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ABSTRACT

LLMs cannot reliably recognize their parametric knowledge boundaries and often
hallucinate answers to outside-of-boundary questions. In contrast, humans rec-
ognize their limitations and can either seek external help for such questions or
abstain. In this paper, we introduce MASH (Modeling Abstention via Selective
Help-seeking), a training framework that readily extracts abstentions from LLMs.
Our key idea is that any external help-seeking by an LLM, i.e. search tool use, can
serve as a proxy for abstention if the external help (search) is appropriately pe-
nalized while simultaneously rewarding answer accuracy. MASH operationalizes
this idea using reinforcement learning with a pay-per-search reward.
We run experiments on three knowledge-intensive QA datasets. Our results show
that MASH substantially improves upon the selective help-seeking performance
of prior efficient search approaches; on multi-hop datasets, MASH improves an-
swer accuracy by 7.6%. Furthermore, MASH demonstrates strong off-the-shelf
abstention – it can distinguish between unanswerable/answerable questions and
selectively generate responses for answerable questions – showcasing behavior
analogous to specialized abstention approaches. We emphasize that contrary to
prior abstention methods, MASH does not require pre-determining knowledge
boundaries to construct training data. Instead, MASH’s abstentions are a by-
product of training for the auxiliary selective help-seeking task. Overall, we show
that MASH training effectively aligns search tool use with parametric knowledge,
which can be successfully leveraged for making abstention decisions.1

1 INTRODUCTION
A reliable AI assistant should recognize its knowledge boundaries – what questions it can and can-
not effectively respond to – and act accordingly when a question is outside its boundaries. Con-
ventionally, LLMs learn their knowledge boundaries through alignment by explicitly training for
abstention (Yang et al., 2024; Cheng et al., 2024) and calibrated verbalization of uncertainty (Xu
et al., 2024b; Stengel-Eskin et al., 2024). These strategies yield improved recognition of capability
boundaries but are limited to reducing model errors. The number of questions a model can correctly
answer remains unchanged. In this paper, we ask – can we design a training strategy that intrinsi-
cally yields an abstention model capable of recognizing its boundaries, while learning techniques
that expand its set of answerable questions?

We look at human behavior for inspiration. Humans recognize their limitations and when asked for
knowledge they cannot provide, either abstain or seek outside help. This external help-seeking can
make otherwise unanswerable questions answerable. In this paper, we propose MASH (Modeling
Abstention via Selective Help-seeking), a framework that indirectly trains LLMs for abstention by
instead training a model to engage in selective help-seeking, i.e. asking for help only when it cannot
effectively respond to a query alone.

As a proof of concept, we explore this idea in the context of short-form question-answering tasks.
We operationalize help-seeking as invoking a retrieval tool that returns information related to a given
query. We train LLMs that selectively seek help (i.e. invoke retrieval) end-to-end with reinforce-
ment learning using a pay-per-search penalty that discounts a correctness reward by the number of
searches a model performs. An optimal policy optimizing this reward would, by definition, search
only when a question cannot be reliably answered with parametric knowledge. In an inference
mode with the same access to search, this model will mirror the above selective search behavior.

1We will publish code and model checkpoints upon acceptance.
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Which glacier is 
known as the 
“Third Pole”?

Invokes multiple help 
requests, e.g. searches

Siachen 
Glacier 

Known 
Knowledge

Unknown 
Knowledge

Who was the 
first US 

president?
George 

Washington

MASH: Modeling Abstention via Selective Help-seeking

Train a selective help-seeking model w/ RL 
r = (accuracy) × (search penalty)

Directly use for abstention at inference 
by removing search access

Who played Benjamin Pierce 
on the TV series M*A*S*H?

Invokes 

Search

Stop generation 
and abstain

Figure 1: Overview of MASH’s strategy for eliciting abstractions. Help-seeking LLMs are RL-
trained to maximize answer accuracy while minimizing the searches. At inference, this same model
is used for abstention by removing search access and treating any search requests as abstention.

But more importantly, we can readily elicit abstention decisions from this same model by remov-
ing its access to search tools – in that case, any search invocation serves as a proxy for abstention
(see Figure 1). MASH, under this framing, effectively trains for two capabilities at the cost of one.
Crucially, MASH assumes no privileged information regarding knowledge boundaries like standard
abstention approaches (Yang et al., 2024; Cheng et al., 2024; Xu et al., 2024b) or require structured
multi-agent interactions (Stengel-Eskin et al., 2024; Eisenstein et al., 2025).

We train MASH models using reinforcement learning with a pay-per-search reward (see Figure 1).
However, baseline implementations of this idea (Wang et al., 2025a) result in efficient but sub-
optimal search behaviors – models can converge to always searching at least once. To address
this, we propose a lightweight synthetic data curation and SFT pipeline that, crucially, assumes
no information about the LLM’s parametric knowledge. Instead, it serves to inject diverse, albeit
parametrically unaligned, search behavior in LLMs to improve exploration in later RL training. Ad-
ditionally, we extend the reward formulations of prior work (Wang et al., 2025a) to obtain penalties
with harsher levels of severity; this is crucial for extracting good help-seeking behaviors via RL.

We run our experiments on 3 different knowledge-intensive datasets, and evaluate both the selective
help-seeking performance with regular inference (w/ access to search) and abstention performance
(w/o access to search). Our results show that MASH models substantially outperform previous
efficient search baselines (Wang et al., 2025a) at balancing answer accuracy and searches. Notably,
on multi-hop datasets, MASH reports a 7.6% accuracy improvement with a better distribution of
searches. In fact, this performance is on par with search baselines (Jin et al., 2025) that allow any
number of searches (upto a max value) without any penalty. We investigate this further and show
that this improvement can be attributed to MASH showcasing a broader range of search strategies,
i.e. diversity over number of searches, as a direct result of its training recipe.

Furthermore, we show that MASH reports strong off-the-shelf abstention performance. It achieves
competitive performance with our strongest abstention baseline DPO (Rafailov et al., 2023; Cheng
et al., 2024), which explicitly constructs a specialized training dataset for abstention training. More-
over, compared to prompting and supervised training methods for abstention (Yang et al., 2024),
MASH reports higher answer accuracy (10 − 20% improvement) over non-abstained questions by
better differentiating between answerable/unanswerable questions.

Taken together, our results demonstrate that MASH is an effective technique that yields an ab-
stention model capable of recognizing its boundaries, while simultaneously expanding its set of
answerable questions via help-seeking.

2 MASH: MODELING ABSTENTION VIA SELECTIVE HELP-SEEKING

2.1 ABSTENTION FRAMEWORK

Help-seeking LLMs We assume an inference setting where a language model πθ can ask for help
by sending a help request h to a helper H(·), which then returns a response o ∼ H(h). This
helper H can take various forms: it could be a tool such as a retrieval model responding to a query,
another stronger language model or an actual human in-the-loop. The model would then condition
on the response o and continue its generation. Formally, given an input question q, the model
samples a trajectory τ ∼ πθ(·|q;H) of the form τ = (r1, h1, o1, · · · , rl, hl, ol, rl+1, ŷ), where
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each ri represents reasoning, each hi represents a help request generated by πθ, oi represents the
associated output from helper H(·) and ŷ represents the model’s final answer.

In this paper, we focus on knowledge-based domains. Here, hi is a search query generated by πθ,
the helper H(·) is a retrieval model and oi is a set of top-k documents retrieved by H(hi) from a
document corpus. In practice, we assume that reasoning outputs ri are enclosed between <think>
and </think>, search queries between <search> and </search>, and answers between <answer>
and </answer> tokens. We use help/search, and helper/retriever interchangeably.

Training Objective We want the language model πθ to recognize its knowledge boundaries. We
posit that we can obtain such a model – without privileged information regarding parametric knowl-
edge boundaries – by training the model to maximize its accuracy while minimizing the number of
search requests. Specifically, we optimize the following proxy objective:

max
θ

E(q,y)∼D,τ∼πθ(·|q;H)[racc(y, τ) · rhelp(q, τ)]− βDKL[πθ(τ |q;H)||πθinit
(τ |q;H)], (1)

where D is the dataset, racc(y, τ) ∈ {0, 1} is a binary measure of correctness and rhelp(y, τ) ∈ [0, 1]
is a multiplicative penalty that assigns a lower value the greater the number of searches in τ . We use
reinforcement learning, specially the GRPO algorithm (Guo et al., 2025), to optimize this objective.

Eliciting Abstention from a Selectively Help-Seeking Model Let πθ∗ be the optimal policy de-
rived using the above objective. This model will selectively seek help – determine whether to answer
a given question q as a function of its expected parametric accuracy and the severity of the rhelp
penalty. We re-frame the goal (and our subsequent evaluations) of this help-seeking model from ef-
ficiency, i.e. reducing number of searches, to parametric knowledge alignment, i.e. aligning search
behavior with presence or absence of knowledge about a given question in the model’s parameters.

Under this re-framing, we can readily elicit abstentions from a selectively help-seeking model by
treating any search invocation as a proxy for abstention. Figure 1 illustrates this abstention frame-
work, which we call MASH: Modeling Abstentions via Selective Help-seeking.

2.2 TRAINING A SELECTIVE HELP-SEEKING MODEL

MASH training involves two main steps: (1) initializing θinit in Equation 1 such that it displays
diverse search behaviors (zero, one, or multiple searches) to encourage exploration, and (2) a reward
function that appropriately balances accuracy and search tool penalty.

2.2.1 INITIALIZING πθ W/ WARM-START SFT
RL training to optimize Equation 1 should, in theory, result in a model that selectively seeks help.
However, in practice, we find that such training converges to sub-optimal policies – either exhibiting
degenerate strategies that always or never search, or failing to learn to use the search tool effec-
tively. In our work, we propose a lightweight and model-agnostic synthetic data generation and
finetuning pipeline that results in a substantially better initial policy for subsequent RL training.
Our data generation pipeline is designed to encourage diversity in the number of searches in model
trajectories. Crucially, it requires no information about model’s parametric knowledge boundaries.
In fact, we bake this in explicitly by generating the synthetic fine-tuning dataset using a completely
different model with different knowledge boundaries.

Synthetic data generation Our overall algorithm is outlined in Algorithm 1. For each input ques-
tion q in the training dataset, we randomly sample a target number of searches l for the associated
trajectory and perform constrained decoding with the synthetic data generator G to satisfy this con-
straint. We sample to generate l consecutive thinking and search steps (appended with retrieved
documents from retriever H(·)). We achieve this by forcibly appending a <think> tag after the ini-
tial question and after retrieval outputs, and the <search> tag after the end of thinking tag </think>.
We repeat this l times. We sample multiple such trajectories per question, evaluate each and return
a correct trajectory if one exists. Otherwise, we return the trajectory with the shortest answer. Note
that this constrained decoding process is only used during synthetic data generation.

A warm start SFT step is also included in recent works’ training pipelines to improve subsequent
RL training (Guo et al., 2025; Gandhi et al., 2025; Wang et al., 2025b). However, we highlight
one key difference. Contrary to prior works, our warm start process does not not target correctness
or alignment with model’s parametric knowledge – the two central goals of MASH. In fact, our
synthetic data contains 35% errors with respect to answer correctness and, by design, yields a policy
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whose search behavior is unaligned with its parametric knowledge (discussed in Appendix C.3).
The model learns how and when to use searches during RL training.

Algorithm 1 Warm-Start Trajectory Construction

Input: Datapoint (q, a∗), generator G, retriever H , maximum searches lmax, num samples N
Output: Datapoint (q, τ) for SFT

Sample random number of searches l ∼ {0, . . . , lmax}
Define seq← [think, search] × l + [think, answer]
for i = 1→ N do

Initialize current trajectory τi ← ∅
for action in seq do

Append action start tag τi ← τi + < action >
Generate action a ∼ G(·|q, τi) until </action>
Append action a to trajectory τi ← τi + a
if action = search then

Retrieve top-k documents o ∼ H(a) and append to trajectory τi ← τi + o

Set τ to a random correct τi if any, else τi with shortest answer.
return τ

2.2.2 REWARD FORMULATION

Our reward r(y, τ) is a product of two terms: racc(y, τ), which is a binary correctness reward and
rhelp(y, τ), which is a search tool penalty. We compute racc(y, τ) using exact match.

The form and severity of rhelp will influence the learned help-seeking behavior. For input question
q and G output trajectories {τi}Gi=1 sampled during GRPO, let n be the number of search queries in
the most efficient and correct trajectory τ ef and m be the number of queries in the given trajectory
τi. We want rhelp to appropriately penalize τi if m > n. There exists an arbitrarily high number of
penalty formulations that satisfy this desiderata; we experiment with three:

1. Exponential Decay, defined as rEXP
help (q, τi) = λm−n where λ controls the severity of the penalty.

rOTC
help(q, τi) =


1 if m = n = 0

cos( m·π
2m+c ) if n = 0

sin( m·π
m+n ) otherwise

, (2)

2. OTC reward proposed by Wang et al.
(2025a). We follow their recommenda-
tion and set c to the maximum number of
searches allowed in a single trajectory.

3. OTC-Strict which enforces an extremely strict tool use penalty when m > n = 0. Note that
n = 0 indicates there is a correct trajectory τ ef without any searches. We posit that for these cases,
any other trajectory τi that uses searches should get a 0 reward under a very strict definition of
answerability. Therefore, we set rOTC-St

help (q, τi) to 0 for such cases. We can use any of the above two
reward formulations for when n > 0, but choose OTC’s sinusoidal function to align with prior work.

3 EXPERIMENTAL SETUP

Datasets and Models We run our experiments on three knowledge-intensive datasets – the single-
hop dataset Natural Questions (NaturalQA) (Kwiatkowski et al., 2019), and multi-hop datasets Hot-
PotQA (Yang et al., 2018) and 2WikiMultiHopQA (2Wiki) (Ho et al., 2020).2 We train and evaluate
on each dataset separately; this allows us to evaluate MASH across tasks requiring different search
strategies and with different distributions of parametrically answerable questions. We perform all
training and evaluation on the Qwen2.5-3B base model (Qwen et al., 2025).We deliberately choose
the base model over instruct as the latter has already undergone abstention training although the exact
training strategy is unknown; we propose MASH as an alternative. We use the E5 retriever (Wang
et al., 2022) and the 2018 Wikipedia dump as our knowledge source (Karpukhin et al., 2020).

Hyperparameters For the OTC reward, we follow Wang et al. (2025a) and set c equal to the max-
imum number of searches. For Exponential Decay, we set λ to 0.5 for Natural Questions and 0.8

2We find that the “comparison” and “bridge-comparison” questions comprising in 2WikiMultiHopQA have
unbalanced answer distributions (skewed towards “no”). This opens up the possibility of reward hacking by
exploiting this dataset property. Therefore, we omit these questions from our training and evaluation.
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otherwise. We note that these hyperparameter choices imply the following decreasing order of sever-
ity of search penalty: OTC-STRICT→EXP→OTC. For each search query, we fix the response to be
the top-3 retrieved passages and allow a maximum of 5 searches per trajectory. We use the veRL
library (Sheng et al., 2025) for RL training. More training details are in Appendix C.1.

Warm-start data generation We follow the strategy outlined in Section 2.2.1 to generate warm-
start data for each dataset using Qwen2.5-32B base. This ensures that information about knowledge
boundaries is not baked into the SFT training data and that samples follow the prescribed format.
For each dataset, we randomly sample 1000 questions from its training set and set lmax = 2. We
select the trajectory for each question from N = 5 samples. Details can be found in Appendix C.3

We evaluate our selective help-seeking models in two inference modes: (1) w/ access to search
tools, which directly aligns with its training, and (2) w/o search tools, where we use the help-
seeking model for abstention. The baselines and evaluation metrics for these are described next.

3.1 EVALUATION DETAILS FOR INFERENCE MODE I: W/ SEARCH TOOLS

Baselines We compare MASH’s help-seeking model against the following baselines that also con-
duct RL training, but with different setups: (1) R1 trained using RL but without access to any search
tools during training or evaluation. This baseline provides an upper bound for answer accuracy
using only parametric knowledge. (2) Search-R1 (Jin et al., 2025) trained w/ search tools and
a binary correctness reward; showcasing an upper bound without any penalties for searching, (3)
OTC (Wang et al., 2025a) RL-trained for efficient search tool use. We compare these baselines to
three MASH variants that differ in reward penalties (refer to § 2.2.2). Note that MASH w/ OTC
and OTC differ in the warm-start procedure applied to the former.

Evaluation Metrics We want our help-seeking model to strike a balance between answering para-
metrically (w/o search calls) and seeking help (w/ search calls). We report three metrics that col-
lectively capture this: (1) Accuracy (Acc), i.e. if the predicted answer matches the gold response.
Due to the limitations of exact match, we use an LLM judge, namely DeepSeek-V3.1 (Liu et al.,
2024), to determine this. (2) Tool calls (TC), i.e. the average number of searches across trajectories.
(3) Tool Productivity (TP) (Wang et al., 2025a), which is defined as [

∑|D|
i=1

I{yi = ŷi}/(1 + mi)]/|D|
for test set D. This discounts the accuracy of each output trajectory by its number of searches mi.
For all models, we report these metric averages over 4 samples. We use TP on the validation set to
select our model checkpoints for all methods, except Search-R1 for which we use accuracy; TP will
result in a much inferior checkpoint selection for this case.

3.2 EVALUATION DETAILS FOR INFERENCE MODE II: ABSTENTION

In this evaluation mode, we follow the MASH process outlined in Figure 1 and § 2.1 to extract
abstentions from a help-seeking model by removing access to search tools at inference.

Baselines We compare against the following abstention baselines: (i) 5-shot prompting with the
base model, with abstention/not of in-context exemplars decided based on its parametric knowledge.
(ii) Alignment for Honesty - Absolute (AFH-Abs) (Yang et al., 2024), which does SFT on a spe-
cially curated abstention dataset by pairing each input question with either the output “I abstain” or
the gold answer, depending on the base model’s knowledge boundaries. (iii) Alignment for Hon-
esty - Multisample (AFH-Mult) (Yang et al., 2024), which constructs multiple training samples for
each question, pairing it with either “I abstain” or the gold answer depending on the average correct-
ness over multiple outputs, for SFT training. (iv) DPO, inspired by Cheng et al. (2024), which pairs
each question with a preferred and dispreferred output. If the question is parametrically answerable,
we set these to be the gold answer and “I abstain” respectively; this is switched for parametrically
unanswerable questions. We train with the DPO loss objective (Rafailov et al., 2023) and SFT loss
added as a regularizer (Pang et al., 2024).

Each of (1), (2) and (3) requires a definition of answerability; i.e. when can we claim that a question
is answerable. A standard technique is to estimate the accuracy over 10 samples and use a threshold
λ to classify into answerable/not. However, there does not exist a consensus in prior works on how
to decide this threshold (Yang et al., 2024; Chen et al., 2024). In our paper, we follow Yang et al.
(2024) and set λ = 0.1. Exact data curation and training details are in Appendix D.

Evaluation Metrics For abstention evaluation, we report two kinds of metrics: (i) Answer Accu-
racy: We report overall accuracy, i.e. over the entire test set, and precision, i.e. over non-abstained
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Method Natural Questions HotPotQA 2Wiki

Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑
R1 26.06 0.0 26.06 26.54 0.0 26.54 9.17 0.0 9.17
Search-R1 (Jin et al., 2025) 57.29 1.0 28.65 56.36 3.00 14.09 45.36 3.00 11.34
OTC (Wang et al., 2025a) 58.95 1.0 29.47 44.76 0.81 28.64 39.59 1.57 15.32

MASH w/ OTC 59.83 1.0 29.97 55.42 1.14 32.91 45.99 1.6 18.87
MASH w/ OTC-ST 56.40 0.64 38.64 53.34 1.10 32.55 46.23 1.64 19.08
MASH w/ EXP-DEC 54.31 0.65 36.59 53.79 1.07 32.10 44.29 1.53 18.09

Table 1: Accuracy, average number of tool calls (TC) and tool productivity (TP) statistics for base-
lines and MASH evaluated under inference w/ search tools. MASH w/ OTC-ST is our best model
with a 4.22% and 5.61% mean improvement on Acc and TP resp. over baseline OTC across datasets.

questions. Note that over-conservativeness, i.e. aggressively abstaining, will hurt overall accuracy
but increase precision, while under-conservativeness will have the opposite effect. (ii) Abstention
Classification: This captures whether a model’s abstention behavior is aligned with its knowledge
boundaries, agnostic of answer accuracy. To avoid defining answerability (different reward penalties
assume a different answerability threshold), we evaluate over two groups of questions unaffected by
the choice of λ, i.e. questions that the base models always answer incorrectly or always correctly.
Let %Abs(0) and %Abs(1) be the percentage of questions for which a model abstains for the above
two groups, respectively. We report %Abs(0) and Delta (%Abs(0) −%Abs(1)). A model that rec-
ognizes its knowledge boundaries should have a high abstention rate for always incorrect questions,
i.e. %Abs(0), and a much lower abstention rate for always correct questions, captured by a large
margin %Abs(0)−%Abs(1). We do not evaluate the 2Wiki dataset for abstention classification due
to there being only 58 test examples in the Abs(1) bucket, preventing reliable conclusions.

4 RESULTS

4.1 INFERENCE MODE I: W/ SEARCH TOOLS

We first evaluate the performance of baselines and MASH in the inference setting with access to
search tools. Table 1 reports overall answer accuracy, average tool calls and tool productivity for all
methods. Additionally, we show the distribution of tool calls (TC=0/1/2+) and the corresponding
accuracy per search count (subscript) in Table 2. This allows us to conduct an apples-to-apples
comparison between models’ accuracy for the same number of tool calls.

MASH outperforms all search baselines on tool productivity by effectively balancing accuracy
and searches. Our results in Table 1 show that MASH, particularly MASH w/ OTC-Strict, leads
to a 5.61 point improvement on tool productivity over baseline OTC on average across datasets.
Surprisingly, MASH variants report accuracies on par with Search-R1 (trained without any tool
use penalty) on multi-hop datasets HotPotQA and 2Wiki, but with a substantially lower number
of searches (1.64 vs 3). Moreover, this performance is a massive improvement over baseline OTC
(∼10% and ∼4% improvements on HotPotQA and 2Wiki respectively) with only a slightly higher
number of searches. Tool productivity, which accounts for both these metrics, improves by 4 points
on average over baseline OTC. Taken together, these results suggest that MASH not only reduces
the average number of searches, but also better operationalizes them to maintain accuracy.

Severe search penalties are needed for parametric answers for single-hop NaturalQA. We ob-
served that both baseline OTC and MASH with the lenient OTC penalty (MASH w/ OTC) do not
learn to answer parametrically for NaturalQA, i.e. converge to TC=1 for all questions. On the other
hand, MASH w/ OTC-Strict answers parametrically for 36% of the questions with only a 2.5%
drop in accuracy, thereby improving tool productivity by 9 points. Similarly, MASH w/ Exp-Dec
answers parametrically 35%, with a 4.5% drop in accuracy3 compared to baseline OTC but a 7 point
improvement in tool productivity.4

3Note that MASH w/ Exp-Dec training did result in checkpoints with higher accuracies. However, we use
tool productivity on the validation set as the metric to select the final checkpoint for all methods.

4The multi-hop datasets, HotPotQA and 2Wiki, report slightly higher average tool calls with the strictest
penalty (MASH w/ OTC-Strict), presumably contradicting the above claim. However, fine-grained search
distributions (see Table 2) show that, similarly to NaturalQA, OTC-Strict does answer parametrically (TC=0)
more often than the lenient versions. The increase in average tools calls is due to a larger fraction of 2 searches.
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Method Natural Questions HotPotQA 2Wiki

0 1 2+ 0 1 2+ 0 1 2+

OTC 0.00.0 100.058.9 0.00.0 19.564.5 80.240.0 0.332.0 3.124.1 36.726.6 60.248.3
MASH w/ OTC 0.253.6 99.859.8 0.033.3 23.566.5 41.758.2 34.844.6 13.031.3 13.935.9 73.150.5
MASH w/ OTC-ST 36.457.4 63.555.9 0.117.6 28.959.9 34.756.4 36.445.2 14.332.5 8.342.3 77.549.2
MASH w/ EXP-DEC 35.253.6 64.854.7 0.020.0 23.764.0 45.553.4 30.846.5 11.832.1 23.420.6 64.855.0

Table 2: Fine-grained tool use distribution (TC=0/1/2+ search) for baseline OTC and MASH mod-
els. We also report answer accuracies for questions in each subset (subscript). TC=0 indicates that
the model answers parametrically. MASH can successfully off-load questions to parametric an-
swering (from TC=1 to TC=0) will minimal or no decrease in accuracy (HotPotQA & NaturalQA).

Method Answer Accuracy Abstention Classification

NaturalQA HotPotQA 2Wiki NaturalQA HotPotQA

Acc Prec Acc Prec Acc Prec Abs(0) ↑ Delta↑ Abs(0) ↑ Delta↑
OTC 0.0 0.0 12.6 64.5 0.75 24.1 100.0 0.0 95.3 41.4
MASH w/ OTC 0.1 31.1 15.6 66.5 4.1 31.3 99.9 0.1 94.8 52.3
MASH w/ OTC-ST 20.9 57.4 17.3 59.9 4.6 32.5 85.5 66.2 91.2 60.3
MASH w/ EXP 18.9 53.6 15.2 64.0 3.8 32.2 85.7 62.7 94.5 52.7

5-shot Prompting 23.4 42.5 14.7 31.5 3.6 10.9 60.2 44.6 60.5 26.9
AFH (Absolute) 21.7 43.3 20.7 34.2 4.7 18.5 67.7 48.1 50.4 35.4
AFH (Multisample) 14.7 54.8 12.9 53.8 2.6 29.2 87.9 52.1 89.2 57.6
DPO 22.3 56.2 19.9 53.1 3.3 31.6 84.5 71.6 85.9 73.5

Table 3: Abstention accuracy (left) and abstention classification (rights) results for specialized ab-
stention approaches and MASH. For abstention accuracy, we report overall Acc over the entire test
set and Prec, i.e. accuracy over the non-abstained answers for each method. For classification, we
report Abs(0), i.e. % abstention for unanswerable questions (higher better), and the delta (higher
better) between the % abstention between unanswerable and answerable questions.

MASH variants extract better and more diverse search behaviors for multi-hop datasets via
RL. Comparing search statistics for MASH w/ OTC and baseline OTC in Table 2, we see that they
report a comparable number of parametric answers (23.5% vs 19.5%) but show very different search
behaviors for the remaining questions. Particularly, the baseline OTC model without warm-start col-
lapses to only one search for the remaining 80.2% of its trajectories, while the warm-started model
(MASH w/ OTC) can perform a mixture of one and multi-hop searches. In fact, MASH variants
report a much higher accuracy for one search questions (56.4% vs 40.0%) by offloading the more
“difficult” questions, i.e. those the model cannot answer with only one search, to the two search
bucket. Baseline OTC fails to do this and reports lower overall accuracy. We see similar trends for
the other multi-hop dataset, 2Wiki, as well.

MASH successfully aligns search tool use with parametric knowledge. For NaturalQA, the
fine-grained search statistics in Table 2 show that the the questions that MASH w/ OTC-Strict and
w/ Exp-Dec answer parametrically have similar answer accuracy compared to those for which they
invoke one search call (57.4 vs 55.9 for w/ OTC-Strict). This clearly shows that MASH can dis-
tinguish between parametrically answerable and not answerable questions and preferentially invoke
tool calling for the latter to maintain overall accuracy.

4.2 INFERENCE MODE II: W/ ABSTENTION

MASH shows strong abstention behavior off-the-shelf. Tables 3 (left) reports the answer ac-
curacy for the overall test dataset (Acc) and the non-abstained questions (Prec) for each method.5
First, we observe that, apart from MASH w/ OTC on NaturalQA, all MASH variants substantially
outperform the prompting and Alignment for Honestly based SFT approaches in terms of answer
precision and report comparable overall accuracy. In a couple of instances, we find that the AFH
(Absolute) baseline reports better accuracy (e.g. HotPotQA and NaturalQA) compared to MASH,
but this accompanied by a 10-20% drop in precision.

5Note that it is possible to game one of these metrics by being over- or under-conservative. Therefore, all
our conclusions are based on analyzing the two metrics collectively.
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We find that MASH w/ OTC-Strict, our best performing model from Section 4.1, is comparable
to DPO for NaturalQA and HotPotQA; it outperforms DPO based on Prec. (59.89 vs 53.14 for
HotPotQA) but reports lower overall accuracy (17.33 vs 19.9). We attribute this to the fact that
MASH w/ OTC-Strict is more conservative, i.e. more likely to abstain, than DPO. For 2Wiki,
MASH w/ OTC-Strict outperforms DPO on both Acc and Prec metrics.

MASH can differentiate between answerable and unanswerable questions. Table 3 (right)
shows the abstention classification results. As expected, we find that DPO models explicitly trained
for abstention report the best results. Encouragingly, we see that MASH variants, except MASH w/
OTC on NaturalQA which does not learn to answer parametrically, report similarly high Abs(0) per-
centages as DPO. While DPO reports higher Delta for both datasets, Table 3 shows that these large
improvements in Delta are often accompanied by a drop in precision. For e.g, DPO reports 13.17%
better Delta than MASH w/ OTC-Strict for HotPotQA, but reports a 6.75% lower precision.

Taken together, these results present an encouraging picture for the idea of modeling abstention with
models trained for the auxiliary selective help-seeking task. They show that although MASH does
not train explicitly for abstention, its abstention behavior is analogous to that of abstention meth-
ods leveraging oracle information regarding model knowledge boundaries.

4.3 ANALYSIS 1: IMPACT OF WARM-START ON MASH PERFORMANCE

Method Natural Questions HotPotQA 2Wiki

Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑
OTC 58.95 1.0 29.47 44.76 0.81 28.64 39.59 1.57 15.32
OTC-ST 52.34 0.49 39.28 26.99 0.0 26.99 10.41 0.0 10.41
EXP 57.58 1.00 28.79 41.48 0.71 28.68 9.71 0.0 9.71

Table 4: MASH w/o warm-start tested in inference w/ search mode.

The comparative results
of OTC baseline and
MASH w/ OTC in both
Tables 1 and 2 indi-
cate that the warm-start
SFT training is key to
MASH’s success. By de-
sign, it enables the model
to explore diverse trajectories with varying numbers of search tool calls during RL. Here, we study
the impact of warm start for all reward formulations. Table 4 reports the performance for all three
w/o warm start (refer to Table 1 for comparison with models trained w/ warm start).

Warm-start adds stability to harsher penalties. The OTC reward shows the best help-seeking
behavior when considering all datasets collectively. However, we discussed in § 4.1 that the search
behavior w/ warm-start is far superior to w/o for OTC. Recall that Exponential Decay and OTC-Strict
both impose harsher penalties on search tool use than OTC. We observe that this results in severe
training instabilities for these two when trained without warm-start – HotPotQA policy collapses to
zero searches for OTC-Strict and the 2Wiki policy collapses for both Exponential Decay and OTC-
Strict. Warm-start SFT, however, enables both to have successful training runs on all datasets, with
OTC-Strict w/ warm start even substantially outperforming OTC in all evaluation modes.

4.4 ANALYSIS II: DO ORACLE HELPERS IMPROVE SELECTIVE HELP-SEEKING LLMS?

All experiments in Section 4 rely on a retrieval model (E5; Wang et al. (2022)) as the helper H(·).
However, search results output by these retrievers can be noisy, which in turn generates a noisy signal
for training the selective help-seeking LLM via RL. This prompts us to investigate if improving the
“helper”, as opposed to the reward or initialization, can improve the learned help-seeking behavior.
Setup: We set H(·) to be an oracle; it directly returns the gold answer if the LLM invokes a help tag
in its trajectory (exact prompts used is included in Appendix E). We train all MASH variants (OTC,
OTC-Strict, Exp) for all datasets. Warm-start training is done for each individually with lmax = 1.

Results: Help-seeking with oracle helpers fails to yield abstention behaviors. We find that every
single training run converged to always asking for help within the first 50 training steps , even for
the stricter help penalties. Note that the optimal policy should display selective help-seeking, i.e.
answer parametrically for known questions, in order to maximize the chosen reward. However, we
do not observe this in practice, as always seeking-help is an easy strategy for the LLMs to discover.
For OTC and Exponential Decay, it is given non-zero rewards for all inputs. For OTC-Strict, it is
given a positive reward for each question without correct parametric answers, which will be common
early in training. This shows that the noisiness of the retrieval model is crucial to extract selective
help-seeking over training, in a manner aligned with its parametric knowledge.
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Method Natural Questions TriviaQA

Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑ Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑
OTC 2.1 54.36 99.04 8.32 4.07 71.43 96.95 7.11
MASH w/ OTC-ST 18.25 51.24 79.94 51.62 30.52 67.61 77.53 51.55
DPO 24.4 - 77.38 68.23 41.6 - 71.71 66.23

Table 5: Out-of-distribution accuracy (w/ and w/o search) and abstention classification results for
baseline OTC, best MASH, and best abstention models trained on HotPotQA .

Note that this setting with the oracle helper is equivalent to explicitly training for abstention
using RL, with decreasing magnitude of rewards assigned for correct answers, abstention and incor-
rect answers. All training runs collapsing to always seeking help indicates that abstention training
setting would also fail. We require RL algorithms with better exploration to succeed in this setting.

4.5 ANALYSIS III: OUT-OF-DISTRIBUTION PERFORMANCE

Finally, we evaluate our trained models out-of-distribution. Due to space, we restrict our analysis
to the OTC baseline, and our best performing MASH variant w/ OTC-Strict and the best abstention
baseline (DPO) trained on HotPotQA. We evaluate generalization to other training datasets and an
additional single-hop dataset TriviaQA (Joshi et al., 2017).

Results: Table 5 reports our results (NaturalQA and 2Wiki models are in Appendix F). MASH gen-
eralizes better than the OTC (higher Accuracy and Delta values), which abstains on nearly all ques-
tions out-of-distribution. MASH also reports better Abs(0) performance that DPO but lower Delta.
We attribute this to MASH generalizing more conservatively out-of-domain. With 2Wiki, which
exclusively contains two-hop questions, MASH generalizes relatively well to HotPotQA but fails
on single-hop datasets. We argue that, under poor out-of-distribution accuracy generalization, ab-
stention and invoking search tools is the more ideal decision. With search enabled, our HotPotQA-
trained MASH model attains 24.43% higher accuracy than DPO, which is limited to abstention.

5 RELATED WORK

Abstention and Verbalized Uncertainty Past work has explored developing techniques for hallu-
cination detection (Du et al., 2024; Chen et al., 2024), abstention (Yang et al., 2024; Cheng et al.,
2024) and calibration (Kapoor et al., 2024), with methods ranging from prompting (Feng et al.,
2024) and hidden state probing (Du et al., 2024; Chen et al., 2024) to training of the model it-
self (Kadavath et al., 2022). For abstention, past work primarily uses pipelined approaches that
first estimate a model’s knowledge boundaries and then use this information either to construct
datasets for SFT (Yang et al., 2024; Zhang et al., 2024) and DPO training (Cheng et al., 2024), train
model-specific reward functions for RLHF (Xu et al., 2024a), or summarize uncertainty over mul-
tiple samples (Xu et al., 2024b). Alternative strategies featuring structured, multi-agent interaction
scenarios (Stengel-Eskin et al., 2024; Eisenstein et al., 2025) have also been recently proposed. Se-
lective RAG Separately, there has been explorations into developing retrieval augmented generation
(RAG) approaches that know when to search or continue searching; these rely on uncertainty estima-
tion through operations on hidden model states (Yao et al., 2025; Baek et al., 2025), self-consistency
over samples (Ding et al., 2024) or output probabilities (Jiang et al., 2023; Su et al., 2024). We focus
on knowledge-intensive queries but our approach is task-agnostic and only involves end-to-end RL.
Augmenting LLMs with Tool-Use Recent works have proposed leveraging tool-use to augment
LLM capabilities (Schick et al., 2023; Yao et al., 2023), with post-training pipelines for foundation
models (Yang et al., 2025; Team et al., 2025) increasingly featuring dedicated training for tool-use.
We build on top of recent work that trains LLMs to use search tools with RL (Jin et al., 2025),
particularly on top of the OTC reward formulation of Wang et al. (2025a).

6 CONCLUSION
We propose MASH, a novel framework that trains LLMs for selective help-seeking, and readily
extracting abstention behaviors. MASH trains models for two capabilities at the cost of one –
models learn how to use search tools and synthesize information, and distinguish between answer-
able/unanswerable questions. Our results on 3 short-form knowledge-intensive datasets show that
MASH outperforms previous efficient search baselines on overall accuracy when allowed searches
and also demonstrates strong abstention behaviors, analogous to specialized abstention methods.
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A THEORETICAL ANALYSES

A.1 PRELIMINARIES

In this section, we will provide a theoretical analysis of the search behavior the optimal policy for
the proxy objective of Equation 1 will display for a given question. Specifically, we will formally
demonstrate that the optimal policy will produce a parametric answer to a question q if and only if
its expected reward when answering q parametrically is greater than or equal to its expected reward
when performing searches.

Before starting the analysis proper, we will make two trivial assumptions.

- Assumption 1: We set the KL penalty weight β = 0.0 to simplify the equation and focus solely
on the search behavior of an optimal policy maximizing reward.

- Assumption 2: We assume that the optimal policy cannot achieve perfect expected accuracy, i.e.
across multiple samples, for all questions when answering parametrically. This is because, under
our training setup, a policy cannot acquire new knowledge beyond the base model’s knowledge
boundaries during RL. The purpose of training is instead to align its search behavior with its
knowledge.

A.2 ANALYSIS

Let Ns(τ) be the number of search calls made by a trajectory τ and let θ∗ be the parameters opti-
mizing the proxy objective. We will then prove the following claim:

Claim: For a given question-answer pair (q, y), the optimal policy may answer the question q
parametrically, that is without any searches, if and only if

Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = 0] ≥ Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = i]

for all i > 0.

Proof: Let θ∗ be the set of parameters that optimizes the proxy objective and consider an arbitrary
question-answer pair (q, y). We firstly claim that the optimal policy’s expected reward given this
question q can be written as a weighted sum of its expected reward when answering question q with
different search counts. We show this below:

Eτ∼πθ∗ (·|q,H)[racc(y, τ) · rhelp(q, τ)] = Στ [πθ∗(τ |q,H) · racc(y, τ) · rhelp(q, τ)]
= Σ∞

i=0Στ |Ns(τ)=i [πθ∗(τ |q,H) · racc(y, τ) · rhelp(q, τ)]

= Σ∞
i=0

[
P (Ns(τ) = i|q) · Στ |Ns(τ)=i

[
πθ∗(τ |q,H)

P (Ns(τ) = i|q)
· racc(y, τ) · rhelp(q, τ)

]]
= Σ∞

i=0

[
P (Ns(τ) = i|q) · Eτ∼πθ∗ (·|q,H) [racc(y, τ) · rhelp(q, τ)|Ns(τ) = i]

]
,

where P (Ns(τ) = i|q) is the probability that the optimal policy will produce a trajectory τ with
Ns(τ) = i given question q.

Given this, we will first prove the forward direction. Assume that the optimal policy answers ques-
tion q parametrically. This means that P (Ns(τ) = 0|q) = 1. Assume for the sake of contradiction
that there exists some i such that

Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = 0] < Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = i]
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Then, we can construct a different policy θ̂ that has the same distribution for all other questions q̂ but
always answers with i searches for question q. This policy θ̂ would achieve a higher expected reward
than θ∗, which contradicts our assumption that θ∗ is optimal. Therefore, the forward direction holds.

We will now prove the backwards direction. Assume that
Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = 0] ≥ Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = i]

for all i > 0. Then, we claim that setting P (Ns(τ) = 0|q) = 1 provides an optimal solution.
Assume for the sake of contradiction that setting P (Ns(τ) = 0|q) = 1 is not optimal. Then, there
must exist some i such that setting P (Ns(τ) = i|q) = 1 results in a higher expected reward on
question q. This implies that
Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = 0] < Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = i],

which contradicts our earlier assumption that
Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = 0] ≥ Eτ∼πθ∗ (·|q,H)[racc(y, τ)·rhelp(q, τ)|Ns(τ) = i]

for all i > 0. As a result, setting P (Ns(τ) = 0|q) = 1 provides an optimal solution and the optimal
policy may answer parametrically.

We have proved both directions of the statement. Therefore, the claim holds.

Corollary: Assume that rhelp(q, τ) = 1 when Ns(τ) = 0. Then, for a given question-answer pair
(q, y), the optimal policy may answer the question q parametrically if and only if

Eτ∼πθ∗ (·|q,H)[racc(y, τ)|Ns(τ) = 0] ≥ Eτ∼πθ∗ (·|q,H)[racc(y, τ) · rhelp(q, τ)|Ns(τ) = i]

for all i > 0.

Proof: This follows trivially from the earlier claim when we consider that
Eτ∼πθ∗ (·|q,H)[racc(y, τ) · rhelp(q, τ)|Ns(τ) = 0] = Eτ∼πθ∗ (·|q,H)[racc(y, τ)|Ns(τ) = 0],

as rhelp(q, τ) = 1 when Ns(τ) = 0. In plain English, this means that answering parametrically
for a given question will be optimal if and only if a model’s expected accuracy when answering
parametrically is greater than or equal to its expected reward when using search.

B ADDITIONAL RESULTS

B.1 RESULTS ON DIFFERENT MODELS

To demonstrate that our insights regarding MASH generalize to models of different scales and fami-
lies, we conduct further experiments with Qwen2.5-7B-Base and Qwen3-4B-Base respectively. We
focus on the HotPotQA dataset for these experiments. We conduct RL training under the OTC and
MASH w/ OTC-Strict settings and further compare against each abstention baseline. Due to com-
pute limitations, we restrict these experiments to 300 training steps as opposed to 400 as in the main
paper. We show main results on Tables 6, 7 and 8.

B.2 ADDITIONAL ABSTENTION METRICS

While our analyses on the main paper focused on Abs(0) and Abs(1) as abstention metrics, our
trained models show interpretable trends with intermediate values of Abs(0) and Abs(1). We show
values for all Abs(i) values for i ∈ {0, 0.1, . . . , 0.9, 1} on Tables 11 and 12. Models’ tendency to
abstain decreases as the base model’s average accuracy on a given question increases. We do not
include results for 2WikiMultiHopQA as a majority of Abs(i) do not have a high enough support.
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Method Qwen2.5-7B-Base Qwen3-4B-Base

Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑
OTC (Wang et al., 2025a) 51.52 1.00 25.76 49.11 1.00 24.55
MASH w/ OTC-ST 55.13 1.18 35.37 51.45 0.90 34.13

Table 6: Accuracy, average number of tool calls (TC) and tool productivity (TP) statistics for
OTC and MASH w/ OTC-ST evaluated under the inference w/ search tools setting on HotPotQA.
MASH w/ OTC-ST continues to outperform the OTC baseline on both Accuracy and TP, achieving
a 10% increase on the latter.

Method Qwen2.5-7B-Base Qwen3-4B-Base

0 1 2+ 0 1 2+

OTC 0.00.0 100.051.5 0.00.0 0.00.0 100.049.1 0.00.0
MASH w/ OTC-ST 34.660.7 31.361.3 34.143.8 39.253.5 31.856.7 29.042.9

Table 7: Fine-grained tool use distribution (TC=0/1/2+ search) for baseline OTC and MASH w/
OTC-ST on HotPotQA. We also report answer accuracies for questions in each subset (subscript).
TC=0 indicates that the model answers parametrically. MASH can successfully off-load questions
to parametric answering (from TC=1 to TC=0) with minimal or no decrease in accuracy.

B.3 ABSTENTION TRAINING WITH A TERNARY REWARD

We provide an additional abstention baseline where models are trained with RL using a ternary
reward that rewards correct answers with +1, abstentions with 0 and incorrect answers with −1.
Similar to our oracle helper setting, we find that training with this ternary reward leads to models
always abstaining within 25 steps. This can be seen in Figure 2.

B.4 INSTRUCT MODEL PROMPTING

We compare the performance of our MASH models to that of the zero- and few-shot prompted
Qwen2.5-3B-Instruct model under both the search tool enabled and abstention settings. Results can
be found on Tables 14, 15 and 16.

For zero-shot prompting, we use the same prompts used in RL training for search and in inference
for abstention. For few-shot prompting under the abstention setting, we re-use the same exemplars
used for few-shot prompting with the base models. For few-shot prompting under the search tool
enabled setting, we construct examplars using the MASH w/ OTC-Strict outputs on the final 50
steps of training for each dataset. When constructing exemplars, we keep a balanced number of
unanswerable and perfectly answerable questions. If a question is perfectly answerable, we choose
a correct parametric answer. If a question is unanswerable, we choose a correct answer that invokes
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Figure 2: Abstention rate at different training steps when trained with a ternary reward for abstention.
Models converge to always abstaining within 25 steps for all datasets.
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Method Qwen2.5-7B-Base Qwen3-4B-Base

Acc Prec Abs(0) ↑ Delta↑ Acc Prec Abs(0) ↑ Delta↑
OTC 0.00 – 100.00 0.00 0.00 – 100.00 0.00
MASH w/ OTC-ST 20.98 60.67 87.14 64.51 20.96 53.59 81.63 67.07

5-shot Prompting 23.06 34.17 39.45 24.18 17.58 34.37 59.76 43.72
AFH (Absolute) 25.52 36.73 40.3 27.93 13.44 47.97 82.81 41.5
AFH (Multisample) 17.68 51.36 82.00 53.22 7.25 66.54 96.54 36.51
DPO 24.35 48.25 72.8 60.4 16.72 60.84 92.38 75.87

Table 8: Abstention accuracy and abstention classification results for specialized abstention ap-
proaches and MASHon HotPotQA. For abstention accuracy, we report overall Acc over the entire
test set and Prec, i.e. accuracy over the non-abstained answers for each method. For classification,
we report Abs(0), i.e. % abstention for unanswerable questions (higher better), and the Delta (higher
better) between the % of abstention between unanswerable and answerable questions.

Method MuSiQue

Acc↑ TC↓ TP↑
OTC (Wang et al., 2025a) 14.22 1.00 7.12
MASH w/ OTC-ST 23.67 2.23 8.08

Table 9: Accuracy, average number of tool calls (TC) and tool productivity (TP) statistics for OTC
and MASH w/ OTC-ST evaluated under the inference w/ search tools setting on MuSiQue with
the Qwen2.5-3B-Base model. We train for 300 steps and do checkpoint selection with exact match.
MASH w/ OTC-ST continues to outperform the OTC baseline, achieving a 9.45% increase in accu-
racy.

tools. For HotPotQA and 2WikiMultiHopQA, we additionally balance the number of exemplars
featuring 1 and 2 searches. Few-shot inference with the instruct model is then done using the official
chat template of the model. Finally, when evaluating the zero- and few-shot prompted search models
for abstention, we treat search calls as equivalent to abstention similar to MASH.

B.5 IMPACT ON GENERAL TASK PERFORMANCE

In order to assess how our training affects the models’ general capabilities, we compare Qwen2.5-
3B-Base’s performance against MASH w/ OTC-Strict on separate, general-capability tasks. We use
the HotPotQA-trained variant for MASH w/ OTC-Strict. We compare these models on the verifiable
instruction-following task of IFEval (Zhou et al., 2023) and the MATH-Hard (Hendrycks et al.,
2021) dataset, which features the subset of questions of the MATH dataset with level 5 difficulty. A
4-shot prompt is used in the MATH-Hard setting. We present results in Table 17.

These evaluations are done with the commonly used (Gu & Dao, 2024; Touvron et al., 2023; Muen-
nighoff et al., 2025) LM Evaluation Harness of EleutherAI (Gao et al., 2024). We follow the standard
task setup for both tasks under the LM Evaluation Harness. We use 250 samples from each subset
that is available in these datasets.

C SEARCH TOOL USE

In this section, we provide details for GRPO and warm-start training and describe the datasets used
for training and evaluation.

C.1 GRPO TRAINING

We use the GRPO implementation of the veRL library (Sheng et al., 2025) for all RL training.

Training hyperparameters For general training hyperparameters, we set the learning rate to 10−6

without any warmup or decay and use a gradient clipping norm of 1.0. For policy optimization, we
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Method MuSiQue

0 1 2 3 4

OTC 0.36.1 99.614.3 0.00.0 0.00.0 0.00.0
MASH w/ OTC-ST 8.19.7 5.020.8 52.031.2 27.218.1 7.89.1

Table 10: Fine-grained tool use distribution (TC=0/1/2/3/4+ search) for baseline OTC and
MASH w/ OTC-ST on MuSiQue with Qwen2.5-3B-Base. We also report answer accuracies
for questions in each subset (subscript). TC=0 indicates that the model answers parametrically.
MASH can successfully off-load questions to parametric answering (from TC=1 to TC=0) and dis-
cover policies with multiple searches.

Method Abs(i) for Natural Questions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OTC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
MASH w/ OTC 99.86 99.71 100.00 99.86 100.00 99.77 99.81 99.66 99.44 99.53 99.75
MASH w/ OTC-ST 85.45 75.14 67.27 52.85 53.62 51.13 46.40 33.50 27.78 27.37 19.29
MASH w/ EXP 85.65 75.14 66.74 53.55 56.03 50.90 52.26 36.05 32.78 29.25 22.91

5-shot Prompting 60.16 49.86 47.31 38.25 38.45 31.08 34.09 25.34 25.37 21.84 15.60
AFH (Absolute) 67.71 56.30 48.81 40.98 35.52 35.36 35.42 27.05 24.81 20.73 19.66
AFH (Multisample) 87.90 83.41 78.23 69.95 70.69 68.92 60.98 55.65 52.22 46.68 35.81
DPO 84.48 73.48 60.67 51.23 51.03 41.67 40.72 30.31 22.41 17.25 12.90

Table 11: Abs(i) values for each i ∈ {0, 0.1, . . . , 0.9, 1} for specialized abstention approaches and
MASH on Natural Questions. We observe that models’ tendency to abstain decreases as the average
accuracy for a question increases, with a consistent drop in Abs(i) values from Abs(0) to Abs(1).

set ϵ = 0.2, entropy coefficient to 0.001, batch size to 64, group size G = 16 and perform 1 gradient
step per rollout. In early hyperparameter tuning experiments, we observed setting β = 0 to improve
performance, with the associated benefit of freeing the memory used for the reference model. In
doing so, we follow other follow-up work on GRPO (Liu et al., 2025).

We perform training for 400 steps and evaluate the model on the task’s validation set every 25 steps.
We restrict the use of LLM judges only to the test set and use exact match to estimate accuracy
for training and validation. We pick the checkpoint to evaluate using validation tool productivity
performance.

Retrieval details We use the retrieval server implementation provided by Search-R1 (Jin et al.,
2025) for retrieval. We further follow Search-R1 in masking out tokens from retrieved documents
when computing losses. We use the E5 retriever (Wang et al., 2022) with 3 documents returned per
query. We enclose each returned query in-between <document> tags.

Inference hyperparameters We perform inference with a temperature of 1.0 during both training
and test, and do not use either top-p or top-k sampling. The maximum output length for an indi-
vidual generation step is 512 tokens and we set the maximum overall output length (with retrieved
documents added) to 6144. We truncate outputs exceeding the maximum output length.

Input prompts We use the prompt shown in Figure 4 for tool-use training. This is based on the
prompt used by Wang et al. (2025a). For R1 training, on the other hand, we use the prompt shown
in Figure 3. This is identical to the R1 prompt used in Search-R1.

C.2 INFERENCE ALGORITHM

Inference is done according to the procedure detailed in Algorithm 2. Note that this inference
procedure during RL training and evaluation is distinct from the structured inference procedure used
in warm-start data generation (as described in Algorithm 1). If a model exceeds the maximum
number of allowed searches and still attempts a search, it is given a warning message instead. We
observed that this did not occur for runs featuring the efficiency reward. Because of this, we set
the maximum number of searches in our Search-R1 experiments to 3 due to compute and memory
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Method Abs(i) for HotPotQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OTC 95.34 89.51 79.09 69.67 60.70 56.08 53.53 55.06 52.18 52.80 53.96
MASH w/ OTC 94.77 87.43 75.00 64.35 52.63 47.95 41.60 45.62 44.09 39.20 42.46
MASH w/ OTC-ST 91.22 82.26 67.44 56.96 46.67 40.67 38.26 40.66 36.55 28.30 30.92
MASH w/ EXP 94.47 87.25 74.71 63.28 52.98 48.03 41.79 46.80 43.27 40.24 41.82

5-shot Prompting 60.54 56.47 49.89 49.08 48.51 45.21 45.42 46.69 44.36 41.20 33.65
AFH (Absolute) 50.42 42.85 37.50 32.46 29.12 27.05 24.43 22.18 21.18 19.50 15.03
AFH (Multisample) 89.20 83.15 75.80 72.09 67.54 63.18 61.55 58.95 58.09 47.80 31.64
DPO 85.91 70.40 56.28 47.80 38.07 33.39 30.06 26.26 22.64 20.70 12.44

Table 12: Abs(i) values for each i ∈ {0, 0.1, . . . , 0.9, 1} for specialized abstention approaches
and MASH on HotPotQA. We observe that models’ tendency to abstain decreases as the average
accuracy for a question increases, with a consistent drop in Abs(i) values from Abs(0) to Abs(1).

Method Natural Questions HotPotQA 2Wiki

%Abs %Ans Recall %Abs %Ans Recall %Abs %Ans Recall

OTC 100.0 0.0 100.0 80.53 19.47 95.34 96.89 3.11 97.78
MASH w/ OTC 99.81 0.19 99.86 76.51 23.49 94.77 87.02 12.98 92.51
MASH w/ OTC-ST 63.63 36.37 85.45 71.07 28.93 91.22 85.72 14.28 91.73
MASH w/ EXP 64.79 35.21 85.65 76.28 23.72 94.47 88.21 11.79 93.29

5-shot Prompting 45.11 54.89 60.16 53.51 46.49 60.54 67.49 32.51 69.52
AFH (Absolute) 49.86 50.14 67.71 39.51 60.49 50.42 74.41 25.59 79.5
AFH (Multisample) 73.37 26.63 87.9 76.02 23.98 89.2 91.16 8.84 94.21
DPO 60.43 39.57 84.48 62.55 37.45 85.91 89.66 10.34 94.11

Table 13: Abstention rate (%Abs), Answer rate (%Ans) and Recall results for specialized abstention
approaches and MASH with the Qwen2.5-3B-Base model. Abstention rate is the percentage of
questions the model abstains on, while answer rate is the percentage of questions the model answers
parametrically. Recall is the percentage of questions that the model abstained when it should have
abstained. It is equivalent to our Abs(0) metric.

concerns. Finally, we do not manually append a course-correction message upon failure to generate
a properly formatted search or answer tag, as this is a task-specific addition and must be defined for
each tool individually.
Algorithm 2 Inference with Multi-Turn Search Tool Calls

Input: Question q, language model πθ, retriever H
Hyperparameters: Maximum search budget L
Output: Trajectory τ

Initialize trajectory τ ← ∅
Initialize action count l← 0
while l ≤ L+ 2 do

Generate action al ∼ πθ(·|q, τ ;H) until [</search>, </answer>, <eos>]
Append al to trajectory τ ← τ + al
if <search> </search> detected in al and l < L then

Extract search query sl
Retrieve top-k documents ol ∼ H(s)
Append documents to trajectory τ ← τ + ol

else if <search> </search> detected in al then
Construct warning message m = <warning> SEARCH LIMIT REACHED </warning>
Append m to trajectory τ ← τ +m

else if <answer> </answer> detected in al or <eos> detected in al then
return Final generated response τ

Increment l← l + 1
return τ
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Method Natural Questions HotPotQA 2Wiki

Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑ Acc↑ TC↓ TP↑
OTC (Wang et al., 2025a) 58.95 1.0 29.47 44.76 0.81 28.64 39.59 1.57 15.32
MASH w/ OTC-ST 56.40 0.64 38.64 53.34 1.10 32.55 46.23 1.64 19.08
0-shot Search 45.63 1.02 23.26 31.44 1.09 15.55 11.02 1.14 5.21
5-shot Search 35.61 0.98 19.08 30.00 1.08 15.45 14.70 1.31 6.43

Table 14: Accuracy, average number of tool calls (TC) and tool productivity (TP) statistics for
OTC, MASH w/ OTC-Strict and zero- and five-shot prompted Qwen2.5-3B-Instruct evaluated under
inference w/ search tools. Both our OTC baseline and MASH models trained with RL outperforms
the Qwen2.5-3B-Instruct model that is prompted to perform the same task.

Method Natural Questions HotPotQA 2Wiki

0 1 2+ 0 1 2+ 0 1 2+

OTC 0.00.0 100.058.9 0.00.0 19.564.5 80.240.0 0.332.0 3.124.1 36.726.6 60.248.3
MASH w/ OTC-ST 36.457.4 63.555.9 0.117.6 28.959.9 34.756.4 36.445.2 14.332.5 8.342.3 77.549.2
0-Shot Search 4.335.2 91.246.5 4.537.8 1.929.3 89.531.7 8.728.7 1.65.7 86.410.4 12.016.2
5-shot Search 7.837.9 87.036.2 5.221.8 6.830.6 80.130.6 13.026.3 2.06.1 69.912.7 28.020.3

Table 15: Fine-grained tool use distribution (TC=0/1/2+ search) for OTC, MASH w/ OTC-Strict and
zero- and few-shot prompted Qwen2.5-3B-Instruct. We also report answer accuracies for questions
in each subset (subscript). TC=0 indicates that the model answers parametrically.

C.3 WARM-START

Warm-Start Implementation Details We follow the procedure outlined in Algorithm 1 to con-
struct the warm-start data. We use the Qwen2.5-32B base model as our generator, as it is better ca-
pable of following instructions off-the-shelf, but has not undergone alignment for abstention unlike
instruct models. Nonetheless, to ensure that the base model generates properly formatted outputs,
we sample 4 candidate outputs for each action and discard the output if it contains unrelated tags or
does not add the action ending tag. For think and search actions, we choose a random output. For
answer actions, we preferentially choose correct outputs.

Evaluation of trajectories is done with an LLM judge, in this case Qwen2.5-72B-Instruct (Qwen
et al., 2025). We follow the same procedure we use to evaluate abstention model outputs, described
in Section D.1. If a trajectory is deemed correct, we swap its generated answer with the ground-truth
answer for the target dataset to align answers with the dataset format, as we use exact match as the
reward.

For a given question q, if we sample l = 0 as the target number of actions, we use the prompt
used for R1 training (Figure 3) to prevent the model from searching. Otherwise, we use the prompt
described in Figure 5.

Training Details We use Huggingface TRL’s SFTTrainer to perform training (von Werra et al.,
2020). We use the hyperparameters used by Muennighoff et al. (2025) for performing SFT on
reasoning data. Specifically, we use a learning rate of 10−5, weight decay of 10−4, Adam β1 =
0.9, β2 = 0.95 and gradient clipping norm of 1. We use a linear learning rate scheduler warmed-up
for 5% of training steps and decayed to 0 throughout training. We train for 5 epochs with an effective
batch size of 16. As in RL training, tokens corresponding to retrieved documents are masked out
from the loss.

Lack of alignment with parametric knowledge On Table 18, we report our warm-start initial-
izations’ performance in terms of the Abs(0) and Delta metrics (as defined in Section 3.2). On both
Natural Questions and HotPotQA, the warm-start initialization has miniscule Delta values of 1.56
and 7.70, indicating that the model does not behave differently for unanswerable and answerable
questions. Furthermore, as we set lmax = 2 and choose the target number of searches in warm-start
data randomly, two thirds of the data has search (and, therefore, abstention) behavior. This explains
the Abs(0) values near 66%.
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Method Answer Accuracy Abstention Classification

NaturalQA HotPotQA 2Wiki NaturalQA HotPotQA

Acc Prec Acc Prec Acc Prec Abs(0) ↑ Delta↑ Abs(0) ↑ Delta↑
OTC 0.0 0.0 12.6 64.5 0.75 24.1 100.0 0.0 95.3 41.4
MASH w/ OTC-ST 20.9 57.4 17.3 59.9 4.6 32.5 85.5 66.2 91.2 60.3
0-shot Search 1.5 35.2 0.6 29.3 0.1 5.7 97.2 4.9 98.4 2.1
5-shot Search 3.0 37.9 2.1 30.0 0.1 6.1 95.3 9.4 94.7 6.6

0-shot Abstention 15.7 59.3 2.9 68.0 0.2 34.9 89.3 55.8 98.8 21.2
5-shot Abstention 15.7 58.9 3.7 66.8 0.3 27.8 89.5 55.8 98.5 23.4

Table 16: Abstention accuracy (left) and abstention classification (right) results for OTC, MASH w/
OTC-Strict and zero- and five-shot prompting for Qwen2.5-3B-Instruct. We evaluate the Qwen2.5-
3B-Instruct model under two settings for abstention. Firstly, given prompts for search tool use and
using search calls as equivalent to abstention as in MASH; and secondly, given explicit prompts for
abstention.

Method IFEval MATH-Hard

Qwen2.5-3B-Base 23.60 15.12
MASH w/ OTC-ST 25.20 22.80

Table 17: Performance of Qwen2.5-3B-Base and the HotPotQA-trained MASH w/ OTC-Strict mod-
els on IFEval and MATH-Hard. We observe training models to selectively seek help does not de-
grade general capabilities under our setting.

Input Prompt:
Answer the given question. You should first have a reasoning process in mind and then provides the answer.
Show your reasoning in <think> </think> tags and return the final answer in <answer> </answer> tags,
for example <answer> Beijing </answer>. Question: <question>

Figure 3: The input prompt used during R1 training experiments. The final <question> is replaced
by the input question.

Input Prompt:
Answer the given question. You must conduct reasoning between <think> and </think> every time you
get new information. After reasoning, if you find you lack some knowledge, you can call a search en-
gine by <search> query </search> and it will return the top searched results between <document> and
</document>. You need to make every search call count and gain helpful results. If you find no further ex-
ternal knowledge is needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>. Question: <question>

Figure 4: The input prompt used during search tool use experiments. The final <question> is
replaced by the input question.

C.4 DATASETS

We run training experiments on three knowledge-intensive datasets – the single-hop dataset Natural
Questions (Kwiatkowski et al., 2019), and multi-hop datasets HotPotQA (Yang et al., 2018) and
2WikiMultiHopQA (Ho et al., 2020). We additionally use the single-hop TriviaQA dataset as part
of our out-of-distribution evaluations. For Natural Questions, we use the official splits for training,
validation and test. For HotPotQA, 2WikiMultiHopQA and TriviaQA, the official test splits do not
contain answers. As a result, we use their official development/validation sets for the purpose of test
and construct our own validation sets by sub-sampling from the training set with a 90/10 split.

Additionally, as noted in the main text, we filter out the “comparison” and “bridge-comparison”
questions from 2WikiMultiHopQA, as these questions are each binary choice questions with heavily
skewed answer distributions, causing models to exploit dataset distributions in practice.
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Method Natural Questions HotPotQA

Abs(0) ↑ Delta↑ Abs(0) ↑ Delta↑
Warm-Start Initialization 66.18 1.56 68.65 7.70

Table 18: Abstention classification results for the warm-start initializations. We report Abs(0), i.e.
% abstention for unanswerable questions (higher better), and the delta between the % abstention
between unanswerable and answerable questions.

Input Prompt:
Answer the given question. You must conduct reasoning between <think> and </think> every time you get
new information. After reasoning, if you find you lack some knowledge, you can ask a question to a search
engine by <search> query </search> and it will return the top searched results between <document> and
</document>. A search query should be an atomic question asking about one, single piece of information.

Example 1:
Question: “Who was born first, Clint Eastwood or Harrison Ford?”
Valid Queries: “<search>Clint Eastwood birth date</search>” and “<search>Harrison Ford birth
date</search>”.
The query “<search>Clint Eastwood and Harrison Ford birth date</search>” is invalid.
The query “
<search>
Clint Eastwood birth date
Harrison Ford birth date
</search>”
is also invalid. Do not pack in multiple questions into one query. Each query should be completely
independent.

Example 2:
Question: “Which is a genus of palms, Zinnia or Butia?”
Valid Queries: “<search>Zinnia genus classification</search>” and “<search>Butia genus
classification</search>”.

Example 3:
Question: “When did the country where Piltene is located become part of the USSR?”
Initial Query: “<search>Piltene location</search>”

In each of these examples, you should conduct a search only if you lack the relevant information. Remember,
you should decompose questions in your search queries and conduct searches for each atomic question
separately. You need to make every search call count and gain helpful results. If you find no further external
knowledge is needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>.

Question: <question>

Figure 5: The input prompt used when generating tool-use trajectories during warm-start data gen-
eration. The final <question> is replaced by the input question.

D ABSTENTION EXPERIMENT DETAILS

In this section, we first detail the pipeline for estimating the average accuracy the base model
achieves on each question. This is used to determine both answerability boundaries for absten-
tion training as well as compute abstention classification metrics. We then describe training and
inference for our abstention methods.

D.1 QUESTION ACCURACY ESTIMATION

We follow the pipeline used by Yang et al. (2024) to estimate the average accuracies. For a given
question q, we sample 10 responses {ŷi}10i=1 from the untrained model. As all of our experiments
are conducted with base models, we perform few-shot prompting. Specifically, for each dataset, we
collect correct responses sampled from DeepSeek-V3.1 to 5 questions sampled from the training set
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and use these as our few-shot examples. For this component, we perform inference with DeepSeek-
V3.1 using a temperature of 1 and top-p of 0.8. We likewise perform sampling with Qwen2.5-3B
with a temperature of 1, top-p of 0.8 and top-k of 50 to ensure that the base model samples strong
outputs and gives a good estimate of knowledge boundaries.

To assess the correctness of a given answer ŷi, we first extract a shortform response and then evaluate
the accuracy of this extracted response with an LLM judge. We use DeepSeek-V3.1 in both cases
using the few-shot prompts of Yang et al. (2024) (shown in Figures 6 and 7), using greedy decoding
for replicability.

D.2 TRAINED ABSTENTION MODEL DETAILS

For both the Alignment for Honesty (Yang et al., 2024) and DPO (Rafailov et al., 2023) baselines,
we use the exact same training datapoints that MASH was trained on. Furthermore, we perform the
exact same number of gradient steps to ensure a fair comparison.

For the Alignment for Honesty variants, we use Huggingface TRL’s SFTTrainer (von Werra et al.,
2020). We use a learning rate of 10−5, weight decay of 10−4, Adam β1 = 0.9, β2 = 0.95 and
gradient clipping norm of 1. We use a linear learning rate scheduler warmed-up for 5% of training
steps and decayed to 0 throughout training. For the “Absolute” variant of Alignment for Honesty, we
use an effective batch size of 64. For the “Multisample” variant, we use an effective batch size of 640
to achieve the same number of gradient steps, as it constructs a datapoint for each question-answer
pair sampled during average accuracy estimation.

For the DPO baseline, we use Huggingface TRL’s DPOTrainer. While we take inspiration from
Cheng et al. (2024) in constructing the preference dataset, we do not use their two-stage approach
featuring an initial SFT stage followed by a DPO stage. Instead, we find that doing DPO training
with SFT regularization performs well (Pang et al., 2024) and is more comparable to our other
settings. We use the same hyperparameters as in the Absolute variant of Alignment for Honesty. We
set the DPO β = 0.1 and the SFT loss coefficient to 1.

Both models are trained to respond to the prompt shown in Figure 8. We perform inference with a
temperature of 1.0, without top-p or top-k sampling, as is done for our MASH models.

D.3 FEW-SHOT ABSTENTION PROMPTING DETAILS

For few-shot prompting, we likewise use the prompt shown in Figure 8. As mentioned in Section
3, we average performance over 4 samples. In the case of the few-shot abstention prompt, we use
a separate few-shot prompt for each sample. Two of the few-shot prompts feature 3 abstentions
on unanswerable questions and 2 answers on always answerable questions. The other two feature
3 answers on always answerable questions and 2 abstentions on unanswerable ones. The answers
themselves are sampled from DeepSeek-V3.1.

D.4 EVALUATING ABSTENTION MODELS

The prompt (Figure 6) used for extracting shortform answers by Yang et al. (2024) additionally
contains few-shot examples for abstention. As a result, we first determine if a response contains an
abstention using this prompt. If it does not contain an abstention, then we evaluate the extracted
answer using the prompt in Figure 7.

E ORACLE HELPER DETAILS

Implementation details Our oracle helper experiments in Section 4.4 predominantly use the same
hyperparameters but differ primarily in prompts and the answer tags used in inference. During
GRPO training and during warm-start synthetic data generation when l = 1, we use the prompt
described in Figure 9. Here, the <search> tag used in normal training becomes a <help> tag and
the <document> is replaced by <helper answer>. Finally, given that the message between the
<help> and </help> tags does not matter, we hardcode the specified “I need help” message during
warm-start data generation when generating the help action.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Input Prompt:
Given a question and a piece of text, if the text does not contain an answer to the question, output “no
answer”; otherwise, extract the answer from the text.

Question: What was the last US state to reintroduce alcohol after prohibition?
Text: The last US state to reintroduce alcohol after prohibition was Mississippi. Mississippi legalized alcohol
on August 17, 1933, making it the last state to do so.
Output: Mississippi
...
Question: <question>
Text: <model response>
Output:

Figure 6: The input prompt used to extract shortform answers from model outputs during abstention
model evaluation and average accuracy estimation for questions.

Input Prompt:
Please rate the consistency between the reference answer and the proposed answer on a scale of 0 to 1. A
rating of 0 indicates inconsistency, while a rating of 1 indicates perfect consistency.

Question: In which country is the Sky Train Rail bridge?
Reference Answer: Canada
Proposed Answer: Thailand
Score: 0
...
Question: <question>
Reference Answer: <gold answer>
Proposed Answer: <extracted answer>
Score:

Figure 7: The input prompt used to evaluate model answers. We follow Yang et al. (2024) in treating
an output score higher than 0.7 as indicating correctness.

Input Prompt:
Answer the given question. If you are not confident that your answer will be correct, you should abstain from
answering by using the phrase “I am afraid I cannot help you as I do not know the answer to this question.”
Question: <question>

Figure 8: The input prompt used in our abstention models.

Input Prompt:
Answer the given question. You must conduct reasoning between <think> and </think> every time you get
new information. After reasoning, if you find you lack some knowledge, you can ask for help by <help>
I need help </help> and it will return the answer to the original question between <helper answer> and
</helper answer>. You need to ask for help only when necessary. If you find no further external knowledge
is needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustra-
tions. For example, <answer> Beijing </answer>. Question: <question>

Figure 9: The input prompt used during oracle helper experiments. The final <question> is replaced
by the input question.

Visualization of help-seeking dynamics We find that when trained with the oracle helper, all
of our models, regardless of dataset, warm-start procedure or penalty severity, converge to always
seeking help. Figure 10 illustrates this for MASH variants on HotPotQA.

F OUT-OF-DISTRIBUTION RESULTS

We present out-of-distribution results for models trained on NaturalQA on Table 19 and for models
trained on 2Wiki on Tables 20 and 21. We find that models’ generalization behavior is highly depen-
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Figure 10: Average number of help requests for all MASH variants at different training steps when
trained with the oracle helper on HotPotQA . All variants converge to 1 search within 20 steps.

Method HotPotQA TriviaQA

Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑ Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑
OTC 0.00 43.04 99.99 -0.01 0.00 72.5 99.99 0.01
MASH w/ OTC-ST 7.62 39.15 93.39 40.66 37.09 65.58 74.44 60.69
DPO 9.1 - 95.66 48.39 34.24 - 84.57 71.45

Table 19: Out-of-distribution accuracy (with and without search) and abstention classification results
for NaturalQA models. DPO achieves superior Abs(0) and Delta, but is outperformed by MASH on
TriviaQA. OTC consistently learns to search on NaturalQA, which generalizes out-of-distribution.
However, tool-use enables both OTC and MASH to achieve higher accuracies.

dent on the dataset they are trained on. For NaturalQA models, DPO achieves superior Abs(0) and
Delta, but is outperformed by MASH on TriviaQA. For 2Wiki, on the other hand, where questions
are exclusively multi-hop, we find that MASH generalizes reasonably for HotPotQA but struggles
on single-hop questions. OTC, on the other hand, performs better in this setting. We note that 2Wiki
is highly synthetic and that MASH with OTC-Strict answers parametrically 11.2% more than the
OTC baseline on this dataset. We suspect that MASH with OTC-Strict learned dataset-specific
shortcuts that hamper its generalization in this process. Nonetheless, with search enabled, all of our
help-seeking models outperform DPO, which is ultimately limited to abstention.

G COMPUTE REQUIREMENTS AND COST

We perform all experiments on NVIDIA H100 machines. Each individual MASH training ex-
periment takes approximately 100 H100 hours for training and evaluation. In total, we perform
18 full reinforcement learning experiments, leading to approximately 1800 H100 hours. The vari-
ous abstention experiments are cheaper due to the fact that they do not involve any retrieval, with
the Alignment for Honesty Multisample training longest at approximately 4 − 5 hours. Overall,
we estimate all training and evaluation experiments taking approximately 1900 H100 hours total.
DeepSeek-V3.1 API calls, on the other hand, cost approximately $400− 500 total.
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Method HotPotQA

Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑
OTC 4.00 39.85 89.56 14.05
MASH w/ OTC-ST 7.06 39.18 73.36 17.27
DPO 4.07 - 95.43 22.73

Table 20: Out-of-distribution accuracy (with and without search) and abstention classification re-
sults for 2Wiki models on HotPotQA. DPO achieves superior Abs(0) and Delta, but is outperformed
by MASH on Accuracy. For 2Wiki, we find OTC to be more competitive with DPO than MASH on
abstention metrics. Nonetheless, tool-use enables both OTC and MASH to achieve higher accura-
cies.

Method Natural Questions TriviaQA

Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑ Acc↑ Acc w/ tool↑ Abs(0) ↑ Delta↑
OTC 13.24 39.87 72.81 29.51 24.39 55.37 71.17 33.2
MASH w/ OTC-ST 11.97 33.31 40.27 0.04 23.18 47.41 49.96 19.44
DPO 7.94 - 93.66 28.55 14.71 - 90.05 29.3

Table 21: Out-of-distribution accuracy (with and without search) and abstention classification re-
sults for 2Wiki models on single-hop datasets. DPO achieves superior Abs(0), but is outperformed
by OTC in terms of Delta and both OTC and MASH in terms of Accuracy. However, we find
that MASH struggles at abstention in this setting. Nonetheless, tool-use enables both OTC and
MASH to achieve higher accuracies.
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