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Abstract
In mixed-incentive multi-agent environments,
methods developed for zero-sum games often
yield collectively sub-optimal results. Address-
ing this, opponent shaping (OS) strategies aim
to actively guide the learning processes of other
agents, empirically leading to enhanced individ-
ual and group performances. Early OS methods
use higher-order derivatives to shape the learn-
ing of co-players, making them unsuitable to an-
ticipate multiple learning steps ahead. Follow-
up work Model-free Opponent Shaping (M-FOS)
addresses the shortcomings of earlier OS meth-
ods by reframing the OS problem into a meta-
game. In the meta-game, the meta-step cor-
responds to an episode of the “inner” game.
The OS meta-state corresponds to the inner poli-
cies, while the meta-policy outputs an inner pol-
icy at each meta-step. Leveraging model-free
optimization techniques, M-FOS learns meta-
policies that demonstrate long-horizon opponent
shaping, e.g., by discovering a novel extor-
tion strategy in the Iterated Prisoner’s Dilemma
(IPD). In contrast to early OS methods, there
is little theoretical understanding of the M-FOS
framework. In this work, we derive the sample
complexity bounds for the M-FOS agents theo-
retically and empirically. To quantify the sample
complexity, we adapt the Rmax algorithm, most
prominently used to derive sample bounds for
MDPs, as the meta-learner in the M-FOS frame-
work. We derive a sample complexity that has
an exponential relationship with the cardinality
of inner state and action space and the number
of agents. Our theoretical results are empirically
supported in the Matching Pennies environment.

1 Introduction
Most multi-agent reinforcement learning (MARL) research
has focused on fully-cooperative learning in Dec-POMDPs
(Ellis et al., 2022) where choices are made separately by
a set of decision-makers, or zero-sum games like Starcraft
and Go (Silver et al., 2017; Vinyals et al., 2019). How-
ever, these situations constitute only a small portion of po-

tential real-world multi-agent environments. General-sum
games, which are not entirely cooperative or competitive,
are more representative of many real-world scenarios such
as agent-based modelling, social dilemmas, and interacting
self-interested agents like autonomous vehicles.

In these settings, methods developed for the zero-sum set-
ting often lead to catastrophic outcomes. For instance, in
the Iterated Prisoner’s Dilemma (IPD) (Axelrod and Hamil-
ton, 1981, IPD), agents that treat their opponents as static
usually end up with the globally worst outcome - uncondi-
tional mutual defection. Opponent Shaping (OS) methods
like Learning with Opponent Learning Awareness (Foerster
et al., 2018, LOLA) were introduced to mitigate such dis-
astrous results, by considering the opponent’s learning step
to shape their policy. This was effective in a self-play set-
ting, leading to the discovery of the reciprocating tit-for-tat
(TFT) strategy in IPD (Foerster et al., 2018).

However, OS algorithms often assume that the opponent
is a naive learning (NL) agent. An NL agent neglects the
non-stationary environment and ignores the updates of op-
ponents in their own update. It is often not the case that
the opponent is an NL agent, especially in self-play, i.e.
when two LOLA agents play against each other (Foer-
ster et al., 2018; Letcher et al., 2018; Kim et al., 2021).
Moreover, these methods rely on second-order derivatives,
which are typically high-variance and result in unstable
learning. They are also myopic, focusing only on the op-
ponent’s immediate future learning steps rather than their
long-term development (Lu et al., 2022a).

Previous work, Model-free Opponent Shaping (Lu et al.,
2022a, M-FOS), solves the above challenges. M-FOS
introduces a meta-game structure, each meta-step repre-
senting an episode of the embedded “inner” game. The
meta-state consists of “inner” policies, and the meta-policy
generates an inner policy at each meta-step. M-FOS
uses model-free optimisation techniques to train the meta-
policy, eliminating the need for higher-order derivatives to
accomplish long-horizon opponent shaping. The M-FOS
framework has shown promising long-term shaping results
in social-dilemma games (Lu et al., 2022a; Khan et al.)

For simpler, low-dimensional games, M-FOS learns policy
updates directly by taking policies as input and outputting
the next policy as an action. Inputting and outputting en-



tire policies does not extend well to more complex, higher-
dimensional games, e.g. when policies are represented as
neural networks. The original M-FOS paper proposes a
variant which uses trajectories as inputs instead of exact
policy representations. In this work we derive the sample
complexity for both cases.

Whereas some previous OS algorithms enjoy strong the-
oretical foundations thanks to the Differentiable Games
framework (Balduzzi et al., 2018), the M-FOS framework
has not been investigated theoretically. In this work, we de-
rive the sample complexity of the M-FOS algorithm. Un-
derstanding the sample complexity of an algorithm is help-
ful in many ways, such as evaluating its efficiency, pro-
viding a performance metric for comparisons of similar
methods, assisting in resource management, predicting the
learning time or even guiding the discovery of new algo-
rithms.

At a high level, we adapt the RMAX algorithm (Brafman
and Tennenholtz, 2001) to the M-FOS framework. RMAX
is a model-based reinforcement learning (MBRL) algo-
rithm originally devised to analyse the sample complexity
in zero-sum games and typically used in single-player set-
tings. This lead to the following contributions:

1. We present the PAC upper-bound sample complexity
for both cases in M-FOS in Section 4.

2. We verify the sample complexity empirically in Sec-
tion 6 by implementing M-FOS with a tabular RL algo-
rithm RMAX as the meta-agent.1

3. We verify the sample complexity of the RMAX algo-
rithm empirically Section 6.

2 Related Work
Theoretical Analysis of Differentiable Games: Much
past work assumes that the game being optimised is dif-
ferentiable (Balduzzi et al., 2018). This assumption en-
ables far easier theoretical analysis because one can di-
rectly use end-to-end gradient-based methods rather than
reinforcement learning in those settings. Several works
in this area investigate the convergence properties of var-
ious algorithms Letcher (2020); Schäfer and Anandkumar
(2019); Balduzzi et al. (2018).

Opponent Shaping: More closely related to our work
are methods that specifically analyse OS. SOS (Letcher
et al., 2018) and COLA (Willi et al., 2022) both anal-
yse opponent-shaping methods that operate in the differ-
entiable games framework. These works provide theoreti-
cal convergence analysis for opponent-shaping algorithms;

1The project code is available on https://github.com/rmaxm-
fos/rmaxmfos

however, neither work analyzes sample complexity. POLA
(Zhao et al., 2022) theoretically analyses an OS method
that is invariant to policy parameterization. M-FOS does
not operate in the differentiable games framework. While
this enables M-FOS to scale to more challenging environ-
ments, such as Coin Game (Lu et al., 2022a), it comes at
the cost of convenient theoretical analysis. Khan et al. em-
pirically scales M-FOS to more challenging environments
with larger state spaces, while Lu et al. (2022b) empirically
investigates applying M-FOS to a state-based adversary. To
the best of our knowledge, our work is the first to theoreti-
cally analyse OS outside of the differentiable games frame-
work. Furthermore, our work is the first to analyse the sam-
ple complexity of an OS method.

Theoretical Analysis of Sample Complexity in RL:
There are several works that use the RMAX (Brafman
and Tennenholtz, 2001) framework to derive the sample
complexity of RL algorithms across a variety of settings.
Closely related to our work is Zhang et al. (2022), which
uses the RMAX to derive sample complexity bounds for
learning in fully-cooperative multi-agent RL.

Our work is also related to methods that analyse sample
complexity on continuous-space RL. Analyzing the sample
complexity of algorithms in continuous-space RL is partic-
ularly challenging because there are an infinite number of
potential states. To address this, numerous techniques have
been suggested that each make specific assumptions.

Liu and Brunskill (2018) assumes a stationary asymptotic
occupancy distribution under a random walk in the MDP.
Malik et al. (2021) uses an effective planning window to
handle MDPs with non-linear transitions. However, neither
of these assumptions applies to M-FOS.

Instead, this work focuses on discretising the continuous
space and expresses the complexity bounds in terms of the
discretisation grid size. This is related to the concept of
state aggregation (Singh et al., 1994; Boutilier et al., 1999),
which groups states into clusters and treats the clusters as
the states of a new MDP. These previous works only formu-
lated the aggregation setting in MDPs and did not provide
theoretical or empirical sample complexity proofs.

Furthermore, prior studies on PAC-MDP did not empiri-
cally verify the connection between the sample complexity
and size of the state space. In this work, we empirically
verify the relationship between the sample complexity
and the cardinality of the inner-state space in the Match-
ing Pennies game.

3For computational reasons, we display 5 seeds only for the
ε = 0.8, h = [2, 3] setting.
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Figure 1. Mean reward of the M-FOS agent against meta-episodes on a log (base 16) scale for different ε 3

Algorithm 1 The Adapted M-FOS Algorithm with Rmax
as the meta-agent

Meta-game Inputs: Ŝ, Â, γ̂,m, ε, J
Inner-game Inputs: S,A, γ, k
Initialisation: Q̂(ŝ, â) ← 0, r̂(ŝ, â) ← 0, n(ŝ, â) ←
0, n(ŝ, â, ŝ′)← 0

1: for meta-episode n = 0, 1, .., J do
2: Reset environment
3: for meta-time step t = 1, 2, ...,K do
4: Sample a−i = ε-greedy(φ−i

t )
5: Run inner game of length l
6: ât = φit
7: r̂t = ri + γ̂r̂t−1

8: Let ŝ′t be the next meta-state after executing meta-
action ât from meta-state ŝt

9: ŝ′t = [φ−i
n , φit]

10: if n(ŝ, â) < m then
11: r̂(ŝt, ât)← r̂(ŝt, ât) +Rit
12: n(ŝt, ât)← n(ŝt, ât) + 1
13: n(ŝt, ât, ŝ′t)← n(ŝt, ât, ŝ

′
t) + 1

14: if n(ŝt, ât) = m then

15: for i = 1, 2, 3, · · · , d
ln( 1

ε(1−γ) )

1−γ e do
16: for all (ŝ, â) do
17: if n(ŝ, â) ≥ m then
18: Q̂(ŝ, â) ← R̂(ŝ, â) +

γ̂
∑
s′ T̂ (ŝ

′|ŝ, â)maxâ′ Q̂(ŝ′, â′)
19: ŝ← ŝ′

3 Background

3.1 Stochastic Game
A stochastic game (SG) is given by a tuple G =
〈I,S,A, T,R, γ〉. I = {1, · · · , n} is the set of agents,
S is the state space, A is the cross-product of the ac-
tion space for each agent such that the joint action space
A = A1 × · · · × An, T : S × A 7→ S is the transition
function, R is the cross-product of reward functions for all

agents such that the joint reward space R = R1×· · ·×Rn,
and γ ∈ [0, 1) is the discount factor.

In an SG, agents simultaneously choose an action accord-
ing to their stochastic policy at each timestep t, ait ∼
πiφi(·|s

i
t). The joint action at timestep t is at = {ait,a

−i
t },

where the superscript −i indicates all agents except agent
i and φi is the policy parameter of agent i. The agents
then receive reward rit = Ri(st,at) and observe the next
state st+1 ∼ T (·|st,at), resulting in a trajectory τ i =
(s0,a0, r

i
0, ..., sT ,aT , r

i
T ), where T is the episode length.

3.2 Markov Decision Process
A Markov decision process (MDP) is a special case
of stochastic game and can be described as M =
〈S,A, T,R, γ〉, where S is the state space, A is the action
space, T

(
st+1 | st, at

)
is the transition function,R (st, at)

is the reward function, and γ is the discount factor. At each
timestep t, the agent takes an action at ∈ A from a state
st ∈ S and moves to a next state st+1 ∼ T

(
· | st, at

)
.

Then, the agent receives a reward rt = R (st, at).

3.3 Model-Free Opponent Shaping
Model-free Opponent Shaping (M-FOS) frames the OS
problem as a meta-reinforcement-learning problem, in
which the opponent shaper plays a meta-game. The meta-
game is a partially-observable MDP, in which the meta-
agent controls the inner agent in the inner game.

The inner game is the actual environment that our agents
are playing, which is an SG. In a meta-game at timestep t,
the M-FOS agent is at the meta-state ŝt = [φit−1,φ

−i
t−1],

which contains all agents’ policy parameters for the under-
lying SG. Alternatively, ŝt = τ in cases where the trajec-
tories represent the policies sufficiently.

The meta-agent takes a meta-action ât = φit ∼ πθ(·|ôt),
which is the M-FOS’ inner agent’s policy parameter.
The action is chosen from the meta-policy π parameter-



ized by parameter θ. The M-FOS agent receives reward
r̂t =

∑K
k=0 r

i
k(φ

i
t,φ

−i
t ), where K is the number of inner

episodes. A new meta-state is sampled from a stochastic
transition function ŝt+1 ∼ T (·|ŝt, ât).

4 Sample Complexity Analysis with
RMAX as Meta-Agent

RMAX (Brafman and Tennenholtz, 2001) is an MBRL algo-
rithm for learning in tabular MDPs. In this work, we adapt
the original M-FOS algorithm such that it usesRMAX as the
meta-agent (see Algorithm 1). We refer to this algorithm as
the Adapted M-FOS from here on. We learn the transition
model T̂m and the reward model R̂m using the empirical
maximum likelihood estimator. Using the learned mod-
els, we construct an approximate m-known MDP M̂m (see
Definition A.14). Within M̂m, we evaluate the inner-game
policy outputted by the meta-policy using episodic rollouts.
The evaluation is then used to update the meta-policy ac-
cording to the M-FOS algorithm. Our adapted M-FOS al-
gorithm optimistically assigns rewards for all under-visited
discretised (meta-state, meta-action) pairs to encourage ex-
ploration.

Definition 4.1 (m-Known MDP). Mm is the expected ver-
sion of M̂m where:

Tm
(
ŝ′ | ŝ, â

)
:=

{
T
(
ŝ′ | ŝ, â

)
if (ŝ, â) ∈ m-known

1
[
ŝ′ = ŝ

]
otherwise

T̂m
(
ŝ′ | ŝ, â

)
:=

n
(
ŝ,â,ŝ′

)
n(ŝ,â) , if (ŝ, â) ∈ m-known

1
[
ŝ′ = ŝ

]
, otherwise

Rm (ŝ, â) :=

{
R (ŝ, â) , if (ŝ, â) ∈ m-known
Rmax otherwise

R̂m(ŝ, â) =


∑n(ŝ,â)
i r(ŝ,â)

n(ŝ,â) , if (ŝ, â) ∈ m-known

Rmax, otherwise

We provide theory results for two cases of M-FOS’ meta-
agent as proposed by the original paper (Lu et al., 2022a).
Case I uses all agents’ policy parameters from the previous
timestep as the meta-state. Instead, Case II uses the inner-
game trajectory as the meta-state. In both cases, the meta-
agent takes the inner agent’s policy parameters as the meta-
action. The detailed proofs are provided in the appendix,
and they are heavily based on results from Brafman and
Tennenholtz (2001), Strehl et al. (2009), Jiang (2020) and
Kakade (2003).

4.1 Case I: Policy Parameters as the Meta-
State

In Case I, the meta-state ŝt is all inner agents’ policies
from the previous timestep. Formally, ŝt := φt−1 =
[φ−i
t−1, φ

i
t−1]. The meta-action ât is MFOS’ inner agent’s

current policy parameters φit. The policies are computed
from the Q-tables in the inner game with Boltzmann sam-
pling. The meta-reward is the average over K inner game
rollouts’ discounted episodic rewards.

4.1.1 Discretisation with ε-nets

To use RMAX as the meta-agent, we first convert the meta-
problem in M-FOS into a tabular setting. We discretise
the meta-game’s continuous meta-state space Ŝ and meta-
action space Â into discrete and finite spaces Ŝd and Âd
respectively using ε-nets. We describe the discretisation
process for Â below. The process for Ŝ can be derived
similarly (see Appendix A.3).

For the meta-action space Â and a chosen discretisation
error α > 0, we obtain a finite set of points Âd ⊂ Â such
that for all â ∈ Â, there exist âd ∈ Âd where

‖â− âd‖ ≤ α. (1)

To obtain a finite set of Âd, the values in A must be
bounded. This is satisfied because we follow the original
RMAX algorithm to assume a bounded inner game reward
of 0 < rt < RMAX. In our case, we set RMAX arbitrarily as
1. Therefore, with an inner game discount factor of γ, each
of the |S|× |A| entries in â is bounded between 0 and 1

1−γ ,

i.e. Â = {â ∈ R|S|×|A| : ||â|| ≤ 1
1−γ }.

To find the ε-net of Â, we divide the |S| × |A|-dimensional
ball into grids of equal size λ, meaning that the discreti-
sation error α =

λ
√

|S||A|
2 . This leads to the size of dis-

cretized meta-action space upper bounded by

|Âd| ≤

 2
√

|S||A|
1−γ

α


|S||A|

. (2)

The RMAX meta-agent learns in the discretised meta-state
and meta-action space. Our final sample complexity bound
in Theorem 4.3 takes into account the discretisation error α
as well.

4.1.2 Sample Complexity Bound

To study the sample complexity of the Adapted M-FOS, we
define the value of a policy as follows:



Figure 2. Mean reward against the number of m-visited state-action pairs, for ε = 0.5 and different h values

Definition 4.2. Given a meta-game policy π, we estimate
its value J(π) in an MDP M with initial state distribution
d0, defined as the expected return obtained by following the
policy in M ,

JM (π) = Es∼d0
[
V π(s)

]
. (3)

where the value function is the expected reward for follow-
ing policy π in the state s such that Vπ(st) = Eπ[Rt+1 +
γvπ(st+1)|st]

Theorem 4.3. For εd ∈ {0, 1], δ ∈ {0, 1], λ ∈ R+, let
M = 〈Ŝ, Â, T,R, 〉 be the meta-game MDP, Md be the
discretised version of M with λ as the discretization ra-
dius, and Md,m be the m-Known, discretized MDP. Let
G= 〈I,S,A, Tinner,Rinner, γ〉 be a finite horizon SG as the
inner-game, then there exist some constants C > 0 and

inputs m( 1ε ,
1
δ ,

1
λ ) = O(

|Ŝ|+ln
|Ŝ||Â|
δ

ε2d(1−γ̂)4
) such that if RMAX is

executed on G, the following holds:
Let π∗

Md
be a RMAX policy of the M-FOS agent in Case I,

with probability at least 1−δ, JMd
(π∗
Md

)−JMd
(π∗
M̂d,m

) ≤
2εd is true for all but

O(
( 1
λ(1−γ) )

(2n+1)|S||A|

ε3d

1

(1− γ)5
ln

1

δ
) (4)

episodes.

Theorem 4.3 shows that Adapted M-FOS algorithm acts
near-optimally on all but an exponential number of steps.

4.2 Case II: Trajectory History as the Meta-
State

In Case II, the meta-state ŝt at timestep t is all inner agents’
trajectories. Formally, ŝt := τt. The meta-action â is our
inner agent’s discretised policy parameterised by φit. The
discretised policy is the discretised Q-table of that agent
obtained in the inner game. The meta-reward is the dis-
counted episodic rewards averaged overK inner game roll-
outs. Detailed proofs are available in Appendix A.6.

Theorem 4.4. For εd ∈ {0, 1], δ ∈ {0, 1], λ ∈ R+, let
M = 〈Ŝ, Â, T,R, 〉 be the meta-game MDP, Md be the
discretised version of M with λ as the discretization ra-
dius, and Md,m be the m-Known, discretized MDP. Let
G = 〈I,S,A, Tinner,Rinner, γ〉 be a h-step SG as the
inner-game, then there exists some constants C > 0,

C1 > 0 and inputs m( 1ε ,
1
δ ,

1
λ ) ≥ O(

|Ŝ|+ln
|Ŝ||Â|
δ

ε2d(1−γ̂)4
) such

that if RMAX is executed on G, the following holds:
Let π∗

MK
be a RMAX policy of the M-FOS agent in Case II,

with probability at least 1−δ, JMd
(π∗
Md

)−JMd
(π∗
M̂d,m

) ≤
2εd is true for all but

O(
(|S||A|)2nh( 1

λ(1−γ) )
2nh+|S||A|

ε3d

1

(1− γ)5
ln

1

δ
) (5)

episodes.

In Section 5, we show empirically that the number of sam-
ples needed indeed scales by a factor of |S||A|2nh, as seen
in Theorem 4.4.

5 Experimental Setup
Matching Pennies (MP): is a two-player, single-shot,
zero-sum game with a payoff matrix shown in Table 1,
where agents either pick Heads (H) or Tails (T), ai ∈
{H,T} and ai ∼ πφi(· | {}), where φi correspond to
the probability of picking H of agent i. Note that in this
work the game is not iterated, meaning that one episode
has a length of 1 and the episodic return corresponds to the
payoff after one interaction J = r = P (a1, a2). For M-
FOS, this means that a meta-step corresponds to one itera-
tion of the Matching Pennies game. The meta-return cor-
responds to the discounted, cumulative meta-reward after
playing the Matching Pennies K times. While the original
M-FOS was evaluated on a more complex, iterated version
of the Matching Pennies game, this simple setting with a bi-
nary action space is sufficient for our empirical validation
and more practical, because the RMAX algorithm memory



usage grows exponentially with the size of the state and
action space.

Table 1. Payoff Matrix for MP
Player 1\Player 2 Head Tail

Head (+1, -1) (-1, +1)
Tail (-1, +1) (+1, -1)

For our experiments, we focus on empirically validating
only Case II, because the RMAX algorithm memory us-
age grows exponentially with the size of the state and ac-
tion space, so Case I, i.e., outputting whole Q-tables, be-
comes computationally intractable even for the simplest
settings. For Case II, we adapt the M-FOS algorithm to
use smaller meta-state and meta-action spaces to ensure
tractability. For example, if the meta-episode corresponds
to repeatedly playing the single-shot MP, then the (par-
tial) meta-trajectory (and correct input for M-FOS) cor-
responds to ŝt = τ̂t = (a0, ...,at−1), where t is the
current meta-step. However, our meta-state corresponds
only to a fixed-length window of the past actions taken in
ŝt = (a1t−h, a

2
t−h, ..., a

1
t−1, a

2
t−1), where h is the window

size, instead of all past actions taken in the meta-episode.
The window size allows us to control the size of the meta-
game state, i.e., Ŝ ∈ R2h . The opponent is a standard Q-
learning agent that updates the Q-values at every step and
selects actions with an ε-greedy strategy. The pseudo-code
is provided in Appendix B.1.

We next outline the variables we analysed in our experi-
ments to verify the sample complexity terms. As we aim to
find the scaling law of the M-FOS algorithm, we vary the
window-size h to understand how the sample complexity
change accordingly. We expect that the empirical sample
complexity reacts more strongly to changes in the meta-
game state space size than other parameters like the dis-
count factor γ.

The inner-game state and action space size is |S||A| =
|G| = 2 and the number of agents is n = 2 in the MP. The
discount factor is set to γ = 0.8. Practically, γ = 0.99 is
more commonly used to encourage long-term planning and
improve stability. However, this would incur a very large
sample complexity because of the term 1

(1−γ)5 in Equation
5.

We vary the length of the window h in the MP game to
change the size of the meta-state space with h ∈ [2, 3, 4].
We also ablate the discretisation error ε. Ultimately, we are
interested in analyzing the minimum number of episodes
required to converge to an ε-optimal policy under these dif-
ferent settings.

We now discuss the expected sample complexity bounds in
the MP. Given the setup we defined above, we find that:

|Ŝ| = |τh| = |sa|h = (|S||A|)nh = (|G|)nh

|Â| = |a| = 1

In the MP game, we have |G| = |S| × |A| = 2. Following
the expression in Section 4 (Equation (20)),

O( |Ŝ|
2|Â|
ε3d

1

(1− γ)5
ln

1

δ
) ∼ O( |G|2nh

ε3(1− γ)5
ln

1

δ
)

∼ O( 16h

ε3d(1− γ)5
ln

1

δ
)

(6)

Thus, we hypothesize that there exists an exponential rela-
tionship between the window size h and the sample com-
plexity, whereby the sample complexity increases exponen-
tially ∼ O(16h).

6 Results & Discussion

Figure 3. Empirical and theoretical sample complexity against
meta-state space size for ε = 0.8

Figure 1 shows the reward curve across the meta episodes
on a log scale for different ε. Every graph contains
three mean reward curves for meta-trajectory length h =
[2, 3, 4]. For each setting, we set K̂ = 10 × m × |Ŝ| so
that there are enough meta-episodes for the agent’s perfor-
mance to converge. The constant of 10 is arbitrary and can
be set to any number.

Varying inner-state space size: In Figure 1, for ε = 0.8
and h = [2, 3, 4], it takes approximately [163, 164, 165]
episodes to converge to [0.702, 0.709, 0.724] respectively.
In Equation (6), we proved that the sample complexity



(a) Inner game action (b) Opponent’s inner-Q values

Figure 4. Action value and opponent’s inner Q table of the first meta-step of the first episode and last meta-step of the last meta-episode

grows by a factor of 16 when the trajectory length increases
by 1. The empirical result confirms the exponential re-
lationship between the sample complexity and inner-state
space size. As shown in Table 2, as the meta-state space
size increases, the converged reward and mean reward are
higher. This is because the agent observes more past ac-
tions, allowing it to express more complex strategies given
the history. However, note that the meta-agent can always
find the optimal strategy given the history.

Table 2. Normalised mean reward of the M-FOS agent vs. oppo-
nent in different ε and trajectory length h

trajectory length h

ε 2 steps 3 steps 4 steps

0.2 [0.648, 0.352] [0.696, 0.304] [0.721, 0.279]
0.5 [0.645, 0.355] [0.679, 0.321] [0.709, 0.291]
0.8 [0.639, 0.361] [0.660, 0.340] [0.681, 0.319]

Figure 2 shows the average reward against the number
of m-visited state-action pairs for h = [2, 3, 4] and ε =
[0.2, 0.5, 0.8]. The mean reward is set to 0 for state-action
pairs that have not been visited at least m times. As the tra-
jectory length increases, the percentage of m-visited state-
action pairs decreases. As trajectory length increases, the
meta-state space size increases. And since m ∝ |S|, m in-
creases. Thus it is more difficult to visit every state-action
pair in a larger state space for higher m times. Note that

the algorithm still converges since RMAX does not require
all state-action pairs to be m-visited.

Varying ε: As ε increases, m decreases since m ∝ 1
ε2 .

It takes fewer episodes to visit a state-action pair for m
times, which leads to a less accurate maximum-likelihood
estimate of the reward and transition function because of
the smaller data size. This corresponds to a higher error
tolerance level of ε. The mean reward increases from 0.5
when none of the state-action pairs is m-visited to a con-
verged value of around 0.7. Note that when the number
of m-visited state-action pairs is small, the variance of the
mean reward is higher than when the number is large since
the agent is still actively exploring.

Figure 3 shows the theoretical sample complexity curve
and empirical data from running the M-FOS algorithm in
the MP game. The empirical results support our theoret-
ical proof of sample complexity. It is important to note
that the computation is limited by the relationship between
sample complexity and the size of the meta-state space. As
the meta-state space size increases, the memory required to
obtain each additional data point grows exponentially. Be-
cause of this, we only evaluated at three meta-state sizes.

6.1 Interpretation of the meta-policy
Figure 4 shows the action, cumulative reward and oppo-
nent’s Q-table in the first and last meta-episode to compare
the performance before and after learning. The M-FOS



agent’s goal is to match the opponent’s action while the
opponent’s goal is to avoid matching. From Figure 4(a),
initially the agents do not have sufficient information about
the environment and act randomly in the first meta-episode.
In the last meta-episode, 8 out of 10 action match and the
M-FOS agent gets a cumulative reward of 8. The M-FOS
agent exploits the opponent by recognising the pattern that
if the opponent takes action a and suffers from a loss, the
opponent tends to take the other action ¬a that may have a
higher value. This is shown in Figure 4(b), where the blue
line indicates the opponent’s Q-value for taking action 0
and the orange line indicates that for taking action 1. The
opponent switches action if it does not get a reward, which
leads to fluctuating action values in consecutive time steps.

Figure 5. Transition diagram for h = 3, ε = 0.8

Figure 5 shows a transition diagram for the MP game with
h = 3, ε = 0.8. The weight of the edge represents the
visitation frequency such that wider red lines indicate more
frequent transitions between those states. The nodes rep-
resent the past trajectory of both agents for 3 timesteps,
i.e. [a−it−3, a

−i
t−2, a

−i
t−1, a

i
t−3, a

i
t−2, a

i
t−1]. The most visited

nodes are [0, 1, 0, 0, 1, 0] and [1, 0, 1, 1, 0, 1] (indicated by
green circles). These two nodes have frequent transitions
from and to each other. As an instance, in the previous
step, the meta-state is [0, 1, 0, 0, 1, 0], where the opponent
acted 0 and our agent acted 0. The opponent lost in the
previous step since the actions matched, thus it acted 1 the
next round since it has a higher Q-value. Our M-FOS agent
counteracted with an action of 1. This leads to the next
meta-state [1, 0, 1, 1, 0, 1]. Note that the trajectories are al-
ternations of 1s and 0s, which further confirms the M-FOS
agent’s ability to shape the opponent’s policy.

7 Conclusion & Future Work
This work is the first to explore both theoretical and em-
pirical sample complexity of a meta-RL algorithm and we
prove that the sample complexity of M-FOS grows expo-
nentially as the meta-state and discretisation grid size in-
crease. We prove there exists an exponential relationship
between the sample complexity and the number of agents.
Moreover, we presented the theoretical sample complexity
of the two cases in M-FOS in Section 4 and find the scaling
rule in terms of the state and action space size of the inner
game. We then implement M-FOS with a tabular RL algo-
rithm Rmax as the meta-agent in Section 5 and verify the
sample complexity empirically. Finally, we are the first to
verify the sample complexity of the RMAX algorithm em-
pirically.

There are many avenues for future work such as using a
different meta-agent, trying to generalize the assumptions,
investigating other model-free optimisation techniques or
empirically evaluating more complex games.
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A Theoretical Analysis
We will first delineate the notations and assumptions that will be used in the sample complexity proof.

Table 3. Nomenclature

Symbol Definition

ŝt = ŝ Meta-state at time t, time subscript t is omitted for convenience
ât = â Meta-action at time t, time subscript t is omitted for convenience
(ŝd, âd) Discretized state-action pair in meta-game
r̂d = r̂(ŝd, âd) Meta-reward function parameterised by discretized meta-state-action pair
φit = φi The set of inner-game policy parameters of our agent at time t, time subscript t is omitted for convenience
φit,d = φid The set of discretized inner-game policy parameters of our agent at time t, time subscript t is omitted for

convenience
φ−i The set of inner-game policy parameters of all agents except our agent at time t, time subscript t is

omitted for convenience
φ−i

d The set of discretized inner-game policy parameters of all agents except our agent at time t, time sub-
script t is omitted for convenience

R̂(ŝ, â), T̂ (ŝ, â) Empirical estimate of reward and transition distribution
R(ŝ, â), T (ŝ, â) True reward and transition distribution
εRm,d, ε

T
m,d Error between empirical discretized reward/ transition distribution and true reward/ transition distribution

εRm, ε
T
m Error between empirical reward/ transition distribution and true reward/ transition distribution

εRm
′
, εTm

′ Error between empirical reward/ transition distribution and empirical discretized reward/ transition dis-
tribution

δR, δT Probability that the difference between empirical discretized reward/ transition distribution and the true
reward/ transition distribution is larger than εRm,d/ε

T
m,d

A.1 Assumptions
We first outline all assumptions made in deriving the sample complexity of the M-FOS algorithm.

Assumption A.1. The observation function in the meta-game is deterministic.

Assumption A.2. Meta-reward distribution R(s, a) is Lipschitz continuous.

Assumption A.3. Meta-transition distribution T (ŝ, â) is Lipschitz continuous.

Assumption A.4. The first timestep τ in which the Rmax explores a new state is finite.

Assumption A.5. Transition and reward distribution of M̂ and M̂m are identical for state-actions in K.

Assumption A.6. Failure probability is evenly split between the reward and transition estimation events.

Assumption A.7. The error between empirical discretized reward distribution and true reward distribution εRm,d
′ ≤

C εd(1−γ̂)
Vmax

.

Assumption A.8. The error between empirical discretized transition distribution and true transition distribution εTm
′ ≤

C εd(1−γ̂)
Vmax

.

Assumption A.9. Discount factor in the meta-game γ̂ and that of the inner game γ are the same, i.e. γ̂ = γ.

Assumption A.10. The inner game is assumed to be a partially observable discrete and deterministic episodic game.

A.2 Rmax

Definition A.11 (m-known MDP). Let M = 〈S,A, T,R, γ〉 be a MDP with action values Q(s, a) for each state-action
pair (s, a). Define K as the known set of state-action pairs and Mm = 〈S,A, Tm,Rm, γ〉 as the known state-action MDP.



The algorithm has two categories of state-action pair: the known and the unknown state-action pair. A state-action pair is
m-known if it has been visited for m times, and otherwise unknown if it is visited for less than m times. It is considered a
successful exploration if the agent visits a state-action pair (s, a) /∈ K. For all state-action pairs in K, the induced MDP
Mm is identical to M . For state-action pairs not in K, these unknown pairs are self-absorbing and maximally rewarding
(i.e. r = rmax), so the optimal policy for the empirical MDP M̂m is either producing near-optimal reward or exploring
states outside of K. These properties are listed in Table 4.

Table 4. Relationship between M,Mm, M̂m

true MDP M true induced MDP Mm empirical MDP M̂m
Known = M = M ≈M

Unknown = M self-loop with maximum reward

The maximally rewarding property leads to an admissible heuristic for the value function U(s, a) which is upper bounded
by Vmax = Rmax

1−γ = 1
1−γ .

0 ≤ U(s, a) ≤ 1

1− γ
∀(s, a) ∈ S ×A

Definition A.12 (Sample complexity definition from Kakade 2003). Let c = [s1, a1, r1, s2, a2, r2, · · · ] be a random path
generated by executing an algorithm A in an MDP M . For any fixed ε > 0, the sample complexity of exploration of A is
the number of timesteps t such that the policy at time t, At, satisfies V At(st) ≤ V ∗(st)− ε.

Definition A.13 (PAC-MDP definition from Strehl et al. 2009). An algorithm A is said to be a PAC algorithm if, for any
ε > 0 and 0 ≤ δ ≤ 1, the space and sample complexity of A per timestep are less than some polynomial dependence on
(S,A, 1ε ,

1
δ ,

1
1−γ ) with probability at least 1-δ.

A.2.1 Empirical functions

Definition A.14 (m-Known MDP). Mm is the expected version of M̂m where:

Tm
(
ŝ′ | ŝ, â

)
:=

{
T
(
ŝ′ | ŝ, â

)
if (ŝ, â) ∈ m-known

1
[
ŝ′ = ŝ

]
otherwise

T̂m
(
ŝ′ | ŝ, â

)
:=

n
(
ŝ,â,ŝ′

)
n(ŝ,â) , if (ŝ, â) ∈ m-known

1
[
ŝ′ = ŝ

]
, otherwise

Rm (ŝ, â) :=

{
R (ŝ, â) , if (ŝ, â) ∈ m-known
Rmax otherwise

R̂m(ŝ, â) =


∑n(ŝ,â)
i r(ŝ,â)

n(ŝ,â) , if (ŝ, â) ∈ m-known

Rmax, otherwise

R̂m(ŝ, â) and T̂m
(
ŝ′ | ŝ, â

)
are the maximum-likelihood estimates for the reward and transition distribution of state-action

pair (s, a) with n(s, a) = m observations of (s, a). m is a value that acts like a threshold for doing the Q-value update
step, and it will be derived in the later section. TheRmax algorithm takes a greedy action maxaQ(s, a) and the Q-function
is updated only when the visitation count is larger than or equal to m, i.e.

Q(s, a) =

{
Rm(s, a) + γ

∑
s′ Tm(s′|s, a)maxaQ(s′, a′), if n(s, a) ≥ m

U(s, a), otherwise
(7)

A.2.2 Value iteration

To solve equation 7, we use value iteration, a standard and simple approach. Rmax guarantees a near-optimal greedy policy
rather than the exact solution for equation 7. The algorithm performs value iteration several times (will be quantified below)
to obtain an ε-optimal policy.



Proposition A.15. (Singh and Yee, 1996) Let Q(·, ·) and Q∗(·, ·) be two Q functions over the same state and action
spaces of an MDP M , and Q∗ is the optimal value function. Let π be a greedy policy to Q, π∗ be a greedy policy
to Q∗ (also the optimal policy for M ). For any ε ≥ 0 and γ ≤ 1, if maxs,a |Q(s, a) − Q∗(s, a)| ≤ ε(1−γ)

2 , then
maxs{V π

∗
(s)− V π(s)} ≤ ε.

Proposition A.16. (Strehl et al., 2009) Let ε ∈ R+
∗ which satisfies ε < 1

1−γ . Suppose value iteration is run for d
ln( 1

ε(1−γ) )

1−γ e
iterations and Q(·, ·) is initialised such that 0 ≤ Q(·, ·) ≤ 1

1−γ , we have maxs,a{|Q(s, a)−Q∗(s, a)|} ≤ ε.

Proof. Let Qi(s, a) be the action-value estimate after the ith value iteration and δi := maxs,a |Q∗(s, a)−Qi(s, a)|, such
that

∆i = max
s,a
|(R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′))− (R(s, a) + γ
∑
s′

T (s, a, s′)Vi−1(s
′))

= max
s,a
|γ

∑
s′

T (s, a, s′)(V ∗(s′)− Vi−1(s
′))|

≤ γ∆i−1

Because of the initialisation, ∆0 ≤ 1
1−γ . Thus ∆i ≤ γi

1−γ . We limit ∆i to be at most ε and solve for i:

ε ≤ γi

1− γ
ε(1− γ) ≤ γi

i ≥ ln(ε(1− γ))
ln(γ)

With the identity ex ≥ 1 + x, we have 1− γ ≤ − ln γ:

ln(ε(1− γ))
ln(γ)

≤
ln( 1

ε(1−γ) )

1− γ

i ≥
ln( 1

ε(1−γ) )

1− γ

Thus it is sufficient to run value iteration for O(
ln( 1

ε(1−γ) )

1−γ ) times to produce an ε-optimal policy.

A.3 Discretization Setup with ε-Net
We apply the concept of ε-Net to discretize our meta-state and meta-action space.

Definition A.17. (ε-Net, Erdogdu 2022) For ε > 0, Nε is an ε-net over the set Θ ⊆ Rd if for all θ ∈ Θ, there exists
θ′ ∈ Nε such that

∥∥θ − θ′∥∥ ≤ ε. The size of the ε-net with smallest size |Nε| is called the covering number.

Figure 6 shows an example of a 2-dimensional ε-Net. We divide the circle into grids of size λ so the total number of points
required in this 2-dimensional space is ( 2Rλ + 1)2. The power of 2 corresponds to the number of dimensions. Within each
grid, the highest length between the vertices and any interior points is the apothem, which is λ

√
d

2 =
√
2λ
2 . Therefore, the

largest grid size that we can have should satisfy ε = λ
√
d

2 =
√
2λ
2 to ensure all points in the ball are covered.

An agent’s inner Q-table has |S| × |A| parameters, so the size of an agent’s policy parameters is |φi| = |S| × |A|. This
equates to the number of dimensions in the ε-Net. We discretize each entry of an inner Q-table/ each policy parameter
according to radius λ so that ∥∥∥φi − φid∥∥∥

2
≤
λ
√
|S||A|
2



Figure 6. ε-Net for Θ = {θ ∈ R2 :‖θ‖ ≤ R}

To avoid confusion in notation, we define α =
λ
√

|S||A|
2 , where α is essentially ε in ε-Net. We then apply this α-Net to

meta-state ŝd and discretized meta-action âd,

ŝ = φ

‖ŝ− ŝd‖2 ≤
λ
√
n|S||A|
2

≤
√
nα

â = φi

‖â− âd‖2 ≤
λ
√
|S||A|
2

≤ α

The size of this α-net will be derived in Appendix A.5 for the sample complexity expression.

A.4 Basic Lemmas and Definitions
Lemma A.18. (Hoeffding’s inequality) Let Z1, · · · , Zn be independent bounded random variables with Zi ∈ [a, b] for all
I, where −∞ < a ≤ b <∞. Then

P (
1

n

n∑
i=1

(Zi − E[Zi]) ≥ t) ≤ e
− 2nt2

(b−a)2 (8)

Lemma A.19. (Weissman’s inequality for L1 deviation of the empirical distribution from Weissman et al. 2003) Let D be
a probability distribution on the set A = {1, · · · , a} and Xm = X1, X2, · · · , Xm ∈ Am be independent identically
distributed random variables distributed according to Q. Q̂Xm is the empirical probability distribution on A such that
Q̂Xm(j) = 1

m

∑m
i=1 1(xi = j). (1(·) is the indicator function of the specified event.)

For p ∈ [0, 0.5), we define function

ψ(p) =
1

1− 2p
log

1− p
p

. (9)

For a probability distribution Q on A, we define

πQ = max
A⊆A

[min(Q(A), 1−Q(A))]. (10)



Then, ∀ε > 0,

P (
∥∥∥Q− Q̂Xm

∥∥∥
1
≥ ε) ≤ (2a − 2)e

−mψ(πQ)ε2

4 (11)

Lemma A.20. (Chernoff-Hoeffding Bound) When flipping a weighted coin, there is a probability p > 0 of landing with
heads-up. Then, for any positive integer k and real number δ inf[0, 1], there exists a number m = O(kp ln

1
δ ), such that

after m tosses, we will observe k or more heads with probability at least 1− δ.

Lemma A.21. Let M = 〈Ŝ, Âi, T,Ri, γ̂〉 be an MDP in the meta-game in which its optimal value function is upper
bounded by Vmax, and M̂m be a known state-action MDP defined with value function Q(ŝ, â). Then ∀ŝ ∈ Ŝ,

V ∗
M̂m

(ŝ) ≤ Vmax +
√
n+ 1α(1− γ̂τ−1)

1− γ̂
+max

ŝ,â
Q(ŝ′, â′)

Proof. For any policy π and any state ŝ ∈ Ŝ, let (ŝ1, â1, r̂1, ŝ2, â2, r̂2, · · · ) be a path generated by starting in state ŝ = ŝ1
and following π in the known state-action MDP M̂m, where ŝt and r̂t are the meta-state and reward at timestep t, and
ât = π(ŝt). The value function V ∗

M̂m
(ŝ) is the expected discounted total reward accumulated on the random path and can

be written as (Sutton and Barto, 2018).

V ∗
M̂m

(ŝ) = EM̂m
[r̂1 + γ̂r̂2 + γ̂2r̂3 + · · · |ŝ1 = ŝ, π]

Let τ be the first timestep in which (ŝd,τ , âd,τ ) /∈ K so that with the construction of M̂m (see Table 4) and assuming τ is
finite,

ŝd,τ = ŝd,τ+1 = ŝd,τ+2 = · · · , âd,τ = âd,τ+1 = âd,τ+2 = · · · = π(ŝd,τ )

From Equation (7):
r̂d,τ = r̂d,τ+1 = r̂d,τ+2 = · · · = (1− γ̂)Q(ŝd,τ , âd,τ ).

Thus, for any fixed τ ≥ 1, the discounted total reward is

r̂1 + γ̂r̂2 + γ̂2r̂3 + · · ·
≤ r̂d,1 + γ̂r̂d,2 + · · ·+ γ̂τ−2r̂d,τ−1 + γ̂τ−1Q(ŝd,τ , âd,τ )

≤ r̂d,1 + γ̂r̂d,2 + · · ·+max
ŝ′,â′

Q(ŝ′, â′)

(12)

where the maxŝ′,â′ Q(ŝ′, â′) is formed because of the way we define the transition and reward functions in M̂m. Since this
upper bound holds for all fixed τ ≥ 1 and assuming the transition and reward functions of M and M̂m are identical for
state-actions in K, we have

EM̂m
[r̂1 + γ̂r̂2 + γ̂2r̂3 + · · · |ŝ1 = ŝ, π]

≤ EM̂m
[r̂d,1 + γ̂r̂d,2 + · · ·+ γ̂τ−2r̂d,τ−1 +max

ŝ′,â′
Q(ŝ′, â′)|ŝ1 = ŝd, π]

≤ EM [r̂d,1 + γ̂r̂d,2 + · · ·+ γ̂τ−2r̂d,τ−1|ŝ1 = ŝ, π] + max
ŝ′,â′

Q(ŝ′, â′)

≤ V πM (ŝd) + max
ŝ′,â′

Q(ŝ′, â′)

≤ Vmax +max
ŝ′,â′

Q(ŝ′, â′).

Lemma A.22. Suppose r̂1, r̂2, · · · , r̂m are m rewards drawn from rewards distribution R(ŝd, âd). Let R̂(ŝd, âd) be the
empirical estimate of R(ŝd, âd), δR ∈ R+ and δR < 1, with probability at least 1− δR,

|R̂(ŝd, âd)−R(ŝd, âd)| ≤
1

2

√
2

m
ln

2

δR
(13)

is true for all ŝd ∈ Ŝd, âd ∈ Âd.



Proof. Let εRm be the error between the empirical discretized reward distribution R̂(ŝd, âd) and the true discretized reward
function R(ŝd, âd) such that with Equation (8),

P (|R̂(ŝd, âd)−R(ŝd, âd)| ≥ εRm) ≤ 2e−2(εRm)2m

δR ≤ 2e−2(εRm)2m

2

δR
≥ e2(ε

R
m)2m

1

2m
ln

2

δR
≥ (εRm)2

εRm ≤
1

2

√
2

m
ln

2

δR

Lemma A.23. Suppose T̂ (ŝd, âd) is the empirical transition distribution for discretized state-action pair (ŝd, âd) using m
samples of next states drawn independently from the true transition distribution T (ŝd, âd). We define

T (s′|sd, ad) =
∫

s′∈sd±α

f(s′|s, a)ds′

∀sd, ad, where f(·|s, a) is the probability density function. Let δT ∈ R+ and δT < 1, with probability at least 1− δT ,

∥∥∥T̂ (ŝd, âd)− T (ŝd, âd)∥∥∥
1
≤

√
2[ln(2|Ŝ| − 2)− ln δT ]

m

is true for all ŝd ∈ Ŝd, âd ∈ Âd.

Proof. With Weissman’s inequality from Equation (11), we need to find the bound of the function ψ(p) (Equation (9)) first.
Given the input p ∈ [0, 0.5), ψ(p) ∈ (2,∞], the upper bound of e−ψ(p) is 2. Let εTm be the error between the empirical
discretized transition distribution T̂ (ŝd, âd) and the true discretized transition function T (ŝd, âd) such that

P (
∥∥∥T̂ (ŝd, âd)− T (ŝd, âd)∥∥∥

1
≥ εTm) ≤ (2|Ŝ| − 2)e

−mψ(πT )εTm
2

4

δT ≤ (2|Ŝ| − 2)e
−m2εTm

2

4

ln
2|Ŝ| − 2

δT
≥ mεTm

2

2

εTm
2 ≤ 2

m
(ln (2|Ŝ| − 2)− ln δT )

εTm ≤

√
2[ln(2|Ŝ| − 2)− ln δT ]

m

Corollary A.24. Supposem transitions andm rewards are drawn independently from the transition distribution T (ŝd, âd)
and reward distribution R(ŝd, âd) and let δ ∈ R+ and δ ∈ (0, 1]. With probability at least 1− δ,

∥∥∥T̂ (ŝd, âd)− T (ŝd, âd)∥∥∥
1
≤ εTm, εTm :=

√
2[ln(2|Ŝ| − 2) + ln 2|Ŝ||Â|

δ ]

m
(14)

|R̂(ŝd, âd)−R(ŝd, âd)| ≤ εRm, εRm :=
1

2

√
2

m
ln

4|Ŝ||Â|
δ

(15)

Proof. By applying union bound to Theorem A.22 and Theorem A.23 and setting δR = δT = δ
2|Ŝ||Â| . The factor 1

2 is
created by assuming that the failure probability is evenly split between the reward and transition estimation events. We
then split δ2 among the state-action pairs, resulting in a factor 1

|Ŝ||Â| .



Lemma A.25. Suppose MDP M1 and M2 only differ in dynamics, i.e. M1 = 〈Ŝ, Âi, T1, Ri1, γ̂〉 and M2 =
〈Ŝ, Âi, T2, Ri2, γ̂〉. Let maxs,a |R1(s, a) − R2(s, a)| ≤ εR and maxs,a |T1(s, a) − T2(s, a)| ≤ εT ,then ∀π : Ŝ → Â
and ∀s ∈ Ŝ, ∥∥V ∗

M1
− V ∗

M2

∥∥
∞ ≤

εR
1− γ̂

+
γ̂εTVmax
2(1− γ̂)

Proof. Let T1,T2 be the Bellman update operator of M1,M2 respectively such that∥∥V ∗
M1
− V ∗

M2

∥∥
∞ =

∥∥V ∗
M1
−T2V

∗
M2

∥∥
∞ =

∥∥V ∗
M1
−T2V

∗
M1

+ T2V
∗
M1
−T2V

∗
M2

∥∥
∞∥∥V ∗

M1
−T2V

∗
M1

∥∥
∞ =

∥∥T1V
∗
M1
−T2V

∗
M1

∥∥
∞

= max
s,a
|R1(s, a) + γ̂Es′∼T1(s,a)[V

∗
M1

(s′)]−R2(s, a)− γ̂Es′∼T2(s,a)[V
∗
M1

(s′)]|

= εR + γ̂max
s,a

< T1(s, a)− T2(s, a), V ∗
M1
− Vmax

2
· 1|Ŝ|×1 >

By Holder’s inequality:

≤ εR +maxs,a
∥∥T1(s, a)− T2(s, a)∥∥1∥∥∥∥V ∗

M1
− Vmax

2
· 1

∥∥∥∥
∞

≤ εR + γ̂εT ·
Vmax
2

.

By the property of an optimal value function V ∗,∥∥T2V
∗
M1
−T2V

∗
M2

∥∥
∞ = γ̂

∥∥V ∗
M1
− V ∗

M2

∥∥
∞

Thus, ∥∥V ∗
M1
− V ∗

M2

∥∥
∞ =

∥∥V ∗
M1
−T2V

∗
M1

+ T2V
∗
M1
−T2V

∗
M2

∥∥
∞

≤ εR + γ̂εT ·
Vmax
2

+ γ̂
∥∥V ∗

M1
− V ∗

M2

∥∥
∞

≤ εR
1− γ̂

+
γ̂εTVmax
2(1− γ̂)

Lemma A.26. (Simulation Lemma) Let M1 = 〈Ŝ, Âi, T1, Ri1, γ̂〉 and M2 = 〈Ŝ, Âi, T2, Ri2, γ̂〉 be two MDP with non-
negative rewards bounded byRmax = 1 and optimal value functions bounded by Vmax. Letmaxs,a|R1(s, a)−R2(s, a)| ≤
εR and maxs,a|T1(s, a)− T2(s, a)| ≤ εT , then ∀π : Ŝ → Â and ∀s ∈ Ŝ,∥∥V πM1

− V πM2

∥∥
∞ ≤

εR
1− γ̂

+
γ̂εTRmax
2(1− γ̂)2

Proof.

|V πM1
− V πM2

| = |R1(s, π) + γ̂〈T1(s, π), V πM1
〉 −R2(s, π)− γ̂〈T2(s, π), V πM2

〉|
≤ εR + γ̂|〈T1(s, π), V πM1

〉 − 〈T2(s, π), V πM1
〉+ 〈T2(s, π), V πM1

〉 − 〈T2(s, π), V πM2
〉|

≤ εR + γ̂|〈T1(s, π)− T2(s, π), V πM1
〉|+ γ̂

∥∥V πM1
− V πM2

∥∥
∞

= εR + γ̂|〈T1(s, π)− T2(s, π), V πM1
− Rmax

2(1− γ̂)
〉|+ γ̂

∥∥V πM1
− V πM2

∥∥
∞

By Holder’s inequality,

≤ εR + γ̂|T1(s, π)− T2(s, π)|1 ·
∥∥∥∥V πM1

− Rmax
2(1− γ̂)

∥∥∥∥
∞

+ γ̂
∥∥V πM1

− V πM2

∥∥
∞

≤ εR +
γ̂εTRmax
2(1− γ̂)

+ γ̂
∥∥V πM1

− V πM2

∥∥
∞



An explanation for line 4: Since T1(s, π) and T2(s, π) are probability distributions that sum up to 1, we subtract Rmax
2(1−γ̂) · 1

to centre the range of V πM1
around 0. This step achieves a tighter bound.

Corollary A.27. From Theorem A.25 and Theorem A.26, we can show that ∀π,

|JM2,K
(π)− JM1,K

(π)| ≤ εR
1− γ̂

+
γ̂εTRmax
2(1− γ̂)2

and

|JM1,K
(π∗
M1,K

)− JM2,K
(π∗
M2,K

)| ≤ εR
1− γ̂

+
γ̂εTRmax
2(1− γ̂)2

Proof. Let d0 be the initial state distribution such that J(π) = Es∼d0 [V π] = 〈d0, V π〉

|JM2,K
(π)− JM1,K

(π)| = |〈d0, VM2,K
〉 − 〈d0, VM1,K

〉|
= |〈d0, VM2,K

− VM1,K
〉|

≤ 〈d0,
∥∥VM2,K

− VM1,K

∥∥
∞ · 1|Ŝ|×1〉

=
∥∥VM2,K

− VM1,K

∥∥
∞ · 〈d0,1〉

=
∥∥VM2,K

− VM1,K

∥∥
∞ (d0 is a probability distribution)

≤ εR
1− γ̂

+
γ̂εTRmax
2(1− γ̂)2

(by Theorem A.25)

The proof for |JM1,K
(π∗
M1,K

)− JM2,K
(π∗
M2,K

)| can be obtained by replacing the last step with Theorem A.26.

Lemma A.28. (Applied Simulation Lemma) Let Md = 〈Ŝd, Âid, TM , RiM , γ̂〉 be the true discretized MDP and M̂d,m =

〈Ŝd, Âid, TM̂d,m
, Ri

M̂d,m
, γ̂〉 be the empirical discretized m-known MDP, both with non-negative rewards bounded by

Rmax = 1 and optimal value functions bounded by Vmax. Let maxsd,ad |RMd
(ŝd, âd) − RM̂d,m

(ŝd, âd)| ≤ εR, then

∀π : Ŝd → Âd and ∀sd ∈ Ŝd, ∥∥∥V πMd
− V π

M̂d,m

∥∥∥
∞
≤ εR

1− γ̂
+
γ̂εTmRmax
2(1− γ̂)2

Proof.

|V πMd
− V π

M̂d,m
| = |RMd

(sd, π
∗
Md

) + γ̂〈TMd
(sd, π

∗
Md

), V
π∗
Md

Md
〉 −RM̂d,m

(sd, π
∗
M̂d,m

)− γ̂〈TM̂d,m
(sd, π

∗
M̂d,m

), V
π∗
M̂d,m

M̂d,m
〉|

≤ εR + γ̂|〈TMd
(sd, π

∗
Md

), V
π∗
Md

Md
〉 − 〈TM̂d,m

(sd, π
∗
M̂d,m

), V
π∗
Md

Md
〉+ 〈TM̂d,m

(sd, π
∗
M̂d,m

), V
π∗
Md

Md
〉

− 〈TM̂d,m
(sd, π

∗
M̂d,m

), V
π∗
M̂d,m

M̂d,m
〉|

≤ εRm + γ̂|〈TMd
(sd, π

∗
Md

)− TM̂d,m
(sd, π

∗
M̂d,m

), V
π∗
Md

Md
〉|+ γ̂

∥∥∥∥∥V π∗
Md

Md
− V

π∗
M̂d,m

M̂d,m

∥∥∥∥∥
∞

≤ εRm + γ̂|〈εTm, V
π∗
Md

Md
− Rmax

2(1− γ̂)
〉|+ γ̂

∥∥∥∥∥V π∗
Md

Md
− V

π∗
M̂d,m

M̂d,m

∥∥∥∥∥
∞

By Holder’s inequality,

≤ εRm + γ̂εTm ·
∥∥∥∥V π∗

Md

Md
− Rmax

2(1− γ̂)

∥∥∥∥
∞

+ γ̂

∥∥∥∥∥V π∗
Md

Md
− V

π∗
M̂d,m

M̂d,m

∥∥∥∥∥
∞

≤ εRm +
γ̂εTmRmax
2(1− γ̂)

+ γ̂

∥∥∥∥∥V π∗
Md

Md
− V

π∗
M̂d,m

M̂d,m

∥∥∥∥∥
∞



Lemma A.29. (Induced Inequality) Suppose the reward and transition functions of M1 and M2 agree exactly on K ⊆
Ŝ ×Â. Let escapem(τ) be 1 if trajectory τ visits (s, a) /∈ K, 0 otherwise. Let JM (π) := E[

∑∞
h−1 γ̂

h−1rh|π] be a measure
of policy π’s performance. ∀π : Ŝ × Â,

|JM1
(π)− JM2

(π)| ≤ Vmax · PM1
[escapem(τ)|π]

Proof. Let RM (τ) be the sum of discounted reward in τ according to the reward function of M such that vπM1
=∑

τ PM1 [τ |π]RM1(τ) and vπM2
=

∑
τ PM2 [τ |π]RM2(τ). For τ that satisfies escapem(τ) = 1, we define prem(τ) as the

prefix of τ where only the last state-action pair of τ is not in K (only the last state-action pair escapes). We define sufm(τ)
as the remainder of the episode. Let R(prem(τ)) be the sum of discounted rewards within the prefix, PM1

[prem(τ)|π] be
the marginal probability of the prefix assigned by M under policy π. To find the upper bound of JM1

(π) − JM2
(π), we

first find the upper bound of JM1
(π),

JM1(π)

=
∑

τ :escapem(τ)=1

PM1
[τ |π](RM1

(prem(τ)) +RM1
(sufm(τ))) +

∑
τ :escapem(τ)=0

PM1
[τ |π]RM1

(τ)

≤
∑

τ :escapem(τ)=1

PM1
[τ |π](RM1

(prem(τ)) + Vmax) +
∑

τ :escapem(τ)=0

PM1
[τ |π]RM1

(τ)

≤
∑

prem(τ)

PM1 [prem(τ)|π](RM1(prem(τ)) + Vmax) +
∑

τ :escapem(τ)=0

PM1 [τ |π]RM1(τ)

We then find the lower bound of JM2(π),

JM2
(π)

=
∑

τ :escapem(τ)=1

PM2 [τ |π](RM2(prem(τ)) +RM2(sufm(τ))) +
∑

τ :escapem(τ)=0

PM2 [τ |π]RM2(τ)

≥
∑

τ :escapem(τ)=1

PM2
[τ |π](RM2

(prem(τ)) + 0) +
∑

τ :escapem(τ)=0

PM1
[τ |π]RM2

(τ)

≥
∑

prem(τ)

PM2
[prem(τ)|π](RM2

(prem(τ))) +
∑

τ :escapem(τ)=0

PM2
[τ |π]RM2

(τ)

Note that when escapem(τ) = 0, PM1
[τ |π] = PM2

[τ |π] and RM1
(τ) = RM2

(τ). Similarly, PM1
[prem(τ)|π] =

PM2
[prem(τ)|π]. Thus we have,

JM1(π)− JM2(π) ≤
∑

prem(τ)

PM1 [prem(τ)|π]Vmax

≤ PM1 [escapem(τ)|π]Vmax

A.5 Sample Complexity Analysis
Event A.30. For all stationary policy π, timesteps t and states s during the execution of Rmax on some MDP M , the dis-
cretized empirical known state-action MDP (M̂d,mt ) is εd-close to the value in true discretized state-action MDP (Md,mt ).

|V πMd,mt
(ŝ)− V π

M̂d,mt

(ŝ)| ≤ εd

where εd ∈ R+ is the distance between the true known discretized state-action MDP (Md,mt ) and the discretized empirical
known state-action MDP (M̂d,mt ), which depends on the discretization radius λ.

Lemma A.31. There exists a constant C such that if Rmax with parameters m and εd is executed on any MDP M =
〈S,Ai, T ,Ri, γ〉 and m satisfies

m ≥ CV 2
max

|Ŝ|+ ln |Ŝ||Â|
δ

(εd(1− γ̂))2

Event A.30 will occur with probability at least 1− δ.



Proof. Event 1 occurs if Rmax maintains a close approximation of its known state-action MDP. By Theorem A.21 and
Theorem A.25, it is sufficient to obtain C εd(1−γ̂)

Vmax
-approximate transition and reward functions for any constant C and

discretized meta-state-action pairs in Kd,t. Since transition and reward functions of Rmax are maximum-likelihood
estimates with first m samples for each (ŝd, âd) ∈ K. As long as m is large enough, it is highly probable that the empirical
estimates of discretized meta-state-action pairs will be accurate.

Assuming εRm,d ≤ C
εd(1−γ̂)
Vmax

and solving for m:

1

2

√
2

m
ln

4|Ŝ||Â|
δ

≤ C εd(1− γ̂)
Vmax

2

m
ln

4|Ŝ||Â|
δ

≤ (C
εd(1− γ̂)
Vmax

)2

m

2
≥ 1

(C εd(1−γ̂)
Vmax

)2
ln

4|Ŝ||Â|
δ

m ≥ CV 2
max

(εd(1− γ̂))2
ln

4|Ŝ||Â|
δ

Assuming εTm,d ≤ C
εd(1−γ̂)
Vmax

and solving for m:√
2[ln(2|Ŝ| − 2) + ln 2|Ŝ||Â|

δ ]

m
≤ C εd(1− γ̂)

Vmax

2[ln (2|Ŝ|−2)(2|Ŝ||Â|)
δ ]

m
≤ (C

εd(1− γ̂)
Vmax

)2

m ≥ CV 2
max

(εd(1− γ̂))2
ln

(2|Ŝ| − 2)(2|Ŝ||Â|)
δ

When m ≥ CV 2
max

Ŝ+ln(ŜÂ/δ)
(εd(1−γ̂))2 , both conditions are satisfied for any constant C > 0.

Theorem A.32. For εd ∈ {0, 1], δ ∈ {0, 1], λ ∈ R+, M be any MDP, there exists some constants C > 0 and inputs
m = m( 1ε ,

1
δ ,

1
λ ) such that if Rmax is executed on M , the following holds:

Let π∗
Mm

be Rmax’s policy, with probability at least 1− δ, JMd
(π∗
Md

)− JMd
(π∗
M̂d,m

) ≤ 2εd is true for all but

O( |Ŝ||Â|
Cεd(εd(1− γ̂))2

V 3
max(|Ŝ|+ ln

|Ŝ||Â|
δ

) ln
1

δ
)

episodes.

Proof.

JMd
(π∗
Md

)− JMd
(π∗
M̂d,m

) ≤ JMd,m
(π∗
Md

)− JMd
(π∗
M̂d,m

) (optimism)

≤ JMd,m
(π∗
Md,m

)− JMd
(π∗
M̂d,m

) (greedy policy)

≤ JMd,m
(π∗
Md,m

)− JM̂d,m
(π∗
M̂d,m

) + JM̂d,m
(π∗
M̂d,m

)− JMd
(π∗
M̂d,m

)

≤
εRm,d
1− γ̂

+
γ̂εTmRmax
2(1− γ̂)2

+ JM̂d,m
(π∗
M̂d,m

)− JMd
(π∗
M̂d,m

) (by Theorem A.28)

≤ 2
εRm,d
1− γ̂

+
ˆγεTmRmax

(1− γ̂)2
+ JMd,m

(π∗
M̂d,m

)− JMd
(π∗
M̂d,m

) (by Theorem A.27)

≤ 2
εRm,d
1− γ̂

+
γ̂εTmRmax
(1− γ̂)2

+ Vmax · PM [escape(τ̃ |π)] (by Theorem A.29)



For the PM [escape(τ̃ |π)] term,

1. If PM [escape(τ̃ |π)] < εd
Vmax

: the policy is 2εd-optimal.

2. If PM [escape(τ̃ |π)] ≥ εd
Vmax

: Successful exploration occurs at most m|Ŝ||Â| times and with Chernoff-Hoeffding bound
(Theorem A.20), we observe h = m|Ŝ||Â| or more successful exploration (heads) with a probability at least 1 − δ, after
W episodes (tosses), where

W = O( m|Ŝ||Â|
PM [escape(τ̃ |π)]

ln
1

δ
)

= O( |Ŝ||Â|
ε3d(1− γ̂)2

V 3
max(|Ŝ|+ ln

|Ŝ||Â|
δ

) ln
1

δ
)

Sample complexity analysis
The expression in Item 2 quantifies the sample complexity of aRmax algorithm, where the states and actions are discretized
to a radius λ. To find the sample complexity in the M-FOS context, we need to express |Ŝ| and |Â| in terms of the inner-
game state space size |S| and inner-game action space size |A|.

Let M = 〈S,A, T ,R, γ〉 be a t-step MDP in the inner-game. An inner agent’s Q table has |S| × |A| entries, and
there are infinite possible values that an entry can theoretically take. We can get the bound of the inner-game Q-value:
Q(s, a) ∈ (0, Rmax1−γ ). After discretizing the Q-values to radius λ, an entry can take Rmax

λ(1−γ) possible values. Thus, the

cardinality of an agent’s discretized Q-table is ( Rmaxλ(1−γ) )
|S||A|.

Assuming there are n agents in the game, Rmax = 1, γ̂ = γ and εd = ε+
√
n+ 1Lα,

|Ŝ| = |φ−i| = (
1

λ(1− γ)
)n|S||A| , |Â| = |φi| = (

1

λ(1− γ)
)|S||A|

which gives us the final expression of the sample complexity of M-FOS, implemented in case 1:

O( |Ŝ||Â|
ε3d(1− γ̂)2

V 3
max(|Ŝ|+ ln

|Ŝ||Â|
δ

) ln
1

δ
)

∼ O(
( 1
λ(1−γ) )

2n|S||A|( 1
λ(1−γ) )

|S||A|

ε3d(1− γ̂)2
1

(1− γ)3
ln

1

δ
)

∼ O(
( 1
λ(1−γ) )

(2n+1)|S||A|

ε3d(1− γ̂)5
ln

1

δ
) (16)

Note that this term drops the logarithmic factor ln |Ŝ||Â|
δ and is expressed in terms of εd for simplicity.

A.6 Case 2 - Past trajectories

The second case only differs from the first by the meta-state representation, where Ŝ is the trajectory of all agents τ . The
meta-action Â is still our agent’s discretized policy φi, which we discretize with radius λ. The sample complexity proof
remains mostly the same, except that only the meta-action is discretized. Thus the proofs below are based on Section 4.1
and only changes due to the different representation will be displayed.

Discretization Setup:
We define the meta-reward after discretization as

R(ŝ, âd) =
1∑âd+α

âd−α n(ŝ, â)

âd+α∑
âd−α

r̂(ŝ, â) where â ∈ [âd − α, âd + α]



Assuming α is small enough such that ∀ŝd ∈ Ŝd and ∀âd ∈ Âd,

|R(ŝ, â)−R(ŝ, âd)| < max
â

∥∥(ŝ, â)− (ŝ, âd)
∥∥
2

< max
â

(â− âd)

< α

(17)

Sample complexity analysis:
Since the Lemmas and Theorems used to prove case 1 and case 2 are the same, by observation, we replace the factor of√
n + 1 in case 1 by 1 in case 2. This thus gives us the expression for m and sample complexity W for constants C > 0:

m ≥ CV 2
max

Ŝ + ln(ŜÂ/δ)
ε3d(1− γ̂)2

(18)

W = O( m|Ŝ||Â|
PM [escape(τ̃ |π)]

ln
1

δ
)

= O( |Ŝ||Â|
ε3d(1− γ̂)2

V 3
max(|Ŝ|+ ln

|Ŝ||Â|
δ

) ln
1

δ
)

(19)

Sample complexity in the M-FOS context
Let M = 〈S,A, T ,R, γ〉 be a t-step MDP in the inner-game. Again, we express |Ŝ| and |Â| in terms of the inner-game
state space size |S| and inner-game action space size |A|. There are still ( Rmaxλ(1−γ) )

|S||A| different combinations for one
agent’s discretized Q-table.

Assuming there are n agents in the game, Rmax = 1 and γ̂ = γ. In the M-FOS paper, the meta-state is the trajectory
in the inner game of all agents, i.e. τ = {s1,a1, r1, · · · , st,at, rt, }. However, this leads to enormous combinations
and is infeasible to implement in Rmax (which requires a transition matrix of size |Ŝ| × |Â| × |Ŝ|). Thus, we feed in
limited history as the meta-state, i.e. ŝt = τh(t) = {st,at, rt, · · · , st+h,at+h, rt+h, }, the number of combination of a
state-action-reward tuple is |sar| = (|S||A||R|)n. Thus,

|Ŝ| = |τh| = |sar|h = (|S||A||R|)nh = (|S||A|)nh( 1

λ(1− γ)
)nh

|Â| = |φi| = (
1

λ(1− γ)
)|S||A|

which gives us the final expression of the sample complexity of M-FOS, implemented in case 2:

O( |Ŝ||Â|
ε3d(1− γ̂)2

V 3
max(|Ŝ|+ ln

|Ŝ||Â|
δ

) ln
1

δ
)

∼ O(
(|S||A|)2nh( 1

λ(1−γ) )
2nh( 1

λ(1−γ) )
|S||A|

ε3d(1− γ̂)2
1

(1− γ)3
ln

1

δ
)

∼ O(
(|S||A|)2nh( 1

λ(1−γ) )
2nh+|S||A|

ε3d(1− γ̂)5
ln

1

δ
)

Note that this term drops the logarithmic factor ln |Ŝ||Â|
δ and is expressed in terms of εd for simplicity.



B Experiments

B.1 Pseudo-code

Algorithm 2 Adapetd M-FOS Algorithm with an Rmax meta-agent

Meta-game Inputs: Ŝ, Â, γ̂,m, ε, U(·, ·), T̂ , K̂ Inner-game Inputs: S,A, γ, T
Initialisation: Q̂(s, a)← U(s, a), r̂(ŝ, â)← 0, v(ŝ, â)← 0, v(ŝ, â, ŝ′)← 0

1: for meta-episode n = 0 to Ĵ do
2: Reset environment
3: for meta-time step t = 1 to K̂ do
4: Sample a−i = ε-greedy(φ−i

t )

5: Run inner game of length T and collect trajectory [τ−i

t̂
, τ i
t̂
]

6: â = ai

7: r̂t̂ = ri + γ̂r̂t̂−1

8: ŝ′ = [τ−i

t̂
, τ i
t̂
]

9: Let ŝ′ be the next meta-state after executing meta-action â from meta-state ŝ
10: if v(ŝ, â) < m then
11: r̂(ŝ, â)← r̂(ŝ, â) +Ri

t̂
12: v(ŝ, â)← v(ŝ, â) + 1 {Increment visitation frequency}
13: v(ŝ, â, ŝ′)← v(ŝ, â, ŝ′) + 1
14: if v(ŝ, â) = m then

15: for i = 1, 2, 3, · · · , d
ln( 1

ε(1−γ) )

1−γ e do
16: Let (¯̂s, ¯̂a) be the STATE-action pair that has been visited FOR at least m times
17: for all (¯̂s, ¯̂a) do
18: if v(¯̂s, ¯̂a) ≥ m then
19: R̂(¯̂s, ¯̂a) := 1

v(¯̂s,¯̂a)
r̂(¯̂s, ¯̂a)

20: T̂ (ŝ′|¯̂s, ¯̂a) := v(¯̂s,¯̂a,ŝ′)

v(¯̂s,¯̂a)

21: Q̂(¯̂s, ¯̂a)← R̂(¯̂s, ¯̂a) + γ̂
∑
s′ T̂ (ŝ

′|¯̂s, ¯̂a)maxâ′ Q̂(ŝ′, â′)
22: ŝ← ŝ′

C Limitations

C.1 Choice of meta-agent
Rmax is an intuitive and simple algorithm to implement as a meta-learner and to quantify the sample complexity of M-FOS.
However, it comes with a number of limitations:

• Tabular RL: Rmax requires finite and discrete state and action space. In practical RL scenarios, the state space is often
infinite, creating a need for discretization. This limits the algorithm’s effectiveness in achieving an optimal policy.

• Linear function approximator: There is a discrepancy between theoretical and empirical work in RL. Most theoretical
literature assumed a linear MDP and approximate transitions and rewards with linear functions to simplify the problem
statement. For example, Rmax approximates the transitions and rewards function linearly using maximum likelihood esti-
mation. However, empirical evidence shows that non-linear function approximators like neural networks or deep learning
perform better due to their complexity. Rmax thus cannot capture the dynamics in a high-dimensional environment as
efficiently as a non-linear function approximator can.

• Model-based RL: Rmax is an MBRL algorithm with some limitations compared to an MFRL algorithm. MBRL relies
on accurate models of the environment, which is challenging to construct in high-dimensional or stochastic environments.
Thus, it is faintly applicable to the multi-agent opponent-shaping goal that M-FOS is designed for.



These limitations hinder the empirical and theoretical investigation of the sample complexity of M-FOS. Ideally, we aim
to develop a method for quantifying the sample complexity of actor-critic or policy-gradient methods to bridge the gap
between theoretical and empirical knowledge.


