
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLMS AS IN-CONTEXT META-LEARNERS FOR MODEL
AND HYPERPARAMETER SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Model and hyperparameter selection are critical but challenging in machine learn-
ing, typically requiring expert intuition or expensive automated search. We investi-
gate whether large language models (LLMs) can act as in-context meta-learners
for this task. By converting each dataset into interpretable metadata, we prompt
an LLM to recommend both model families and hyperparameters. We study two
prompting strategies: (1) a zero-shot mode relying solely on pretrained knowl-
edge, and (2) a meta-informed mode augmented with examples of models and
their performance on past tasks. Across synthetic and real-world benchmarks, we
show that LLMs can exploit dataset metadata to recommend competitive models
and hyperparameters without search, and that improvements from meta-informed
prompting demonstrate their capacity for in-context meta-learning. These results
highlight a promising new role for LLMs as lightweight, general-purpose assistants
for model selection and hyperparameter optimization.

1 INTRODUCTION

The performance of machine learning (ML) models hinges on the selection of appropriate algorithms
and their hyperparameters. This joint optimization task is commonly referred to as the Combined
Algorithm Selection and Hyperparameter optimization (CASH) problem (Thornton et al., 2013;
Bergstra & Bengio, 2012; Snoek et al., 2012). Traditionally, practitioners have relied on manual
tuning, grid search, or Bayesian optimization techniques (Mockus et al., 1978; Shahriari et al., 2016)
to navigate this complex search space. However, these approaches are computationally expensive and
demand substantial domain expertise. This creates barriers to entry and limits the scalability of ML
applications across diverse domains.

Large language models (LLMs) have recently shown strong capabilities in reasoning, knowledge
synthesis, and problem-solving across domains (Wei et al., 2022). As they scale, they exhibit
emergent behaviors that enable adaptation to new tasks by reusing prior experience in context (Brown
et al., 2020; Dong et al., 2024). These behaviors have been interpreted as a form of in-context
meta-learning, with transformers proposed as general-purpose meta-learners (Kirsch et al., 2024) and
LLMs studied explicitly in this role (Coda-Forno et al., 2023). Much of this prior work has focused
on demonstrating the phenomenon itself, often in synthetic or language-oriented tasks. By contrast,
model and hyperparameter selection provides a practical and consequential setting in machine
learning where generalization across tasks directly impacts performance and efficiency. If LLMs can
transfer knowledge in this context, they may offer a new paradigm for addressing the CASH problem
and extend our understanding of their adaptability beyond controlled demonstrations. This research
introduces two prompting strategies for leveraging LLMs in model and hyperparameter selection.
The Zero-Shot strategy relies solely on high-level task metadata, requiring no prior examples. The
Meta-Informed strategy augments this by incorporating pairs of task metadata and well-performing
model configurations from previous tasks, enabling more informed recommendations (Figure 1).
Unlike prior work (Zheng et al., 2023; Zhang et al., 2024), our approach operates without iterative
validation feedback. It also enables cross-task generalization in the meta-informed case. Importantly,
we prompt the LLM to propose complete configurations consisting of both model families and
associated hyperparameters, which can then be directly evaluated or integrated into downstream
pipelines.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM

Proposed models and
hyperparamters

Final predictions

Past tasks’ information

(metadata + models hyperparameters)

Current task
ML Models Training

(downstream pipeline)

Figure 1: Overview of the method. Each task is represented by metadata, and the LLM outputs
model and hyperparameter configurations. The dotted arrow indicates the inclusion of prior-task
metadata-configuration pairs in the meta-informed setting.

We evaluate both prompting strategies on tabular regression and classification tasks. Results show that
LLMs, when properly prompted, can make surprisingly effective recommendations even in zero-shot
settings where conventional methods often require extensive experimentation. The meta-informed
strategy further improves performance by leveraging prior knowledge, often approaching or matching
the quality of expert-guided selections. Taken together, these findings highlight the potential of
LLMs as meta-learners in automated machine learning: they can reason about datasets, models, and
hyperparameters with minimal tuning, offering a scalable and accessible alternative to traditional
search-based or expert-driven workflows. This also complements concurrent applications of LLMs
to other stages of the AutoML pipeline such as feature engineering with CAAFE (Hollmann et al.,
2023).

The remainder of this paper is structured as follows. Section 2 reviews related work in hyperparameter
optimization, meta-learning, and LLM-based methods. Section 3 introduces our formal problem setup
and frames CASH as a meta-learning task. Section 4 presents a controlled synthetic experiment that
motivates our approach by showing how LLM prompting can capture useful hyperparameter patterns
in a simple setting. Section 5 then describes our methodology and evaluates LLM-based prompting
strategies on a diverse suite of benchmark datasets. Section 6 discusses broader implications,
limitations, and future directions. Finally, Section 7 summarizes our contributions.

2 RELATED WORK

Hyperparameter Optimization. Early work on hyperparameter optimization (HPO) relied on
simple search strategies such as grid search and random search (Bergstra & Bengio, 2012). More
sophisticated model-based methods, such as Bayesian optimization (BO), iteratively fit surrogate
models to past evaluations and propose promising configurations (Bergstra et al., 2011; Snoek
et al., 2012). Subsequent advances introduced multi-fidelity and bandit-based approaches, including
Successive Halving (Jamieson & Talwalkar, 2016) and Hyperband (Li et al., 2017), which exploit early
stopping to allocate resources efficiently. Later extensions sought to transfer knowledge across related
tasks or account for computational budgets, for example through multi-task Bayesian optimization
and compute-aware methods (Swersky et al., 2013; Golovin et al., 2017). These methods significantly
improved efficiency but still treat each optimization task largely in isolation.

Meta-Learning for HPO. To overcome this limitation, meta-learning approaches aim to accelerate
HPO by leveraging prior experience across tasks. Transfer Neural Processes (TNP) (Wei et al.,
2021), for example, incorporate meta-knowledge such as surrogate models and historical trial data to
improve sample efficiency. Meta-Bayesian optimization methods extend this idea by learning priors
over surrogate models from related tasks, enabling faster convergence on new optimization problems
(Feurer et al., 2015; Perrone et al., 2018). Other approaches, such as ALFA (Baik et al., 2020), adapt
hyperparameters dynamically during training using a meta-learner, while SHSR (Borboudakis et al.,
2023) prunes unpromising regions of the search space using past AutoML runs. PriorBand (Mallik

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2023) further accelerates HPO by combining expert beliefs with low-fidelity proxy tasks to
guide search in deep learning pipelines. These methods illustrate the value of meta-knowledge, but
they still assume a fixed model class.

The CASH Problem. In practice, algorithms and hyperparameters must be optimized jointly,
formalized as the CASH problem (Thornton et al., 2013). A common approach is to treat model
choice as a categorical hyperparameter, as in Auto-WEKA (Thornton et al., 2013) and Auto-sklearn
(Feurer et al., 2015), but the resulting search space is large and expensive to explore. Bandit-based
formulations address this by casting algorithm selection as arms with HPO inside each arm, e.g.,
MaxUCB (Balef et al., 2025), Rising Bandits (Li et al., 2020), and ER-UCB (Hu et al., 2021). These
improve scalability but still depend on extensive search. In contrast, our method tackles CASH
directly by generating model and hyperparameter configurations without relying on hierarchical
search or bandit-style exploration.

LLM-Based HPO. LLMs have recently been applied to hyperparameter optimization, for example
through iterative refinement with feedback or by combining with Bayesian optimization (Zhang
et al., 2024; Mahammadli & Ertekin, 2025; Liu et al., 2025). While promising, these approaches
treat HPO in isolation and require multiple interaction rounds. By contrast, we address the broader
CASH problem, producing complete model–hyperparameter configurations in a single inference.
AutoML-GPT (Zhang et al., 2023) explores full pipeline automation, including preprocessing, but
depends on explicit task similarity matching. Our method is simpler and more practical: we use
prior tasks only as in-context examples, letting the LLM adapt implicitly, and we evaluate directly on
real-world tabular datasets under standard CASH protocols.

3 PROBLEM SETUP

We frame model and hyperparameter selection as a meta-learning problem. Let PT denote a
distribution over machine learning tasks. For each task T ∼ PT , we are given a dataset D and a
metadata representation M , which summarizes task-level properties such as input dimensionality,
sample size, or distributional characteristics. Let θ ∈ Θ denote a model configuration, comprising
both the model type and its associated hyperparameters. For a task T , let L(θ, T) denote the
generalization error of configuration θ. The optimal configuration is defined as

θ∗ = argmin
θ∈Θ

L(θ, T).

In practice, θ∗ is unknown and must be approximated using train/validation/test splits of the dataset
D.

Our objective is to learn a recommendation function f that maps task metadata to a high-performing
configuration. Given a new task T , the function receives a metadata instance M along with k support
examples {(M1, θ

∗
1), . . . , (Mk, θ

∗
k)} obtained from past tasks. The function must then predict a

configuration θ = f(M ;M1:k, θ
∗
1:k) that performs well on T .

In our approach, f is implemented implicitly through in-context learning in a large language model:
the LLM receives a prompt containing metadata and possibly prior examples, and outputs a predicted
configuration θ. This reduces to a zero-shot setting when k = 0, where predictions must rely solely on
M and prior knowledge encoded in the model. When k > 0, the model can perform meta-informed
prediction by conditioning on past metadata–configuration pairs. To isolate and better understand
this behavior, we first study a synthetic classification task where the optimal configuration θ∗ can be
computed analytically. We then proceed to evaluate on a suite of real-world tabular benchmark tasks.

4 MOTIVATION: SYNTHETIC RIDGE REGRESSION EXPERIMENT

Before evaluating LLM-based model selection on complex benchmarks, we first study a controlled
synthetic task: predicting the optimal Ridge regularization parameter λ∗ for a binary classifier trained
on Gaussian data. This setup isolates the meta-learning objective while avoiding confounding factors
such as model choice, hyperparameter interactions, and data splits.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Analytic Test Error. To evaluate hyperparameter predictions, we require the generalization error
of Ridge regression as a function of λ ∈ Λ. Instead of using costly cross-validation, we leverage a
closed-form expression from Random Matrix Theory (Theorem 1 in Appendix A.1), which provides
exact test errors and enables precise computation of regret.
Remark (Applicability in low dimensions). Although Theorem 1 is formally derived for high-
dimensional settings, we verified that it remains accurate even for low-dimensional tasks (e.g.,
d = 2).

Synthetic Task Setup. Each task is represented by metadata (class sizes, means, covariances) and
the LLM predicts λ∗ from a fixed logarithmic grid

Λ = {10−4, 10−3, . . . , 103}.

For meta-learning evaluation, the LLM is provided with k solved support tasks (Mi, λ
∗
i)1≤i≤k and a

new target task M and must predict the optimal λ. We vary k ∈ {1, 2, 5, 10, 15, 20, 50, 100} to study
how performance improves with more contextual examples.

For each trial, we compute the exact optimal λ∗ for all tasks using Theorem 1, prompt the LLM with
the support tasks and target metadata, and obtain a prediction λ̂. The predicted value is then rounded
to the nearest grid point in Λ, and performance is measured by regret:

Regret = L(λ̂)− L(λ∗)

Details on task generation and prompt construction are provided in Appendices A.2 and A.3, respec-
tively.

To interpret LLM performance, we consider two baselines:

• Context-only: predicts the geometric mean of the support tasks’ optimal λ∗ values, ignoring
the target task metadata M . This tests whether the LLM simply regresses toward central
values from context.

• Logistic regression; predicts λ∗ directly from task metada features. This acts as lightweight
supervised meta-learner, simulating the case where cross-task training data is available.

Consistent improvements over both baselines indicates that the LLM leverages task-specific for
meaningful adaptation without supervised training.

We evaluate the Qwen 2.5 family (7B, 14B, 32B, 72B) (Qwen et al., 2025), across decoding tem-
peratures {0.0, 0.2, 0.4, 0.6, 0.8}. Prompt templates are provided in Appendix A.3. To ensure valid
outputs, generations are limited to 5 tokens with invalid predictions resampled.

Results. To assess the effect of model scale, Figure 2 shows regret as a function of k, the number
of support tasks. The Qwen2.5 72B model consistently achieves the lowest regret, with its advantage
over baselines growing as more context is provided. This indicates that the largest model not only
adapts from a few examples, but also continues to benefit from larget support sets.

The baselines exhibit distinct limitations. The log-mean method matches LLMs for very small k but
quickly saturates at a suboptimal level. Logistic regression improves more gradually and eventually
surpasses the log mean, yet it remains far below the 72B model across all k.

Smaller LLMs (7B–32B) track the baselines closely and show limited or inconsistent gains as k
increases, suggesting weaker in-context adaptation. By contrast, the 72B model demonstrates robust
meta-learning: it surpasses both baselines even at large k and continues to improve steadily with
more support tasks.

Finally, we verified that the decoding temperature (0.0–0.8) has no measurable effect on regret across
any model, confirming that our results are robust to this choice (see Appendix A.4 for detailed plots).
Overall, these findings suggest that sufficiently large LLMs can learn to generalize hyperparameter
selection strategies from sparse supervision, without parameter updates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Regret vs. number of support tasks k, averaged across decoding temperatures. The dashed
line represents a static geometric-mean baseline. Shaded regions denote 90% confidence intervals:
for model predictions, intervals are computed from the standard error over 5000 trials (1000 per
temperature); for the baselines, intervals reflect 1000 trials. The 72B model is the only model
to consistently outperform the baselines as k increases, indicating scale-dependent emergence of
in-context meta-learning.

5 METHODOLOGY AND EXPERIMENTS

We now describe our general evaluation framework and present empirical results on real-world tabular
regression and classification benchmarks. The methodology extends the setup from Section 3, and
the experiments test whether the in-context meta-learning behaviors observed in the synthetic ridge
regression setting also emerge in practical classification and regression tasks.

5.1 METHODOLOGY

As formalized in Section 3, each task Ti is represented by a metadata block Mi, and the goal is to
predict a configuration θi consisting of a set of models and their hyperparameters. In our setting, this
set is intended to form an ensemble: the LLM proposes multiple candidate models whose predictions
are later combined through the ensembling pipeline. We implement this mapping f : Mi 7→ θi
through in-context learning in a large language model.

Metadata for kaggle_abalone

prediction_type
regression
score_name
rmsle
n_train: 90615 n_test: 60411
features
total: 9
numeric: 8 categorical: 1
missing_data
has_missing: False
target_values min:
1 max: 29 mean: 9.697 std: 3.176

Task metadata. We summarize each dataset using
a fixed Markdown-style template designed for com-
pactness and interpretability. The metadata captures
prediction type, evaluation metric, sample sizes, fea-
ture composition (numeric vs. categorical), missing-
ness indicators, and target statistics. Rather than enu-
merating every feature, which would make prompts
impractically long for high-dimensional datasets,
the template records only aggregated statistics (e.g.,
counts of feature types, summary ranges). A simpli-
fied example for the abalone challenge is shown

on the left, and the full schema is provided in Appendix C.1.

We compared Markdown and JSON encodings, finding that Markdown reduced token length by
roughly 30% without degrading recommendation quality. This efficiency allows more support
examples to be included in-context while keeping prompts short and interpretable.

Prompting strategies. We evaluate two prompting modes:

• Zero-Shot: the LLM receives only the target metadata Mj , relying solely on pretrained
knowledge.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Meta-Informed: the LLM additionally observes a set of solved support tasks {(Mi, θ
∗
i)}ki=1,

all drawn from the same prediction type (classification or regression). In this setting, the
model is explicitly asked to identify similarities between tasks before recommending θj .

In practice, the Meta-Informed strategy assumes access to previous tasks along with high-performing
configurations. For this study, we obtained such configurations by running extensive hyperparameter
search with HEBO (Cowen-Rivers et al., 2022) on a set of tabular regression and classification tasks.
To maximize performance, ensembles (or blends) were built from the resulting models. We refer to
the models with the highest contributions to these ensembles as Context Blends, and use them as the
source of support examples passed to the prompt.

Configuration schema and hyperparameter grids. The LLM is instructed to output a JSON
object describing an ensemble of 10 models. For each supported family (CatBoost (Prokhorenkova
et al., 2018), LightGBM, XGBoost (Chen & Guestrin, 2016), and scikit-learn MLP (Pedregosa et al.,
2011)), we provide the model name, a list of valid hyperparameters, and a discrete grid of admissible
values. This grid is included directly in the prompt, ensuring that the model generates configurations
from a well-defined search space rather than free-form values. An excerpt of the schema is shown
below (see Appendix F for full hyperparamater grids):

{
"models": {
"catboost": {

"columns": ["bootstrap_type", "border_count", "grow_policy", ...],
"values": []

},
"lgbm": {

"columns": ["boosting_type", "colsample_bynode", "drop_rate", ...],
"values": []

},
...

}
}

Reasoning and output validation. We use the DeepSeek-R1 reasoning model (DeepSeek-AI et al.,
2025), which naturally produces explanations of its choices. The LLM configuration is described in
Appendix D. Invalid generations are rare, but we apply lightweight post-processing when they occur.
If the LLM outputs a numeric value that falls outside the predefined hyperparameter grid, we project
it to the nearest valid grid point. For non-numeric fields (e.g., categorical options) that cannot be
matched, we discard the configuration and resample a fresh output. Likewise, if the JSON structure
itself is malformed, the entire configuration is rejected and regenerated. Each run uses a different set
of support examples, ensuring robustness to contextual variation.

Prompt length and overhead. Prompt lengths remain modest: Zero-Shot prompts contain only
one metadata block, while Meta-Informed prompts add up to k support examples. In practice, the
LLM forward pass incurs negligible cost compared to training the resulting models, making the
overhead essentially free relative to model training.

Ensembling pipeline. Each LLM call outputs 10 configurations, which we treat as candidate base
models. We train these with cross-validation bagging and then combine their predictions using
feedforward greedy blending (Caruana et al., 2004). This procedure is applied consistently to LLM-
based and baseline methods, providing a fair comparison and reflecting common ML ensembling
practice.

5.2 DATASETS

We evaluate our method on 22 Kaggle tabular challenges spanning both regression and classification.
The benchmark covers a mix of “playground” competitions (synthetic or repurposed datasets) and
“featured” challenges (industrial or scientific applications), providing a broad spectrum of problem
settings. Kaggle tasks are particularly suitable for this study because they provide standardized
train/test splits, diverse evaluation metrics, and well-documented leaderboards, which together ensure
reproducibility and facilitate comparison with baselines.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Prediction types range from regression to binary and multi-class classification, with metrics including
error-based losses (RMSE, MAE, RMSLE), probabilistic measures (AUC, log-loss, NLL), and
discrete scores (accuracy, F1). Dataset scales vary widely from fewer than 2,000 training points
(horses) to several hundred thousand (media, insurance), while feature dimensionality ranges
from fewer than 10 (abalone) to over a thousand (molecules). This diversity ensures coverage
of small vs. large data regimes, low- vs. high-dimensional settings, and synthetic vs. real-world tasks.
The full dataset list with detailed statistics is provided in Table 2 in the Appendix.

5.3 BASELINES

We compare LLM-based recommendations against four baselines representing different strate-
gies for the CASH problem (full details in Appendix G): Context-Random (uniformly samples
model–hyperparameter configurations from the same reference pool as the one passed to the LLM),
Random-Hyperopt (at each step, uniformly samples a model family and then applies a hyperparam-
eter optimizer within that family), LGBM-Hyperopt (optimizer restricted to LightGBM, capturing
the strength of a single tuned family), and MaxUCB-Hyperopt (treats each family as a bandit arm,
selecting the one with the highest upper-confidence bound before a single optimization step (Balef
et al., 2025)). Context Blends consist of ensembles obtained from an extensive hyperparameter
search. They provide upper-bound baselines: they achieve high performance through extensive search,
and thus set the performance we seek to approach under a much more limited budget. All -Hyperopt
baselines use HEBO (Cowen-Rivers et al., 2022), chosen for its strong and consistent performance
across diverse tasks (Kegl, 2023)1.

5.4 EVALUATION METRIC

We assess blend quality using the private leaderboard percentile rank (prank), which measures the
percentage of submissions beaten by a given configuration on Kaggle’s hidden test set. A value of
prank = 100 indicates the top submission on the leaderboard, while prank = 0 corresponds to the
lowest. This metric is scale-invariant across datasets with different evaluation metrics and directly
reflects the competitive standard of Kaggle challenges. We report mean prank across tasks, with
uncertainty estimated from the standard error over random seeds.

5.5 PERFORMANCE COMPARISON

Figure 3: Comparison of prompting strategies and
baselines in terms of prank. The Context Blends
produced by AutoML performance for each chal-
lenge are shown as a reference. Error bars indicate
90% confidence intervals of the mean across 8 ran-
dom seeds per dataset.

We compare LLM-generated ensembles against
the baselines introduced in Section 5.3, using the
private leaderboard percentile rank (prank; higher
is better) as our evaluation metric. For fairness,
all methods are restricted to training exactly 10
models on each dataset. This provides a com-
parable runtime budget across methods, since
model training is the dominant cost irrespective
of how configurations are proposed.

Results. Blend quality is measured using the
private leaderboard percentile rank (p-rank;
higher is better) after training on the Kaggle
datasets. Figure 3 summarizes the average per-
formance across 22 datasets. Meta-Informed
achieves the strongest LLM-driven performance
(72.7), surpassing both Zero-Shot (70.4) and
Context-Random (70.0), while clearly outper-
forming Hyperopt based baselines including the
best one Random-Hyperopt (65.7). Although
the AutoML-derived Context Blends remains
higher (77.7), this performance is achieved at

1HEBO begins with random search, using 1 + (dimension of the hyperparameter space) evaluations, before
switching to Bayesian optimization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the cost of a much more expensive procedure, whereas our strategies rely on training only 10 models.
Importantly, the significant improvement of Meta-Informed over Context-Random indicates that
the LLM is not merely sampling from the metadata, but is leveraging past tasks’ information in a way
that reflects genuine adaptation. Finally, across most datasets (Table 1), LLM-based methods exhibit
lower uncertainty than Hyperopt baselines, indicating more stable performance. A more detailed
analysis of per-dataset patterns is provided in Appendix B.2.

Table 1: Kaggle p-rank results across all challenges. Uncertainty is reported as ± values, representing
the 90% confidence interval based on the standard error across 8 random seeds.

Kaggle Meta Zero Context Random MaxUCB LGBM
Challenge -Informed -Shot -Random -Hyperopt -Hyperopt -Hyperopt
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 56.53 ± 9.0 64.21 ± 11.3
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 56.25 ± 2.7 51.0 ± 2.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 58.69 ± 2.6 48.21 ± 5.0
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 62.9 ± 7.1 65.87 ± 7.7
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 62.98 ± 6.0 70.64 ± 1.0
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 66.96 ± 1.9 70.17 ± 2.0
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 75.46 ± 13.8 83.21 ± 9.3
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 53.75 ± 6.2 32.0 ± 3.4
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 59.53 ± 3.2 63.84 ± 1.8
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 94.12 ± 1.8 96.75 ± 1.5
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 47.15 ± 5.0 48.15 ± 7.0
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 47.37 ± 11.3 36.22 ± 17.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 72.7 ± 9.2 79.75 ± 5.7
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 42.15 ± 8.2 52.71 ± 3.9
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 82.03 ± 3.0 87.45 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 66.76 ± 4.2 64.6 ± 3.4
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 60.81 ± 4.8 74.43 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 47.87 ± 5.6 26.07 ± 2.8
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 73.39 ± 9.3 80.11 ± 7.7
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 38.94 ± 4.7 25.42 ± 2.0
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 94.84 ± 1.9 78.02 ± 12.6
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.75 ± 6.0 61.41 ± 5.5
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7 ± 1.1 62.86 ± 1.2 61.8 ± 1.1

5.6 PERFORMANCE EFFICIENCY

To complement performance ranking, we also evaluate efficiency relative to standard hyperparameter
optimization. For this comparison, we focus on a subset of six datasets: abalone, blueberry,
covertype, heat flux fi, horses, and media.

Figure 4: prank over training rounds for Random-Hyperopt, MaxUCB-Hyperopt, Meta-Informed,
and Zero-Shot across the six selected datasets. Error bars indicate 90% confidence intervals using
standard error across 8 seeds.

8

https://www.kaggle.com/competitions/playground-series-s4e4
https://www.kaggle.com/competitions/allstate-claims-severity
https://www.kaggle.com/competitions/playground-series-s3e3
https://www.kaggle.com/competitions/playground-series-s3e14
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/playground-series-s3e26
https://www.kaggle.com/competitions/playground-series-s3e9
https://www.kaggle.com/competitions/forest-cover-type-prediction
https://www.kaggle.com/competitions/playground-series-s3e16
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/competitions/tabular-playground-series-aug-2022
https://www.kaggle.com/competitions/playground-series-s3e15
https://www.kaggle.com/competitions/playground-series-s3e22
https://www.kaggle.com/competitions/playground-series-s3e1
https://www.kaggle.com/competitions/predict-who-is-more-influential-in-a-social-network
https://www.kaggle.com/competitions/tabular-playground-series-feb-2021
https://www.kaggle.com/competitions/playground-series-s4e10
https://www.kaggle.com/competitions/playground-series-s3e11
https://www.kaggle.com/competitions/playground-series-s4e11
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/bioresponse
https://www.kaggle.com/competitions/tabular-playground-series-jan-2021

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We define one round as training a single model configuration followed by its integration into the
blending pipeline, ensuring all methods incur the same per-round cost. The LLM based methods
(Zero-Shot and Meta-Informed) produce exactly ten configurations in a single forward pass and
thus correspond to a budget of 10 rounds. By contrast, Random-Hyperopt and MaxUCB-Hyperopt
can continue to propose new configurations sequentially and we evaluate their performance after 5,
10, 20 and 50 rounds.

Results. On five of these six datasets, the LLM based methods match or exceed performance
of Hyperopt ones within the same budget of ten training rounds, while Hyperopt methods seems
to require substantially more rounds to achieve similar performance (Figure 4). This highlights
an efficiency advantage when measured on a per-round basis: LLM-based methods deliver high-
quality configurations immediately, whereas Hyperopt ones improve only gradually through extended
exploration. In practice, this advantage could be even more pronounced since LLMs produce all of
their candidates in a single inference step. This means that the full set of configurations is available
upfront and can be trained in parallel, while Hyperopt methods must generate candidates one at a
time, limiting opportunities for parallelization and slowing down the overall search process.

5.7 INTERPRETABILITY

Another advantage of LLM-based methods is interpretability. Unlike conventional hyperparameter
optimization, which produces configurations without explanation, the LLM generates structured
outputs accompanied by reasoning traces. These traces highlight how the model can relate task
metadata to past examples when proposing new model–hyperparameter ensembles. For example, the
LLM often explains its choices by linking dataset properties to its choices such as favoring CatBoost
on feature sets dominated by categorical variables, or suggesting deeper trees when the regression
task involves many numeric features. Appendix E presents selected reasoning traces that illustrate
how the model draws on prior tasks and/or its internal knowledge to guide model and hyperparameter
recommendations.

6 DISCUSSION

While our results establish the competitiveness of LLM-based CASH strategies, they also outline
challenges that remain to be addressed. As detailed in Appendix B.2, performance on small datasets
or those with extreme feature-to-sample ratios is less consistent, pointing to a dependence on richer
metadata for reliable adaptation. This suggests that characterizing the conditions under which LLMs
succeed or fail will be an important direction for future work. The methods proved stable to shuffling
the order of items within the prompt (Appendix H), suggesting that performance is not strongly tied
to positional artifacts. Finally, our study restricted evaluation to four model families for tractability,
but extending coverage to a broader set of models and hyperparameters will be essential for assessing
generality and exploring the full potential of LLM-based CASH.

7 CONCLUSION

Our experiments show that large language models can exploit metadata from support tasks to
recommend models and hyperparameters competitively without iterative search. They also provide
strong task-dependent defaults, offering practitioners a practical starting point without extensive
tuning. These results demonstrate the viability of LLMs as in-context meta-learners for the CASH
problem and highlight their potential as an efficient complement to conventional AutoML pipelines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Details of the synthetic experiment protocol are given in Appendix A. All datasets used in this work
are publicly available Kaggle challenges, with detailed statistics and links provided in Appendix B.
For the Kaggle experiments, metadata schemas, prompt templates, base model grids, and LLM
configurations are specified in Appendices C, F, and D. Baseline implementations follow published
protocols, with hyperparameter search details described in Section 5.3 and Appendix G. To further
ensure reproducibility, we will release the code to reproduce the experiments once the paper has been
accepted at [Link hidden for review].

REFERENCES

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-learning
with adaptive hyperparameters. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546.

Amir Rezaei Balef, Claire Vernade, and Katharina Eggensperger. Put cash on bandits: A max
k-armed problem for automated machine learning, 2025. URL https://arxiv.org/abs/
2505.05226.

James Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The Journal of
Machine Learning Research, 13:281–305, 03 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/
2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Giorgos Borboudakis, Paulos Charonyktakis, Konstantinos Paraschakis, and Ioannis Tsamardinos. A
meta-level learning algorithm for sequential hyper-parameter space reduction in automl. arXiv
preprint arXiv:2312.06305, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from
libraries of models. In Proceedings of the Twenty-First International Conference on Machine
Learning, ICML ’04, pp. 18, New York, NY, USA, 2004. Association for Computing Machinery.
ISBN 1581138385. doi: 10.1145/1015330.1015432. URL https://doi.org/10.1145/
1015330.1015432.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matthew Botvinick, Jane X Wang, and Eric Schulz.
Meta-in-context learning in large language models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
sx0xpaO0za.

10

https://example.com/dummy
https://arxiv.org/abs/2505.05226
https://arxiv.org/abs/2505.05226
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/1015330.1015432
https://doi.org/10.1145/1015330.1015432
http://doi.acm.org/10.1145/2939672.2939785
https://openreview.net/forum?id=sx0xpaO0za
https://openreview.net/forum?id=sx0xpaO0za

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Romain Couillet and Merouane Debbah. Random matrix methods for wireless communications.
Cambridge University Press, 2011.

Alexander Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys
Griffiths, Alexandre Maravel, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou Ammar.
Hebo: Pushing the limits of sample-efficient hyperparameter optimisation. Journal of Artificial
Intelligence Research, 74, 07 2022.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 1107–1128, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
64. URL https://aclanthology.org/2024.emnlp-main.64/.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
11d0e6287202fced83f79975ec59a3a6-Paper.pdf.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 1487–1495,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348874. doi:
10.1145/3097983.3098043. URL https://doi.org/10.1145/3097983.3098043.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing CAAFE for context-aware automated feature engineering. In Thirty-seventh

11

https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.emnlp-main.64/
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://doi.org/10.1145/3097983.3098043

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=9WSxQZ9mG7.

Yi-Qi Hu, Xu-Hui Liu, Shu-Qiao Li, and Yang Yu. Cascaded algorithm selection with extreme-region
ucb bandit. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP:1–1, 07 2021.
doi: 10.1109/TPAMI.2021.3094844.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparam-
eter optimization. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pp. 240–248, Cadiz, Spain, 09–11 May 2016. PMLR. URL
https://proceedings.mlr.press/v51/jamieson16.html.

Balazs Kegl. A systematic study comparing hyperparameter optimization engines on tabular data,
2023. URL https://arxiv.org/abs/2311.15854.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers, 2024. URL https://arxiv.org/abs/2212.
04458.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18(1):
6765–6816, January 2017. ISSN 1532-4435.

Yang Li, Jiang Jiawei, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. Efficient automatic cash
via rising bandits. Proceedings of the AAAI Conference on Artificial Intelligence, 34:4763–4771,
04 2020. doi: 10.1609/aaai.v34i04.5910.

Siyi Liu, Chen Gao, and Yong Li. AgentHPO: Large language model agent for hyper-parameter
optimization. In The Second Conference on Parsimony and Learning (Proceedings Track), 2025.
URL https://openreview.net/forum?id=HU3yfXcoKU.

Kanan Mahammadli and Seyda Ertekin. Sequential large language model-based hyper-parameter
optimization, 2025. URL https://arxiv.org/abs/2410.20302.

Neeratyoy Mallik, Eddie Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=uoiwugtpCH.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for
seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in Python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, and C. Archambeau. Scalable hyper-
parameter transfer learning. In Neural Information Processing Systems, 2018. URL https:
//api.semanticscholar.org/CorpusID:54035096.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. Catboost: unbiased boosting with categorical features. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), NeurIPS, pp. 6639–6649, 2018. URL http://dblp.uni-trier.de/db/conf/
nips/nips2018.html#ProkhorenkovaGV18.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

12

https://openreview.net/forum?id=9WSxQZ9mG7
https://openreview.net/forum?id=9WSxQZ9mG7
https://proceedings.mlr.press/v51/jamieson16.html
https://arxiv.org/abs/2311.15854
https://arxiv.org/abs/2212.04458
https://arxiv.org/abs/2212.04458
https://openreview.net/forum?id=HU3yfXcoKU
https://arxiv.org/abs/2410.20302
https://openreview.net/forum?id=uoiwugtpCH
https://api.semanticscholar.org/CorpusID:54035096
https://api.semanticscholar.org/CorpusID:54035096
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#ProkhorenkovaGV18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#ProkhorenkovaGV18
https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bobak Shahriari, Kevin Swersky, Ziyun Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104:148–175,
2016. URL https://api.semanticscholar.org/CorpusID:14843594.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: combined
selection and hyperparameter optimization of classification algorithms. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’13, pp. 847–855, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450321747. doi: 10.1145/2487575.2487629. URL https://doi.org/10.1145/
2487575.2487629.

Malik Tiomoko, Romain Couillet, and Hafiz Tiomoko. Large dimensional analysis and improvement
of multi task learning. arXiv preprint arXiv:2009.01591, 2020.

Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang, and Bryan Hooi. Primacy effect of ChatGPT.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 108–115, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.8. URL
https://aclanthology.org/2023.emnlp-main.8/.

Ziqi Wang, Hanlin Zhang, Xiner Li, Kuan-Hao Huang, Chi Han, Shuiwang Ji, Sham M. Kakade,
Hao Peng, and Heng Ji. Eliminating position bias of language models: A mechanistic approach.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=fvkElsJOsN.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Ying Wei, Peilin Zhao, and Junzhou Huang. Meta-learning hyperparameter performance prediction
with neural processes. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 11058–11067. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/wei21c.html.

Michael R. Zhang, Nishkrit Desai, Juhan ae, Jonathan Lorraine, and Jimmy. Using large language
models for hyperparameter optimization, 2024. URL https://arxiv.org/abs/2312.
04528.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt: Au-
tomatic machine learning with gpt, 2023. URL https://arxiv.org/abs/2305.02499.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search?, 04 2023.

13

https://api.semanticscholar.org/CorpusID:14843594
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://aclanthology.org/2023.emnlp-main.8/
https://openreview.net/forum?id=fvkElsJOsN
https://openreview.net/forum?id=fvkElsJOsN
https://proceedings.mlr.press/v139/wei21c.html
https://proceedings.mlr.press/v139/wei21c.html
https://arxiv.org/abs/2312.04528
https://arxiv.org/abs/2312.04528
https://arxiv.org/abs/2305.02499

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Synthetic Ridge Experiment 15

A.1 Closed-Form Test Error . 15

A.2 Task Generation Procedure . 17

A.3 Prompts . 17

A.4 Effect of Decoding Temperature . 19

B Kaggle Benchmark Details 20

B.1 Kaggle Challenges . 20

B.2 Per-Challenge Results . 20

C Prompting Schemas 22

C.1 Current Task Description Format . 22

C.2 Zero-Shot Setting . 23

C.3 Meta-Informed Setting . 24

D Chat API Configuration and Defaults 24

E Example Reasoning Traces 24

F Base Model Details 27

G Baselines description 27

G.1 Context-Random . 27

G.2 Random-Hyperopt . 27

G.3 LGBM-Hyperopt . 27

G.4 MaxUCB-Hyperopt . 28

H Robustness to Prompt Shuffling 29

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SYNTHETIC RIDGE EXPERIMENT

A.1 CLOSED-FORM TEST ERROR

Notation. Throughout the appendix, bold uppercase letters (e.g. A) denote matrices, bold lowercase
letters (e.g. x) denote vectors, and plain lowercase letters (e.g. x) denote scalars. We use ∥x∥2 for
the Euclidean norm of a vector, ∥A∥ for the spectral (operator) norm of a matrix, and ∥A∥F for its
Frobenius norm. For two sequences of real numbers un and vn, the notation un = O(vn) indicates
that |un/vn| remains bounded (as n → ∞), typically with high probability. Expectation is denoted
by E[·].

Setup. We consider a binary classification problem in d-dimensional space. Fix a dimension d ∈ N.
We observe a labeled training sample {

(xi, yi)
}n
i=1

,

where for each i = 1, . . . , n:

• xi ∈ Rd is the d-dimensional feature vector,
• yi ∈ {+1,−1} is the corresponding class label.

We assume that the data come from a mixture of two Gaussian classes:

x
∣∣ y = +1 ∼ N (µ1,Σ1), x

∣∣ y = −1 ∼ N (µ2,Σ2),

Let nk be the number of training samples from class k ∈ {1, 2}, n = n1 + n2. Define class
proportions ck := nk/n. Denote

Ck := Σk + µkµ
⊤
k ∈ Rd×d, k = 1, 2.

Ridge regression classifier. Given the training set {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {+1,−1},
we train a ridge regression classifier (least-squares with ℓ2 penalty). Specifically, for a regularization
parameter λ > 0 we solve

ŵ(λ) = arg min
w∈Rd

1

n

n∑
i=1

(
yi −w⊤xi

)2
+ λ∥w∥22. (1)

This is the standard ridge regression problem. Its closed-form solution is

ŵ(λ) =
(
X⊤X/n+ λId

)−1
X⊤y/n, (2)

where X ∈ Rn×d is the data matrix with rows x⊤
i and y = (y1, . . . , yn)

⊤ the label vector.

Given a new test point x ∈ Rd, the classifier computes the score

s(x) = ŵ(λ)⊤x, (3)

which is then compared to a decision threshold (e.g. zero or an optimally chosen η⋆) to produce a
predicted label.

All formulas below are deterministic equivalents / asymptotic formulas obtained by the standard
Gaussian and random-matrix approximations used to derive fixed point equations.

Assumption 1. (Regularity / high-dimensional regime) The feature dimension d and the sample
sizes nk grow so that: d, n1, n2 → ∞ with d/n → γ ∈ (0,∞) and ck = nk/n → c̄k ∈ (0,∞).
The family of pair (Σ1,Σ2) is uniformly bounded in operator norm and their empirical spectral
distributions admit limits.

Auxiliary fixed point definitions. For a given λ > 0 we seek δ = (δ1, δ2) ∈ R2 and a matrix
Q̄(λ) ∈ Rd×d defined implicitly by the equations

Q̄(λ) :=

(
2∑

k=1

ck
1 + δk

Ck + λId

)−1

, (4)

δk =
1

n
tr
(
Ck Q̄(λ)

)
, k = 1, 2. (5)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The existence and uniqueness of a positive solution follow under the above regularity conditions;
numerically δ is found by simple fixed-point iteration.

Define the diagonal scaling matrix and the (scaled) mean matrix

Dδ := diag
(

1
1+δ1

, 1
1+δ2

)
, Mδ := Dδ

[
µ⊤
1

µ⊤
2

]
∈ R2×d.

We also define two d× d matrices K1,K2 and two 2-vectors d(1), d(2) through the linear algebraic
operations below:

V :=
1

n

[
tr(C1Q̄C1Q̄) tr(C1Q̄C2Q̄)

tr(C2Q̄C1Q̄) tr(C2Q̄C2Q̄)

]
, A := diag

(c1
(1 + δ1)2

,
c2

(1 + δ2)2

)
,

t(j) :=

[1
n tr(C1Q̄ΣjQ̄)
1
n tr(C2Q̄ΣjQ̄)

]
, j = 1, 2,

d(j) := (I2 −VA)−1t(j), j = 1, 2,

and then

Kj := Q̄Σj Q̄ +
c2d

(j)
1

(1 + δ1)2
Q̄C1Q̄ +

c1d
(j)
2

(1 + δ2)2
Q̄C2Q̄, j = 1, 2.

Define the asymptotic (deterministic) class scores’ means and variances as follows.

Let y be the vector of training labels with entries +1 for class 1 samples and −1 for class 2 samples,
and write J ∈ Rn×2 for the class indicator matrix with columns equal to the indicators of class
membership. Then the limiting (deterministic) score means are

mk =
1

n
y⊤JMδ Q̄µk, k = 1, 2,

and the limiting score variances are

vk =
1

n2

(
y⊤V(k)y + y⊤JMδKkM

⊤
δ J

⊤y − 2y⊤JM
(k)
δ,∆Q̄M⊤

δ J
⊤y
)
,

where V(k) is the diagonal matrix whose entries are the per-sample variances built from
tr(ΣiKk)/(1 + δi)

2, and M
(k)
δ,∆ is the matrix built from the traces tr(ΣiKk).

Theorem 1 (Asymptotic Gaussianity and deterministic test error). Under the assumptions above, for
any fixed regularization λ > 0 the distribution of the ridge score s(x) = ŵ(λ)⊤x conditional on
x belonging to class k converges in distribution to a Gaussian with mean mk and variance vk as
d, n → ∞. That is,

s(x) | (x ∼ class k) d−→ N (mk, vk), k = 1, 2,

where mk, vk are given by the deterministic formulas above (they are computed from the unique
solution of the fixed point system equation 4–equation 5 together with the algebraic definitions of
Kk).

Consequently, the asymptotic test error (balanced between the two classes) for the optimal threshold
η⋆ that minimizes the misclassification probability equals

E(λ) = 1
2 Φ

(
η⋆ −mmax√

vmax

)
+ 1

2

(
1− Φ

(
η⋆ −mmin√

vmin

))
,

where mmax = max{m1,m2}, mmin = min{m1,m2}, and vmax, vmin are the variances corre-
sponding to those means. The optimal threshold η⋆ is the solution of

1
√
v1

(η −m1) = ± 1
√
v2

(η −m2),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof sketch. The proof is a combination of two standard ingredients:

1. Deterministic equivalents / resolvent fixed point. Using standard random-matrix techniques
(resolvent identities and deterministic equivalents for sample covariance resolvents) (Couillet
& Debbah, 2011, Chapter 6), one shows that the random matrix inverse that appears in the
ridge formula concentrates around the deterministic matrix Q̄(λ) defined in equation 4 and
that the scalar traces (1/n) tr(CkQ̄) converge to the solution δk of equation 5. This gives
the first-order deterministic equivalents used to compute mk.

2. Gaussian fluctuation / CLT. After centering by the deterministic mean, the score is a
linear or quadratic form of Gaussian vectors; a multivariate CLT (together with second-
order deterministic equivalents captured by Kk and the d(j) corrections) yields asymptotic
Gaussianity Tiomoko et al. (2020) with variance given by the deterministic formula vk.

A.2 TASK GENERATION PROCEDURE

We generate synthetic tasks T as binary Gaussian classification problems of dimension d = 2.

T =
(
n1, n2, µ1, µ2, α1, α2

)
,

with the following components:

• n1, n2: sample counts for classes 1 and 2, drawn uniformly at random from {10, . . . , 500}.

• µ1, µ2: mean vectors of the two classes. We fix

µ1 = (1, 1, . . . , 1) ∈ Rd,

and define

µ2 = −ε · (1, 1, . . . , 1),

where ε ∈ [0, 2]2 is sampled i.i.d. from the uniform distribution and rounded to two decimal
places.

• α1, α2: AR(1) Toeplitz correlation coefficients, drawn uniformly from [0, 0.9] (rounded to
two decimal places). These define the covariance matrices

Σ
(c)
ij = α |i−j|

c , c ∈ {1, 2}.

Hence, each task T specifies two Gaussian distributions

X
∣∣Y = c ∼ N

(
µc,Σ

(c)
)
, c ∈ {1, 2},

together with their respective sample sizes nc.

Because the class means, covariances, and sample sizes are randomized across tasks, the resulting
problems differ in signal-to-noise ratio and feature correlations. Consequently, the optimal ridge
regularization parameter λ⋆ varies substantially.

A.3 PROMPTS

We query the LLM to select an optimal ridge penalty λ from a fixed grid given JSON task metadata.
Two prompt variants are used: (i) a zero-shot prompt with no past tasks, and (ii) a meta-informed
prompt with a list of past tasks annotated with their optimal λ⋆.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Zero-Shot Prompt

You are a statistics assistant. Your task is to inspect a Gaussian classification problem that
will be solved with ridge regression and then pick the optimal ridge regularisation constant
lambda for this problem (task id: 0). The task is a two-class Gaussian problem with:
• n1, n2 : sample counts for classes 1 and 2;
• mu1, mu2 : mean vectors of the two classes;
• alpha1, alpha2 : AR(1) Toeplitz correlation coefficients defining each class’s covariance
Sigma ij = alpha ˆ|i− j|.
Choose lambda only from the common grid provided below.

Common lambda grid (shared by every task):

{{LAMBDA GRID JSON}}

Task (predict lambda star). Pick **exactly one** lambda from the common grid
above that minimises test error for this task. Output just that number, no extra text.

{{NEW TASK JSON}}

Meta-Informed Prompt

You are a statistics assistant.Your task is to inspect several past Gaussian classification
problems that were solved with ridge regression and then pick the optimal ridge regularisation
constant lambda for ONE new problem (task id: NEW). The task is a two-class Gaussian
problem with:
• n1, n2 : sample counts for classes 1 and 2;
• mu1, mu2 : mean vectors of the two classes;
• alpha1, alpha2 : AR(1) Toeplitz correlation coefficients defining each class’s covariance
Sigma ij = alpha ˆ|i− j|.
Choose lambda only from the common grid provided below.

Common lambda grid (shared by every task):

{{LAMBDA GRID JSON}}

Past tasks with known optimal lambda star:

{{PAST TASKS JSON}}

Task (predict lambda star). Pick **exactly one** lambda from the common grid
above that minimises test error for this task. Output just that number, no extra text.

{{NEW TASK JSON}}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4 EFFECT OF DECODING TEMPERATURE

We examined the impact of decoding temperature on regret across all LLMs. Temperatures T ∈
{0.0, 0.2, 0.4, 0.6, 0.8} were tested using the same protocol as in the main experiments. Figure 5
reports the results.

Across all models, we observe that decoding temperature has only a marginal effect on regret with
the confidence intervals overlapping substantially. This indicates that regret is largely insensitive to
sampling temperature, and thus our main results are robust to this choice.

Figure 5: Regret vs. number of support tasks k for Qwen 2.5 models at five decoding temperatures
(T=0.0 to 0.8). Shaded regions denote 90% confidence interval based on standard error across 1000
trials. Only the 72B model shows consistent improvement with increasing k, with minimal effect of
temperature across all models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B KAGGLE BENCHMARK DETAILS

B.1 KAGGLE CHALLENGES

Table 2 summarizes the statistics of the tabular challenges used in this paper, highlighting a wide
range of problem types, metrics, and data sizes.

Kaggle type year pred metric # # # # # # # #
challenge type team train test feat cat num cls miss
abalone play 2024 reg rmsle 2606 90615 60411 8 1 7 0
allstate feat 2016 reg mae 3045 188318 125546 130 116 14 0
attrition play 2023 bin auc 665 1677 1119 33 8 25 2 0
blueberry play 2023 reg mae 1875 15289 10194 16 0 16 0
churn play 2024 bin auc 3632 165034 110023 12 6 6 2 0
cirrhosis play 2023 mult nll 1661 7905 5271 18 6 12 3 0
concrete strength play 2023 reg rmse 765 5407 3605 8 0 8 0
covertype play 2015 mult acc 1692 15120 565892 54 44 10 7 0
crab age play 2023 reg mae 1429 74051 49368 8 1 7 0
credit fusion feat 2011 bin auc 924 150000 101503 10 0 10 2 56384
failure play 2022 bin auc 1888 26570 20775 24 3 21 2 35982
heat flux fi play 2023 reg rmse 693 21229 10415 8 2 6 34603
horses play 2023 bin f1 1541 1235 824 27 17 10 3 1324
housing california play 2023 reg rmse 689 37137 24759 8 0 8 0
influencers feat 2013 bin auc 132 5500 5952 22 0 22 2 0
insurance play 2021 reg rmse 1433 300000 200000 24 10 14 0
loan approval play 2024 bin auc 3858 58645 39098 11 4 7 2 0
media play 2023 reg rmsle 952 360336 240224 15 7 8 0
mental health play 2024 bin acc 2685 140700 93800 18 7 8 2 718167
mercedes feat 2017 reg r2 3823 4209 4209 376 376 0 0
molecules feat 2012 bin nll 698 3751 2501 1776 0 1776 2 0
unknown a play 2021 reg rmse 1728 300000 200000 14 0 14 0

Table 2: Metadata of Kaggle challenges. Challenge types include ”playground” (datasets from
external sources or synthetically generated) and ”featured” (datasets from real scientific or industrial
applications, often with significant monetary prizes for top participants). Prediction tasks are binary
classification (bin), regression (reg), or multi-class classification (mult; with the number of classes
indicated in the #cls column). Note that in our method, mult and bin are treated the same. Features
are categorized as numerical (num) or categorical (cat). The final column reports the number of
missing entries in the training data.

B.2 PER-CHALLENGE RESULTS

Kaggle Meta Zero Context Random MaxUCB LGBM
Challenge -Informed -Shot -Random -Hyperopt -Hyperopt -Hyperopt
abalone 85.73 ± 3.3 74.67 ± 4.6 87.87 ± 2.3 58.95 ± 4.6 56.53 ± 9.0 64.21 ± 11.3
allstate 69.92 ± 2.3 61.66 ± 2.9 65.41 ± 5.0 50.05 ± 2.4 56.25 ± 2.7 51.0 ± 2.7
attrition 59.51 ± 1.7 61.12 ± 1.8 57.31 ± 2.3 59.36 ± 3.3 58.69 ± 2.6 48.21 ± 5.0
blueberry 81.16 ± 2.4 79.86 ± 1.7 78.96 ± 3.8 70.77 ± 5.3 62.9 ± 7.1 65.87 ± 7.7
churn 70.35 ± 0.9 68.73 ± 0.9 68.71 ± 3.0 65.07 ± 4.0 62.98 ± 6.0 70.64 ± 1.0
cirrhosis 70.58 ± 3.6 69.09 ± 1.4 73.06 ± 1.8 64.61 ± 4.6 66.96 ± 1.9 70.17 ± 2.0
concrete strength 74.34 ± 17.9 74.19 ± 6.8 59.37 ± 16.1 88.81 ± 5.4 75.46 ± 13.8 83.21 ± 9.3
covertype 67.78 ± 4.0 58.35 ± 7.6 60.05 ± 10.3 56.75 ± 11.0 53.75 ± 6.2 32.0 ± 3.4
crab age 68.87 ± 0.7 68.81 ± 0.6 67.67 ± 1.2 61.84 ± 2.3 59.53 ± 3.2 63.84 ± 1.8
credit fusion 96.61 ± 1.0 96.71 ± 1.1 90.91 ± 1.7 96.35 ± 0.9 94.12 ± 1.8 96.75 ± 1.5
failure 41.12 ± 1.5 43.52 ± 1.7 41.25 ± 0.8 43.7 ± 2.6 47.15 ± 5.0 48.15 ± 7.0
heat flux fi 93.4 ± 5.0 90.7 ± 4.3 83.65 ± 8.6 69.07 ± 6.6 47.37 ± 11.3 36.22 ± 17.1
horses 82.39 ± 7.7 82.78 ± 5.6 75.31 ± 10.6 81.15 ± 6.2 72.7 ± 9.2 79.75 ± 5.7
housing california 62.53 ± 0.6 54.84 ± 2.4 60.07 ± 2.0 46.9 ± 6.8 42.15 ± 8.2 52.71 ± 3.9
influencers 76.84 ± 7.4 83.55 ± 1.4 80.52 ± 2.8 82.95 ± 2.7 82.03 ± 3.0 87.45 ± 1.9
insurance 74.68 ± 2.4 68.16 ± 1.8 67.9 ± 2.1 62.53 ± 5.9 66.76 ± 4.2 64.6 ± 3.4
loan approval 71.58 ± 2.6 63.29 ± 5.5 66.84 ± 5.4 62.64 ± 6.9 60.81 ± 4.8 74.43 ± 0.9
media 62.95 ± 1.4 57.52 ± 2.0 61.81 ± 2.5 49.5 ± 7.5 47.87 ± 5.6 26.07 ± 2.8
mental health 92.99 ± 3.0 79.77 ± 10.2 89.69 ± 5.2 75.34 ± 9.5 73.39 ± 9.3 80.11 ± 7.7
mercedes 17.81 ± 2.8 36.44 ± 7.8 35.26 ± 10.6 36.57 ± 8.6 38.94 ± 4.7 25.42 ± 2.0
molecules 97.52 ± 1.5 96.34 ± 1.6 96.32 ± 3.3 96.33 ± 2.6 94.84 ± 1.9 78.02 ± 12.6
unknown a 80.56 ± 0.8 78.6 ± 0.8 72.59 ± 2.4 66.17 ± 2.5 61.75 ± 6.0 61.41 ± 5.5
Mean 72.69 ± 0.2 70.39 ± 0.2 70.02 ± 0.3 65.7 ± 1.1 62.86 ± 1.2 61.8 ± 1.1

Table 3: Kaggle p-rank results across all challenges (the higher, the better). Uncertainty is reported
as ± values, representing the 90% confidence interval based on the standard error across 8 random
seeds.

20

https://www.kaggle.com/competitions/playground-series-s4e4
https://www.kaggle.com/competitions/allstate-claims-severity
https://www.kaggle.com/competitions/playground-series-s3e3
https://www.kaggle.com/competitions/playground-series-s3e14
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/playground-series-s3e26
https://www.kaggle.com/competitions/playground-series-s3e9
https://www.kaggle.com/competitions/forest-cover-type-prediction
https://www.kaggle.com/competitions/playground-series-s3e16
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/competitions/tabular-playground-series-aug-2022
https://www.kaggle.com/competitions/playground-series-s3e15
https://www.kaggle.com/competitions/playground-series-s3e22
https://www.kaggle.com/competitions/playground-series-s3e1
https://www.kaggle.com/competitions/predict-who-is-more-influential-in-a-social-network
https://www.kaggle.com/competitions/tabular-playground-series-feb-2021
https://www.kaggle.com/competitions/playground-series-s4e10
https://www.kaggle.com/competitions/playground-series-s3e11
https://www.kaggle.com/competitions/playground-series-s4e11
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/bioresponse
https://www.kaggle.com/competitions/tabular-playground-series-jan-2021
https://www.kaggle.com/competitions/playground-series-s4e4
https://www.kaggle.com/competitions/allstate-claims-severity
https://www.kaggle.com/competitions/playground-series-s3e3
https://www.kaggle.com/competitions/playground-series-s3e14
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/playground-series-s3e26
https://www.kaggle.com/competitions/playground-series-s3e9
https://www.kaggle.com/competitions/forest-cover-type-prediction
https://www.kaggle.com/competitions/playground-series-s3e16
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/competitions/tabular-playground-series-aug-2022
https://www.kaggle.com/competitions/playground-series-s3e15
https://www.kaggle.com/competitions/playground-series-s3e22
https://www.kaggle.com/competitions/playground-series-s3e1
https://www.kaggle.com/competitions/predict-who-is-more-influential-in-a-social-network
https://www.kaggle.com/competitions/tabular-playground-series-feb-2021
https://www.kaggle.com/competitions/playground-series-s4e10
https://www.kaggle.com/competitions/playground-series-s3e11
https://www.kaggle.com/competitions/playground-series-s4e11
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/bioresponse
https://www.kaggle.com/competitions/tabular-playground-series-jan-2021

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Kaggle Challenge Context Blends
abalone 92.06 ± 0.1
allstate 77.15 ± 0.7
attrition 57.47 ± 3.2
blueberry 88.65 ± 0.8
churn 71.48 ± 1.1
cirrhosis 83.62 ± 2.7
concrete strength 95.95 ± 2.8
covertype 77.16 ± 1.0
crab age 71.51 ± 0.2
credit fusion 97.93 ± 0.8
failure 38.87 ± 2.9
heat flux fi 99.3 ± 0.1
horses 73.73 ± 12.0
housing california 71.57 ± 1.0
influencers 74.24 ± 1.9
insurance 84.46 ± 6.5
loan approval 78.55 ± 0.9
media 72.0 ± 0.6
mental health 75.03 ± 5.2
mercedes 59.43 ± 4.8
molecules 83.63 ± 12.2
unknown a 86.06 ± 1.4
Mean 77.72± 0.2

Table 4: Kaggle p-rank results across all challenges (the higher, the better) for Context Blends.
Uncertainty is reported as ± values, representing the 90% confidence interval based on the standard
error across 8 random seeds.

Looking at the detailed per-challenge results (Tables 3 and 4) alongside the dataset metadata (Table 2),
we observe that performance patterns vary across tasks. The Meta-Informed method generally
performs best on large datasets, particularly in regression tasks, while showing reduced effectiveness
on small or extremely “wide” datasets (i.e., those with a high feature-to-sample ratio). On average, it
achieves the highest baseline performance with a mean p-rank of 72.69, outperforming Zero-Shot
(70.39) and standard hyperparameter optimization methods such as LGBM-Hyperopt (61.8), though
still below the oracle-like Context Blends (77.72). Its strongest results are observed in datasets
with tens or hundreds of thousands of samples (e.g., mental health, media, insurance,
allstate) and in regression problems such as heat flux fi and housing california,
where it consistently outperforms other methods by a large margin. Furthermore, it proves robust in
handling datasets with missing values, provided they are sufficiently large. In contrast, its performance
is more limited on smaller datasets (e.g., influencers, concrete strength) and it is less
competitive on wide datasets with disproportionately many features compared to samples (e.g.,
mercedes, molecules). In summary, Meta-Informed is particularly well suited for large-scale
regression settings with ample training data, while offering more modest gains in low-sample or
high-dimensional feature spaces. Notably, while LGBM-Hyperopt is the weakest overall baseline, it
still achieves top performance on a few datasets (e.g., influencers, concrete strength),
illustrating that in some cases restraining the search space to a single strong predictor can be
advantageous.

21

https://www.kaggle.com/competitions/playground-series-s4e4
https://www.kaggle.com/competitions/allstate-claims-severity
https://www.kaggle.com/competitions/playground-series-s3e3
https://www.kaggle.com/competitions/playground-series-s3e14
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/playground-series-s3e26
https://www.kaggle.com/competitions/playground-series-s3e9
https://www.kaggle.com/competitions/forest-cover-type-prediction
https://www.kaggle.com/competitions/playground-series-s3e16
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/competitions/tabular-playground-series-aug-2022
https://www.kaggle.com/competitions/playground-series-s3e15
https://www.kaggle.com/competitions/playground-series-s3e22
https://www.kaggle.com/competitions/playground-series-s3e1
https://www.kaggle.com/competitions/predict-who-is-more-influential-in-a-social-network
https://www.kaggle.com/competitions/tabular-playground-series-feb-2021
https://www.kaggle.com/competitions/playground-series-s4e10
https://www.kaggle.com/competitions/playground-series-s3e11
https://www.kaggle.com/competitions/playground-series-s4e11
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/bioresponse
https://www.kaggle.com/competitions/tabular-playground-series-jan-2021

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C PROMPTING SCHEMAS

C.1 CURRENT TASK DESCRIPTION FORMAT

For both prompting strategies, the LLM receives the current task description in the following
structured format. Below is an example for the Abalone challenge:

Metadata for kaggle_abalone

name
kaggle_abalone

prediction_type
regression

score_name
rmsle

n_train: 90615 n_test: 60411 total_samples: 151026 train_test_ratio: 1.5

features
total: 9 numeric: 8 numerical_range_avg: 11327.82 categorical: 1

unique_values_per_categorical
min: 3 max: 3 median: 3 mode: 3

missing_data
has_missing: False total_missing_values: 0 data_density: 1.0

target_values
min: 1 max: 29 mean: 9.697 median: 9.0 std: 3.176 skewness: 1.204 kurtosis: 2.613

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.2 ZERO-SHOT SETTING

The following system prompt is used for the Zero-Shot setting.

Zero-Shot System Prompt

You are a data science expert specializing in model blending. You will receive a description of
a machine learning tasks and dataset. Your task is to propose a new model blend with exactly
10 models by completing a given JSON file that describes a new task, maintaining the same
format. You must output the json with 10 different choices of models and “models” as a key
following exactly the input format JSON but removing the prank and mean score columns.
Select models and hyperparameters considering factors such as dataset characteristics and
task type. Don’t forget to give exactly 10 different variations and use the given format for the
output adding the needed values lists. A predefined hyperparameter grid will be provided
beforehand. Ensure your selections of the 10 models adhere to the available hyperparameter
choices and that the number of models given is 10.

In the Zero-Shot setting, the LLM is not provided with in-context examples. To guide its output, it is
instead given the expected JSON schema, as shown below.
{

"models": {
"catboost": {

"columns": ["bootstrap_type", "border_count", "grow_policy", "l2_leaf_reg", "
learning_rate",

"max_depth", "min_data_in_leaf", "n_estimators", "random_strength"],
"values": []

},
"lgbm": {

"columns": ["boosting_type", "colsample_bynode", "colsample_bytree", "drop_rate",
"learning_rate", "max_bin", "max_depth", "min_child_weight", "min_data_in_leaf",
"min_split_gain", "n_estimators", "reg_alpha", "reg_lambda", "subsample"],
"values": []

},
"xgboost": {

"columns": ["colsample_bylevel", "colsample_bynode", "colsample_bytree", "gamma",
"learning_rate", "max_depth", "min_child_weight", "n_estimators", "reg_alpha", "

reg_lambda",
"subsample"],
"values": []

},
"skmlp": {

"columns": ["activation", "alpha", "beta_1", "beta_2", "epsilon", "layers",
"learning_rate_init", "max_iter", "n_iter_no_change", "n_knots"],
"values": []

}
}

}

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 META-INFORMED SETTING

The following system prompt is used for the Meta-Informed setting.

Meta-Informed System Prompt

You are a data science expert specializing in model blending. You will receive multiple
descriptions of machine learning tasks, datasets, and the top 10 performing models in an
blend in JSON format, including their individual mean scores and percentile ranks. Your task
is to propose a new model blend with exactly 10 models by completing a given JSON file
that describes a new task, maintaining the same format. You must output the json with 10
different choices of models and ”models” as a key following exactly the input format JSON
but removing the prank and mean score columns. Select models and hyperparameters based
on the similarity between the new task and previous ones, considering factors such as dataset
characteristics, task type, and model performance trends. Don’t forget to give exactly 10
different variations and use the same format as the input. A predefined hyperparameter grid
will be provided beforehand. Ensure your selections of the 10 models adhere to the available
hyperparameter choices and that the number of models given is 10.

The prompt is enriched with information from other challenges, provided as pairs of task metadata
and the top 10 models in the solution blend, formatted as previously described. For each given
challenge, we include all other challenges of the same type (classification or regression).

D CHAT API CONFIGURATION AND DEFAULTS

To invoke the DeepSeek-R1 API, we use the client.chat.completions.create function
from the OpenAI SDK with temperature T = 1.0 and default hyperparameters.

For more information, refer to the official documentation:

• OpenAI Platform: https://platform.openai.com/

• DeepSeek API Docs: https://api-docs.deepseek.com/

E EXAMPLE REASONING TRACES

To illustrate the model’s decision-making process, we show a few selected excerpts from its reasoning
traces on different Kaggle tasks.

24

https://platform.openai.com/
https://api-docs.deepseek.com/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mercedes Dataset (Zero-Shot)

Okay, so I need to create a new model blend for the Kaggle Mercedes regression task. The dataset has 377 features, mostly
categorical (376) and one numeric. The target is continuous with some skewness. The goal is to propose 10 different models across
CatBoost, LGBM, XGBoost, and SKMLP, using the given hyperparameters.
First, let’s think about the dataset characteristics. Since there are a lot of categorical features, tree-based models like CatBoost,
LGBM, and XGBoost might perform well because they handle categorical variables effectively. skmlp might need more tuning but
could add diversity to the blend.
For CatBoost, since it’s good with categorical data, I’ll focus on parameters that handle that. bootstrap type could be Bayesian
variants for better handling. border count might be higher (like 512 or 1024) to capture more splits. grow policy could
be Lossguide for deeper trees. learning rate should be moderate, maybe 0.05 to 0.1. L2 regularization (l2 leaf reg)
around 3.0 to prevent overfitting. n estimators around 500–700 for sufficient depth. random strength maybe 1.0 or 5.0 for
some randomness.
For LGBM, boosting type like goss or dart could be efficient. Since there are many features, colsample bytree
and subsample around 0.8 to reduce overfitting. learning rate similar to CatBoost. max depth around 7–10.
min data in leaf higher (like 50) given the dataset size. n estimators around 300–500. Regularization parameters
(reg alpha and reg lambda) around 0.5–2.0.
XGBoost would need similar considerations. colsample bytree and subsample around 0.8. learning rate 0.05–0.1.
max depth 6–10. gamma around 0.5 to control splits. reg alpha and reg lambda similar to LGBM. n estimators
300–500.
skmlp might have layers like 512-256 to handle high dimensionality. activation=relu for non-linearity.
learning rate init=0.01. alpha (L2 regularization) 0.001 or 0.01. Beta parameters (Adam optimizer) default to 0.9
and 0.999. max iter high (20000) since MLPs need time. n iter no change=10. n knots maybe 10 for spline layers.
I need to ensure 10 models in total. Maybe distribute them as 3 CatBoost, 3 LGBM, 3 XGBoost, and 1 SKMLP for diversity.
Each model should have unique hyperparameters within the grid. Check each parameter against the allowed values. For example,
CatBoost’s bootstrap type can’t be “No” but has Bayesian options. Ensure all selected values are in the provided grid. Also, no
duplicates in the models. Each entry must have distinct hyperparameter combinations.

Abalone Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle abalone task. Let me start by understanding the problem. The task is
regression with RMSLE as the score. The dataset has 9 features, 8 numeric and 1 categorical with 3 unique values. The target has a
mean around 9.7, with some skewness and kurtosis. The data is clean with no missing values.
Looking at the past tasks, kaggle crab age seems similar. Both have regression, a categorical feature with 3 unique values, and
similar target distributions (mean around 9–10, skewness > 1). In kaggle crab age, the top models were CatBoost and LGBM.
For example, CatBoost used bootstrap type=Bernoulli, high border count=1024, grow policy=Lossguide,
and n estimators around 500–700. LGBM models had boosting type=gbdt 1 or gbdt 5, high n estimators (1000),
and specific regularization parameters.
Also, kaggle unknown a had a similar setup with all numeric features and high n estimators. XGBoost models there used
colsample bytree around 0.5–0.8 and learning rate 0.01–0.1. SKMLP models used activation=logistic, low
alpha=0.0001, and layers such as 256-128.
Considering hyperparameters from the grid: for CatBoost, possible bootstrap type values include Bernoulli
or Bayesian, border count=1024, grow policy=Lossguide or Depthwise, l2 leaf reg around 0.2–3.0,
learning rate=0.1, max depth around 9–12, and min data in leaf=700. For LGBM, suitable choices are
boosting type=gbdt 1 or gbdt 5, colsample bynode 0.8–1.0, learning rate=0.05, max depth around 90, and
min data in leaf=50. XGBoost could use colsample bytree 0.5–0.8, gamma 0.0–1.5, learning rate 0.05–0.1,
max depth=9, and n estimators=1000. For SKMLP, I will use activation=logistic, alpha=0.0001, layers
256-128, and learning rate init=0.001.
I need to select 10 models across different algorithms. Let’s pick 4 CatBoost, 3 LGBM, 2 XGBoost, and 1 SKMLP, ensuring hyperpa-
rameters are drawn from the predefined grid. Check each parameter against the allowed values (e.g., CatBoost bootstrap type,
LGBM boosting type), and ensure n estimators is valid. Each model must be unique in its parameter combination. Finally,
I will compile the JSON structure without mean score and prank, keeping the same format as the input examples.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Heat Flux Fi Dataset (Meta-Informed)

Okay, I need to create a new model blend for the kaggle heat flux fi task. Let’s start by understanding the new task’s
characteristics. The prediction type is regression, and the score is RMSE. The dataset has 21,229 training samples and 10,415 test
samples. There are 9 features: 7 numeric and 2 categorical. The numeric features have an average range of about 6,121, which
is similar to some previous tasks like kaggle abalone or kaggle crab age. The categorical features have 4 and 11 unique
values, which is a moderate number. There’s missing data with a data density of 0.88, which means some imputation might be needed.
The target has a mean close to zero, a negative skewness, and high kurtosis, indicating a peaky distribution with a left tail.
Looking at past tasks, models that performed well on datasets with mixed numeric and categorical features, especially those using
CatBoost and LGBM, might be relevant. For example, kaggle abalone used CatBoost with grow policy=Lossguide and
high border count, which handles categorical features well. Also, tasks with missing data like kaggle media had LGBM
models with certain parameters.
The hyperparameter grids need to be considered. For CatBoost, handling missing data is inherent, so models with bootstrap type
like Bayesian or MVS might be good. LGBM can handle missing values too. XGBoost doesn’t handle categoricals natively, so
maybe less emphasis here unless the categoricals are encoded. Since the new task has categorical features, CatBoost and LGBM are
probably better choices.
Looking at the previous top models, for regression tasks with similar features, CatBoost models with higher border count (like
1024) and LGBM with higher max depth (like 40, 90) and n estimators (1000) performed well. Also, models with lower
learning rates (0.1, 0.15) and regularization (l2 leaf reg around 0.5–2.0) were common.
Considering the new task’s missing data, models that handle missing values well are crucial. CatBoost’s bootstrap type options
like Bayesian or MVS, and LGBM with drop rate and subsample parameters could be beneficial. Also, since the target has a
negative skew, maybe models that are robust to such distributions, like those with appropriate loss functions or regularization.
Now, selecting 10 models. Let’s check the hyperparameter grids to ensure valid choices. For CatBoost, possible bootstrap type:
Bayesian 0, MVS, Bernoulli. border count options: 32, 64, 128, etc. For LGBM, boosting type: gbdt 0, dart 1, goss.
Also, subsample and colsample parameters. skmlp might be less prioritized due to the categorical features, but maybe include
one if previous tasks with similar data used it.
Looking at the previous models, in kaggle unknown a, CatBoost with bootstrap type=No and
grow policy=Depthwise was used. For the new task, maybe mix different bootstrap types. For LGBM, models with higher
n estimators (1000) and max depth (like 40, 90) from kaggle abalone and kaggle housing california.
Also, in the new task, the data has missing values, so models that handle missing data without imputation (like CatBoost and LGBM)
are preferred. XGBoost requires handling missing data externally, so maybe less emphasis unless parameters are adjusted, but the
hyperparameter grid doesn’t include handling for missing data, so maybe avoid XGBoost unless necessary.
Looking at skmlp, in past tasks like kaggle insurance, activation=logistic with certain layers was used. Maybe
include one skmlp model for diversity.
Now, compiling 10 models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F BASE MODEL DETAILS

We use four base models in our experiments: XGBOOST (Chen & Guestrin, 2016), CATBOOST
(Prokhorenkova et al., 2018), LGBM, and SKMLP (Pedregosa et al., 2011). The corresponding
hyperparameter grids for each model are provided in Figure 6.

CatBoost hyperparameter grid.

LGBM hyperparameter grid.

XGBoost hyperparameter grid.

SKMLP hyperparameter grid.

Figure 6: Base models hyperparameters.

G BASELINES DESCRIPTION

G.1 CONTEXT-RANDOM

For the Context-Random baseline, we uniformly sample n model–hyperparameter configurations
from the same pool of prior-task blends that are provided as context in the Meta-Informed setting.
This isolates whether improvements come from meaningful adaptation by the LLM or simply from
re-using high-quality configurations already present in the context.

We fix n = 10 to match the number of configurations proposed by the LLM in a single run.

G.2 RANDOM-HYPEROPT

For the Random-Hyperopt baseline, we use HEBO to optimize hyperparameters within a model
family, but the model family itself is selected uniformly at random at each round. Concretely, at each
iteration one of the base learners is sampled with equal probability, after which HEBO proposes a
new configuration for that family. This ensures a simple exploration strategy without bias toward any
particular model type.

G.3 LGBM-HYPEROPT

For the LGBM-Hyperopt baseline, we restrict the search space to the LightGBM model family. At
each evaluation round, we apply the HEBO optimizer to propose a new LightGBM configuration,
which is then trained and evaluated on the target dataset. This baseline isolates the performance

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

of hyperparameter optimization when applied to a single strong gradient boosting method without
model family selection. As with the other baselines, we allocate a fixed budget of 10 evaluations
when comparing against the LLM recommendations.

G.4 MAXUCB-HYPEROPT

For the MaxUCB-Hyperopt baseline, we implement the bandit-based CASH formulation proposed
by Balef et al. (2025). In this setting, each candidate model family is treated as an arm in a multi-
armed bandit, and hyperparameter optimization is carried out within the selected arm using HEBO.
The Max-UCB algorithm balances exploration of new model families with exploitation of those that
have already demonstrated promising performance.

At each round t, the utility of arm i is computed as:

Ui = max(ri,1, . . . , ri,ni) +

(
α log(t)

ni

)2

,

where ri,j denotes the observed rewards (validation scores) from the j-th configuration of model
family i, and ni is the number of configurations tried so far for that family. The algorithm selects the
arm

It = argmax
i≤K

Ui,

applies HEBO within that model family to propose a new hyperparameter configuration, and observes
the resulting reward.

Following recommendations from the original paper, we set the exploration parameter to α = 0.5,
which provides a favorable balance between exploration and exploitation across tasks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H ROBUSTNESS TO PROMPT SHUFFLING

Large language models can sometimes exhibit position or recency biases (Wang et al., 2023; 2025),
raising the question of whether the Meta-Informed strategy is sensitive to the way information
is ordered inside the prompt. To test this, we generate two independent shuffled versions of the
Meta-Informed prompt for each dataset–seed pair. In each shuffle, we randomly permute (i) the
order of support datasets, (ii) the order of model families listed in the schema, and (iii) the order of
hyperparameters within each family. The underlying content is unchanged, only the presentation
order differs. The experimental setup is otherwise identical on the 22 Kaggle datasets the same
contexts, ensembling pipeline, and prank as the evaluation metric.

Results. Across 22 paired comparisons, we observe no statistically significant difference between
the two shuffled versions (paired t-test: t = −1.48, p = 0.153, df = 21). The mean difference in
prank is −1.86 points, indicating that the second shuffle tends to achieve slightly better ranks, though
this difference is not significant. The effect size is small (Cohen’s d = −0.32), and a non-parametric
Wilcoxon signed-rank test confirms these findings (p = 0.149). Individual challenge results show
mixed outcomes, with some favoring each version, consistent with random variation rather than
systematic bias.

These results are consistent with the Meta-Informed strategy being robust to prompt ordering, with
no evidence that the arrangement of elements within the prompt systematically affects performance.

Table 5: Private leaderboard p-rank for two shuffled prompt versions across 22 Kaggle datasets.
Kaggle Challenge Shuffle 1 Shuffle 2 ∆ (1–2)
abalone 89.64 88.30 +1.34
allstate 59.34 70.34 -11.00
attrition 60.45 65.41 -4.96
blueberry 89.33 88.43 +0.91
churn 70.79 72.08 -1.29
cirrhosis 70.62 69.30 +1.32
concrete strength 84.58 95.82 -11.24
covertype 37.65 45.21 -7.57
crab age 70.26 70.26 0.00
credit fusion 95.67 96.86 -1.19
failure 48.99 39.19 +9.80
heat flux fi 96.83 96.39 +0.43
housing california 56.17 57.04 -0.87
horses 72.23 85.85 -13.63
influencers 84.85 85.61 -0.76
insurance 79.83 69.85 +9.98
loan approval 76.33 74.78 +1.56
media 59.56 67.12 -7.56
mental health 96.50 98.44 -1.94
mercedes 20.35 23.10 -2.75
molecules 99.71 98.28 +1.43
unknown a 72.05 74.88 -2.84
Mean 73.43 75.29 -1.86

29

https://www.kaggle.com/competitions/playground-series-s4e4
https://www.kaggle.com/competitions/allstate-claims-severity
https://www.kaggle.com/competitions/playground-series-s3e3
https://www.kaggle.com/competitions/playground-series-s3e14
https://www.kaggle.com/competitions/playground-series-s4e1
https://www.kaggle.com/competitions/playground-series-s3e26
https://www.kaggle.com/competitions/playground-series-s3e9
https://www.kaggle.com/competitions/forest-cover-type-prediction
https://www.kaggle.com/competitions/playground-series-s3e16
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/competitions/tabular-playground-series-aug-2022
https://www.kaggle.com/competitions/playground-series-s3e15
https://www.kaggle.com/competitions/playground-series-s3e1
https://www.kaggle.com/competitions/playground-series-s3e22
https://www.kaggle.com/competitions/predict-who-is-more-influential-in-a-social-network
https://www.kaggle.com/competitions/tabular-playground-series-feb-2021
https://www.kaggle.com/competitions/playground-series-s4e10
https://www.kaggle.com/competitions/playground-series-s3e11
https://www.kaggle.com/competitions/playground-series-s4e11
https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/bioresponse
https://www.kaggle.com/competitions/tabular-playground-series-jan-2021

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

Large language models were used exclusively as assistive tools for minor writing support, such as
polishing grammar, improving clarity, and suggesting alternative phrasings. They were not involved
in research ideation, experimental design, implementation and analysis. All scientific contributions
and conclusions are solely the work of the authors.

30

	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Motivation: Synthetic Ridge Regression Experiment
	5 Methodology and Experiments
	5.1 Methodology
	5.2 Datasets
	5.3 Baselines
	5.4 Evaluation Metric
	5.5 Performance Comparison
	5.6 Performance Efficiency
	5.7 Interpretability

	6 Discussion
	7 Conclusion
	A Synthetic Ridge Experiment
	A.1 Closed-Form Test Error
	A.2 Task Generation Procedure
	A.3 Prompts
	A.4 Effect of Decoding Temperature

	B Kaggle Benchmark Details
	B.1 Kaggle Challenges
	B.2 Per-Challenge Results

	C Prompting Schemas
	C.1 Current Task Description Format
	C.2 Zero-Shot Setting
	C.3 Meta-Informed Setting

	D Chat API Configuration and Defaults
	E Example Reasoning Traces
	F Base Model Details
	G Baselines description
	G.1 Context-Random
	G.2 Random-Hyperopt
	G.3 LGBM-Hyperopt
	G.4 MaxUCB-Hyperopt

	H Robustness to Prompt Shuffling

