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Abstract

We investigate the problem of sequentially selecting elements of an unknown ma-
troid in an online manner to form an independent set, with the goal of maximizing
the minimum probability of acceptance across all elements, a property we define
as f -fairness. Under adversarial arrival orders, we design an α(ln k + 1)-fair
algorithm, where α is the arboricity of the matroid and k is the rank, a result that is
nearly optimal. For laminar matroids, we develop a (2α− 1)-fair algorithm, which
is optimal up to constant factors, achieved through a novel online coloring scheme.
In the random arrival order setting, we achieve a (4 + o(1))α-fair algorithm for
graphic matroids, matching the optimal result up to constant factors, relying on a
novel technique for learning a degeneracy ordering using a sampled subset of edges.
We further generalize our result to p-matchoids, obtaining a β(p ln k + 1)-fair
algorithm for the adversarial arrival model, where β is the optimal offline fairness.
Notably, all our results can be extended to a setting with no prior knowledge of the
matroid with only a logarithmic increase in the fairness factor.

1 Introduction

One of the most central problems in online decision making is the secretary problem introduced
in the seminal result of Dynkin [Dyn63]. In this problem, a sequence of values arrives online in
a random order, and the goal is to select the maximum value. It is well known that the optimal
strategy selects the maximum value with probability 1/e. A natural generalization allows selecting
multiple elements, subject to combinatorial constraints, and competing with the offline optimum in
expectation. One of the central open questions in this area is the matroid secretary conjecture of
Babaioff et al. [BIK07, BIKK18], which posits that a constant-competitive algorithm exists when
the feasibility constraint is given by a matroid 1. Despite extensive research, this conjecture remains
unresolved. However, an important limitation of the standard matroid secretary problem is that it
solely maximizes the sum of accepted elements, potentially leading to highly unequal outcomes—an
issue of particular concern from a fairness perspective.

Motivated by this, we introduce and study the fair matroid selection problem. In this problem,
elements from an unknown matroid arrive online, and an algorithm must select elements irrevocably
while respecting the matroid’s independence constraints. Said algorithm may learn the matroid’s
structure online via independence queries on sets containing only elements which have already

1A matroid is a tuple M = (E, I), where E is a finite ground set and I ⊆ 2E satisfies: (1) If I ∈ I and
I ′ ⊆ I , then I ′ ∈ I; (2) If I, J ∈ I with |I| < |J |, then there exists e ∈ J \ I such that I ∪ {e} ∈ I.
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arrived. We define an algorithm alg as f -fair (where f > 1) if mine Pr [e ∈ alg] ≥ f−1. That is,
every element has a guaranteed selection probability of at least f−1. We explore this problem under
both adversarial and random arrival models, investigating the minimum achievable fairness parameter
f in each case.

More broadly, online selection problems have been widely studied under different assumptions
for both random and adversarial arrival models [Din13, CFH+19, GS20]. The general framework
involves a set of elements from a combinatorial structure arriving sequentially, each associated with a
weight. The goal is to irrevocably select a feasible subset of elements to maximize the total weight.
A common application of these problems arises in scenarios where elements represent agents and
weights correspond to agent utilities. From this perspective, maximizing total weight translates
naturally to maximizing social welfare, i.e., the sum of all agents’ utilities.

While social welfare is a natural objective, it does not account for how utility is distributed among
agents. In many settings, a purely welfare-maximizing allocation can result in extreme disparities,
where some agents receive little to no utility. This motivates the study of fairness-aware algorithms,
which aim to ensure that every agent receives a meaningful share of the available utility. Fair allocation
problems have been studied for decades (e.g., see Varian [Var74]) and appear in many real-world
domains, including job assignments, online advertising auctions, and resource-limited procurement,
where fairness constraints help prevent highly uneven outcomes [PV22, LWZ23, FJU24, CEEV24].

A widely studied notion of fairness is max-min fairness, which aims to maximize the minimum utility
received by any agent. In the context of offline fair allocation, this problem is generally referred to
as the Santa Claus problem [BS06], though variants had been previously explored under different
names [LMMS04, BD05], where the goal is to distribute a set of items among agents while ensuring
that the least satisfied agent receives as much utility as possible. Multiple works have examined this
problem from a computational perspective, focusing on designing efficient approximation algorithms
(see Section A for further discussion). Recent works have studied the Santa Claus problem in online
settings as well [SHPK22]. However, the problem formulations in these works differ significantly
from the secretary problem and the closely related prophet inequalities problem. In most of these
works, agents are not selected in a traditional sense; instead, each agent is allocated a set of items.

Given the significance of the matroid secretary problem, numerous works have sought to develop
constant-competitive algorithms for specific subclasses of matroids. Two particularly well-studied
cases are laminar matroids and graphic matroids, both of which have been the focus of extensive
research, with many works progressively improving the competitive ratio [BIK07, BDG+09, KP09,
IW11, JSZ13, MTW16, STV21, HPZ23, BLSV24, BHK+25]. In this work, we take an analogous
approach, focusing on special cases—but in the context of fair matroid selection—where we obtain
improved results.

1.1 Our contributions

We first show that for general matroids, the optimal fairness can be nearly tightly characterized in
terms of the arboricity of the matroid, defined as the minimum number of independent sets required
to cover the matroid, which we denote with α. The idea behind this result is to exploit Edmonds’
formula (Theorem 6) for α, which makes a natural lower bound for α tight. The below theorem is
restated in the body as Theorem 7.
Theorem 1. An f -fair algorithm for fair matroid selection must satisfy f > α−1 even if it is allowed
to know all elements of the matroid upfront. Furthermore, if all elements are known upfront, there
exists a natural α-fair algorithm.

We then move to our central result, showing that we can in fact be competitive with an offline
algorithm even in a fully adversarial online setting, losing only a factor of O(log k) in fairness.
Theorem 2. There exists an ⌈α(ln k + 1)⌉-fair algorithm for the adversarial order fair matroid
selection problem when α is known upfront. Furthermore, there exists an Õ(α log k)-fair algorithm
that knows absolutely nothing upfront.

This is proven as Theorem 10 and Corollary 2. There are two key ideas behind the associated
algorithm. The first is to reduce fair matroid selection to an online coloring problem, where we
must color arriving elements so that each color forms an independent set: we can then pick a color
uniformly at random in advance of the elements’ arrival, and accept all elements with that color. We
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then color using a simple greedy algorithm; the second idea comes in the analysis of this greedy
algorithm, where the fact that the first color forms a maximal independent set leads us to argue that
each color removes 1

α of the remaining elements. 2

We then consider the special case of laminar matroids which are characterized by a laminar family of
sets over the ground set, each with an associated budget, so that an independent set in the matroid
does not have more elements from any set in the laminar family than the budget allows for. We study
the fair laminar matroid selection problem where the elements arrive online, each revealing the sets
containing it. Our main result is the following theorem which resolves the problem in this special
case up to constant factors.

Theorem 3. There exists a 2α-fair algorithm for the adversarial order fair laminar matroid selection
problem when α is known in advance. Furthermore, there exists a 2h(α)-fair algorithm with
absolutely no upfront knowledge, where h(α) can be chosen to be the fairness of any algorithm for
fair matroid selection on rank-1 matroids; in particular, h(α) can be Õ(α).

This is proven as Theorem 11 and Corollary 3. This algorithm once again makes use of the reduction
to the coloring problem introduced for the general algorithm. We then exploit the tree-like structure
of laminar matroids to simulate an Euler tour ordering of the elements of the laminar matroid online,
coloring the elements so that any α consecutive elements have distinct colors, which then guarantees
independence for each color’s set of elements.

We next turn our attention to the random arrival order model and obtain nearly tight results for the
fair graphic matroid selection problem. In this problem the elements of the matroid are edges of a
graph and a set is independent if and only if it contains no cycles. The edges arrive online, revealing
their endpoints. Our main result is the following theorem.

Theorem 4. There exists a (4 + o(1))α-fair algorithm for the random order fair matroid selection
on graphic matroids when α is known in advance. Furthermore, there exists an O(α)-fair algorithm
that does not know α in advance.

This is proven as Theorem 15 and Corollary 4. This result is our most technically involved. We first
note that α can be 2-approximated by the degeneracy of a graph, i.e. the minimum integer d such that
the vertices can be ordered to have at most d edges to preceding vertices; such an ordering, known
in advance, would immediately imply a d-fair algorithm. We then carefully learn an approximate
such ordering online based on a sample of the edges, showing how the specific manner in which we
construct the ordering guarantees that each vertex, with high probability, has at most d+ o(d) edges
to preceding vertices.

We finally generalize our result for general matroids for the fair matchoid selection problem, where
the underlying constraint is a matchoid instead of a matroid. Matchoids are a well-studied structure for
combining multiple matroid constraints; briefly, a p-matchoid imposes multiple matroid constraints
on a single ground set, such that any element of the ground set is constrained by at most p matroids.
We prove the following theorem.

Theorem 5. For any p ≥ 1, there exists a ⌈β(p ln k + 1)⌉-fair algorithm for the adversarial order
fair matchoid selection problem over p-matchoids with rank k where β is the optimal offline fairness,
when p, k, β are known in advance. Furthermore, there exists an Õ(βp log k)-fair algorithm that
knows absolutely nothing in advance.

This is proven as Theorem 17 and Corollary 5 in Appendix B. This result relies on many of the
same ideas as the result for the single-matroid case; the most notable difference comes from the fact
that a maximal set in a p-matchoid only p-approximates a maximum set in a p-matchoid, roughly
explaining why we lose an additional factor of p in fairness.

Map of the paper. The remainder of the paper is organized as follows. In Section 2, we relate our
notion of fairness to the concept of arboricity of graphs and matroids. In Section 3, we study the
adversarial order model. In Section 4, we study the random order model. Due to space constraints,
we defer parts of the proofs, as well as a discussion of further related work, to the Appendix.

2We note that the greedy approach has also been considered by prior work on online matroid color-
ing [FKT89].
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2 Characterizing Fairness

As described in the introduction, we characterize algorithms for fair matroid selection, regardless
of the variant, by their fairness; specifically, we say that an algorithm for a particular variant of fair
matroid selection is f -fair if it guarantees that any element of the matroid to be presented is selected
with probability at least 1

f . Thus, we aim to minimize the value of f , both asymptotically and by
constant factors.

A natural first question to ask is what kind of limits exist on f : clearly, no algorithm can be better
than 1-fair, as an element cannot be selected with probability higher than 1. Even further than this
however, if we consider a rank-1 matroid with n elements, as only 1 element can be selected, some
element must be selected with probability at most 1

n , and so no algorithm can be better than n-fair,
even if we discard the online setting and allow the algorithm to see all elements in advance. We thus
seek a way of characterizing what an "optimal" value of f looks like as a function of the matroid to
be presented, and the quantity that arises to serve this purpose is the arboricity of the matroid.

The arboricity, which we will refer to as α, is traditionally defined on a graph G to be the minimum
number of sets into which we must partition the edges of G so that each set is a forest, i.e. is free of
cycles. By analogy with graphic matroids, the arboricity can be generalized to matroids as follows:
Definition 1. For any natural number α, we say that a matroid M = (E, I) is α-arboric if there
exists a partition E = A1⊔ · · · ⊔Aα of its elements such that for all j = 1, . . . , α, Aj is independent.
The arboricity of M is the minimum α such that M is α-arboric.

The above quantity is not usually referred to as the arboricity, and indeed does not seem to have a
commonly used name. In spite of this, it is well studied, most notably by Edmonds [Edm65], who
in 1965 simultaneously proved the following formula for the arboricity and gave an algorithm for
computing the corresponding partition.
Theorem 6 (Edmonds). For any matroid M = (E, I), let α be its arboricity. Then,

α =

⌈
max
A⊆E

|A|
rankA

⌉
;

that is, α is the smallest integer which is at least the ratio of the size of A to the rank of A for all sets
A of elements of the matroid.

Theorem 6 is fundamental for fair matroid selection as it can be used to show that the optimal fairness
of an offline algorithm, i.e. an algorithm which is allowed to view the entire matroid upfront before
making any decisions, is within an additive factor of 1 of the arboricity of the matroid:
Theorem 7. For any matroid M = (E, I), let α be its arboricity. Then there exists an α-fair offline
algorithm for fair matroid selection on M , while there does not exist an (α− 1)-fair offline algorithm
for fair matroid selection on M . Thus, the optimal fairness of an offline algorithm for fair matroid
selection on M lies in the range (α− 1, α].

The idea behind this theorem is that an offline algorithm can simply partition the matroid into α
independent sets (we remark that this can be done efficiently using Edmonds’ algorithm), then pick
one of these sets uniformly at random; meanwhile, Theorem 6 tells us that a set S of elements exists
such that the number of elements in S is nearly α times as much as the number of elements of S that
can be taken at once, giving the lower bound. A formal proof is located in Appendix C.1.

The arboricity α is therefore a natural parameter by which to characterize the fairness of algorithms
for fair matroid selection – an α-fair algorithm can be said to be α

α−1 = 1 + o(1)-competitive with
the optimal offline algorithm for fair matroid selection, and for any α there exist matroids (even more
simply, rank-1 matroids) for which α-fairness is tight. Therefore, a natural goal for algorithms for
fair matroid selection is to achieve or at least approach α-fairness.

3 Adversarial Order Fair Matroid Selection

We now move to the main problem we consider, which is the adversarial order variant of fair matroid
selection. The formal description of the problem is as follows: a matroid M = (E, I) is chosen
and E is ordered, unknown to the algorithm. The algorithm is presented with the elements of E in
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said order, which the algorithm must accept or deny online, subject to the constraint that the set of
elements it accepts must be independent. At any point in time, the algorithm can access the matroid
via independence queries containing only elements which have already been revealed. In the most
natural formulation of this problem, the algorithm is totally oblivious, meaning that it receives no
information upfront about the matroid it will observe – it does not even know the number of elements
in the matroid. As we will see, even this totally oblivious variant of fair matroid selection is tractable.
However, when designing algorithms, it does turn out to be useful to have knowledge of certain
properties of the matroid upfront. The most commonly useful will be the arboricity α, being that it
characterizes the optimal fairness achievable; in addition, it is sometimes useful to know the rank k
of the matroid. We would therefore like to design algorithms in a setting in which such properties are
known – such algorithms will be described, for example, as α-knowing – and then somehow adapt
them to the more difficult setting in which nothing is known upfront.

We show that such an adaptation is possible, and furthermore characterize how said characterization
can be performed optimally. We define a class of feasible functions; feasible functions will determine
how much we lose in fairness when adapting an algorithm that knows some parameter upfront to be
totally oblivious.
Definition 2. A function h : N+ → R is said to be feasible if h is nondecreasing and

∑∞
j=1

1
h(j) ≤ 1.

More strongly, in adapting an algorithm aware of some parameter p to one that is oblivious, we can
lose a factor of at most f(p) if and only if f is feasible; this is expressed in the following theorems.
Theorem 8 shows how adaptation can be performed for any algorithm with a loss of only f if f is
feasible, while Theorem 9 shows how a loss of some feasible f is necessary even for the simple case
of rank-1 matroids. Proofs of both theorems are located in Appendix C.2.
Theorem 8. Suppose that for some class C of matroids, we have a function f : C → Z+ defining a
property of matroids in C. Further suppose that we are given an algorithm Al parameterized by a
positive integer l and a constant c ∈ R+ such that the algorithm Al is cl-fair when the input matroid
M ∈ C satisfies f(M) ≤ l. Then for any feasible h, there exists a totally oblivious fair matroid
selection algorithm A′ which is c · h(f(M))-fair on M ∈ C.
Theorem 9. Let A be a totally oblivious fair matroid selection algorithm for the class of rank-1
matroids, such that A is h(α)-competitive when the matroid is α-arboric. Then h is feasible.

Concretely, Theorem 8 in fact allows us to make algorithms totally oblivious while only losing loga-
rithmic terms in the fairness, which we express in the below corollary (also proven in Appendix C.2):
Corollary 1. Suppose that for some class C of matroids, we have a function f : C → Z+ defining a
property of matroids in C. Further suppose that we are given an algorithm Ak parameterized by
a positive integer k and a constant c ∈ R+ such that the algorithm Ak is ck-fair when the input
matroid M ∈ C satisfies f(M) ≤ k. Then there exists a totally oblivious fair matroid selection
algorithm A′ which is O(f(M) · log2 f(M)) = Õ(f(M))-fair on M ∈ C.

Having shown how algorithms can be adapted to be totally oblivious in an optimal way, we now
focus our attention on the setting where algorithms have upfront knowledge of properties of the
matroid. The remainder of the section is organized as follows: subsection 3.1 deals with our main
result for general matroids, while the following subsections deal with algorithms for specific classes
of matroids – subsection 3.2 presents a near optimal algorithm for the class of laminar matroids. We
also note that for the further special case of uniform matroids, there exists an α-knowing, α-fair
algorithm, which then both is optimal for an α-knowing algorithm and implies an optimal totally
oblivious algorithm by Theorem 8; a proof of this can be found in Appendix C.10.

3.1 General matroids

The main result of this paper is the below algorithm for adversarial order fair matroid selection on
general matroids. This algorithm shows that even the general adversarial order fair matroid selection
problem is tractable, which is expressed in the below theorem.
Theorem 10. Let α, k represent the arboricity and rank of a matroid respectively. Then Algorithm 1 is
an ⌈α(ln k+1)⌉-knowing algorithm for adversarial order fair matroid selection that is ⌈α(ln k+1)⌉-
fair.

We first note that we can apply Theorem 8 to obtain an oblivious algorithm for fair matroid selection:
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Algorithm 1: General algorithm for adversarial order fair matroid selection.
Let m = ⌈α(ln k + 1)⌉.
For each j = 1, . . . ,m, initialize the set Aj as empty.
Choose r uniformly at random from 1, . . . ,m.
for e being presented do

Let j be the minimum among 1, . . . ,m such that Aj ∪ {e} is independent.
Insert e into Aj .
if j = r then

Accept e.

Corollary 2. There exists a totally oblivious algorithm for adversarial order fair matroid selection
which is Õ(α log k)-fair.

Thus, there exists an algorithm for the most pessimistic variant of fair matroid selection, assuming no
upfront knowledge of the matroid and an adversarial ordering, which only loses in fairness compared
to the optimal α by logarithmic factors in α and k.

We now describe the two key ideas underlying Algorithm 1 and its analysis. The first idea is to
convert the fair matroid selection problem into an online coloring problem: we aim to color all
arriving elements using at most α(ln k + 1) colors such that each color class forms an independent
set. Then, by choosing a color uniformly at random and selecting all elements of that color, we
ensure fairness (since every element is colored) and validity (since each color class is independent).
Crucially, the color can be chosen in advance, before any elements are revealed. The second idea
shows how this coloring can be done greedily. The analysis begins with observing that the first set A1

must be a maximal independent set, and thus have rank k. Since the matroid is α-arboric, it can be
partitioned into α independent sets, each of size at most k, implying that M has at most αk elements
and so A1 covers at least a 1

α fraction of them. By repeatedly applying this argument, each iteration
removes at least a 1

α fraction of the remaining elements, and thus the number of iterations needed to
cover all elements is at most ln k + 1.

The full proofs of Theorem 10 and Corollary 2 are located in Appendix C.3.

3.2 Laminar matroids

The laminar matroids are the class of matroids that can be defined as follows. Let M = (E, I) be the
matroid in question. Then there exists an integer m and two sequences S1, . . . , Sm and r1, . . . , rm
such that for each j = 1, . . . ,m, Sj ⊆ E and rj is a positive integer. We further constrain that the
family of sets F = {S1, . . . , Sm} is a laminar family, meaning that for any two S, T ∈ F , if S
and T have nonempty intersection, then either S ⊆ T or T ⊆ S. We then say that a set A ⊆ E is
independent iff for all j = 1, . . . ,m, |A ∩ Sj | ≤ rj .

In this way, a laminar matroid represents a hierarchy of restrictions – we can build a hierarchy
(alternatively, a rooted tree) with each element of the matroid being at the bottom of the hierarchy
(i.e. a leaf), where each level of the hierarchy imposes a constraint on the amount of elements within
that level that can be in an independent set (i.e. each vertex imposes a constraint on the amount of its
descendants that an independent set can contain). Laminar matroids thus provide a rich structure to
work with.

There, in fact, exists a very practical motivation for considering fair matroid selection under the
hierarchy of restrictions imposed by a laminar matroid. Consider a public magnet school drawing
its applicants from multiple counties in a metropolitan area. In order to address concerns about
geographical diversity, the school employs a "geographical lottery" system of admissions. Applicants
are first deemed acceptable based on academic criteria. Acceptable applicants are then selected at
random, subject to constraints: a cap on the total number of applicants to be accepted, a cap on the
number of applicants to be accepted from each county based on the funding they can provide, and
a cap on the number of applicants to be accepted from intra-county regions, in order to ensure that
admissions are not dominated by more prosperous regions.

This example is based on the admissions system of a real high school: Thomas Jefferson High
School for Science and Technology in Alexandria, Virginia, USA (see [Fai25]). The hierarchical caps
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imposed on admissions can then be modeled as a laminar matroid. In order to fulfill the requirements
of a lottery system, each acceptable applicant should have a fair chance of admission. If the high
school were then to employ rolling admissions, where some applicants must receive a decision before
others apply, we then have an online setting which is exactly the fair matroid selection problem on
laminar matroids, for which the algorithm we are about to describe provides a solution.

The following algorithm assumes that when an element e is presented, we learn the set of indices j
for which e is contained in Sj . This is analogous to graphic matroids, where when an element, which
corresponds to an edge in a graph, is presented, we learn the identities of its endpoints; it is also
motivated by the previously described example of high school admissions, as we would be aware of
each applicant’s place of residence. The algorithm continues to be oblivious other than knowing α –
it does not know m or any of the rj upfront. The fairness achieved by this algorithm is expressed in

Algorithm 2: Algorithm for adversarial order fair matroid selection on laminar matroids.
Let T be an ordering of the presented elements. Initially, T is empty.
Let c be an assignment of colors to the presented elements. Initially, c is empty.
Choose r uniformly at random from 1, . . . , 2α− 1.
for (e, J) being presented, where J contains all indices of sets containing e do

Define j ∈ J so that we have previously seen an element contained in Sj , and among such j,
the number of elements we have seen contained in Sj is minimized.

if j exists then
Insert e in T after the last element in T contained in Sj .

else
Append e to the end of T .

Let N be the union of the nearest α− 1 elements to the left of e in T and the nearest α− 1
elements to the right of e in T .

Choose ce to be the least color among 1, . . . , 2α− 1 that is not the color of an element of N .
if ce = r then

Accept e.

the below theorem and corollary, and is optimal up to a constant factor of 2.
Theorem 11. Algorithm 2 is an α-knowing algorithm that is (2α− 1)-fair for adversarial order fair
matroid selection on laminar matroids.

Corollary 3. There exists a totally oblivious algorithm for adversarial order fair matroid selection
on laminar matroids which is Õ(α)-fair. More generally, for any feasible h, there exists a totally
oblivious algorithm for adversarial order fair matroid selection on laminar matroids which is 2h(α)-
fair.

Algorithm 2 again uses the first key idea from Algorithm 1 of converting the fair matroid selection
problem to an online coloring problem; it differs by a more sophisticated method of coloring.
Specifically, the algorithm maintains an ordering of the elements of the laminar matroid, with
the essential property that for any set Sj , the elements of Sj appear contiguously in the ordering.
Algorithm 2 then maintains the invariant that any α consecutive elements in the ordering have
different colors; it does this online using 2α− 1 colors, where offline it can be done trivially using
α colors by cycling through colors. This invariant then guarantees that the set of elements of any
particular color satisfies the constraint imposed by each Sj , rj , ensuring the validity of the algorithm.

The full proofs of Theorem 11 and Corollary 3 are located in Appendix C.4.

4 Random Order Fair Matroid Selection

In this section, we consider a variant of fair matroid selection in which the elements arrive in a
random order. A practical motivation of the random order setting is the following situation. We have
access to a set of candidates of which we have no prior knowledge. We are then free to interview
each candidate in any order that we choose; immediately after interviewing a candidate, we must
choose whether or not to accept said candidate. Our goal is then to accept candidates fairly, subject
to a matroid constraint on which candidates can be accepted. As we choose the order in which we
interview candidates, we could always choose to interview them in a uniformly random order; on the
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other hand, assuming that the candidates are chosen and arranged adversarially, the adversary could
always choose to arrange the candidates uniformly randomly. Thus, this model is equivalent to the
candidates being fixed to arrive in a random order, with the added detail that the algorithm is allowed
to know the number n of arriving elements beforehand.

We therefore first formally define the random order fair matroid selection problem as follows: a
matroid M = (E, I) is chosen, unknown to the algorithm. The algorithm is first told n = |E|, then
sees the elements of E in a uniformly random order, which the algorithm must accept or deny online,
subject to an independence constraint. Like before, the algorithm can access the matroid online via
independence queries containing only elements which it has already seen. The algorithm is then
judged based on its fairness, as usual. We will describe algorithms that rely on no upfront knowledge
other than n as simply oblivious, while algorithms with upfront knowledge will be described as, for
example, α-knowing, as before.

We now note that for the purpose of algorithm design, rather than working directly in the above
model, it may be more natural to work in a sampling model. In the sampling model, the algorithm
specifies probabilities p1, . . . , pm that sum to less than 1; then, the elements of E are partitioned into
sets S1, . . . , Sm, T , each being placed independently into Sj with probability pj (with T collecting
the remainder of elements). The algorithm is first presented with the sets S1, . . . , Sm without the
possibility of accepting their elements, then sees T in a random order and must accept or deny its
elements online.

It can be shown that an algorithm working in the sampling model implies an algorithm for the standard
model of random order fair matroid selection; a formal proof of this is located in Appendix C.5
in addition to a formal definition of the sampling model. As an example of the application of the
sampling model, we note that it allows us to approximate the arboricity α up to a constant factor –
roughly, we can sample half of the elements, then multiply their arboricity by 2 to obtain a proxy for
the true arboricity of the matroid (the full proof is deferred to Appendix C.6).

Theorem 12. Suppose that for some class C of matroids closed under restriction, we are given
an algorithm Aα parameterized by the arboricity α and a nondecreasing f : Z+ → R that grows
polynomially, such that the algorithm Aα is f(α)-fair when the input matroid M ∈ C is α-arboric.
Then there exists an oblivious algorithm A′ for random order fair matroid selection that is O(f(α))-
fair on M ∈ C.

Thus, unlike the adversarial order model, there is no logarithmic loss necessary to remove foreknowl-
edge of α. The rank k can be approximated similarly (see Appendix C.7). Together, these imply that
the α-knowing and (α, k)-knowing algorithms derived in Section 3 automatically extend to random
order fair matroid selection. We now move to the algorithm unique to random order fair matroid
selection, which achieves O(α)-fairness on the class of graphic matroids.

4.1 Graphic matroids

We now focus on graphic matroids, which are the class of matroids where the independent sets are
forests in some graph G. An equivalent definition for a set S of edges being a forest (i.e. independent
in the graphic matroid) is that there is some ordering of the vertices of G such that for each vertex
v ∈ V , there is at most one edge in S connecting v to a vertex earlier in the ordering. A natural
strategy for ensuring that we select an independent subset of edges is then to pick such an ordering,
group edges by the endpoint of theirs that appears later in the ordering, and pick at most one such
edge. Indeed, this is the basis for a simple 2e-competitive algorithm for graphic matroid secretary
[KP09] – we select this ordering randomly, then for each group, simply play the normal secretary
problem, attempting to select the highest weight edge.

The trouble for the fair matroid selection problem is that we are not simply attempting to select
the highest weight edge – rather, we would like to select edges fairly, meaning that all edges have
some probability of being selected. One way we might hope to do this is to select an ordering of the
vertices such that each vertex v has at most α edges connecting it to vertices earlier in the ordering;
this brings us to the concept of degeneracy.

Definition 3. Given a nonnegative integer d, an undirected graph G = (V,E) is d-degenerate if there
exists an ordering v1, . . . , v|V | of V such that for any 1 ≤ j ≤ |V |, there exist at most d edges in E
of the form (vi, vj) for i < j. The degeneracy d of G is the minimum d such that G is d-degenerate.
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In general, the degeneracy d is not guaranteed to be equal to the arboricity α. However, crucially for
us, they are within a constant factor of each other as shown by the following well-known theorem:
Theorem 13. Given an undirected graph G with arboricity α and degeneracy d, we have α ≤ d < 2α.

We are thus guaranteed that for d < 2α, there exists an ordering as we desire parameterized by
d. However, the question still remains of how to compute such an ordering. Naturally, we cannot
compute such an ordering without knowing anything about the graph, meaning that we would like to
learn this ordering based on a sample of the edges. In order to facilitate this, we will introduce the
concept of a d-level of vertices in a graph. For reasons that will become clear later, we will define the
d-level for a directed graph.
Definition 4. Let G = (V,E) be a directed graph. Then we will define the d-level, ld : V →
N0∪{∞}, via the following iterative process. Number iterations starting from 0; in the j-th iteration,
we will remove all vertices of G with outdegree at most d, and set their d-levels to be j. The process
ends when no remaining vertices with outdegree at most d; those vertices will have a d-level of ∞.

Our algorithm will work by computing ld on a sample of the edges, which will give rise to an ordering,
from which we can apply the previously described idea of grouping edges by their later endpoint. The
following theorem describes various properties of the d-level in order to facilitate better understanding
of it; a formal proof of these properties is deferred to Appendix C.8.
Theorem 14. Let G = (V,E) be an undirected graph, and define its d-level ld by repeating each
edge of G in each direction to obtain a directed graph. Then G is d-degenerate iff ld is never ∞.
Furthermore, if G is d-degenerate, then we can obtain an appropriate ordering of V by sorting the
vertices in decreasing order of d-level.
Additionally, if G is d-degenerate, then ld is the unique function with the following properties: first, a
vertex v ∈ V with degree at most d has ld(v) = 0; second, for a vertex v ∈ V with degree larger
than d, let u be the neighbor of v with the d+ 1-th highest d-level; then ld(v) = ld(u) + 1.

Having established the concept of the d-level in a graph, we now move to the actual algorithm, which
will work in the framework of Theorem 18, taking multiple independent samples of edges. The

Algorithm 3: Algorithm for random order fair matroid selection on d-degenerate graphs.

Define q = 1
3d

1
4 .

Let m = 2 and p1, p2 = 1−q
2 .

Let S1, S2 be the presented samples of edges.
Initialize a directed graph H with no edges.
for (u, v) ∈ S1 with u < v do

Insert u → v into H .
for (u, v) ∈ S2 with u < v do

Insert v → u into H .
Let U be an ordering of the vertices in H by decreasing ld, breaking ties by vertex label.
for e = (u, v) being presented after the samples do

for w ∈ {u, v} such that w /∈ U do
Set ld(w) to 0.
Insert w into U appropriately.

Order (u, v) as (a, b) where a appears before b in U .
If no edge with later endpoint b has been accepted yet, accept e.

fairness achieved by this algorithm is expressed in the below theorem and corollary.
Theorem 15. When given an integer d ≥ 3, Algorithm 3 is (2 + o(1))d-fair in the random order fair
matroid selection setting on graphic matroids where the graph is d-degenerate.
Corollary 4. There exists an α-knowing algorithm for random order fair matroid selection on
graphic matroids which is (4 + o(1))α-fair. Furthermore, there exists an oblivious algorithm for
random order fair matroid selection on graphic matroids which is O(α)-fair.

Most of the intuition behind Algorithm 3 has already been described in the previous discussion of
ordering, degeneracy, and d-level. The key remaining component is that we do not simply sample
each edge to produce an H whose d-level we compute; rather, we convert G to a directed graph by

9



sampling each undirected edge (u, v) as either the directed edge u → v or the directed edge v → u
– this double sampling gives an intuition as to the reason for the constant 2 in the fairness. More
correctly, we simulate this process by directing edges in S1 as u → v and edges in S2 as v → u. The
motivation for this is that for a vertex v, we can fix all edges which are not outgoing from v, which
do not directly affect the d-level of v, then reason about which outgoing edges of v are sampled into
H , which directly affects the d-level of v but not any other vertices.

Naturally, these still indirectly affect all d-levels, as they may rely on the d-level of v. We handle this
in the analysis, by introducing an additional notion referred to as the "v-fixed d-level"; this is defined
in the same way as the usual d-level, except that v is fixed to never be removed by the algorithm, and
thus has a v-fixed d-level of ∞. We then show firstly, that the v-fixed d-level does not depend on
which edges are outgoing from v; and secondly, that all v-fixed d-levels of neighbors of v except for
the d largest are equal to the corresponding simple d-levels. These properties allow analyzing the
d-level independently from the edges outgoing from v by using the v-fixed d-level as a proxy.

The proofs of Theorem 15 and Corollary 4 are located in Appendix C.9.
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A Further Related Work

Online selection problems Our work is closely related to research on prophet inequalities and
the secretary problem. In their classical formulations, a sequence of values arrives online, and the
goal is to irrevocably select a large element. In the secretary problem, the set of values is chosen
adversarially, but their arrival order is random. Conversely, in prophet inequalities, the arrival order
is adversarial, but each element is drawn from a known distribution. These problems have been
extensively studied over the past two decades, with many generalizations to settings such as matroids,
matchings, and combinatorial auctions [KW12, Ala14, FGL14, Rub16, DFKL20, EFGT22a].

When the distributions are known and items arrive in random order, the problem is referred to as
the prophet secretary problem, first introduced by Esfandiari et al. [EHLM17], who designed an
algorithm with a competitive ratio of 1− 1/e. Subsequent works have improved this ratio [ACK18,
CSZ19, CSZ21], extended the problem to matroids and combinatorial auctions [EHKS18], and
obtained stronger results for the special case of i.i.d. variables [AEE+17, CFH+17, PT22].

While the original version of the secretary problem assumes that the elements have weights, one can
consider a variant where the elements are merely ordered. This uniquely determines the maximal
independent set, allowing for various notions of “competing with the optimum” [STV21]. One
such notion is probability competitiveness; an algorithm is said to have a probability competitive
ratio of c ≥ 1 if each element of the offline optimum appears in the output with probability at least
c−1. For general matroids, the best known probability competitive ratio is O(log k). Interestingly,
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in our problem, we achieve a similar O(log k) approximation to the offline optimum, despite the
significantly more challenging adversarial arrival model (see Theorem 10).

Traditionally, algorithms for prophet inequalities and secretary problems have relied on pricing-
based approaches. More recently, however, new techniques based on Online Contention Resolution
Schemes (OCRS) have emerged [EFGT22b, EFGT22a, MMG24]. Originally introduced by Feldman
et al. [FSZ16], the classical OCRS problem is formulated as follows: a sequence of elements arrives
in random order, and each element reveals whether it is active upon arrival. Activeness is determined
independently based on draws from a pre-specified Bernoulli distribution, where the parameters are
chosen to ensure that, on average, the active elements satisfy a given combinatorial constraint—e.g.,
for matroids, the parameter vector lies in the matroid polytope. Given a parameter c ∈ (0, 1), the
goal in the c-OCRS problem is to accept a subset of active elements such that, conditioned on being
active, each element is selected with probability at least c. Later works established the equivalence of
OCRS with prophet inequalities [LS18] and extended it to the random arrival model [AW18].

While the original formulation in Feldman et al. [FSZ16] assumes independence in the activeness of
elements, allowing correlations across elements makes the problem significantly more challenging.
For matroids, obtaining constant approximations to the offline optimum is equivalent to matroid
secretary as shown by Dughmi [Dug19, Dug21]. Crucially, as with standard OCRS, the activeness
distribution must be known in advance.

While our work shares similarities with OCRS in seeking a lower bound on the minimum probability
of acceptance, it differs in two key aspects. First, we make no distributional assumptions on the input,
allowing for a fully adversarial setting. Second, we derive results for both random and adversarial
arrival orders. Notably, for correlated distributions, Dughmi [Dug21] showed that no meaningful
guarantees can be achieved if the order is adversarial, or the input distribution is unknown.

Fairness Fair division is commonly studied in game theory, with the roots going as far back as
1948 [Ste48]. Different notions of fairness are considered in the literature including max-min fairness,
Nash welfare, and envy-freeness. A notable example of max-min fairness in allocation problems is
the Santa Claus problem which seeks to distribute m items among n agents in a way that maximizes
the minimum utility. The general version of the problem was originally studied under a different
name by Lipton et al. [LMMS04]. Later, Bezáková and Dani [BD05] obtained an algorithm achieving

log logm
log log logm approximation for the special case of restricted assignment. Many works have since
studied the problem from a computational perspective [Fei08, HSS11, AFS12, PS15, AKS17, CM19].
Notably, Haeupler et al. [HSS11] provide a constant approximation for the problem. Recently,
Springer et al. [SHPK22] studied the online version of the Santa Claus problem. While the notion of
max-min fairness is also used in our formulation, our setting is fundamentally different. Existing
work on the Santa Claus problem focus on distributing items among agents; in contrast, we assume
that the agents themselves are accepted under a matroid constraint and focus on minimizing the
minimum (expected) agent utility.

Recent work by Balkanski, Ma, and Maggiori [BMM24] considered a notion of fair secretaries. They
build upon work, also recent, by Fujii and Yoshida [FY23] showing how in the classical secretary
setting, an algorithm that is given predictions about the arriving elements can attain a competitive
ratio approaching 1. Balkanski, Ma, and Maggiori contend that these predictions, if biased, could
cause the probability of selecting the maximum element to become 0, which they view as unfair,
and propose algorithms to maintain fairness toward the maximum element while still allowing the
competitive ratio to tend to 1. This is mostly unrelated to our work, as we consider a different notion
of fairness that aims to provide a decent probability to all elements rather than ensure that a maximum
element is properly rewarded; furthermore, our setting does not have weights or predictions, and
allows multiple elements to be selected according to a matroid constraint.

B Fair Matchoid Selection

In this section, we generalize the fair matroid selection problem by considering imposing multiple
matroid independence constraints on the accepted set. A well-studied structure for combining multiple
matroid constraints is the p-matchoid, which is defined as follows: we have a universe U of elements,
and m matroids M1, . . . ,Mm such that for each Mj = (Ej , Ij), the element set Ej is a subset of U .
Furthermore, we limit each element u ∈ U to be contained in at most p of these matroids, i.e. there
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are at most p different j such that e ∈ Mj . A subset A ⊆ U satisfies the p-matchoid constraint if for
all j, A ∩ Ej ∈ Ij .

We first note that, unlike the single matroid case, where the integer parameter of arboricity allowed
us to cleanly characterize the optimal fairness up to an additive factor of 1, due to Edmonds’
generalization of the Nash-Williams theorem (Theorem 6). However, this is not the case for p-
matchoids. Specifically, given a p-matchoid, define the matchoid rank r : 2U → N0 so that r(A) is the
size of the largest subset of A that satisfies the matchoid constraint. Then let cdensity = maxA⊆U

|A|
r(A) ,

let cpartition be the minimum number of sets satisfying the matchoid constraint into which we can
partition U , and let β be the infimum value such that there exists an offline β-fair algorithm for fair
matroid selection on the p-matchoid. It can then be shown that cdensity ≤ β ≤ cpartition. However,
it can also be shown that it is possible for β

cdensity
= Ω(lg lg p) to hold, and that it is possible for

cpartition

β = Ω(lg lg p) to hold.

This definition of matchoid rank is a natural generalization of the rank in matroids, and viewed as
such, Theorem 6 states that ⌈cdensity⌉ = cpartition. As this equality fails in the more general matchoid
case, we can no longer characterize the optimal fairness by an "arboricity." Thus, in the absence of a
natural characterization, we will rely directly on the optimal fairness to describe our algorithm. As in
the preceding paragraph, we will use β to refer to the optimal fairness achievable offline for a given
p-matchoid. In spite of this, the quantity cdensity will be relevant in the analysis of the algorithm we
describe below.

We first note that Theorem 8 can be adapted to the p-matchoid case without issue; indeed, said
theorem applies more generally to any problem where randomizing over a set of algorithms yields
performance at least the expected performance of each individual algorithm.

Theorem 16. Suppose that for some class C of matchoids, we have a function f : C → Z+ defining
a property of matchoids in C. Further suppose that we are given an algorithm Ak parameterized
by a positive integer k and a constant c ∈ R+ such that the algorithm Ak is ck-fair when the input
matchoid M ∈ C satisfies f(M) ≤ k. Then for any feasible h, there exists a totally oblivious fair
matchoid selection algorithm A′ which is c · h(f(M))-fair on M ∈ C.

Proof. The proof is identical to the proof of Theorem 8.

We now introduce and analyze the below algorithm, which extends our algorithm for general matroids
to the p-matchoid case. The performance of the above algorithm is described in the below theorem

Algorithm 4: General algorithm for adversarial order fair matchoid selection.
Let m = ⌈β(p ln k + 1)⌉.
For each j = 1, . . . ,m, initialize the set Aj as empty.
Choose r uniformly at random from 1, . . . ,m.
for e being presented do

Let j be the minimum among 1, . . . ,m such that Aj ∪ {e} satisfies the matchoid constraint.
Insert e into Aj .
if j = r then

Accept e.

and corollary:

Theorem 17. Given a p-matchoid, let β be the optimal fairness achievable for said p-matchoid
and let k be the size of a maximum set satisfying the matchoid constraint. Then Algorithm 4 is an
⌈β(p ln k+1)⌉-knowing, ⌈β(p ln k+1)⌉-fair algorithm for adversarial order fair matchoid selection.

Corollary 5. There exists a totally oblivious algorithm (i.e. oblivious even to p) algorithm for
adversarial order fair matchoid selection which is Õ(pβ(ln k + 1))-fair.

Proof. Let C be the class of all finite matchoids, and define f : C → Z+ by f(M) = ⌈β(p ln k+1)⌉.
Then we can apply Theorem 16 to Algorithm 4 and the loss function h(j) = 2j log2 j (as in
Corollary 1) to obtain the desired result.
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Algorithm 4 is in fact almost identical to Algorithm 1; the key additional complication is that while
the first set A1 is still guaranteed to be maximal, a maximal set satisfying a matchoid constraint is not
necessarily a maximum set satisfying the matchoid constraint. We therefore must additionally use
the key property that a maximal set in a p-matchoid has size at least 1

p times the size of a maximum
set in the p-matchoid. An additional complication comes from the fact that we must compare the
fairness of Algorithm 4 to the optimal fairness β, rather than using a natural parameter such as α. We
handle this by using the fact that cdensity ≤ β still holds as an inequality.

We now analyze Algorithm 4.

Proof of Theorem 17. The structure of the proof is similar to that of the proof of Theorem 10; we first
note as in that proof, that it suffices to show that all elements of the p-matchoid M are contained in
one of A1, . . . , Am; given this, the algorithm will successfully execute (j will always be well-defined),
and each element e will be taken with probability 1

m as it will fall into some Aj , and we will choose
r = j with probability 1

m .

We now define sets S0, . . . , Sm (analogously to the single matroid case) where Sj contains all
elements of the p-matchoid M not contained in any of A1, . . . , Aj . Our goal is then to show that Sm

is empty. Given this, we state the following lemma; we omit its proof as it is essentially the same as
the proof of Lemma 4.

Lemma 1. For each j = 1, . . . ,m, Aj is a maximal set satisfying the matchoid constraint within the
restriction of the p-matchoid to Sj−1.

The key differences come in the below lemma, where we must utilize both the property of a p-
matchoid that a maximal set p-approximates a maximum set, and the inequality cdensity ≤ β.

Lemma 2. For each j = 1, . . . ,m, |Aj | ≥ 1
pβ |Sj−1|.

Proof. We will first show that there exists a subset A′ of Sj−1 satisfying the matchoid constraint
such that |A′| ≥ 1

β |Sj−1|. To see this, note that β ≥ cdensity = maxX⊆U
|X|
r(X) , where r(X) is

the size of the maximum subset of X satisfying the matchoid constraint. This then implies that
cdensity ≥ |Sj−1|

r(Sj−1)
, meaning that r(Sj−1) ≥ |Sj−1|

cdensity
≥ |Sj−1|

β , and so there exists some A′ ⊆ Sj−1

satisfying the matchoid constraint with |A′| ≥ 1
β |Sj−1| as desired.

We invoke Lemma 1 to see that Aj is a maximal subset of Sj−1 satisfying the matchoid constraint,
meaning that by the well-known property of p-matchoids that any maximal set has size at least 1

p that
of a maximum set, it must be that |Aj | ≥ 1

p |A
′| ≥ 1

p · 1
β |Sj−1| as desired.

A final difference from the proof of Theorem 10 is that as we are no longer relying on the arboricity,
it is not immediately obvious that the number, n, of elements in the matchoid is at most βk. However,
this can still be shown by again appealing to the inequality cdensity ≤ β: as cdensity = maxX⊆U

|X|
r(X) ,

we specifically note that for the whole universe, β ≥ cdensity ≥ |U |
r(U) = |U |

k , immediately implying
that n = |U | ≤ βk.

As the remainder of the proof follows the same path as the proof of Theorem 10, we will more
concisely describe it. The set S0 has n ≤ βk elements. By Lemma 2, each set Aj removes an at least
1
pβ fraction of the elements that were in Sj−1. It follows that after m′ = ⌈− log1− 1

pβ
k⌉ steps, we

have at most n
k ≤ β elements remaining, i.e. |Sm′ | ≤ β, and so because cardinalities are integers, we

have that |Sm′ | ≤ ⌊β⌋. At that point, by Lemma 1 it is naturally still true that each Aj removes ≥ 1
element as long as some elements remain. Thus after at most ⌊β⌋ additional steps, all elements are
exhausted, and so Sm′+⌊β⌋ must be empty.

We now complete the proof by noting as in the proof of Theorem 10 that − log1− 1
pβ

k ≤ pβ ln k, and
so m′ + ⌊β⌋ ≤ ⌈pβ ln k⌉+ ⌊β⌋ ≤ m, meaning that Sm must be empty as desired.
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C Omitted proofs

C.1 The optimal offline fairness is essentially the arboricity

Proof of Theorem 7. We first prove that there exists an α-fair offline algorithm for fair matroid
selection on M . By the definition of α, there exists a partition of E into α sets A1, . . . , Aα such that
each Aj is independent. We can therefore sample j uniformly at random from 1, . . . , α, then select all
elements in Aj . As each element is in exactly one such set, each element is selected with probability
1
α . Furthermore, as each such set is independent, the algorithm is valid. Thus, this algorithm is α-fair
on M .

We now prove that no (α− 1)-fair offline algorithm exists for fair matroid selection on M . Suppose
that such an algorithm A did exist; then it selects each element of M with probability at least 1

α−1 .

By Theorem 6, there exists a set S ⊆ E such that α = ⌈ |S|
rankS ⌉; it follows that α− 1 < |S|

rankS . Now
define a random variable X equal to the expected number of elements of S selected by A. On one
hand, each element is selected with probability at least 1

α−1 , so X ≥ |S|
α−1 . On the other hand, the

set of selected elements must be independent, meaning that at most rankS elements can be selected
from S, and so X ≤ rankS. We thus have that rankS ≥ |S|

α−1 . This contradicts our earlier assertion

that α− 1 < |S|
rankS , and so we are done.

C.2 Adapting algorithms to be oblivious in the adversarial order setting

Proof of Theorem 8. We will define A′ by randomly choosing l, then running Al. If at some point
Al attempts to make an invalid choice (i.e. select an element which would cause its set of selected
elements to be dependent), we instead terminate, not accepting any further elements. Let pl be the
probability that A′ runs Al. We will set pl = l[ 1

h(l) −
1

h(l+1) ]. We must first show that
∑∞

l=1 p(l) ≤ 1,
so that the random selection is well defined. We can see this via a telescoping sum:

∞∑
l=1

p(l) =

∞∑
l=1

l

[
1

h(l)
− 1

h(l + 1)

]
=

∞∑
l=1

1

h(l)
[l − (l − 1)] =

∞∑
l=1

1

h(l)
≤ 1.

Now, let M be some matroid in C. We want to show that A′ is c · h(f(M))-competitive on M . To
see this, first note that for any l ≥ f(M), Al is cl-fair on M . Therefore, any element e ∈ M is
selected by Al with probability at least 1

cl . It follows that e is selected by A′ with probability at least
the expected value of bl under the random selection of l, where bl =

1
cl for l ≥ f(M) and bl = 0 for

l < f(M). This can again be computed by a telescoping sum:

E [bl] =

∞∑
l=1

plbl =

∞∑
l=f(M)

l

[
1

h(l)
− 1

h(l + 1)

]
· 1
cl

=
1

c

∞∑
l=f(M)

[
1

h(l)
− 1

h(l + 1)

]
=

1

c · h(f(M))
.

This completes the proof.

Proof of Theorem 9. In a rank-1 matroid, all elements are indistinguishable, and A can only select
an element if it has not selected any prior, so the only information A has when deciding whether or
not to select an element is the amount of elements seen so far. Thus, A is defined by the probability
pj with which it selects the j-th element it is shown. Because A can select at most 1 element, it must
be that

∑∞
k=1 pj ≤ 1.

Then, because the j-th element is selected with probability pj , the minimum probability with which
any of the first j elements is selected is at most pj ; since the set of the first j elements has arboricity
j, A is then at best 1

pα
-fair on matroids of arboricity j. Thus, h(α) ≥ 1

pα
, and so

∑∞
l=1

1
h(l) ≤ 1.

Furthermore, (α− 1)-arboric matroids are also α-arboric, so it must be that h(α− 1) ≤ h(α); thus,
h is feasible.

Proof of Corollary 1. We first show that the function h(j) = 2(j + 2) log2(j + 2) is feasible.
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Observe that, since h(j) is increasing, the sum
∑∞

j=1
1

h(j) is at most

∞∑
j=1

1

h(j)
=

∞∑
j=3

1

2j log2(j)
≤ 1

2

∫ ∞

2

dx

x log2(x)
.

Given that, calculate the integral. Using the substitution u = log x, so that du = dx
x , we rewrite it as∫ ∞

2

dx

x log2 x
=

∫ ∞

log 2

du

u2
.

Since
∫
u−2 du = − 1

u +C, evaluating from u = log 2 to u → ∞ gives
[
− 1

u

]∞
log 2

= 1
log 2 . Therefore,∑∞

j=1 1/h(j) ≤ 1 as desired.

Given that h is feasible, we can then apply Theorem 8 using h.

C.3 Analysis of Algorithm 1

Proof of Theorem 10. We first note that the theorem holds as long as Algorithm 1 is able to correctly
execute.

Lemma 3. If Algorithm 1 is able to correctly execute, that is, for each element e, the index j is
well-defined, then Algorithm 1 is a valid ⌈α(ln k + 1)⌉-fair algorithm for adversarial order fair
matroid selection.

Proof. Supposing that Algorithm 1 is able to correctly execute, then the set of elements it selects
will be precisely one of the final sets A1, . . . , Am chosen at random. Each set is guaranteed by
the way the algorithm chooses j to be independent, meaning that the selection of the algorithm is
valid. Furthermore, every element is in exactly one set, meaning that each element is selected with
probability exactly 1

m . Therefore, Algorithm 1 is m-fair, and so ⌈α(ln k + 1)⌉-fair.

We now proceed to show that Algorithm 1 correctly executes. It suffices to show that all elements
of M are contained in one of A1, . . . , Am. We will prove this via the below lemmas. We first, for
each j = 0, . . . ,m, define Sj to be all elements of M that are not contained in any of A1, . . . , Aj . In
particular, S0 consists of all elements of M , and we would like to prove that Sm is empty.

Lemma 4. For each j = 1, . . . ,m, Aj is a maximal independent set within the submatroid Sj−1.

Proof. We have already seen that Aj is an independent set. We can see that it is maximal by
contradiction. Suppose that there is some element e in Sj−1 not contained in Aj such that Aj ∪{e} is
independent. As e ∈ Sj−1, e is also not contained in any of A1, . . . , Aj−1. Therefore, at the time that
e was presented, the minimum l such that Al ∪ {e} was independent was greater than j (otherwise,
e would have been placed in one of A1, . . . , Aj). This implies that Al ∪ {e} was not independent
for any l = 1, . . . , j, and so Al ∪ {e} is still not independent for any l = 1, . . . , j, as the sets Al

only have elements added to them. This contradicts the fact that Aj ∪ {e} is independent, so we are
done.

We now make use of the above lemma to show how the sizes of the sets Sj must be geometrically
decreasing.

Lemma 5. For any j = 0, . . . ,m, |Sj | ≤ (1− 1
α )

jn, where n = |S0| is the number of elements in
M .

Proof. Proof by induction. The base case j = 0 simply states that |S0| has at most n elements; as
S0 has exactly n elements this is immediate. We would then like to show for j ≥ 1 that assuming
|Sj−1| ≤ (1− 1

α )
j−1n, it follows that |Sj | ≤ (1− 1

α )
jn. It suffices to show that |Sj | ≤ (1− 1

α )|Sj−1|.
To see this, note that Sj−1 = Aj ⊔ Sj , and so |Sj−1| = |Aj | + |Sj |. Now, let k′ be the rank of
Sj−1. By Lemma 4, Aj is a maximal independent set within Sj−1; this implies that Aj has rank,
and therefore cardinality, equal to k′. However, recall that M has arboricity α, meaning that it can
be partitioned into α independent sets. We can see by taking the intersection of these sets with
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Sj−1 that Sj−1 itself can be partitioned into α independent sets. Each such set would then have
cardinality at most k′, meaning that Sj−1 must have cardinality at most αk′. We therefore have that
|Aj | = k′ = 1

α ·αk′ ≥ 1
α |Sj−1|. Thus, |Sj | = |Sj−1| − |Aj | ≤ |Sj−1| − 1

α |Sj−1| = (1− 1
α )|Sj−1|

as desired.

We then apply the above lemma to see that, defining m′ = ⌈− log1− 1
α
k⌉, it must be that |Sm′ | ≤ 1

k ·n.
Once again recall that by the arboricity, we have that n ≤ αk, meaning that |Sm′ | ≤ α. We finally
prove the following lemma, which is essentially an easy version of Lemma 5.

Lemma 6. For any j = 0, . . . , α, |Sm′+j | ≤ α− j.

Proof. Proof by induction. In the base case, we have |Sm′ | ≤ α, which we have already proven.
We then must show that for j = 1, . . . , α, if |Sm′+(j−1)| ≤ α − j + 1, then |Sm′+j | ≤ α − j.
We can see this as follows. Sm′+j ⊆ Sm′+(j−1), meaning that if |Sm′+(j−1)| < α − j + 1,
then we are done. Otherwise, |Sm′+(j−1)| = α − j + 1 > 0, as j ≤ α. This implies that
Sm′+(j−1) has nonzero rank, and so Am′+j , which is a maximal independent set in Sm′+(j−1)

by Lemma 4, must be nonempty. It thus follows from |Sm′+(j−1)| = |Am′+j | + |Sm′+j | that
|Sm′+j | ≤ |Sm′+(j−1)| − |Am′+j | = α− j+1− |Am′+j | ≤ α− j+1− 1 = α− j as desired.

The above lemma can then be applied to see that |Sm′+α| ≤ α − α = 0. Thus, Sm′+α is empty,
and so because Sj contains Sj1 for all j, assuming that m′ + α ≤ m, we will have proven that
Sm is empty as desired. We finally show said inequality: substituting in the values of m′ and m, it
becomes ⌈− log1− 1

α
k⌉ + α ≤ ⌈α(ln k + 1)⌉. The right hand side can be written as ⌈α ln k⌉ + α,

meaning that the inequality reduces to ⌈− log1− 1
α
k⌉ ≤ ⌈α ln k⌉, for which it suffices to show that

− log1− 1
α
k ≤ α ln k. This can be expanded by properties of logarithm as − ln k

ln(1− 1
α )

≤ α ln k, which

is then equivalent to − 1
ln(1− 1

α )
≤ α. This can be reorganized as − 1

α ≥ ln(1 − 1
α ), which then

follows as an instance of the inequality x ≥ ln(1 + x) for x < 0; this is true as it is tight at x = 0
and the slope of ln(1 + x) is greater than 1 for x < 0.

Proof of Corollary 2. Let C be the class of all finite matroids, and define f : C → Z+ by f(M) =
⌈α(M)(ln k(M)+1)⌉. Then we can combine Algorithm 1, which is f(M)-fair when it knows f(M)
beforehand, with Corollary 1 (where c = 1) to see that there must exist a totally oblivious algorithm
for fair matroid selection that is Õ(⌈α(ln k + 1)⌉) = Õ(α ln k)-fair.

C.4 Analysis of Algorithm 2

Proof of Theorem 11. The validity of Algorithm 2 relies on two things: first, it must correctly execute,
meaning that a choice of ce must always exist; second, the set of elements it accepts must always be
independent. The first is fairly straightforward: we have a choice of 2α−1 colors, and are constrained
to choose a distinct color from at most α− 1 elements on the left and at most α− 1 colors from the
right. This constraint eliminates at most 2(α− 1) < 2α− 1 colors, and so there is necessarily always
a color available to choose.

Proving that the set of elements the algorithm accepts is always independent is equivalent to proving
that the set of elements with each color is independent, which we will do via the three lemmas below.

Lemma 7. The ordering T maintained by the algorithm always satisfies the property that for any
j = 1, . . . ,m, the elements in Sj which have been presented appear contiguously in T .

Proof. By induction (as the initial ordering is empty and so trivially satisfies the property), it suffices
to prove that given an ordering T satisfying the aforementioned property, inserting an element into
T in the manner done by Algorithm 2 will result in an ordering T ′ which continues to satisfy the
property. To show this, let e, J be as defined in the algorithm. In the case that none of the elements of
J had appeared before (i.e. the "else" clause), appending e to the end of T ensures contiguity for all
j ∈ J and does not break the contiguity of other sets.
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In the other case, the algorithm chooses the j ∈ J that appeared before but did so the fewest times. In
this case, e is inserted after the last element in T contained in Sj . This clearly ensures the contiguity
of Sj in T . Furthermore, for any other l ∈ J such that l had appeared before, we can argue by the
laminar property of the sets in F that all previously seen elements which were in Sj are also in Sl.
To see this, note that as e is contained in both Sj and Sl, it must be that either Sj ⊆ Sl or Sl ⊆ Sj .
In the former case, it is automatically true that all previously seen elements in Sj are in Sl. In the
latter case, if there was a previously seen element in Sj that was not in Sl, then as all previously
seen elements in Sl are also in Sj , it would necessarily be true that the number of previously seen
elements in Sl was smaller than the number of previously seen elements in Sj , which contradicts the
definition of j. We therefore have that all previously seen elements in Sj are also in Sl, and so the
algorithm, by inserting e next to an element of Sj , also inserts it next to an element of Sl, ensuring
the contiguity of Sl.

We must finally argue that there is no l such that Sl does not contain e and the contiguity of Sl is
broken by the insertion of e into T . To see this, note that if this were the case, then after the insertion
of e into T to obtain T ′, there would be some elements to the left of e in Sl and some elements to
the right of e in Sl. However, as Sl was contiguous in T prior to the insertion of e, it must have
been that every element in between the leftmost such element and the rightmost such element was
contained in Sl. In particular, letting d be the element immediately to the left of e and f be the
element immediately to the right of e in T ′, both d, f must be contained in Sl. Recall that e is inserted
after the last element of Sj in T ; this implies that d ∈ Sj and f /∈ Sj . The fact that d ∈ Sl, Sj means
that one of Sl, Sj must be a subset of the other. Meanwhile, the fact that e /∈ Sl implies that Sj

cannot be a subset of Sl, while the fact that f /∈ Sj implies that Sl cannot be a subset of Sj . This is a
contradiction, and so we are done.

Lemma 8. The ordering T and coloring c maintained by the algorithm always satisfy the property
that no ≤ α consecutive elements in T have the same color.

Proof. We will again prove this inductively: we must show that given that T satisfies the property,
inserting an element e into T to obtain T ′ and coloring it in the manner done by Algorithm 2 will
maintain the property. To see this, we first note that for any set A of ≤ α consecutive elements in T ′,
the set A \ {e} contains elements of distinct colors; this is because A \ {e} then corresponds to a set
of ≤ α consecutive elements in T . We then note that for any such A containing e, e has a distinct
color from the elements of A \ {e} – this is because e is specifically chosen to have a distinct color
from the α− 1 elements to its left and the α− 1 elements to its right in A, and by the definition of A,
if it contains e, it cannot contain any farther away elements. We therefore have that all A consist of
elements of distinct colors as desired.

Lemma 9. Suppose that we have an ordering T of the elements of the laminar matroid M such that
for any j = 1, . . . ,m, the elements in Sj which have been presented appear contiguously in T , and a
coloring of the elements of M such that no ≤ α consecutive elements in T have the same color. Then
for any color c, the set of elements with color c is independent.

Proof. It suffices to prove that for any color c and for any j = 1, . . . ,m, at most rj elements in Sj

are colored c. To prove this, first note that Sj must contain at most αrj elements. This is because
the entire matroid M can be partitioned into α independent sets; each such set contains at most rj
elements from Sj , and so in total there cannot be more than αrj elements in Sj . This then means that
Sj is a contiguous subsequence of T of length at most αrj .

We now note that for any contiguous subsequence of T of length l, said subsequence can contain
at most ⌈ l

α⌉ elements colored c. We can see this by partitioning said subsequence into its first α
elements, its next α elements, and so on; there are exactly ⌈ l

α⌉ parts, and as each part consists of ≤ α
consecutive elements, it can contain at most one element of color c.

It follows that Sj , being a contiguous subsequence of T of length at most αrj , contains at most
⌈αrj

α ⌉ = rj elements of color c as desired.

We can now apply Lemma 7 and Lemma 8 to see that the final values of T, c satisfy the preconditions
of Lemma 9, which can then be applied to see that the set of elements with any particular color c is
independent, as desired.
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It only remains to note that, as we color elements with 1, . . . , 2α − 1 and select the color whose
elements to accept uniformly at random from 1, . . . , 2α−1, each element is accepted with probability
exactly 1

2α−1 , and so the algorithm is (2α− 1)-fair as desired.

Proof of Corollary 3. By Theorem 11, Algorithm 2 is (2α− 1)-fair, which implies that it is 2α-fair.
We can then apply Theorem 8 with h(M) = α(M) and c = 2 to obtain the desired result.

C.5 Sampling in the random order setting

Definition 5. Define the sampling model for fair matroid selection to be as follows:

• An algorithm A specifies m probabilities p1, . . . , pm such that p1 + · · ·+ pm ≤ 1.

• A matroid M = (E, I) is chosen, unknown to the algorithm.

• We define random sets S1, . . . , Sm, T ⊆ E as follows. For each j = 1, . . . ,m and each
e ∈ E, e is placed into exactly one of S1, . . . , Sm, T – specifically, e is placed into Sj with
probability pj .

• A observes the values of S1, . . . , Sm.

• A is then presented the elements of T in a uniformly random order, and must choose to
accept or reject each online, subject to independence of the accepted elements.

• The fairness of A is defined as usual – the inverse of the minimum probability pe with which
an element e ∈ E is accepted by A (noting that e not being placed in T prevents it from
being accepted and therefore decreases pe).

Theorem 18. Let C be a class of matroids which is closed under restriction (i.e. if a matroid
M = (E, I) is in C, then the matroid M ′ = (E′, I ′) where E′ ⊆ E and I ′ = I ∩ 2E

′
is also in C).

If an f -fair algorithm exists for C in the sampling model of fair matroid selection, then an f -fair
algorithm exists for random order fair matroid selection on C.

Proof. We will define an algorithm A′ for random order fair matroid selection which simulates
the sampling of S1, . . . , Sm as well as the behavior of A. The algorithm works as follows: we
define random sets R1, . . . , Rm, Rm+1 by sampling the integers 1, . . . , n in the same way that
S1, . . . , Sm, T sample the elements of E. Thus, for each a = 1, . . . , n, a is included in exactly one
of R1, . . . , Rm+1, such that for each j = 1, . . . ,m, a is included in Rj with probability pj (and so
a is included in Rm+1 with probability 1 − (p1 + · · · + pm). We then observe elements of E as
follows: we place the first |R1| elements into S1, the next |R2| elements into S2, and so on. Prior to
the last |Rm+1| elements, we present S1, . . . , Sm to A, then allowing A to act on those remaining
|Rm+1| elements, which are considered to be in T .

In order to prove the theorem, it suffices to show that the construction of S1, . . . , Sm, T by A′

is identical to their definition by sampling in the theorem statement. To see this, first note that
the behavior of A′ can alternatively be described as follows: we construct a sequence r1, . . . , rn
where r contains first the elements of R1 in some order, then the elements of R2 in some order,
and so on. Then, let e1, . . . , en be the elements of E in the order they are presented. We define
τ : E → {1, . . . , n} by τ(ei) = ri.

Now note that because the order of elements e1, . . . , en is chosen uniformly at random independent
of the definition of R1, . . . , Rm, the mapping τ is also a uniformly random bijection, meaning that
although its definition depends on the order of r1, . . . , rn and therefore on the sets T1, . . . , Tm, as a
random variable it can be regarded as independent of R1, . . . , Rm.

We then note that e ∈ Sj iff τ(e) ∈ Rj . Furthermore, the decisions of whether to include τ(e) ∈ Rj

for each (e, j) are made randomly independently from each other and, as we have just shown,
also independently from τ , meaning that we can interpret τ as being defined first, after which we
independently decide whether τ(e) ∈ Rj for each (e, j). This is then equivalent to deciding whether
e ∈ Sj for each (e, j) as desired.
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C.6 Relaxing knowledge of the arboricity

Proof of Theorem 12. We will specifically show that the A′ we define is 4f(2α+1)-fair; 4f(2α+1)
will then also be O(f(α)) as f is polynomial. We will define A′ in the setting of Theorem 18, which
can then be applied to yield an algorithm in the usual setting with the same fairness. A′ will work
as follows: we set m = 1 and p1 = 1

2 , meaning that we observe a single set S1 ⊆ E into which
each element is sampled with probability 1

2 . We then compute the arboricity α′ of S1, and finally run
A2α′+1 on the remaining elements.

To analyze A′, consider a specific element e ∈ E – we will show that e is accepted with probability
at least 1

4f(2α+1) . First note that e is sampled into S1 with probability 1
2 , and therefore is not sampled

into S1 with probability 1
2 ; we will condition on the latter event. Now note that α′ ≤ α, and so

2α′ + 1 ≤ 2α + 1, meaning that the algorithm A2α′+1 we run will achieve a fairness of at most
f(2α+ 1) on the elements E \ S1 as long as 2α′ + 1 is at least the arboricity of E \ S1.

It thus only remains to show that 2α′ + 1 is at least the arboricity of E \ S1 with probability at least
1
2 . To show this, we will show the stronger statement that 2α′ + 1 is at least α with probability at
least 1

2 . First observe that the set E \ {e} has arboricity at least α− 1, as adding back e can increase
the number of independent sets needed to cover the set by at most 1. Now note that by Theorem 6,
there exists a set A ⊆ E \ {e} such that ⌈ |A|

rankA⌉ = α(E \ {e}) ≥ α− 1. With probability at least 1
2 ,

at least half of A will be sampled into S1, meaning that, defining A′ = A∩S1, as rankA′ ≤ rankA,
⌈ |A′|
rankA′ ⌉ ≥ ⌈ |A′|

rankA⌉ ≥ α−1
2 . As α′ ≥ ⌈ |A′|

rankA′ ⌉ by the easy direction of Theorem 6, we then have
that with probability at least 1

2 , 2α′ ≥ α− 1 and so 2α′ + 1 ≥ α as desired.

C.7 Relaxing knowledge of the rank

We next relax the knowledge of the rank in the random order setting using the same proof as
Theorem 12.

Theorem 19. Suppose that for some class C of matroids closed under restriction, we are given an
algorithm Ak parameterized by the rank k and a nondecreasing f : Z+ → R that grows polynomially
in k, such that the algorithm Ak is f(k)-fair when the input matroid M ∈ C has rank k. Then
there exists an algorithm A′ for random order fair matroid selection without knowledge of k that is
O(f(k))-fair on M ∈ C.

Proof. We will establish that the A′ we construct ensures 4f(2k+1)-fairness. Since f is a polynomial
function, we have 4f(2k + 1) ≤ O(f(k)).

The construction of A′ takes place within the framework of Theorem 18. From there, we can extend
the result to obtain an algorithm in the standard setting while preserving the same fairness guarantee.
The procedure for A′ is as follows: we set m = 1 and define p1 = 1

2 , meaning that we sample a
subset S1 ⊆ E, where each element is included independently with probability 1

2 . We then determine
the rank k′ of S1 and subsequently apply A2k′+1 to the remaining elements.

To analyze A′, consider an arbitrary element e ∈ E. Our goal is to show that e is selected with
probability at least 1

4f(2k+1) . Condition on the event that e /∈ S1, which happens with probability
1
2 . Since k′ ≤ k, it follows that k′ + 1 ≤ 2k + 1. Therefore, the algorithm A2k′+1 we execute will
maintain fairness at most f(2k + 1) on the remaining elements E \ S1, provided that 2k′ + 1 meets
or exceeds the rank of E \ S1.

The only remaining step is to establish that, with probability at least 1
2 , the rank of E \ S1 does not

exceed 2k′ + 1. We will prove the stronger claim that this quantity is at least k with probability at
least 1

2 . Observe first that the set E \ e has rank at least k − 1. This implies that there exists some
subset A ⊆ E \ e that is independent and has |A| ≥ k − 1. With probability at least 1

2 , at least half
of the elements in A appear in S1, ensuring that k′ ≥ k−1

2 . Rearranging this inequality, we obtain
k ≥ 2k′ + 1, completing the proof.
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C.8 Properties of the d-level

Proof of Theorem 14. We first show that if ld is ∞ on some vertices, then G is not d-degenerate. Let
S ⊆ V be the set of vertices on which ld is ∞. Then all vertices in the subgraph defined by S have
degree greater than d. It follows that no ordering of V satisfying the definition of d-degeneracy can
exist: letting v be the element of S which appears latest in the ordering, it would have more than d
edges to the vertices in S \ {d}, all of which appear earlier in the ordering.

Conversely, if ld is never ∞, that G is d-degenerate follows from the second part of the theorem,
that we can order V in decreasing order by ld to obtain an ordering satisfying the definition of
d-degeneracy. To see that such an ordering is valid, we must show that any vertex v has at most d
edges to vertices u such that ld(u) ≥ ld(v). This follows from the fact that v can only be removed
in iteration j (in the definition of d-level), and therefore be assigned ld(v) = j, if at that points its
degree is at most d. The remaining vertices at that point are precisely the vertices u that will be
assigned ld(u) ≥ j, completing the proof.

To see the final part of the theorem, we simply note that the process defining the d-level exactly
corresponds to the computation of a function with the given properties. Specifically, we first assign
ld(v) = 0 to all vertices with degree at most d as described. Then, any other vertex v is assigned
ld(v) = j iff iteration j is the precise iteration in which the degree of v became at most d. It follows
that, as vertices are removed in order of nondecreasing ld, the neighbor u of v with the d+1-th highest
value of ld was removed in iteration j − 1, meaning that ld(u) = j − 1 and so ld(v) = ld(u) + 1 as
desired.

C.9 Analysis of Algorithm 3

Proof of Theorem 15. We first note that Algorithm 3 is valid – the set of elements it accepts will
always be independent. This follows from the fact that it orders the vertices of G, and accepts at most
one edge from each vertex to an earlier vertex in the ordering. It thus remains only to analyze the
fairness of the algorithm.

We will do this as described before, by fixing a specific vertex v and analyzing the sampled edges
outgoing from v after having already chosen the sampled edges outgoing from other vertices. The
first tool we need for this is a modification of the notion of the d-level that does not depend on the
edges outgoing from v.

Definition 6. The v-fixed d-level, lvd : V → N0 ∪ {∞}, is defined on the vertices of a directed graph
G by following the same iterative process as was used to define ld, except that vertex v is never
removed. Thus, we perform iterations numbered starting from 0, such that in iteration j we remove
all vertices u ̸= v from G such that u has outdegree at most d, and set lvd(u) = j; we terminate once
all remaining vertices other than v have outdegree greater than d, at which point we set lvd(u) = ∞
for all such u (which necessarily includes v itself).

Note that while the d-level on G, and therefore H (as a subgraph of G) is guaranteed to be finite for
all vertices, the v-fixed d-level on H is not, and in particular will be infinite for v itself.

The key utility of the v-fixed d-level is that it actually serves as an almost exact proxy for the d-level
for our purposes. Specifically, for all vertices with d-level less than the d-level of v, their d-level is
identical to their v-fixed d-level. This is expressed in the below lemma.

Lemma 10. On a directed graph G, let x = ld(v). Then for all y < x, and for all vertices u in G,
ld(u) = y iff lvd(u) = y.

Proof. The key insight of this lemma is simply that the iterative processes used to define each of ld
and lvd are identical up to (but not including) iteration x: in the former process, we know that v is
necessarily not at an iteration prior to iteration x by the definition of ld, while in the latter process, we
explicitly constrain v to never be removed. Therefore, all iterations prior to iteration x are identical
in both processes, and so it follows that the set of vertices removed at iteration y < x in one process
is identical to the set of vertices removed at iteration y in the other.
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We can then apply this lemma to show, roughly, that if enough outgoing edges from v are sampled,
then the total number of edges in G between v and vertices with d-level (defined based on H) at least
ld(v) is limited.

Lemma 11. Let G be the input graph to the algorithm, let H be as defined by the algorithm, let v be
a vertex in G, and let ld, lvd be defined on H (meaning that ld is as computed by the algorithm). Sort
the neighbors of v in decreasing order of lvd to obtain a sequence s, breaking ties by label. If for some
b, there are at least d+ 1 neighbors u among s1, . . . , sb such that the edge v → u is included in H ,
then the only neighbors w of v that can satisfy ld(w) ≥ ld(u) are those in s1, . . . , sb−1.

Proof. Let x = ld(v). We first claim that x > ld(sb). Suppose to the contrary that x ≤ ld(sb). Then
we can see by Lemma 10 that the set of vertices u satisfying ld(u) < x is precisely the set of vertices
satisfying lvd(u) < x. Therefore, all neighbors u of v satisfying lvd(u) ≥ x satisfy ld(u) ≥ x. This
then includes all of s1, . . . , sb, as lvd(sb) = x, and s is sorted in decreasing order of lvd . We then
have that v has at least d + 1 neighbors u with ld(u) ≥ x = ld(v). This contradicts the clause of
Theorem 14 stating that ld(v) is exactly 1 more than the d+ 1-th highest ld(u) among neighbors u of
v. We have thus shown that x > ld(sb).

It now remains to show that the neighbors of v other than s1, . . . , sb−1, meaning the neighbors u
among sb, . . . , sdeg(v), cannot satisfy ld(u) ≥ x. We first note that by the definition of s, such u satisfy
lvd(u) ≤ lvd(sb) < x. We can then apply Lemma 10 to see that such u satisfy ld(u) = lvd(u) < x.

The above lemma is essential – it allows us to work on an ordering of v’s neighbors that is independent
of the sampled outgoing edges from v, meaning that we can view those edges (more precisely, the
subset that was not already sampled in the other direction) as being sampled after the ordering is
fixed in order to bound the number of neighbors u of v satisfying ld(u) ≥ ld(v), which can now be
done using techniques from concentration bounds. Specifically, we will apply a Chernoff bound to
show that the number of edges from v to vertices earlier in Algorithm 3’s ordering is close to d with
high probability.

We first note that an edge (u, v) is sampled as u → v with probability 1−q
2 , as v → u with probability

1−q
2 , and not sampled with probability q; therefore, given that it was not sampled as v → u, the

probability that it is not sampled at all is x = q

q+ 1−q
2

= 2q
1+q . We additionally define δ = d−

1
8 ,

b = ⌈ d
1−x(1+δ)⌉, and P = e−

xbδ2

3 . We now prove the following lemma, which relies on Lemma 11.

Lemma 12. First note that for d ≥ 3 we have b > d. Now, let v be a vertex in G, and let e be an
edge in G. Define Y to be the number of edges that are not sampled into H , not including e, between
v and a vertex u such that ld(u) ≥ ld(v). Conditioned on e not being sampled into H , the probability
that Y ≥ b− d is at most P .

Proof. We must first prove that for d ≥ 3, we have b > d. Recall that b = ⌈ d
1−x(1+δ)⌉, where

x = 2q
1+q , q = d−

1
4 , and δ = d−

1
8 ; it suffices to show that x(1 + δ) < 1. This then expands as

2q
1+q (1 + δ) < 1, which can be rewritten as 2q(1 + δ) < 1 + q. Substituting in q and δ, this is
2
3d

− 1
4 (1 + d−

1
8 ) < 1 + 1

3d
− 1

4 , which we can multiply by 3d
3
8 to attain 2(d

1
8 + 1) < 3d

3
8 + d

1
8 , i.e.

3d
3
8 − d

1
8 − 1 > 0. Letting u = d

1
8 , this is equivalent to showing that 3u3 − u− 1 > 0 for u ≥ 3

1
8 .

As u3 increases faster than u for u ≥ 1, 3u3−u−1 is increasing for u ≥ 1; furthermore, 3u3−u−1
is equal to 1 when u = 1. Therefore, 3u3−u− 1 is positive for u ≥ 1, and so in particular is positive
for u ≥ 3

1
8 as desired.

Proceeding, for convenience, we will first prove the following sublemma, encapsulating our specific
use of the Chernoff bound.

Lemma 13. Let X1, . . . , Xb be independent random variables taking values in {0, 1}, such that
each Xj is 1 with probability x. Let X = X1 + · · ·+Xb be their sum; then,

Pr[X ≥ xb(1 + δ)] ≤ e−
xbδ2

3 .
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Proof. We note that a well-known Chernoff bound for the upper tail states that for a random variable
X with mean µ equal to the sum of independent random variables taking values in {0, 1}, we have

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

3 for 0 < δ < 1. In our case, we have µ = xb, from which the conclusion
immediately follows.

Now note using the definition of b that for any X , b − X ≤ d implies X ≥ xb(1 + δ), which
we can see using the contrapositive as follows: if X < xb(1 + δ), then b − X > b − xb(1 +
δ) = (1 − x(1 + δ))b ≥ d, meaning that b − X > d as needed. This is useful, as it means that
Pr[b−X ≤ d] ≤ Pr[X ≥ xb(1 + δ)] and so is also bounded by P . We now apply this to prove the
remainder of the lemma, which we restate as the below sublemma:

Lemma 14. Let v be a vertex in G, and let e be an edge in G. Define Y to be the number of edges
that are not sampled into H , not including e, between v and a vertex u such that ld(u) ≥ ld(v).
Conditioned on e not being sampled into H , the probability that Y ≥ b− d is at most P .

Proof. We will show that this holds after fixing whether each edge not outgoing from v is sampled
into H; the lemma itself then follows by averaging over all such cases. Now define s to be the
neighbors of v in decreasing order of lvd , and define b′ to be the smallest integer such that among
s1, . . . , sb′ , there are exactly b neighbors u such that the edge (v, u) is not e and was not sampled as
u → v. Note that such a b′ may not exist; we therefore proceed with case analysis based on whether
b′ exists or not.

Given that b′ exists, let u1, . . . , ub be the b neighbors among s1, . . . , sb′ such that for all j, (v, uj) ̸= e
and uj → v was not sampled into H . Now define X1, . . . , Xb so that Xj is 0 if v → uj is sampled
into H , and 1 otherwise. It follows that X1, . . . , Xb are independent variables taking values in {0, 1},
each with mean x (following from the definition of x). We can now apply Lemma 13 along with the
note that followed it to see that the probability that b−X ≤ d is at most P ; thus, with probability at
least 1−P , we have that b−X > d. The quantity b−X is equal to the number of j such that v → uj

is sampled; thus, when b−X > d, we have that at least d+1 of the edges from u to u1, . . . , ub were
sampled, and therefore at least d+ 1 of the edges from u to s1, . . . , sb′ were sampled.

We can now apply Lemma 11 to see that with probability at least 1−P , the only neighbors u of v that
can satisfy ld(u) ≥ ld(v) are those among s1, . . . , sb′ . From these, only the neighbors u1, . . . , ub

satisfy the condition that the edge connecting them is both not e and was not sampled in the direction
incoming to v, and of those b neighbors, at least d+ 1 had their edges to v sampled outgoing from v,
meaning that only the remaining b− d− 1 neighbors contribute to Y . We therefore have that with
probability at least 1− P , Y ≤ b− d− 1; the desired conclusion follows.

In the case that no b′ exists, we instead consider all neighbors of v, and define m to be the number
of these numbers who are connected to v by an edge other than e that was not sampled incoming
to v; we then let these neighbors be u1, . . . , um. We again define random variables X1, . . . , Xm

such that Xj is 0 if v → uj is sampled into H , and 1 otherwise. In the case that m = b, we had
by Lemma 13 that Pr[X ≥ xb(1 + δ)] ≤ P ; this probability cannot increase when we have less
variables with the same mean, so we necessarily have here as well that Pr[X ≥ xb(1 + δ)] ≤ P .
We can then apply the same note to see that Pr[b − X ≤ d] ≤ P . We thus have like before that
only the neighbors u1, . . . , um satisfy the condition that the edge connecting them is both not e and
was not sampled in the direction incoming to v, and of those m < b neighbors, with probability at
least 1− P , d+ 1 had their edges to v sampled outgoing from v, meaning that only the remaining
m− d− 1 < b− d− 1 neighbors contribute to Y . We therefore have that with probability at least
1− P , Y ≤ m− d− 1 < b− d− 1; the desired conclusion again follows.

We can now move to the final key lemma, lower bounding the probability that a particular edge e is
taken. We prove this lemma by applying the union bound to see that with high probability, both of its
endpoints satisfy the above lemma, and so regardless of which is the later endpoint in the ordering, e
is not competing with significantly more than d edges in order to be accepted.

Lemma 15. For any edge e in the graph G, Algorithm 3 accepts e with probability at least (1 −
2P ) q

b−d .
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Proof. Let e = (v1, v2). We first condition on the event that e is not sampled into either S1 or S2,
which occurs with probability q. We can then apply Lemma 12 to see that for each v = v1, v2, the
probability that, conditioned on e not being sampled, there are more than b− d− 1 other edges not
sampled that connect v to a vertex u with the same or higher value of ld, is at most P . Thus, by the
union bound, this is true for either v1 or v2 with probability at most 2P . Therefore, with probability
at least 1 − 2P , for v equal to both v1, v2 we have the property that there are at most b − d − 1
other edges with later endpoint v that could be accepted. In particular, this holds true for the vertex
v ∈ {v1, v2} which is the later endpoint of e.

We then have that there are at most b− d edges with later endpoint equal to this v which could be
accepted, and as the unsampled edges are presented in random order, e is the first such edge, and
so accepted by the algorithm, with probability at least 1

b−d . Combined with the q probability of e
not being sampled and the 1− 2P probability that both endpoints satisfy the previously described
property, we get that e is taken with probability at least q · (1− P ) · 1

b−d as desired.

The following last lemma is purely technical and serves to extract the asymptotic behavior of the
concrete values we have chosen for b, q, P .

Lemma 16. (1− 2P ) q
b−d is positive for d ≥ 3, and its reciprocal is (2 + o(1))d.

Proof. We first prove that (1− 2P ) q
b−d is positive when d ≥ 3. Recall again that b = ⌈ d

1−x(1+δ)⌉,

x = 2q
1+q , q = d−

1
4 , δ = d−

1
8 , and P = e−

xbδ2

3 . We have that q itself is positive, and we have already
shown in Lemma 12 that b > d, meaning that the term q

b−d is positive. We therefore need only show

that P < 1
2 , from which it follows that 1− 2P is positive. This is equivalent to xbδ2

3 > ln 2. We first
note that by definition, b ≥ d

1−x(1+δ) , meaning that it suffices to show that xδ2

3 · d
1−x(1+δ) > ln 2.

Also note that ln 2 < 1, and so it similarly suffices to show that xδ2

3 · d
1−x(1+δ) > 1. We now first

rewrite this as xδ2d > 3(1−x(1+δ)), then substitute in x = 2q
1+q to get 2q

1+q δ
2d > 3(1− 2q

1+q (1+δ)),
which can be multiplied by 1 + q to get the equivalent inequality 2qδ2d > 3((1 + q)− 2q(1 + δ)).

We now recall that q = 1
3d

− 1
4 and δ = d−

1
8 ; if we let u = d

1
8 , then these are q = 1

3u2 and δ = 1
u (as

well as d = u8), meaning that we would like to show that 2 · 1
3u2 · 1

u2 ·u8 > 3((1+ 1
3u2 )− 2

3u2 (1+
1
u ))

for u ≥ 3
1
8 . This simplifies to 2

3u
4 > 3(1 − 1

3u2 − 2
3u3 ). We can then multiply by 3u3 to get the

equivalent inequality 2u7 > 3(3u3 − u− 2), which can be rearranged as 2u7 − 6u3 + 3u+ 6 > 0.
We therefore must show that 2u7 − 6u3 + 3u + 6 > 0 for u ≥ 3

1
8 ; it then suffices to show that

2u7 − 6u3 + 6 > 0 for nonnegative u, as the term 3u that we subtracted is also nonnegative. We can
see this by noting that as 2u7 − 6u3 + 6 goes to +∞ as u goes to +∞, it is minimized at either a
boundary (i.e. u = 0) or a critical point, meaning that it suffices to show that it is postive at those
places. When u = 0, it simply takes the value 6. Then, to find critical points, we set its derivative to
0: thus, 0 = d

du (2u
7 − 6u3 +6) = 14u6 − 18u2 = 2u2(7u4 − 9). Thus, the critical points are u = 0

and u = ±( 97 )
1
4 . We have already discussed u = 0, and we are only concerned with nonnegative

u, meaning that we need only check the values of 2u7 − 6u3 + 6 at u = ( 97 )
1
4 . There, we see that

2u7 − 6u3 + 6 = 6 + 1
u (2u

8 − 6u4) = 6 + 1
u [2(

9
7 )

2 − 6( 97 )] = 6 + 2(9)2−6(9·7)
72 · 1

u = 6− 216
49 · 1

u ;
because u > 1, we have that 6− 216

49 · 1
u > 6− 216

49 = 6(49)−216
49 = 78

49 > 0 as desired.

It remains to show that b−d
q · 1

1−2P is (2 + o(1))d. We first recall that b = ⌈ d
1−x(1+δ)⌉, and note that

all of q, x, δ go to 0 as d grows. It follows that b = d(1+ x(1+ δ)+ o(x(1+ δ)) = d(1+ x+ o(x)).
We thus have that b − d = d(x + o(x)). We now recall that x = 2q

1+q =≤ 2q, meaning that
b−d
q = d(2q+o(q))

q = (2 + o(1))d. We finally write out P as e−
xbδ2

3 ; as x = Θ(q) = Θ(d−
1
4 ),

b = Θ(d), and δ = d−
1
8 , we have that xbδ2 = Θ(d−

1
4+1−2· 18 ) = Θ(

√
d); it follows that P also goes

to 0 as d grows, meaning that 1
1−2P = 1 + o(1). We can therefore conclude that b−d

q · 1
1−2P =

(2 + o(1))d · (1 + o(1)) = (2 + o(1))d as desired.
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It follows from combining the results of Lemma 15 and Lemma 16 that Algorithm 3 is (2+o(1))d-fair
for d ≥ 3.

Proof of Corollary 4. Given knowledge of α, by Theorem 13 we note that letting d = 2α− 1 (note
that for α ≥ 2, d ≥ 3 as needed; if α = 1, the algorithm can simply accept all elements), the
input graph must be d-degenerate. Thus, by Theorem 15, we can apply Algorithm 3, which will
be (2 + o(1))d = (4 + o(1))α-fair. We can then apply Theorem 12 to this algorithm to obtain an
oblivious algorithm which is O(α)-fair.

C.10 Adversarial order fair matroid selection for uniform matroids

In this section, we provide a short proof for the existence of an α-fair algorithm for the k-uniform
matroid in the adversarial order model. Assuming we have n elements, it is clear that the arboricity is
α = ⌈n/k ⌉. We color the elements with α colors such that each α consecutive arriving elements
have a different color. This can easily be achieved by coloring the element at time i with the remainder
of i divided by α. We then pick all of the elements corresponding to a single color, chosen uniformly
at random.

Since α ≥ n/k, there are at most k elements from any given color. Therefore, the final set has size at
most k and is therefore feasible. Additionally, since we have α colors, each element is accepted with
probability 1/α, finishing the proof.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is theoretical and we do not believe it has any societal impact worth
highlighting.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper is theoretical and does not contain any implementations or other
assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is theoretical.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs beyond the standard usage for writing and
editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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