset X t, a dictionary Ut
m = {utm1, . . . ,u

t
mi, . . . ,u

t
mK},utmi ∈ Rd,

containing K vectors are learned for each of the m = 1, 2, ..,M style blocks of the generator.
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Figure 1: Overview of StyleCL: Given a dataset X t at time t, the most similar previous generator
Gk is first selected as the base generator. A set of K dictionary vectors, each for a style block m, is
learned for X t. Further, a feature adaptor block ϕtm is added to the existing shared feature adaptor
block ϕkm in Gk. During inference, sampling from X t is done by giving stochastic combinations of
elements of the corresponding dictionary vectors as input to Gt.

During the training, the parameters of Ut
m are initialized randomly. First, a batch of vectors is

stochastically sampled from each dictionary Ut
m as follows:

wt
m = zm1 u

t
m1 + zm2 u

t
m2 . . .+ zmK utmK + btm (1)

where zm = [zm1, . . . , zmK ] ∼ N (0, I) and btm is the bias term. Further, each wt
m corresponding

to every style block is concatenated to form wt as:

wt = [wt
1, . . . ,w

t
M ],wt ∈ W+ (2)

Finally, wt is passed as the input to the fixed generator Gk obtained from the most similar task to
generate images from pt(x

t).

3.3 FEATURE ADAPTORS IN THE WEIGHT SPACE

We observed empirically that the ability of the latent dictionary to capture a distribution pt(xt),
depends on Gk. Therefore, learning Ut

m alone may not be fully sufficient to model pt(xt). Therefore
we also introduce additional feature adaptor blocks on the weight space of the generator of the
most similar task Gk to obtain Gt. Since the latent subspace would have already captured some
characteristics of the datasets, the number of feature adaptor parameters to be learned would be lesser
(Tab. 1).

Let Stm denote the mth style block within the generator Gt for task t. Initially, we identify the most
similar task to tth task which is denoted by k and the corresponding generator Gk is selected as the
base generator. We introduce a trainable feature adaptor block ϕtm (1× 1 Convolution layer) to the
existing shared feature adaptor block ϕkm in Gk to obtain Stm of Gt. When the tth task emerges, we
learn ϕtm and compute the new activation map of Stm as follows:

f tm = αkm × ϕkm(f tm−1) + αtm × ϕtm(f tm−1) (3)

The feature adaptor block ϕtm is intended to learn additional information that is absent in Gk. Here
both ϕtm and scaling coefficient αtm are learnable and jointly learned with the latent dictionary. It
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is important to note that ϕkm is shared between Gk and Gt, whereas ϕtm is exclusively for Gt. We
follow the training paradigm in Karras et al. (2020a), which includes adversarial loss L1 and to ensure
smoothness and facilitate better convergence, we use the Perceptual Path Regularizer (PPL) Karras
et al. (2020b) and R1 regularization Mescheder et al. (2018) as in Karras et al. (2020b).

Algorithm 1 StyleCL : Training

Input: {X t}Tt=1: Sequential Data stream, where T is the total number of tasks
Output: {Ut}Tt=2: where Ut = {Ut

m}Mm=1; {bt}Tt=2; G1; {ϕt}Tt=2 where ϕt = {ϕtm}Mm=1
1: Train StyleGAN2 on X 1 to obtain G1

2: for t = 2 ... T do
3: Initialize Discriminator parameters ψ, and set of dictionary vectors Ut and bt

4: Find the most similar previous task k using Eq. (6) to obtain Gk
5: for each training iteration do
6: Obtain wt using Eq. (1) and Eq. (2)
7: Optimize parameters Ut, bt using Eq. (4) combined with PPL and R1 regularization

L1 = Ex∼pt(xt)[logDψ(x)] + Ez1,...zM∼N (0,I)[1− logDψ(Gk(wt))] (4)

8: end for
9: Compute sim(t, k) using Eq. (7)

10: Initialize parameters ϕt, αt
11: if sim(t, k) > 0 then
12: Gt = Gk ∪ ϕt
13: else
14: Gt = G1 ∪ ϕt
15: end if
16: Optimize parameters Ut, bt and ϕt using Eq. (5) combined with PPL and R1 regularization

L2 = Ex∼pt(xt)[logDψ(x)] + Ez1,...zM∼N (0,I)[1− logDψ(Gt(wt))] (5)

17: end for

3.4 FORWARD TRANSFER: CHOOSING THE MOST SIMILAR PREVIOUS TASK

Given a task t, our method first chooses the generator Gk of the most similar task and learns feature
adaptors over it. This is akin to the idea of forward transfer in the continual learning literature Chen
& Liu (2018). The dictionary vectors learned for each task allow easy characterisation of the task and
we use these to find the most similar task.

In order to find the task that is most similar to an incoming task, we need to characterize both the
previous task as well as the current task in the latent space. We characterize the current task by
learning the dictionary vectors alone using the base generator G1. It is to be noted that the dictionary
vectors are already learnt for previous tasks from 2 to t − 1. Given any task t, we use the set of
bias vectors learned as task embedding, bt = [bt1, . . . ,b

t
M ],bt ∈ W+ since it captures the relative

position of the learned latent subspace in the W+ space. Given the task embedding for the current
and previous tasks, we define the most similar task k as the one whose embedding has the least
Euclidean distance from the embedding of the current task as provided in Eq. (6). This is motivated
by the fact that the latent vectors of similar tasks lie close together while being distant from dissimilar
tasks as observed in Fig. 4.

k = argmin
r:r∈{2,...,t−1}

∥bt − br∥2 (6)

Preventing negative forward transfer: Choosing the most similar task facilitates selecting a task
with a similar set of features as that of the current task, however, it may lead to negative forward
transfer. In order to alleviate this problem, we estimate the nature of forward transfer (positive or
negative) by computing the cosine similarity of dictionary vectors of the current task to its projection
onto the latent subspace of the most similar task k. Let Vk correspond to the orthonormal vectors
obtained using the Gram-Schmidt orthogonalisation procedure on the dictionary vectors Uk. The
projection of Ut onto the latent subspace characterized by the orthonormal vectors Vk is then defined
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Figure 2: Qualitative results of StyleCL for all six tasks including the base task. Each row corresponds
to different baseline methods and each column consists of generated samples from all the tasks till
the current instant.

by Vk
i
∗
Ut
iV

k
i . Subsequently, we define the nature of forward transfer as follows :

sim(t, k) =
1

M

M∑
m=1

Ut
m ·

(
Vk
m

∗
Ut
mVk

m

)
∥Ut

m∥
∥∥Vk

m
∗
Ut
mVk

m

∥∥ (7)

sim(t, k) ∈ [−1, 1], and when sim(t, k) ≤ 0, it signifies zero or negative forward transfer. In such
cases, we avoid reusing the parameters of the most similar task, thus preventing negative forward
transfer. We provide a comprehensive overview of the StyleCL training process in Algorithm 1.

3.5 OVERCOMING TASK ID CONSTRAINTS WITH STYLECL

The previously defined problem setting assumes a sequential arrival of datasets (or tasks) with
unique task IDs. However, in real-life scenarios, this assumption may not always hold. For instance,
data collection from multiple sources can occur simultaneously, resulting in a set of data without
task distinction. Specifically, we address scenarios where task t comprises contributions from Q
datasets, and task ID is not available. We operate under the assumption that Q is known apriori. We
demonstrate that StyleCL can be seamlessly extended to accommodate these scenarios. We initialize
Q sets of dictionary vectors and feature adaptors. The intuition is that this modelling choice forces
each of the q latent adaptors to concentrate on latent vectors originating from separate regions in
the latent space. As a result, the model would effectively allocate distinct data sources to distinct
dictionaries. During training, we exclusively employ the qth feature adaptor set for latent vectors
generated from qth dictionary where q ∈ {1, 2, . . . , Q}. This ensures that qth feature adaptors
capture task-specific knowledge exclusively for qth dataset.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

We conducted three experiments to evaluate our method’s effectiveness. First, we tested its ability
to generate from perceptually distinct datasets. Second, we assessed knowledge transfer across
similar tasks, using six butterfly categories from ImageNet Russakovsky et al. (2015). Third, we
demonstrated StyleCL’s effectiveness in scenarios without task ID information
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4.2 BASELINES AND METRICS

We employ StyleGAN2 Karras et al. (2020a) as the base architecture for all experiments. StyleCL
is compared to GAN Memory, CAM-GAN with task similarity learning, and MerGAN. Evaluation
metrics include Fréchet inception distance (FID) Heusel et al. (2017), Density, and Coverage Naeem
et al. (2020). We also consider computational and memory overhead during inference, measured in
FLOPs and parameter count Dehghani et al. (2022), crucial factors for CL scalability.

4.3 RESULTS FOR PERCEPTUALLY DISTANT TASKS

Algorithm parameter
increase

per task ↓

FLOPs In-
crease(%)↓

GAN Memory 4.21M 15.7
CAM-GAN 1.52M 23.32

StyleCL 1.08M 4.1

Table 1: Comparison of our approach against the
baselines GAN Memory and CAM-GAN with re-
spect to parameter increase per task and percentage
increase in FLOPS. Note that both the baselines
also store the parameters for each task.

Following the experimental setup used in CAM-
GAN and GAN-Memory, we begin by training a
GAN on CelebA-HQ Karras et al. (2018) dataset
and then consider a stream of six perceptually
distinct datasets, namely Oxford 102 Flowers
Nilsback & Zisserman (2008), LSUN Church
Yu et al. (2015), LSUN Cats Yu et al. (2015),
Brain MRI Cheng et al. (2016), Chest X-Ray
Kermany et al. (2018), and Anime Faces 1. Sam-
ples of generated data from all the methods con-
sidered can be found in Fig. 2, and it can be
observed that StyleCL produces higher-quality
generated images.

Tab. 2 summarizes the quantitative results,
which shows that StyleCL outperforms all other baselines for most cases in terms of FID, Den-
sity, and Coverage metrics. Furthermore, Tab. 1 shows the amount of parameter reduction and
percentage increase in FLOPs. StyleCL has relatively lower per-task parameter requirements com-
pared to other methods, even though it does not have efficient adaptation modules like CAM-GAN.
This reduction in the number of parameters can be attributed to the fact that StyleCL achieves
continual adaptation using a combination of feature transformation and latent space modulation. The
latent space modulation requires a lesser number of parameters, while still allowing the generation of
some features of the target manifold. While MerGAN has no increase in parameter or FLOP count, it
comes at the expense of decreased generation quality on earlier tasks, which does not occur in our
no-forgetting setting.

Method MerGAN GAN Memory CAM-GAN StyleCL
Dataset/Metric FID D Cov FID D Cov FID D Cov FID D Cov
Flowers 45.14 0.6 0.49 23.97 0.73 0.71 23.38 0.89 0.71 18.48 0.67 0.77
LSUN Church 31.41 0.56 0.18 37.9 0.30 0.11 24.25 0.20 0.17 17.36 0.59 0.41
LSUN Cat 53.52 1.10 0.20 53.22 0.86 0.32 52.59 0.62 0.22 34.43 1.15 0.41
Brain MRI 78.80 0.16 0.29 45.78 0.32 0.55 31.26 0.18 0.77 29.42 0.38 0.82
Chest X-Ray 58.51 0.13 0.11 58.82 0.23 0.3 24.81 0.36 0.73 25.83 0.55 0.75
Anime 39.83 0.35 0.09 16.20 0.63 0.38 21.52 0.50 0.27 12.38 0.62 0.39

Table 2: Comparison of the performance of StyleCL, CAM-GAN, GAN-Memory, and MerGAN on
six tasks using FID (lower is better), Density (D) (higher is better), and Coverage (Cov) (higher is
better). The tasks are listed along the rows and methods are listed in the columns.

4.4 RESULTS ON PERCEPTUALLY SIMILAR TASKS

In order to evaluate the forward transfer capability of StyleCL, we consider six varieties of butterflies
from ImageNet to create a sequence of perceptually similar generation tasks, X 1 to X 6. We consider
2 scenarios : (a) StyleCL that enables forward transfer by considering the generator of the most similar
previous task, and (b) StyleCL with parameter sharing only with the base task G1 (without forward
transfer). Tab. 3 summarizes the results for both scenarios. We observe improved performance on
most datasets for scenario (a) compared to scenario (b), confirming the benefit of forward transfer,

1https://github.com/jayleicn/animeGAN
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(a) Real samples
from X 5

(b) Real samples
from X 3

(c) Generated
samples from X 5

(d) Generated
samples αt

m = 0
(e) Generated

samples αk
m = 0

Figure 3: Qualitative illustration of forward transfer in StyleCL: Fig. 3a and Fig. 3c corresponds
to real and generated samples from current task X 5. StyleCL employs feature adaptors from previous
tasks (samples of which are shown in Fig. 3b) to generate shared features across tasks (Fig. 3d).
Meanwhile, it utilizes newly added feature adaptors exclusively for the unique features of the current
tasks (Fig. 3e).

inherent in our method. Also, the amount of knowledge that could be reused varies (positive or
negative forward transfer) which leads to varying degrees of improvement. As observed from Tab. 3
in case of X 3, sim(t, k) < 0 indicates potential negative transfer and hence when the model is
forced to reuse the most similar task, it results in a performance drop. This empirically validates
our characterization of the nature of forward transfer by using sim(t, k). In such cases, we prevent
negative forward transfer by avoiding parameter reuse from the most similar task

X 2 X 3 X 4 X 5 X 6

StyleCL with-
out transfer

28.96 35.68 20.90 27.51 31.84

StyleCL with
transfer

21.86 37.38 18.87 23.18 31.00

sim(t, k) 0.59 -0.02 0.21 0.35 0.37

Table 3: Comparison of StyleCL with and without forward
transfer on a stream of perceptually similar datasets denoted
as X i, 2 ≤ i ≤ 6. Results are reported in terms of FID,
where lower values indicate better performance.

To qualitatively evaluate the forward
transfer capability of our approach,
StyleCL, we train it on dataset X 5

shown in Fig. 3a using the generator
of the most similar previous task, X 3

whose samples are shown in Fig. 3b.
The generated samples are illustrated
in Fig. 3c. To analyze the individual
contribution of current and previous
feature adaptors in StyleCL, we sep-
arately disable their individual contri-
bution by setting αtm and αkm to 0 in
equation 3. The corresponding gener-
ated samples are illustrated in Fig. 3d
and Fig. 3e. Our results show that ϕ3m is reused to capture shared characteristics of X 5 and X 3, such
as shape and background (as seen in Fig. 3d), whereas newly introduced feature adaptors ϕ5m capture
features unique to X 5, such as the orange colour of the wings (as seen in Fig. 3e). These findings
confirm that StyleCL enables forward transfer by reusing knowledge from previous tasks.

4.5 OVERCOMING TASK ID CONSTRAINTS WITH STYLECL

Task Datasets FID
Flowers & Brain-MRI Flowers 24.38

Brain-MRI 35.22

LSUN Church & Anime LSUN Church 23.48
Anime 14.63

Table 4: Performance of StyleCL on the task ID free
setting on two data mixtures.

To provide empirical evidence that
StyleCL inherently segregates datasets
within a task, we created two distinct
tasks: one that combines Flowers and
Brain MRI images and another that
merges Anime and LSUN Church im-
ages. For each task, we randomly sam-
pled from the individual datasets to sim-
ulate a balanced mixture. We initialized
StyleCL with two sets of dictionary vec-
tors and feature adaptors, one for each
dataset in a task. After completing training on this mixed dataset, we evaluated the generation quality
by generating samples from each component distribution using the corresponding dictionary and
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feature adaptor pair. The results are presented in Tab. 4. As observed from Tab. 4, StyleCL maintains
high generation quality even in the absence of task ID information.

5 ABLATIONS AND ANALYSIS

5.1 ANALYSIS OF LEARNED LATENT SUBSPACES

The learned latent dictionary for a task characterizes its position within the latent space and plays a
crucial role in identifying both the most similar tasks and in preventing negative forward transfer.

Figure 4: t-SNE visualization of latent
vectors of similar and dissimilar tasks.

To validate the effectiveness of these learned latent vectors
in capturing the semantics of each task, we present t-SNE
visualizations of the latent vectors for a selected set of
tasks. In particular, we aim to demonstrate that latent
vectors associated with similar tasks are clustered closely
together while remaining distinct from those associated
with dissimilar tasks. To illustrate this, we generate t-
SNE visualizations for the latent vectors of two distinct
Butterfly datasets Sec. 4.4 and a perceptually different task
Brain-MRI Sec. 4.3. The resulting t-SNE visualization is
presented in Fig. 4. As observed in Fig. 4, latent vectors
of different tasks forms clusters in latent space with latent
vectors of semantically similar task lying close together.

5.2 EFFECT OF GENERATOR INITIALIZATION

The generator G1 is obtained by training on X 1 and shares
parameters with all subsequent tasks. To analyze this initialization’s impact on StyleCL, we ex-
periment by initializing the generator with weights trained on Brain MRI and ImageNet datasets.
We evaluate StyleCL’s performance on a data stream consisting of CelebA-HQ, Flowers, LSUN
Church, and Chest X-Ray, using these different initializations. The results in Tab. 5 demonstrate a
significant performance boost when the generator is initialized with weights from a diverse dataset
like ImageNet-1K, compared to a more domain-specific base task like Brain MRI. This suggests our
method benefits from initial weights trained on a diverse dataset.

CelebA-HQ Flowers LSUN Church Chest X-Ray
Brain-MRI 22.82 31.98 55.45 29.93
ImageNet 15.86 14.25 11.71 23.54

Table 5: This table presents the performance comparison of StyleCL (measured by FID) on four
different datasets(along columns), using various generator initialization methods(along rows).

6 CONCLUSIONS AND FUTURE WORK

We introduce StyleCL, a lightweight expansion-based approach for generative continual learning with
StyleGAN. Unlike prior methods of transforming feature maps or weights, we harness StyleGAN’s
latent space for continual learning. For each new task, we learn a latent subspace via dictionary
learning in the W+ space and a feature adaptor. The proposed method requires less computational
and memory overhead than contemporary methods while ensuring similar or better performance.
Our future work involves (i) Extending our method to various architectures and generative models,
including Diffusion models. (ii) Improving continual learning by sharing dictionaries and exploring
common subspaces. (iii) Enhancing StyleCL performance in task ID-free settings with semantically
similar datasets.
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A OVERVIEW

Recall from our main manuscript that we present a lightweight expansion-based method called
StyleCL for generative continual learning with StyleGAN. Unlike previous approaches that perform a
transformation on either the feature maps or the weight parameters, we efficiently leverage the latent
space of StyleGAN. The proposed method ensures comparable or better performance while using
less computational and memory overhead than earlier approaches.

We include additional details in the supplementary material to keep the overall manuscript self-
contained. The details comprise implementation details, additional experiments, additional ablation
studies, and insights into our results, which could not be self-contained due to restrictions in the
length of the main manuscript.

B RESULTS

B.1 IMPLEMENTATION DETAILS

We adapted the author’s Pytorch implementation of StyleGAN2-ADA for all our experimentations.
All the datasets were scaled to 256 x 256 resolution. The number of dictionary vectors per style block
was chosen as 16 for all our experiments. All other hyperparameters were the same as those of the
original implementation of StyleGAN2-ADA.

The calculation of FID (Fréchet Inception Distance) involves utilizing the image embeddings extracted
by the InceptionV3 model. On the other hand, Density and Coverage metrics rely on the embeddings
provided by the VGG-16 model.

For lifelong classification experiments, we used the same set of hyperparameters and configurations
as described in CAM-GAN.
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B.2 ADDITIONAL RESULTS

We could only display a limited number of samples generated using StyleCL in the main paper due to
space constraints. Hence, we present additional samples to strengthen the qualitative evaluation of the
proposed method in Fig. 12, Fig. 13, and Fig. 14. We observe that the qualitative analysis supports
the quantitative metrics in terms of FID scores, Density, and Coverage metrics. We also provide an
extended version of Fig. 2 presented in the main paper to provide a more comprehensive qualitative
comparison of the StyleCL with other baselines Fig. 5. We further provide the absolute value of
parameters (in Millions(M)), FLOPs (measured in gigaFlops(G)) and additional information in Tab. 6
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Figure 5: Qualitative results of StyleCL for all six tasks including the base task. Each row corresponds
to generated images from a given task. Here X 1 represents the base task (CelebA-HQ dataset) and
X 2 . . .X 7 are further tasks (Oxford 102 Flowers, LSUN Church, LSUN Cat, Brain MRI, Chest-X
Ray and Anime).

Algorithm Parameters
(M)

FLOPs (G) Parameters
Increase
per Task

(M) ↓

FLOPs
Increase

(%) ↓

MerGAN 24.94 14.00 - -
GAN Memory 29.15 16.19 4.21 15.7

CAM-GAN 26.46 17.29 1.52 23.32
StyleCL 26.02 14.57 1.08 4.1

Table 6: Comparison of our approach against the contemporaries GAN Memory Cong et al. (2020),
CAM-GAN Varshney et al. (2021), and MerGAN with respect to Parameters, FLOPs, Parameter
reduction factor, and percentage increase in FLOPs.
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Figure 6: (Left) Classification accuracy on the lifelong classification problem See: Sec. 4. (Right)
Quantitative evaluation of the contribution of different components of StyleCL for image generation.

B.3 LIFELONG CLASSIFICATION

The conditional variant of StyleCL can serve as a generative replay buffer within discriminative
continual learning. To gauge its effectiveness in aiding the classifier model during lifelong learning,
we conduct tests within the generative replay paradigm. Specifically, we explore conditional data
generation in generative replay experiments, applying it to the class-incremental setup designed
for classification tasks. Our approach involves selecting images of fish, birds, snakes, and dogs
from the ImageNet dataset and creating 4 distinct streams of tasks as in CAM-GAN. Each task
is framed as a 6-classification problem, such as identifying 6 different types of birds in the bird
task. After completing each task t, the learned classifier is required to accurately classify all the
categories observed so far, up to and including task t. The quantitative comparison of StyleCL with
regularization-based baselines EWC Lee et al. (2017) and Replay-based methods such as MerGAN,
and CAM-GAN for lifelong classification tasks is demonstrated in Fig. 6 (Left). It can be observed
that the StyleCL performs better compared to the baselines when used for lifelong classification tasks,
because of its superior generative capability. The method that closely competes with StyleCL for
lifelong classification tasks is MerGAN. However, the performance of MerGAN degrades as the
task sequence increase since MerGAN learns new task at the expense of forgetting previous tasks.
Generated samples using StyleCL are given in Fig. 7. The upper bound for classification performance
(denoted as Joint) is obtained by using all the data till the current task to train the classifier. The
performance of StyleCL is seen to be close to this upper bound.

B.4 INTERPOLATION

B.4.1 INTERPOLATION WITHIN A TASK

The smoothness of the learned latent subspace is one of the properties enforced in StyleCL. We
conduct a qualitative evaluation to support this claim which is demonstrated in Fig. 15 and Fig. 16 for
Anime and Flowers datasets respectively. We sample two vectors randomly from the latent subspace
learned for each dataset and perform linear interpolation to generate images corresponding to these
vectors along the interpolation path. It can be observed that the linear interpolation in latent space
produces a smooth transition in pixel space as well, demonstrating the smoothness of the latent
subspace that has been learned.

B.4.2 INTERPOLATION ACROSS TASKS

We perform linear interpolation among various task generation processes on randomly sampled
vectors from the latent subspaces learned for two distinct datasets. We perform the analysis for dataset
pairs, namely (Brain MRI, Chest X-Ray) and (Flowers, Anime) which is demonstrated in Fig. 17
and Fig. 18 respectively. The linear interpolation is performed on the latent vectors as well as the
task-specific parameters, while the other parameters remain fixed. As observed in Fig. 17 and Fig. 18,
facial artifacts arise in the generated images when moving away from learned latent subspaces, and
the image quality is drastically degraded. This could be attributed to the fact that the generation
process is influenced by the parameters of the base task, CelebA-HQ.
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(a) Fish-StyleCL (b) Snakes-StyleCL (c) Birds-StyleCL (d) Dogs-StyleCL

(e) Fish-CAMGAN (f) Snakes-CAMGAN (g) Birds-CAMGAN (h) Dogs-CAMGAN

Figure 7: Conditional Generation Qualitative results: Randomly generated samples by StyleCL
and CAM-GAN for lifelong classification. In each image, each row represents a class, six classes per
task.

C ADDITIONAL ANALYSIS AND ABLATION STUDIES

In the main text, we have discussed a few analyses and ablations, in this sec-
tion, we provide additional results and ablation studies for interested readers.
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Figure 8: Quantitative ablation of the effect of
dictionary size on the generation quality for Anime
dataset.

C.1 EFFECT OF DIMENSIONALITY
OF LEARNED LATENT SUBSPACE

To investigate the impact of the dimensionality
of the learned latent space on the quality of gen-
erated images, we conducted experiments with
StyleCL using only the latent subspace, varying
the number of dictionary vectors. The results
of this analysis are depicted in Fig. 8. Notably,
the generation quality exhibits a remarkable im-
provement as the dimensionality of the latent
subspace increases, till an optimal point. How-
ever, beyond this optimum, the generation qual-
ity starts to degrade, as illustrated in Fig. 8. We
hypothesize that the additional dimensions intro-
duce noise that interferes with the original latent
vector, affecting the generation quality.

C.2 ABLATIONS OVER LATENT DICTIONARY AND FEATURE ADAPTORS

We set up ablations to understand the contributions of individual modules of our method, namely
learned latent dictionary and feature adaptors. We train StyleCL with each of these modules alone
and evaluate them both qualitatively (Fig. 9) and quantitatively (Fig. 6) (right). When examining
Fig. 6 (right), we notice that when either of these modules is used alone, the FID is higher compared
to that of StyleCL. This is further confirmed qualitatively in Fig. 9. As observed in Fig. 9, the results
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(a) Initial Generated
samples

(b) Only Dictionary
learning

(c) Only Feature
Adaptor learning

(d) Feature adaptors
disabled on StyleCL

(e) Both Dictionary
and Feature adaptors.

Figure 9: Ablation over feature adaptors and Dictionary: Initially, the generated samples (Fig. 9a)
corresponds to that of previous tasks. Learning the dictionary alone (Fig. 9b) or learning the
feature adaptors alone (Fig. 9c) leads to the generated samples capturing some characteristics of the
incoming data whereas combining them together (StyleCL) generates artifact-free samples (Fig. 9e).
Additionally, when feature adaptors are disabled during inference in StyleCL, the generated samples
(Fig. 9d) exhibit certain captured characteristics such as color and background, similar to the generated
samples shown in Fig. 9e.

of dictionary learning (Fig. 9b) and feature adaptor learning (Fig. 9c) have inferior generation quality
compared to the results of both modules combined (Fig. 9e).

Moreover, in order to investigate the impact of dictionary learning on StyleCL during inference, we
analyze a trained model that incorporates both feature adaptors and dictionary learning. Specifically,
we nullify the features obtained from the current feature adaptor while keeping the remaining
components intact. The resulting generated samples, depicted in Fig. 9d, exhibit certain shared
characteristics, such as colour and background, observed in the final generated samples produced
by StyleCL (Fig. 9e). This finding validates our initial hypothesis, highlighting the effectiveness
of StyleCL in capturing the target data manifold with a reduced parameter count, primarily due to
the incorporation of dictionary learning. Additionally, in Figure 10, we present samples generated
exclusively using dictionary vectors.

Figure 10: Generated samples by dictionary learning alone in StyleCL.
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C.3 DICTIONARY LEARNING ON WGAN

Our method of learning task-specific dictionary vectors can be extended to other GAN architectures
as well. In this regard, we applied it to WGAN, which does not have an extended latent space like
StyleGAN. To overcome this limitation, we constructed a pseudo-extended latent space for WGAN
and learn dictionary vectors over it. The linear combination of these dictionary vectors performs
channel-wise Adaptive Instance Normalization (AdaIN) operation on the output of the activation
layer in the ResNet block of WGAN.

AdaIN operation is performed using Equation 8 where w1 and w2 are linear combinations of different
dictionary vectors as shown in Equation 9. Here, zm = [zm1, . . . , zmK ] ∼ N (0, I), and bm denotes
the bias term similar to StyleCL.

To alter the distribution generated by the WGAN from the base task to our desired task, we perform
the above-mentioned AdaIN operation on the output (x) of every activation block in the ResNet
network of WGAN generator. This operation modifies the mean and variance of the output by using
σ(w1) and µ(w2) which we get passing w1 and w2 through learnable fully connected layer.

Figure 11 presents the generated samples obtained by applying our method to datasets such as Anime,
Chest X-ray, and Flowers using WGAN as the base architecture with CelebA as the base task. These
samples demonstrate the proposed method could be adapted to other GAN architecture as well to
some extent.

AdaIN(x,w1, w2) = σ(w1) ∗ x+ µ(w2) (8)

wm = zm1 um1 + zm2 um2 . . .+ zmK umK + bm (9)

D LIMITATIONS AND BROAD IMPACT

Our method finds its utility in the continual learning of lightweight generative models. This is useful
in porting generative models onto to edge-devices with effective generation on streams of datasets.
Currently, our method has a limitation in that it can operate only on the StyleGAN architecture. We
also observed that the task ID-free setting is sensitive to the semantic similarity of datasets.

E REPRODUCIBILITY

To facilitate reproducibility, we are attaching the code along with supplementary material as a zip file.
The necessary requirements file is also attached with it. We intend to release a more user-friendly
version of the code publicly along with the pre-trained models post-acceptance. All the datasets used
are publicly available.
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Figure 11: Qualitative results when learning dictionary vectors for WGAN architecture. Rows:1-3:
Chest X-Ray Rows:4-6: Anime Rows:6-9: Flowers.
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Figure 12: Randomly generated images using StyleCL. Rows:1-4: Flowers Rows:5-8: Chest X-Ray.
The generated images show high similarity to real data with the exception of some finer details and
artifacts.
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Figure 13: Randomly generated images using StyleCL. Rows:1-4 LSUN Church Rows:5-8 Anime.
The generated images show high similarity to real data with the exception of some finer details and
imperceptible artifacts.
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Figure 14: Randomly generated images using StyleCL. Rows : 1-4: Brain MRI Rows : 5-8: LSUN-
Cats. The generated images show high similarity to real data with the exception of some finer details
and imperceptible artifacts.

22



Under review as a conference paper at ICLR 2024

Figure 15: We perform linear interpolation (stepsize = 0.1) between two randomly sampled vectors
from the latent subspace learned by StyleCL. Each column represents a linear interpolation where the
first and last image corresponds to vectors sampled from the latent subspace of Anime.
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Figure 16: We perform linear interpolation (stepsize = 0.1) between two randomly sampled vectors
from the latent subspace learned by StyleCL. Each column represents a linear interpolation where the
first and last image corresponds to vectors sampled from the latent subspace of Flowers.
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Figure 17: We perform linear interpolation (stepsize = 0.1) between two randomly sampled vectors
from the latent subspace learned by StyleCL. Each column represents a linear interpolation where the
first and last image corresponds to vectors sampled from the latent subspace of Brain MRI and Chest
X-Ray respectively.
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Figure 18: We perform linear interpolation (stepsize = 0.1) between two randomly sampled vectors
from the latent subspace learned by StyleCL. Each column represents a linear interpolation where the
first and last image corresponds to vectors sampled from the latent subspace of Flowers and Anime
respectively.
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