
Arithmetic-Based Pretraining – Improving Numeracy of Pretrained
Language Models

Anonymous ACL submission

Abstract

State-of-the-art pretrained language models001
tend to perform below their capabilities when002
applied out-of-the-box on tasks that require un-003
derstanding and working with numbers (usually004
referred to as numeracy). Recent work suggests005
two main reasons for this: (1) popular tokenisa-006
tion algorithms have limited expressiveness for007
numbers, and (2) common pretraining objec-008
tives do not target numeracy. Approaches that009
address these shortcomings usually require ar-010
chitectural changes or pretraining from scratch.011
In this paper, we propose a new extended pre-012
training approach called Arithmetic-Based Pre-013
training that jointly addresses both of them in014
one extended pretraining step without requir-015
ing architectural changes or pretraining from016
scratch. Arithmetic-Based Pretraining com-017
bines (1) contrastive learning to improve the018
representation of numbers, and (2) a novel ex-019
tended pretraining objective called Inferable020
Number Prediction Task to improve working021
with numbers. We evaluate our approach on022
three different tasks that require improved nu-023
meracy including (a) reading comprehension024
in the DROP dataset, (b) inference-on-tables in025
the InfoTabs dataset, and (c) table-to-text gen-026
eration in WikiBio and SciGen datasets. Our027
results on DROP and InfoTabs show that our ap-028
proach improves the accuracy by 9.6 and 33.9029
points on these datasets, respectively. Our hu-030
man evaluation on SciGen and WikiBio shows031
that our approach improves the factual correct-032
ness of generated outputs.1033

1 Introduction034

Numbers are ubiquitous in natural language. There-035

fore, understanding and working with numbers036

(usually referred to as numeracy) is a critical ca-037

pability for pretrained language models such as038

BART (Lewis et al., 2020) or T5 (Raffel et al.,039

2019), cornerstones of modern NLP, in order to040

utilize quantitative information for various NLP041

1Code and data are published here: placeholder-url.

tasks. Recent works question whether these mod- 042

els meet this requirement out-of-the-box (Wallace 043

et al., 2019; Zhang et al., 2020): Common pretrain- 044

ing objectives such as the denoising autoencoder of 045

BART (Lewis et al., 2020), the masked language 046

modeling of BERT (Devlin et al., 2019), or span- 047

corruption objective of T5 (Raffel et al., 2019), are 048

designed for understanding structure and semantic 049

meaning of language and not to learn working with 050

numbers. Commonly used tokenisation algorithms 051

such as Byte Pair Encoding (Sennrich et al., 2016) 052

or WordPiece (Wu et al., 2016) are designed to 053

handle patterns that are frequently observed dur- 054

ing training, which is disadvantageous for num- 055

bers. For instance, 0.72 and 0.73 are two similar 056

numbers. They should be processed similarly, but 057

according to their frequency in the pretraining data 058

they might be tokenised very differently, e.g., [0, ., 059

72] and [0, ., 7, 3], which will have an impact on 060

their representation in embedding space. 061

Various approaches have been proposed recently 062

to address these shortcomings, e.g., the character- 063

level tokenisation to address the representation of 064

numbers (Geva et al., 2020). However, most of 065

them introduce additional components or rely on 066

predefined features that limit their application, e.g., 067

the proposed approach is only applicable for a spe- 068

cific task like reading comprehension (Andor et al., 069

2019) or table-to-text generation (Suadaa et al., 070

2021). 071

In this paper, we propose a new extended pre- 072

training approach called Arithmetic-Based Pretrain- 073

ing that targets both shortcomings in one extended 074

pretraining step using a combined loss function and 075

without introducing new components or requiring 076

pretraining from scratch. It consists of the follow- 077

ing: 078

• A contrastive loss that uses both the character- 079

level and subword-level tokenisation to im- 080

prove the representation of numbers. 081
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• A denoising pretraining objective, called the082

Inferable Number Prediction Task, to improve083

the model’s capability of working with num-084

bers.085

Our experiments show that arithmetic-based pre-086

training has a positive impact on BART (Lewis087

et al., 2020) and T5 (Raffel et al., 2019) in various088

tasks. It improves the accuracy in case of reading089

comprehension and inference-on-tables, and the090

factual correctness in case of table-to-text genera-091

tion.092

2 Related Work093

Number Representations in Language Models.094

State-of-the-art language models like BART (Lewis095

et al., 2020) or T5 (Raffel et al., 2019) use subword-096

based tokenisation algorithms (such as Byte Pair097

Encoding (Sennrich et al., 2016)) to build vocab-098

ularies based on frequently observed sequences099

in a text corpus. While this is effective for com-100

mon words, it is problematic for numbers. In an101

extensive study, Wallace et al. (2019) find that102

models using character-level tokenisation, such as103

ELMo (Peters et al., 2018), usually achieve better104

results in numerical probing tasks and extrapolate105

better to unseen numbers compared to models using106

subword-based tokenisation. Thawani et al. (2021),107

Peng et al. (2021) and Zhang et al. (2020) report108

similar findings. Therefore we use the character-109

level tokenisation for numbers to address this short-110

coming in BART and T5.111

Approaches for Improving Numeracy. Numer-112

acy requires to understand and work with numbers,113

i.e., to do artihmetic operations, in order to gen-114

erate the expected result. To improve this capa-115

bility, recent approaches propose pretraining from116

scratch to tailor them towards specific tasks or to117

adjust the architecture of pretrained language mod-118

els. TAPAS (Herzig et al., 2020) targets question119

answering with tabular data. It is pretrained from120

scratch and extends BERT (Devlin et al., 2019) by121

introducing additional embeddings for capturing122

tabular structure. GenBERT (Geva et al., 2020)123

reuses a pretrained BERT model and adds a de-124

coder on top. It is then further trained using math125

word problems and arithmetic operations for (1)126

incorporating the character-level tokenisation for127

numbers into the model, and (2) to improve its128

numerical reasoning skills. It achieves state-of-129

the-art results on the DROP (Dua et al., 2019) and130

SQUAD (Rajpurkar et al., 2016) datasets. Andor 131

et al. (2019) also reuses a pretrained BERT model, 132

adds a new layer on top of BERT that predicts and 133

executes arithmetic operations and targets reading 134

comprehension. Suadaa et al. (2021) targets table- 135

to-text generation and propose a framework that 136

uses the template-guided text generation from Kale 137

and Rastogi (2020) to inject pre-executed numeri- 138

cal operations into the pretrained GPT-2 (Radford 139

et al., 2019) and T5 (Raffel et al., 2019) models. 140

All these approaches result in new or task-specific 141

models. With Arithmetic-Based Pretraining, we 142

propose an approach that (1) is more cost effective 143

than pretraining from scratch, as it can be used 144

with already pretrained models, and (2) improves 145

numeracy while maintaining the model’s original 146

purpose. 147

Domain-Adaptive Pretraining. The idea of 148

domain-adaptive pretraining is to bridge the gap 149

between the vocabulary of a model’s original pre- 150

training corpus and the target domain by continu- 151

ing pretraining using in-domain data (Gururangan 152

et al., 2020). In this work, we propose the Infer- 153

able Number Prediction Task which is similar to 154

domain-adaptive pretraining if the data used is from 155

the same domain as that of finetuning. However, 156

we show that this is not the only reason for perfor- 157

mance improvements (Section 5.3). 158

Contrastive Learning. Contrastive learning is a 159

general way to learn to map vector representations 160

of similar data points (usually called anchor and 161

positive) close to each other while pushing non- 162

similar data points apart. In NLP, it is commonly 163

used for learning sentence representations (Kim 164

et al., 2021; Giorgi et al., 2021) or semantic simi- 165

larities (Wang et al., 2021). In this work, we use 166

contrastive learning to improve the representation 167

of numbers. 168

3 Arithmetic-Based Pretraining 169

In this section, we propose arithmetic-based pre- 170

training to improve the numeracy of pretrained lan- 171

guage models. It combines different tokenisation 172

algorithms, i.e., character-level and subword-based, 173

with contrastive learning to improve the represen- 174

tation of numbers in pretrained language models 175

(Section 3.1), while training on the Inferable Num- 176

ber Prediction Task (Section 3.2) to improve the 177

capability of working with numbers. Section 3.3 178

describes the joint loss function. 179
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3.1 Contrastive Learning180

We propose to use a contrastive loss as additional181

training signal to improve the representation of182

numbers. For example, the model should learn183

a similar representation for the number 108.89,184

whether it is initially tokenised as [1, 0, 8, ., 8, 9]185

(character-level) or [10, 8, ., 89] (subword-based).186

If a number is frequently occurred in the pretraining187

corpus, its corresponding subword-based encoding188

may be more informative. On the other hand, the189

character-level tokenisation is more informative for190

less frequent numbers. Therefore, our motivation is191

to benefit from both embedding spaces for learning192

better number representations. For implementa-193

tion, we use the Multiple Negative Ranking Loss194

as proposed by Henderson et al. (2017)2:195

LC = − 1

N

N∑
i=1

esim(avg(p̂i),avg(p̂′i))∑
j e

sim(avg(p̂i),avg(p̂neg))
(1)196

For the contrastive loss, we consider all numbers197

in the batch independently of the input sequences.198

Each number is used twice, once in character-level199

tokenisation (anchor), and once in subword-based200

tokenisation3. Assume p is a list of all numbers201

in the batch in character-level tokenisation. p′ is a202

list of all numbers in the batch in subword-based203

tokenisation. We consider pi and p′i as a positive204

pair. Every other number in p and p′ is considered205

as negative sample to pi (denoted as pneg). p̂i,206

p̂′i, and p̂neg are the corresponding embeddings207

after the encoder pass. sim represents the cosine208

similarity and avg represents the mean-average of209

the embedding. Averaging (avg) is a simple and210

effective form of aggregation which is necessary211

at this point, as the numbers are split into multiple212

tokens during tokenisation.213

3.2 The Inferable Number Prediction Task214

The Inferable Number Prediction Task is a varia-215

tion of the classic masked language modeling ob-216

jective (Devlin et al., 2019), but aims on improving217

a model’s capability on working with numbers by218

focusing on data that requires arithmetic operations.219

The task consists of input C and the correspond-220

ing target sequence D. C consists of a pair of text221

2We use the implementation from the sentence-transformer
library (Reimers and Gurevych, 2019).

3Note that we use both only for Arithmetic-Based Pre-
training. For finetuning and during inference, we only use
character-level tokenisation for numbers.

sequences, C1 and C2, that are separated with a 222

special character. C2 equals to D, but contains 223

a masked number that can be inferred from C1. 224

Given C, the task is to reconstruct D by correctly 225

predicting the masked number in C2
4. For instance, 226

for the task of table-to-text generation, C consists 227

of the linearized form of the input table (C1) and 228

its description with one masked number (C2). We 229

select data with the following criteria: 230

• D and C1 should have at least one overlapping 231

entity, e.g., D should contain at least one of 232

the entities that appear in the row or column 233

headers of C1 if C1 is a table. This ensures 234

that D is relevant to the information given in 235

C1. 236

• D should contain at least one number that 237

either occurs in C1 or is inferable by summa- 238

tion, subtraction, multiplication, division or 239

ordering. This ensures that the masked num- 240

ber in C2 is arithmetically related to the num- 241

bers given in C1. 242

The selected data is then reduced to the necessary 243

information. If C1 is a table, we remove rows and 244

columns that do not share entities with C2. If C1 245

is an extensive text or paragraph, we apply each of 246

these heuristics to each of the sentences and retain 247

only the matching ones (the same applies to C2)5. 248

For training, we use the cross-entropy loss func- 249

tion: 250

LINP (x, y) =
1

N

N∑
n=1

− log

(
e(xn,yn )∑K
k=1 e

(xn,k)

)
(2) 251

where x represents the logits of the predicted input 252

sequence, and y = y1, ..., yN represents the indices 253

of the tokens of the output sequence. N is the size 254

of the target sequence. xn,yn is the logit of the xn 255

token corresponding to the output token yn. K is 256

the size of the model’s vocabulary. 257

3.3 Joint Loss Function 258

We combine the contrastive loss LC (Equation 1) 259

and the loss for the Inferable Number Prediction 260

Task LINP (Equation 2) as weighted sum in a joint 261

loss function: 262

L =
LC

2
+

LINP

2
(3) 263

4Preliminary experiments revealed that just reconstructing
the masked number, without its context, has a negative impact
on a model’s text generation capabilities.

5See Appendix B for further details and illustrations.

3



4 Experimental Setup264

We implement our approach using Python 3.7, Py-265

Torch (Paszke et al., 2019) and Huggingface (Wolf266

et al., 2020)). As pretrained language models, we267

use the large variant of BART (Lewis et al., 2020)268

and the base variant of T5 (Raffel et al., 2019) as269

provided by the Huggingface platform. T5 was pre-270

trained in a multi-task scenario using task-specific271

prefixes. As we do not target such a scenario, we do272

not use these prefixes. We conduct all experiments273

on a Tesla V100-SXM3 GPU with 32 GB mem-274

ory6. For experiments using table-to-text datasets,275

we represent tables as linearized sequence. We276

report the results of the best single runs.277

4.1 Original Datasets278

Reading Comprehension. The task of reading279

comprehension is to answer a question given a re-280

lated text passage. The DROP dataset (Dua et al.,281

2019) is a reading comprehension dataset with over282

96,000 questions in which answering questions re-283

quires discrete reasoning over text passages (e.g.,284

arithmetic operations, orderings and comparisons).285

According to the authors, 59.1% of answers con-286

sist of numbers and therefore implicitly require287

performing arithmetic operations to be predicted288

correctly. Each paragraph consists of 9.19% num-289

bers on average. We split the dev data into two290

equally-sized subsets and use one for testing. Each291

subset contains 4,828 questions.292

Inference-on-Tables. Given a premise and a hy-293

pothesis, natural language inference (NLI) is the294

task of deciding whether the hypothesis is en-295

tailed, contradictory, or neutral to the premise. In-296

foTabs (Gupta et al., 2020) extends NLI to using297

semi-structured data, i.e., tables, as hypothesis. It298

is a crowdsourced dataset that consists of 23,738299

hypothesis for 2,540 Wikipedia infoboxes from a300

variety of domains and provides three different test301

sets: one with data that is close to the distribution of302

the training data (in-domain), a cross-domain, and303

an adversarial test set. For the adversarial test set,304

the wording of hypotheses was slightly changed by305

expert annotators. Furthermore, they use another306

set of source tables for this test set, while retaining307

a distribution similar to the original training data.308

The cross-domain test set uses premises from do-309

mains that are not used for training, but generally310

require similar types of reasoning. According to the311

6See Appendix A for details on hyperparameters.

authors, InfoTabs requires the capability for a wide 312

range of complex reasoning types across multiple 313

rows, and that numerical and temporal reasoning 314

(which implicitly requires performing arithmetic 315

operations) is a significant part of this. Around 316

48% of dev data requires numerical or temporal 317

reasoning. Each table consists of 13.89% numbers 318

on average. 319

Table-to-Text Generation. Table-to-text gener- 320

ation is the task of summarizing tabular data in a 321

descriptive text. As this data is often numerical, 322

the challenging part of this task is to reason over 323

numbers, i.e., to implicitly perform arithmetic oper- 324

ations such as ordering, summation or subtraction, 325

or to capture magnitudes. SciGen (Moosavi et al., 326

2021) is a table-to-text generation dataset in which 327

the input is a scientific table with its correspond- 328

ing caption, and the output is the description of 329

the table’s content7. It is designed for arithmetic 330

reasoning and consists of 53,136 annotated table- 331

description pairs. Each table consists of 41.55% 332

numbers on average. 333

WikiBio (Lebret et al., 2016) is a dataset from 334

the biographical domain. The task is to reproduce 335

the first paragraph of biographical Wikipedia arti- 336

cles, given the corresponding infobox. According 337

to the authors, numbers (such as dates, ages and 338

other quantities) play an important role. Each table 339

consists of 16.83% numbers on average. However, 340

most values can be directly copied from the tables 341

and do not require mathematical operations. Over- 342

all, the dataset consists of 728,321 samples. 343

4.2 Preprocessing for the Inferable Number 344

Prediction Task 345

To fulfill the requirements of the Inferable Number 346

Prediction Task, we apply the criterias described in 347

Section 3.2 to all datasets in an offline preprocess- 348

ing step. In case of InfoTabs (Gupta et al., 2020), 349

we only use the data labeled with entailed in or- 350

der to exclude contradictions (see Appendix B for 351

examples and illustrations). 352

Table 1 shows the resulting datasets. We also 353

find that the resulting datasets have slightly differ- 354

ent number to word ratios. In case of DROP (Dua 355

et al., 2019) and InfoTabs, preprocessing increases 356

the portion of numbers by 9.79% up to 18.98%, 357

7NumericNLG (Suadaa et al., 2021) is a similar dataset.
As SciGen (Moosavi et al., 2021) provides more unsupervised
training pairs that we can use for Arithmetic-Based Pretraining,
we use SciGen in our experiments.
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Train Dev Test
SciGen 4,859 1,473 55
WikiBio 412,053 51,424 51,657
DROP 8,336 849 850
InfoTabs 1,981 1,800 1,800

Table 1: Data distribution for the Inferable Number Pre-
diction Task after applying the criterias to the original
dataset splits.

and 3.36% up to 17.25%, respectively. In case of358

WikiBio (Lebret et al., 2016) the ratio remains un-359

changed, but in case of SciGen (Moosavi et al.,360

2021), it reduces the portion of numbers per table361

by 7.67% to 33.88%.362

OCC ORD SUM SUB MUL DIV
DROP 0.41 0.32 0.04 0.07 0.13 0.02
InfoTabs 0.23 0.34 0.05 0.17 0.15 0.06
SciGen 0.11 0.06 0.03 0.12 0.41 0.27
WikiBio 0.24 0.38 0.03 0.10 0.20 0.03

Table 2: Distribution of arithmetic operations across the
datasets for this task.

Table 2 shows the ratio of samples per dataset363

that we have identified as being inferable by arith-364

metic operiations, i.e., occurence (OCC), order-365

ing (ORD), summation (SUM), subtraction (SUB),366

multiplication (MUL) or division (DIV)8.367

5 Evaluation368

In this section, we evaluate the impact of369

Arithmetic-Based Pretraining on downstream ap-370

plications with BART (Lewis et al., 2020) and371

T5 (Raffel et al., 2019) using (1) in-domain data372

(Section 5.2), and (2) out-of-domain data (Sec-373

tion 5.3). For Arithmetic-Based Pretraining, we use374

the preprocessed subsets of the original datasets as375

described in Section 4.2.376

5.1 Evaluation Metrics377

For inference-on-tables, we evaluate the results378

using Exact Match (EM score). For reading com-379

prehension, we additionally use F1 score. The EM380

score evaluates the prediction accuracy, i.e., if the381

prediction exactly matches the target, and is the382

preferred metric for these tasks (Dua et al., 2019;383

Gupta et al., 2020). The F1 score reports the over-384

lap between the prediction and the target. This re-385

sults in partial reward in cases where the prediction386

is partially correct. In case of table-to-text genera-387

tion, we conduct a human evaluation. This is due388

8See Appendix C for a detailed analysis.

to the shortcomings of common automatic metrics 389

for this task, as they are hardly able to assess the 390

correctness of information not directly contained 391

in the source data, i.e., information obtained by 392

reasoning (Moosavi et al., 2021; Chen et al., 2020a; 393

Suadaa et al., 2021). 9 394

5.2 In-Domain Pretraining 395

This section discusses the results on downstream 396

tasks when using models that are pretrained us- 397

ing Arithmetic-Based Pretraining with in-domain 398

data. Baseline represents the BART (Lewis et al., 399

2020) and T5 (Raffel et al., 2019) model directly 400

finetuned on the corresponding dataset without 401

Arithmetic-Based Pretraining. Ours represents 402

these models with Arithmetic-Based Pretraining. 403

Reading Comprehension. Table 3 shows the re- 404

sults achieved on DROP (Dua et al., 2019). In case

EM F1
DROP

BART Baseline 36.00 39.26
Ours 45.60 49.50

T5 Baseline 10.40 14.60
Ours 11.00 15.20

Table 3: Evaluation on the DROP dataset. Our approach
outperforms the baseline in both cases.

405
of BART (Lewis et al., 2020), Arithmetic-Based 406

Pretraining increases the results by 9.6 points in 407

EM score, indicating a large improvement in accu- 408

racy. Based on our analysis of the test results, i.e., 409

by comparing the predictions of both models, we 410

find that our approach reduces the incorrectly pre- 411

dicted numbers by 14.27% compared to the base- 412

line. In case of T5 (Raffel et al., 2019), the results 413

are in general much lower, but still our approach 414

outperforms the baseline. Among other tasks, T5 415

was pretrained on reading comprehension using 416

datasets similar to DROP (Raffel et al., 2019), e.g., 417

MultiRC (Khashabi et al., 2018). We assume that 418

not reusing the corresponding prefix may be a rea- 419

son for lower performances of T5. However, based 420

on our analysis of the test results, we find that our 421

approach reduces incorrectly predicted numbers by 422

16.62%. 423

Inference-on-Tables. Table 4 presents the pre- 424

diction accuracies (EM score) achieved on the In- 425

foTabs (Gupta et al., 2020) dataset. 426

For the in-domain test set, Arithmetic-Based Pre- 427

training increases the EM score by 33.90 points in 428

9Appendix D shows the results of the automatic metrics.
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In-Domain Cross-Domain Adversarial

BART Baseline 33.30 23.67 27.68
Ours 67.20 54.40 57.20

T5 Baseline 32.00 11.76 13.00
Ours 32.30 18.07 15.25

Table 4: Evaluation on the InfoTabs dataset. This table
shows the prediction accuracies (EM score) achieved
on InfoTabs. Our approach outperforms the baseline in
both cases.

case of BART (Lewis et al., 2020), which is a sig-429

nificant improvement in accuracy. Further analysis430

of the in-domain test results achieved with BART431

and our approach reveals that the model correctly432

predicts 60.30% of the entailments, 75.50% of the433

contradictions, and 65.83% of the neutrals. In case434

of T5 (Raffel et al., 2019), the improvements are435

rather negligible. This might again be due to not436

reusing the prefixes originally used for pretraining437

the model on similar tasks such as MNLI (Williams438

et al., 2017). Further analysis of the in-domain test439

results shows that T5 has a strong bias towards pre-440

dicting entailment in both cases, i.e., the baseline441

and our approach. For the other two test sets, our442

approach also shows improvements over the base-443

lines for BART and T5, indicating to improve the444

model’s robustness and capability to extrapolate to445

unseen data.446

Table-to-Text Generation. For human evalua-447

tion10, we follow the approach used by Moosavi448

et al. (2021) for evaluating the results on SciGen.449

As this is very time-consuming, we only analyse450

100 random table-description pairs from each, the451

SciGen and WikiBio (Lebret et al., 2016) dataset,452

and also only from the BART (Lewis et al., 2020)453

experiments. For SciGen, we use the results from454

the large split experiment.455

For annotation, we break down each generated456

output to its corresponding statements (facts). We457

create one CSV file for each dataset that contains458

these statements in random order. This way, the459

annotator can not see whether a statement was gen-460

erated by Ours (BART with Arithmetic-Based Pre-461

training) or by Baseline (BART without Arithmetic-462

Based Pretraining). Alongside with the generated463

statements, this CSV file contains the original ta-464

bles and gold descriptions. Using this CSV file, the465

annotator then decides for each of the statements466

whether it belongs to one of the following labels:467

10The human evaluation was conducted by one of the au-
thors.

• Entailed: The statement is entailed in the gold 468

description, e.g., a fact that is mentioned ei- 469

ther in a similar or different wording in the 470

description. 471

• Extra: The statement is not entailed in the 472

gold description but is factually correct based 473

on the table’s content. 474

• Incorrect: The statement is relevant to the 475

table, i.e., it contains relevant entities but is 476

factually incorrect. For instance, the state- 477

ment says system A outperforms system B by 478

2 points while based on the table system A 479

has a lower performance than system B. 480

• Hallucinated: The statement is not relevant to 481

the table. 482

Based on these labels, we then 483

compute the recall (#entailed/#gold), 484

precision (#entailed/#generated), correct- 485

ness ((#entailed + #extra)/#generated), and 486

hallucination (#hallucinated/#generated) scores 487

for the generated facts. #gold and #generated 488

refers to the respective number of included 489

statements, not complete sequences. Table 5 shows 490

the results. 491

Prec. Rec. Cor. Hall.
SciGen

Baseline 0.08 0.02 0.31 0.29
Ours 0.09 0.03 0.40 0.33

WikiBio
Baseline 0.22 0.07 0.33 0.03
Ours 0.28 0.09 0.46 0.02

Table 5: Results of the human evaluation. In both cases,
our approach improves the correctness of the generated
facts.

Arithmetic-Based Pretraining improves the pre- 492

cision, recall, and correctness for both SciGen and 493

WikiBio. For WikiBio, it improves the precision by 494

0.06 points, suggesting that generated statements 495

are more concise and closer to the target descrip- 496

tion. It also improves the ratio of statements that are 497

factually correct by 0.13 points. This is similar for 498

SciGen, although we observe a slight increase in 499

hallucinations with our approach, which is a slight 500

deterioration. We found that while Baseline seems 501

to generate descriptions close to the target, Ours is 502

somewhat more oriented towards the tabular val- 503

ues, whereby these values are used out-of-context 504

in some cases which might be the reason for this 505
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deterioration. Nevertheless, all models generate flu-506

ent and valid-looking descriptions (see Appendix G507

for examples).508

5.3 Out-of-Domain Pretraining509

To investigate whether the effectiveness of510

Arithmetic-based Pretraining is a result of using in-511

domain data for pretraining or improved numeracy,512

we evaluate our approach using out-of-domain data513

for pretraining. We focus on BART (Lewis et al.,514

2020) for this experiment and perform Arithmetic-515

Based Pretraining on a different dataset before516

finetuning on DROP (Dua et al., 2019) and In-517

foTabs (Gupta et al., 2020). For instance, for the518

DROP experiments, we pretrain models on Wik-519

iBio (Lebret et al., 2016), SciGen (Moosavi et al.,520

2021), and InfoTabs, which all include data from521

a different domain, before finetuning. For SciGen,522

we use the large split in this experiment. Table 6523

shows the results.524

EM F1
DROP

Wikibio → DROP 6.00 33.50
InfoTabs → DROP 35.50 39.63
SciGen → DROP 47.70 51.60
DROP (in-domain) 45.60 49.50

InfoTabs
WikiBio → InfoTabs 33.15 -
DROP → InfoTabs 32.80 -
SciGen → InfoTabs 64.70 -
InfoTabs (in-domain) 67.20 -

Table 6: Results of the out-of-domain pretraining. See
Tables 3 and 4 for more details on the in-domain experi-
ments.

Overall, the models pretrained using SciGen525

achieve the best out-of-domain results in both cases.526

In case of DROP, the results even exceed the ones527

achieved with in-domain pretraining. We suspect528

that the extent to which the pretraining dataset re-529

quires understanding and working with numbers530

has a major impact on the downstream performance.531

Among the datasets used, SciGen is in particular532

designed for the task of text generation based on533

arithmetic reasoning. It has by far the highest num-534

ber to word ratio and the subset used for pretrain-535

ing on the Inferable Number Prediction Task (see536

Section 4.2) predominantly depends on arithmetic537

operations such as multiplications or divisions (see538

Table 2) instead of lookups.539

6 Ablation Study 540

In this section, we investigate the impact of us- 541

ing the character-level tokenisation for numbers, 542

the contrastive loss and the Inferable Number Pre- 543

diction Task (Section 3.2) on the overall effective- 544

ness of Arithmetic-Based Pretraining. To focus on 545

numeracy, the following experiments evaluate the 546

number of correctly predicted masked numbers in 547

the Inferable Number Prediction Task11. We use 548

the preprocessed subsets of the original datasets 549

for the Inferable Number Prediction Task (see Sec- 550

tion 4.2). For evaluation, we use Exact Match (EM 551

score) and F1 score (see Section 5.1). We start by 552

investigating the impact of our masking procedure 553

(masking only arithmetically related numbers), and 554

continue with evaluating the impact of using the 555

character-level tokenisation for numbers. The third 556

experiment targets the effectiveness of our overall 557

approach, Arithmetic-Based Pretraining, by addi- 558

tionally using the contrastive loss. The last experi- 559

ment investigates the contribution of our masking 560

procedure to the effectiveness of Arithmetic-Based 561

Pretraining. Table 7 shows the results. 562

EM F1
WikiBio

BART + DT + DM 29.69 48.12
CLT + INP 43.13 69.97
Ours 77.38 74.69

SciGen
BART + DT + DM 7.04 32.21
DT + INP 7.20 35.11
CLT + INP 12.26 36.78
Ours 24.68 45.81
CLT + CL + DM 21.49 40.51

InfoTabs
BART + DT + DM 12.43 22.17
DT + INP 23.20 46.17
CLT + INP 59.09 73.88
Ours 60.45 74.33
CLT + CL + DM 59.66 72.71

DROP
BART + DT + DM 7.20 7.20
DT + INP 6.33 55.51
CLT + INP 29.40 66.43
Ours 30.58 67.07
CLT + CL + DM 25.37 59.83

Table 7: Ablation study on the Inferable Number Pre-
diction Task. The combination of all constituents signif-
icantly outperforms the baseline in all experiments. We
conduct DT + INP and CLT + CL + DM once for each
task as ablation for the effectiveness of our masking
procedure, and with SciGen (Moosavi et al., 2021) as
representative for table-to-text generation.

11In case of the contrastive loss, we also experiment with
other number representations (see Appendix E).
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We consider BART with its default tokenisa-563

tion (DT) and masking procedure (DM) as base-564

line (BART+DT+DM) for this experiment. DT565

+ INP then uses the default tokenisation but our566

masking procedure (INP). In comparison with567

BART+DT+DM, the experiment shows that our568

masking procedure improves the results across all569

tasks. This is most significant in case of InfoTabs570

(up to 10.77 points in EM score). In case of DROP,571

it raises the F1 score from 7.20 to 55.51 points,572

meaning that there is a significantly larger overlap573

between predicted numbers and target numbers.574

CLT + INP uses the character-level tokenisation575

(CLT) over the default tokenisation for numbers576

and again improves the results across all datasets,577

indicating improved capabilities for arithmetic op-578

erations. Compared to DT+INP, it improves the579

EM score by 35.89 points in case of InfoTabs, and580

by 23.07 points in case of DROP.581

Ours finally combines CLT and INP with the582

contrastive loss (CL) as supporting signal to im-583

prove the representation of numbers and further584

improves the results across all datasets. This is585

most significant in case of the table-to-text datasets,586

where it improves the EM score by 34.25 points587

in case of WikiBio (Lebret et al., 2016), and 12.42588

points in case of SciGen (Moosavi et al., 2021).589

Since we create the pairs for the contrastive loss590

batch-wise, i.e., we consider all numbers in a batch591

independently from the samples (see Section 3.1),592

an advantageous number to word ratio favors a593

good positive-negative pair ratio for the contrastive594

loss, as in the case of SciGen which has the high-595

est number to word ratio in input tables (33.88%,596

see also Section 4.1). This is counteracted by Wik-597

iBio which has the lowest number to word ratio598

(16.32%). However, with 728, 321 samples, Wik-599

ibio is the largest dataset. We therefore assume600

that more data compensates a poor number to word601

ratio.602

CLT + CL + DM combines CLT with CL, but603

uses DM instead of INP and shows the contribution604

of our masking procedure to the effectiveness of605

Arithmetic-Based Pretraining. It deteriorates the606

EM score by 5.21 points in case of DROP, 3.19607

points in case of SciGen, and 0.79 points in case of608

InfoTabs, showing that our masking procedure con-609

tributes a considerable share in the overall effective-610

ness of Arithmetic-Based Pretraining for improving611

the numeracy of a pretrained language model12.612

12We also did preliminary experiments with the math word

7 Conclusions 613

In this paper, we propose Arithmetic-Based Pre- 614

training, an approach for jointly addressing the 615

shortcomings of pretrained language models in un- 616

derstanding and working with numbers (usually 617

referred to as numeracy). 618

While existing approaches require architectural 619

changes or pretraining from scratch, resulting in 620

new or task-specific models, Arithmetic-Based Pre- 621

training improves a model’s numeracy while main- 622

taining its original purpose. We use contrastive 623

learning to benefit from both character-level and 624

subword-based tokenisation to improve the repre- 625

sentation of numbers, while training on a new pre- 626

training objective, the Inferable Number Prediction 627

Task, for improving the capabilities of performing 628

arithmetic operations. 629

Our experiments and analysis indicate perfor- 630

mance improvements due to better numeracy in 631

different tasks and domains, including reading 632

comprehension (DROP), inference-on-tables (In- 633

foTabs), and table-to-text generation (e.g., Wik- 634

iBio). In case of DROP, using our approach im- 635

proves the results by 9.60 points in EM score over 636

the BART baseline. For InfoTabs, our approach 637

improves the results by 33.90 points, while also 638

showing to be more robust against adversarial and 639

out-of-domain evaluations. For table-to-text gen- 640

eration, our approach improves the correctness of 641

generated facts over the BART baseline. Further 642

experiments show that the effectiveness of our ap- 643

proach is not limited to in-domain pretraining, but 644

also improves the results when pretrained with out- 645

of-domain data. For example, pretraining on the 646

SciGen dataset improves the results achieved on 647

DROP when pretrained using in-domain data, i.e., 648

the DROP dataset itself. Our ablation studies show 649

that both contrastive learning and Inferable Num- 650

ber Prediction Task play an important role in the 651

improved numeracy of the examined models. 652

8 Limitations 653

Our work is subject to some limitations. First of all, 654

BART (Lewis et al., 2020) restricts the maximum 655

length of input sequences to 1024 characters13. 656

problems dataset provided by Geva et al. (Geva et al., 2020)
as a first pretraining task but found that this does not improve
the results (see Appendix F).

13https://huggingface.co/docs/transformers/
model_doc/bart#transformers.BartConfig, last ac-
cessed on 10/10/22.
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For better comparability, we also use T5 (Raf-657

fel et al., 2019) accordingly. This limitation is658

due to the increased computational complexity of659

longer input sequences, but it is problematic with660

table-to-text generation datasets. For example, Sci-661

Gen (Moosavi et al., 2021) consists in large parts662

of tables that exceed this sequence length when rep-663

resented as a linearized string. While we have tried664

to take this into account by reducing the input data665

to necessary information, it was not guaranteed that666

the model always sees the complete information,667

which certainly has a negative impact on the eval-668

uation results achieved on the downstream tasks.669

We guess that the results would have been more670

expressive, if we would have used a different repre-671

sentation for tables, or focused on models that do672

not have this sequence length limitation.673

Another limitation of our work concerns the im-674

pact of contrastive learning. According to Hen-675

derson et al. (2017), the impact of contrastive loss676

is favored by large batch sizes. Due to hardware677

limitations, we were only able to use small batch678

sizes (see Appendix A). The models might have679

adapted better if we would had the possibility to680

train with larger batch sizes. The next limitation681

is the way we use T5 in our experiments. The682

model was pretrained in a multi-task setup that also683

includes question answering, natural language in-684

ference and summarisation. In order to distinguish685

between these tasks, specific prefixes were used.686

As we do not address multi-task scenarios in this687

work, we did not reuse any of these prefixes for688

either Arithmetic-Based Pretraining or finetuning.689

We assume that this is the main reason for the large690

differences between the results with BART and T5691

across many experiments. Maybe the model would692

have performed better, and more comparable to693

BART, if we would have used these prefixes.694

Evaluation is also a critical point. Since it is not695

reliably traceable whether and which arithmetic696

operation was used by a model to come to a spe-697

cific result, we can only infer improved capabilities698

for arithmetic operations by performance improve-699

ments in the Inferable Number Prediction Task. We700

cannot clearly distinguish performance improve-701

ments on specific arithmetic operations. Another702

limitation concerns the evaluation in table-to-text703

generation scenarios where generated descriptions704

usually suffer a high ratio of incorrect facts and hal-705

lucinations (Moosavi et al., 2021; Thawani et al.,706

2021; Chen et al., 2020b). This is not captured707

by automatic metrics. Although metrics such as 708

PARENT (Dhingra et al., 2019) try to measure 709

the factual correctness of generated descriptions, 710

it requires a more individual examination in many 711

cases. Especially in such highly specialized sce- 712

narios such as SciGen. Therefore, we conduct a 713

human evaluation in order to analyse the impact 714

of our Arithmetic-Based Pretraining on the down- 715

stream tasks. Due to limited resources, we were 716

only able to conduct a small-scale human evalua- 717

tion. 718
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A Hyperparameters for Experiments987

Table 8 shows the hyperparameter configuration for988

our experiments. In order to not train longer than989

necessary, we have determined the optimal number990

of epochs for each experiment by using early stop-991

ping with a patience of 10. For the downstream992

tasks, we have used the MoverScore (Zhao et al.,993

2019) with the table-to-text generation datasets.994

For DROP (Dua et al., 2019) and InfoTabs (Gupta995

et al., 2020), we have used the EM score. All mod-996

els were trained for the same amount of epochs.997

Batch Size Epochs Learning Rate
Inferable Number Prediction Task

SciGen 8 50 3e-5
WikiBio 8 3 3e-5
InfoTabs 8 21 3e-5
DROP 8 48 3e-5

Downstream Tasks
SciGen 8 27 3e-5
WikiBio 8 9 3e-5
InfoTabs 8 14 3e-5
DROP 8 10 3e-5

Table 8: Hyperparameter Configuration.

B Inferable Number Prediction Task –998

Example Input Data999

For table-to-text generation, Figure 1 shows an ex-1000

ample of a (linearized) table from SciGen (Moosavi1001

et al., 2021) with its caption (<CAP>) as C1, con-1002

catenated with its masked description C2 using1003

</s>. <s> and </s> are special tokens used by1004

BART (Lewis et al., 2020) to represent the begin-1005

ning and ending of a sequence. In case of Wik-1006

iBio (Lebret et al., 2016), the input data is repre-1007

sented accordingly.1008

Figure 1: Illustration of a linearized table that is used
for the Inferable Number Prediction Task. <R>, <C>
and <CAP> symbolize the beginning of a new row, cell,
and the table’s caption.

For DROP (Dua et al., 2019), Figure 2 shows1009

an example. It consists of the paragraph C1, and a1010

question C2. The question contains a number (2) 1011

that also occurs in the paragraph. 1012

Figure 2: Illustration of an input sample for the Inferable
Number Prediction Task using DROP.

Figure 3 shows an example for the In- 1013

foTabs (Gupta et al., 2020) datasets. It is basically 1014

the same as for the table-to-text generation datasets, 1015

but uses the hypothesis as C2. 1016

Figure 3: Illustration of an input sample for the Inferable
Number Prediction Task using InfoTabs.

C Inferable Number Prediction Task – 1017

Dataset Details 1018

In this section, we want to provide more details 1019

on the distribution of arithmetic operations across 1020

datasets used for the Inferable Number Prediction 1021

Task. Table 9 shows the ratio of each arithmetic 1022

operation on the overall number of samples for each 1023

split for the InfoTabs (Gupta et al., 2020) dataset. 1024

OCC ORD SUM SUB MUL DIV
Train 0.24 0.35 0.05 0.16 0.15 0.05
Dev 0.15 0.34 0.07 0.18 0.20 0.06
Test 0.22 0.16 0.09 0.23 0.23 0.07

Table 9: Ratio of arithmetic operations for each split of
the InfoTabs dataset.

Table 10 shows this ratio for the DROP (Dua 1025

et al., 2019) dataset. 1026
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OCC ORD SUM SUB MUL DIV
Train 0.41 0.32 0.4 0.07 0.13 0.03
Dev 0.42 0.31 0.05 0.05 0.14 0.03
Test 0.43 0.30 0.04 0.05 0.15 0.03

Table 10: Ratio of arithmetic operations for each split
of the DROP dataset.

Table 11 shows this ratio for the Sci-1027

Gen (Moosavi et al., 2021) dataset.1028

OCC ORD SUM SUB MUL DIV
Train 0.11 0.06 0.04 0.12 0.40 0.27
Dev 0.11 0.05 0.04 0.12 0.43 0.25
Test 0.15 0.09 0.02 0.19 0.43 0.13

Table 11: Ratio of arithmetic operations for each split
of the SciGen dataset.

Table 12 shows this ratio for the WikiBio (Lebret1029

et al., 2016) dataset.1030

OCC ORD SUM SUB MUL DIV
Train 0.25 0.38 0.03 0.10 0.20 0.03
Dev 0.25 0.38 0.03 0.10 0.19 0.04
Test 0.25 0.38 0.03 0.11 0.20 0.03

Table 12: Ratio of arithmetic operations for each split
of the SciGen dataset.

D Evaluation Using Automatic Metrics1031

This section presents the evaluation of our results1032

on table-to-text datasets using automatic metrics.1033

For this, we use a variety of metrics commonly1034

used for this task, i.e., BLEU (Papineni et al., 2002),1035

MoverScore (Zhao et al., 2019), BLEURT (Sellam1036

et al., 2020), and PARENT (Dhingra et al., 2019).1037

While BLEU calculates the concordance between1038

the predicted description and the actual target on1039

word-level, MoverScore and BLEURT measure the1040

semantic concordance between the predicted de-1041

scription and the target using BERT (Devlin et al.,1042

2019). BLEURT also takes the fluency of the pre-1043

dictions into account. PARENT estimates the fac-1044

tual correctness by comparing the predicted de-1045

scription to the original table and the target descrip-1046

tion, and especially rewards correct information1047

that is contained in the table but not in the target.1048

It has a higher correlation with human judgement.1049

Table 13 reports the results.1050

Based on PARENT and MoverScore, our ap-1051

proach is slightly superior in six out of ten exper-1052

iments. However, based on these results, it is not1053

really possible to conclude an improvement that1054

MoverS BLEU BLEURT PARENT
SciGen

BART

Baseline
Few 52.48 4.60 -0.63 3.38
Medium 53.76 4.26 -0.69 3.72
Large 53.43 4.87 -0.70 3.68

Ours
Few 53.30 1.73 -0.76 3.81
Medium 53.40 2.71 -0.78 3.45
Large 55.00 9.30 -0.76 3.82

T5

Baseline
Few 52.30 2.96 -0.94 6.39
Medium 51.79 2.67 -0.95 4.08
Large 53.00 3.40 -0.70 5.18

Ours
Few 52.00 2.83 -0.98 4.32
Medium 52.00 2.51 -0.86 4.70
Large 53.40 2.96 -0.89 6.72

WikiBio

BART
Baseline 61.50 17.98 -0.64 45.18
Ours 62.78 18.54 -0.27 44.32

T5
Baseline 60.30 17.94 -0.86 43.97
Ours 60.10 20.00 -0.22 45.25

Table 13: Evaluation of our results on table-to-text
datasets using automatic metrics. Baseline presents the
result of the BART-large and T5-base models without
Arithmetic-Based Pretraining. Ours show the result of
these models with Arithmetic-Based Pretraining. Re-
sults of PARENT and MoverScore are highlighted. PAR-
ENT is the most appropriate metric for our approach.

can be directly attributed to Arithmetic-Based Pre- 1055

training in most cases, as none of these metrics can 1056

really assess the correctness of a fact that might 1057

be reasoned from the source data (Moosavi et al., 1058

2021; Chen et al., 2020a; Suadaa et al., 2021). How- 1059

ever, PARENT tries to address this, which is why 1060

this metric is the most appropriate. Like BLEURT, 1061

Moverscore measures the semantic concordance 1062

between target and prediction. The advantage of 1063

MoverScore is that it is easier to interpret. 1064

E Experiments using other Contrastive 1065

Representations 1066

Regarding the contrastive representation, we also 1067

experiment with number representations other than 1068

the default subword-level one in order to improve 1069

the representation of numbers using the character- 1070

level tokenisation, i.e., exponent-mantissa (Zhang 1071

et al., 2020), a verbalized representation, and a com- 1072

bination of all of them (across multiple batches) 1073

using the Inferable Number Prediction Task. We 1074

focus on BART (Lewis et al., 2020) for this experi- 1075

ment. We conduct this experiment using the large 1076

split of the SciGen dataset (Moosavi et al., 2021). 1077

Table 14 shows the results. 1078

None of the other representations improves the 1079

results over using the default subword-level tokeni- 1080

sation. 1081
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Experiment EM F1
BART (verb. repr.) 15.69 41.01
BART (exp.-mant. repr) 18.13 36.78
BART (subword-based tok.) 24.68 45.81
BART (combined) 17.92 38.43

Table 14: Comparison of results when using different
representations for incorporating the character-level to-
kenisation.

F Preliminary Math Experiments1082

With GenBERT, Geva et al. (2020) propose to1083

start pretraining with math word problems in or-1084

der to improve the model’s number understanding1085

and capabilities for arithmetic operations. There-1086

fore, following this idea would be an obvious1087

step in order to improve the numeracy of general1088

purpose pretrained language models. Table 151089

shows the results of a preliminary experiment using1090

GenBERT’s math word problems dataset (MWP),1091

BART (Lewis et al., 2020) and SciGen (Moosavi1092

et al., 2021) on the Inferable Number Prediction1093

Task.1094

Experiment EM F1
Baseline 7.20 35.11
MWP-pretrained Baseline 15.19 34.18
MWP-pretrained Baseline + CLT 22.94 42.55
MWP-pretrained Baseline + CLT + CL 22.78 43.14
Ours 24.68 45.81

Table 15: Results achieved on the Inferable Number
Prediction Task with and without pretraining using math
word problems.

Baseline refers to the default BART model.1095

MWP-pretrained Baseline shows the results for1096

Baseline, but further pretrained on MWP. MWP-1097

pretrained Baseline + CLT represents the re-1098

sults for MWP-pretrained Baseline, but uses the1099

character-level representation (CLT) for numbers1100

instead of BART’s default tokenisation. Accord-1101

ingly, MWP-pretrained Baseline + CLT + CL in-1102

corporates the contrastive loss (CL) as additional1103

training signal. The results show that pretraining1104

using math word problems as a first step in general1105

improves the results for the Inferable Number Pre-1106

diction Task, but not over using Arithmetic-Based1107

Pretraining (Ours).1108

In case of SciGen, the Inferable Number Predic-1109

tion Task, only uses samples with target descrip-1110

tions that contain numbers that are inferable from1111

the input table by lookup or arithmetic operations1112

(see Section 4.2). Therefore, even though it is a1113

synthetic task, the results give insights on how ef- 1114

fective pretraining on math word problems is for 1115

improving a model’s numeracy. 1116

G Examples from the Human Evaluation 1117

Figure 4 shows two sample generations from our 1118

approach and the BART (Lewis et al., 2020) base- 1119

line from the SciGen (Moosavi et al., 2021) experi- 1120

ment using the medium split. Both read fluent and 1121

plausible. 1122
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Figure 4: Generation from our approach and the BART-large baseline from the SciGen experiment using the medium
split.
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