
ExaGPT: Example-Based Machine-Generated Text Detection
for Human Interpretability

Anonymous ACL submission

Abstract

Detecting texts generated by Large Language001
Models (LLMs) could cause grave mistakes002
due to incorrect decisions, such as undermin-003
ing student’s academic dignity. LLM text de-004
tection thus needs to ensure the interpretability005
of the decision, which can help users judge006
how reliably correct its prediction is. When007
humans verify whether a text is human-written008
or LLM-generated, they intuitively investigate009
with which of them it shares more similar spans.010
However, existing interpretable detectors are011
not aligned with the human decision-making012
process and fail to offer evidence that users013
easily understand. To bridge this gap, we intro-014
duce ExaGPT, an interpretable detection ap-015
proach grounded in the human decision-making016
process for verifying the origin of a text. Ex-017
aGPT identifies a text by checking whether it018
shares more similar spans with human-written019
vs. with LLM-generated texts from a datastore.020
This approach can provide similar span exam-021
ples that contribute to the decision for each022
span in the text as evidence. Our human evalu-023
ation demonstrates that providing similar span024
examples contributes more effectively to judg-025
ing the correctness of the decision than existing026
interpretable methods. Moreover, extensive ex-027
periments in four domains and three generators028
show that ExaGPT massively outperforms prior029
powerful detectors by up to +40.9 points of ac-030
curacy at a false positive rate of 1%. We will031
release our code after acceptance.032

1 Introduction033

LLMs can yield human-like texts in response to var-034

ious textual instructions (OpenAI, 2023b; Touvron035

et al., 2023). Ironically, the powerful generative036

capability has resulted in various misuses of LLMs,037

such as cheating in student homework assignments038

and mass-producing fake news (Tang et al., 2023;039

Wu et al., 2023). Such abuse of LLMs has sparked040

the demand for discerning LLM-generated texts041

from human-written ones.042

Figure 1: Identifying the author of a text (human vs.
LLM) by examining if it shares more similar spans,
including verbatim overlaps and semantically similar
spans, with human-written vs. LLM-generated texts.

Recent studies have developed LLM-generated 043

text detectors with promising performance 044

(Mitchell et al., 2023; Su et al., 2023a; Koike et al., 045

2024; Hans et al., 2024; Verma et al., 2024). 046

While LLM text detection can help prevent po- 047

tential misuse of LLMs, misclassifications could 048

lead to severe consequences. For instance, web 049

content writers have recently been at risk of los- 050

ing their careers because of false-positive classi- 051

fication (Gizmodo, 2024). In school education, 052

incorrect detection results might ruin students’ aca- 053

demic dignity (OpenAI, 2023a; Bloomberg, 2024). 054

At the same time, it is extremely difficult, if not im- 055

possible, to develop a perfect detector with 100% 056

accuracy in such real-world scenarios, and there 057

remain edge cases where human-written texts can 058

be misidentified as LLM-generated and vice versa. 059

Thus, it is crucial to create a detector that provides 060

interpretable evidence, allowing users to judge how 061

reliably correct the detection results are (Tang et al., 062

2023; Ji et al., 2024). 063
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Figure 2: Overview of ExaGPT. It detects the author of a text by examining whether the text shares more similar
spans with human-written texts vs. with LLM-generated texts from a datastore.

Most detectors lack the interpretability of their064

decisions, outputting only binary labels of who au-065

thored the text. There are few studies on the inter-066

pretability of the detection. Gehrmann et al. (2019)067

color-highlighted the tokens with high probability068

under the predicted distribution of LMs. Mitrović069

et al. (2023); Wang et al. (2024) showed which part070

of a text contributed to a decision based on predic-071

tion shifts via perturbations to the text. Yang et al.072

(2023) provided the n-gram overlaps between the073

original text and re-prompted ones generated by074

LLMs. Here, humans intuitively judge whether a075

text is human-written or LLM-generated by assess-076

ing with which source it shares more similar spans,077

including verbatim overlaps and semantically simi-078

lar spans (Maurer et al., 2006; Barrón-Cedeño et al.,079

2013). However, current detectors are not aligned080

with the human decision-making process (Figure 1)081

and fail to yield sufficiently interpretable evidence082

for users.083

Motivated by this gap, we present ExaGPT, an084

interpretable detection method based on the human085

decision-making process of verifying the origin of086

a text. In particular, ExaGPT makes a prediction087

by examining whether the text shares more similar088

spans with human-written vs. with LLM-generated089

texts from a datastore. This approach can provide090

similar span examples that contribute to the de-091

cision for each span in the text as interpretable092

evidence. To present interpretable span-segmented093

text as a final result, we apply a dynamic program-094

ming algorithm and determine the optimal span 095

break. It balances the long span length and its high 096

frequency with the datastore (i.e., many similar 097

phrases to the span exist in the datastore). The 098

similarity of the retrieved spans to each span in the 099

target text can help users judge the reliability of the 100

detection result. 101

To evaluate the interpretability of LLM detec- 102

tion, we conducted a human evaluation of how well 103

people can infer the correctness of the detection 104

from the detector’s evidence, and we found that 105

providing similar span examples contributes more 106

effectively to judging the correctness of the detec- 107

tion than existing interpretable methods. Moreover, 108

extensive experiments in four domains and three 109

generators showed that ExaGPT massively outper- 110

forms prior interpretable and powerful detectors 111

by up to +40.9 points accuracy, even at a constant 112

false positive rate of 1%. From these results, we 113

observe that ExaGPT achieves high interpretabil- 114

ity in its detection result and also high detection 115

performance. 116

2 Methodology 117

ExaGPT classifies a text based on whether it shares 118

more similar spans with human-written or with 119

LLM-generated texts from a datastore. As a fi- 120

nal result, ExaGPT offers the span-segmented text 121

where each span is accompanied by similar span 122

examples that contribute to the decision. Figure 2 123

illustrates the workflow of ExaGPT, which has two 124
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phases: Span Scoring and Span Selection. In125

the first phase, we mainly investigate whether each126

span in the target text shares more similar spans127

with human-written or LLM-generated texts from a128

datastore. Meanwhile, we calculate scores for each129

span, which we use in the second phase (§2.1). In130

the second phase, we primarily decide the optimal131

span segmentation to aid users’ understanding of132

the final result. Specifically, we apply a dynamic133

programming (DP) algorithm with the scores from134

the first phase to find the span boundaries, balanc-135

ing span length and its frequency within the datas-136

tore (§2.2). Finally, we detect the target text based137

on the selected spans and we provide similar span138

examples for each target span as evidence (§2.3).139

We will go into further details below.140

2.1 Span Scoring with k-NN Search141

Given a target text x to be classified, we define142

an n-gram span in the text x as xi:i+n, which is143

any continuous sequence of n tokens starting in144

the i-th token. For each n-gram target span xi:i+n,145

we retrieve the top-k most similar1 n-gram spans146

sj (j ∈ {1, . . . , k}) from the datastore, with each147

original label and similarity {(sj , lj , cj)}kj=1. Here,148

lj is Human when the span sj is part of a human-149

written text, or LLM when the span sj is a part of a150

LLM-generated text. cj is the similarity between151

the target span xi:i+n and each retrieved span sj .152

Consequently, we calculate the following met-153

rics for each target span xi:i+n: length score L,154

reliability score R, and prediction score P . The155

length score L is the number of tokens in the target156

span:157

L(xi:i+n) = n (1)158

The reliability score R is the mean similarity cj159

between the target span and each retrieved span:160

R(xi:i+n) =

∑k
j=1 cj

k
(2)161

The reliability score R indicates how many similar162

spans exist in the datastore for the target span. The163

prediction score P is a ratio of LLM label in the164

original labels lj of the retrieved spans:165

P (xi:i+n) =

∑k
j=1 1(lj = LLM)

k
. (3)166

1We encode the target span, and all spans in the datastore
into the same embedding space. We then perform k-nearest
neighbor (k-NN) search based on the cosine similarity of each
two span embeddings. See more details in §3.1.

Algorithm 1 Span Segmentation Optimization

Input: Target text x; Length of target text m;
Length score L; Reliability score R; Maximum
length of n-gram span N ; Hyper-parameter α
Output: List of selected n-grams T
dp[0, . . . ,m− 1]← [([0],None)] ∗m
for i = 1 to m do

for j = min(i−N, 0) to i do
l, r ← Lstd(xj:i), R

std(xj:i)
scores← dp[j][0] + [αl + (1− α)r]
scand ← average(scores)
if average(dp[i][0]) < scand then
dp[i]← (scores, j)

end if
end for

end for
Traverse dp backward and collect span breaks
return List of selected n-grams T

The prediction score P indicates whether the target 167

span shares more similar spans with human-written 168

vs. with LLM-generated texts in the datastore. 169

2.2 Span Selection with a DP Algorithm 170

In this phase, we select spans T = [t1, . . . , tH ] 171

in the target text x, so that the text is segmented 172

without overlaps as a final result: 173

x = t1 ⊕ t2 ⊕ · · · ⊕ tH ,

ti ∩ tj = ∅ (i, j ∈ {1, . . . ,H}, i ̸= j)
(4) 174

To facilitate users’ understanding of the final result, 175

we optimize the span segmentation that includes 176

longer and more similar spans with ones from the 177

datastore. Algorithm 1 describes our dynamic pro- 178

gramming strategy to find the best span break. For- 179

mally, we select spans T to maximize the score S 180

across the spans in the target text: 181

S(T ) =

∑H
h=1{αLstd(th) + (1− α)Rstd(th)}

H
.

(5) 182

Here, Lstd(th) and Rstd(th) are the normalized2 183

versions of the length score L and the reliability 184

score R of the span th, respectively. α is an in- 185

terpolation coefficient ranging from 0.0 to 1.0. α 186

determines the relative contribution of the length 187

score and the reliability score to the span segmen- 188

tation. 189
2To align the scales of the length score and the reliabil-

ity score, each score is normalized using the mean and the
variance in the validation split of our dataset.
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2.3 Overall Detection with Evidence190

Given a sequence of the selected spans T each with191

a prediction score for the target text x, ExaGPT192

identifies a text based on the mean prediction score:193

Poverall =

∑H
h=1 P (th)

H
. (6)194

ExaGPT classifies a text as LLM if Poverall exceeds195

a detection threshold ϵ, and otherwise as Human.196

As evidence of the decision, ExaGPT provides re-197

trieved top-k similar spans for each span in the text:198

E = [(th, [s
1
h, . . . , s

k
h])]

H
h=1. (7)199

The similarity of the retrieved spans to each span200

in the target text can help users judge how reliably201

correct the detection result is.202

3 Experiments and Results203

3.1 Overall Setup204

Evaluation Measures. To assess the detection205

performance, we use the Area Under Receiver Op-206

erating Characteristic curve (AUROC) measure,207

which is widely used in studies on LLM detection.208

However, it is only useful to observe the overall be-209

havior of a detector through all possible thresholds.210

In practical scenarios, it is quite important to mini-211

mize the false positive classification, i.e., wrongly212

identifying human-written texts as LLM-generated.213

We thus report the detection accuracy with a thresh-214

old by fixing the false-positive rate (FPR) at 1%,215

which is an evaluation stream among recent robust-216

ness studies (Krishna et al., 2023; Hans et al., 2024;217

Dugan et al., 2024).218

Datasets. We use the M4 dataset (Wang et al.,219

2024), which is a large-scale LLM detection bench-220

mark consisting of pairs of human-written and221

LLM-generated texts across multiple languages,222

domains, and generators. In our experiments,223

we use the English subset, including 3,000 pairs224

of human-written and LLM-generated texts from225

each combination of four domains: Wikipedia,226

Reddit, WikiHow, and arXiv, as well as three227

generators: ChatGPT, GPT-4 as closed-source228

LLMs, and Dolly-v2 (Conover et al., 2023) as open-229

source LLMs. For each combination, we split the230

dataset into three parts: train/validation/test with231

2,000/500/500 pairs, respectively.232

Baselines. In our experiments, we compare Ex-233

aGPT to three strong and interpretable detectors234

(as detailed in §5): RoBERTa with SHAP (Mitro- 235

vić et al., 2023), LR-GLTR (Wang et al., 2024), 236

and DNA-GPT (Yang et al., 2023). The first one 237

is a supervised classifier based on RoBERTa3 (Liu, 238

2019), which we fine-tune for LLM detection on 239

our train split. Similarly, we train the LR-GLTR 240

detector on our train split with selected and hand- 241

crafted GLTR features (Gehrmann et al., 2019), fol- 242

lowing (Wang et al., 2024). The hyper-parameter 243

settings for training both RoBERTa and LR-GLTR 244

are aligned with (Wang et al., 2024). For the param- 245

eter configuration of DNA-GPT, we set the trun- 246

cation ratio γ to 0.7 and 0.5, and the number of 247

re-generations K to 10 and 5 for closed-source 248

and open-source LLMs, respectively. We also en- 249

sured that the temperature is the same as the one 250

used to generate a target text and that the genera- 251

tion prompt is known. These configurations were 252

found to ensure the favorable performance of DNA- 253

GPT in (Yang et al., 2023). We set all other hyper- 254

parameters to their default values. Further configu- 255

ration details of the baseline detectors are given in 256

Appendix A. 257

Settings of ExaGPT. In the span scoring phase, 258

ExaGPT leverages our train split as the datastore 259

for each combination of domains and generators. 260

We consider the size of n-gram to be from 1 to 261

20 throughout the entire dataset. We embed the 262

target span and all spans in the datastore into the 263

same vector space using BERT-large4. For a span 264

embedding, we feed a text into the BERT-large 265

and take the mean second-layer5 hidden outputs 266

of tokens included in the span. We retrieve the 267

top-10 most similar spans from the datastore for 268

each target span via k-NN search using the FAISS 269

library (Johnson et al., 2017). 270

In the span selection phase, we select the opti- 271

mal α from values between 0.0 and 1.0 at 0.125 272

intervals, where ExaGPT exhibits the best detection 273

performance in our validation split. The α is con- 274

stant through our evaluation of the interpretability 275

and the detection performance of ExaGPT. 276

Human Evaluation in Terms of Interpretability. 277

We assess the interpretability of the detectors via 278

human evaluation, as it is vital to for a good detec- 279

3https://huggingface.co/FacebookAI/
roberta-base

4https://huggingface.co/google-bert/
bert-large-uncased

5We select the layer where the k-NN spans are similar
to the target span well-balanced lexically and semantically,
enhancing its interpretability in our pilot study.
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Figure 3: User interface of ExaGPT. Hovering over a
text span displays the tooltip about the retrieved similar
spans each with the similarity to the span and the origi-
nal label distribution.

tor to offer interpretable evidence, allowing users280

to judge how reliably correct the detection result is.281

Accordingly, we design human evaluation where282

participants are provided with detection evidence283

and judge whether the detection is correct. There-284

fore, the evaluation metric for interpretability is the285

accuracy of the human judgments on the detection286

correctness based on the evidence. For each detec-287

tor, we evaluate 96 samples6 from our test split in288

all combinations of domains and generators so that289

the ratio of correct and incorrect detections7 is even.290

In our human evaluation, four annotators, includ-291

ing one MSc student, one PhD student, and two292

researchers working in natural language processing,293

were provided with different samples.294

Figure 3 shows the user interface of ExaGPT8 in295

our human evaluation. The spans are highlighted9296

in red, green, and blue for which prediction score P297

is lower than 0.5 (human-written), equal to 0.5 (nei-298

ther), and higher than 0.5 (LLM-generated), respec-299

tively. The participants identify the correctness of300

the detection by mainly investigating similar span301

examples for each span in the text. We elaborate302

on the detection evidence of each baseline detector303

in Appendix B.304

6The 96 samples for each detector consist of two samples
(one correct and one incorrect) across four domains and three
generators, distributed among four participants.

7We focus on the setting of the 1% FPR threshold based
on practical scenarios.

8We implemented a demo app of ExaGPT with the stream-
lit framework: github.com/streamlit/streamlit.

9ExaGPT performs the overall detection rather than detect-
ing each span individually. However, for better readability,
each span is color-highlighted on its prediction score.

Detector ACC. of Human Judgements (%) ↑

RoBERTa 47.9
LR-GLTR 57.3
DNA-GPT 53.1
ExaGPT 61.5

Table 1: Comparison of the accuracy (ACC.) of human
judgments on the correctness of detections based on
evidence across baseline detectors and ExaGPT. Higher
accuracy implies that the detector provides more inter-
pretable evidence to users.

3.2 Results 305

Detection Interpretability. Table 1 presents the 306

difference in the accuracy of human judgments on 307

the detection correctness based on evidence across 308

baseline detectors and ExaGPT. The accuracy of 309

human judgments on ExaGPT is relatively higher 310

compared to baseline detectors by up to +13.6 311

points. This indicates that ExaGPT offers more 312

interpretable evidence than other baselines, helping 313

humans judge the correctness of detections more 314

effectively. Here, DNA-GPT also offers n-gram 315

span overlaps between the target text and the re- 316

generated LLM texts from the truncated part as 317

evidence. The comparison of the human evaluation 318

score between DNA-GPT and ExaGPT suggests 319

that providing not only simple overlaps but also 320

semantically similar spans contributes to better in- 321

terpretability. We further investigate how the simi- 322

larity between the target span and retrieved spans 323

correlates with the correctness of the detection of 324

ExaGPT in §4.1. 325

Detection Performance. Table 2 shows the dif- 326

ference in the detection performance of baseline 327

detectors and ExaGPT across four domains and 328

three generators. The detection performance in- 329

cludes AUROC and the accuracy at 1% FPR. Over- 330

all, ExaGPT consistently demonstrates detection 331

performance on par with or better than baseline 332

detectors, including supervised classifiers. Specifi- 333

cally, on accuracy at 1% FPR, ExaGPT massively 334

outperforms baseline detectors by a large margin 335

of up to +40.9 points. This suggests that ExaGPT 336

is the most effective detector in practical scenarios, 337

where there is a need to minimize the number of 338

false positives. 339

In summary, ExaGPT achieved both superior 340

interpretability of the detection and exceptional 341

detection performance compared to previous inter- 342

pretable detectors. 343
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Generator Detector
Wikipedia Reddit WikiHow arXiv Avg.

AUROC ACC. AUROC ACC. AUROC ACC. AUROC ACC. AUROC ACC.

ChatGPT

RoBERTa 100.0 50.0 100.0 50.0 100.0 75.3 100.0 60.9 100.0 59.1
LR-GLTR 99.6 96.5 99.4 93.1 97.0 75.6 99.6 96.5 98.9 90.4
DNA-GPT 84.8 49.4 92.3 62.9 99.4 93.5 89.0 59.9 91.4 66.4
ExaGPT 98.8 95.0 99.0 95.0 99.5 96.8 99.6 98.2 99.2 96.2

GPT-4

RoBERTa 100.0 77.7 100.0 76.9 100.0 57.9 100.0 65.7 100.0 69.6
LR-GLTR 99.6 94.7 99.4 93.2 95.7 65.3 100.0 97.1 98.7 87.6
DNA-GPT 40.3 48.1 71.9 68.6 44.6 49.9 72.2 54.4 57.3 55.3
ExaGPT 98.8 94.9 99.3 96.1 98.8 94.9 99.8 99.0 99.2 96.2

Dolly-v2

RoBERTa 100.0 86.9 100.0 50.0 100.0 57.4 100.0 50.0 100.0 61.1
LR-GLTR 90.5 70.5 94.5 69.1 89.8 64.5 90.4 66.5 91.3 67.7
DNA-GPT 68.0 61.5 67.5 66.1 87.7 82.3 64.9 57.7 72.0 66.9
ExaGPT 85.8 78.4 96.2 90.8 94.4 87.0 85.2 76.9 90.4 83.3

Table 2: Comparison of detection performances of ExaGPT and baseline detectors on texts from various domains
and generators. ACC. indicates the detection accuracy at 1% FPR. Avg. indicates the average performance within
each row across domains. Bold indicates the best performance within each column for each combination of domains
and generators.

Figure 4: Reliability score distributions of long spans
(n ≥ 10) in correct and incorrect samples of ExaGPT,
respectively.

4 Analysis344

4.1 What Makes ExaGPT Interpretable345

Our human evaluations demonstrate that ExaGPT346

provides highly interpretable evidence for its de-347

tection compared to prior detectors. To explore the348

reason for this, we investigated the difference in349

the characteristics of the selected spans as a final350

output between correct and incorrect predictions by351

ExaGPT. Specifically, we focused on span length352

and mean similarity between each target span and353

the retrieved spans (reliability score R), which are354

prioritized in the span selection. We randomly se-355

lected 1,000 correct and 1,000 incorrect ExaGPT356

predictions on our test splits across all combina-357

tions of domains and generators.358

Figure 4 presents the reliability score distribu- 359

tions of long spans (n ≥ 10) in the correct and 360

in the incorrect samples. A rightward shift indi- 361

cates that correct samples of ExaGPT include more 362

long spans with higher reliability scores than incor- 363

rect ones. From the shift, we empirically observe 364

that offering long spans with high reliability scores 365

helps users judge the correctness of the detections. 366

Table 3 presents examples of long spans (n = 19) 367

with high reliability scores for a target span re- 368

trieved by ExaGPT. We can see that the retrieved 369

spans are well-balanced, and are lexically and se- 370

mantically similar to the target span. 371

4.2 Impact of α 372

In our experiments, we determined the optimal 373

interpolation coefficient α of ExaGPT (as used in 374

Equation 5), where it exhibits the best detection 375

performance on our validation split. To investigate 376

the robustness of ExaGPT against the choice of α, 377

we examine the detection performance variation 378

according to the multiple choices of α. 379

Figure 5 depicts the relationship between α and 380

the detection performance of ExaGPT across four 381

domains and three generators: α ranges between 382

0.0 and 1.0 with 0.125 intervals, and we observe 383

that the higher the α, the lower the detection per- 384

formance. This implies that taking the reliability 385

score more into account (i.e., selecting target spans 386

that are more similar to spans in the datastore) can 387

improve detection performance. On the other hand, 388

across four domains, the lowest performance of 389

AUROC and accuracy at 1% FPR are 98.5% and 390

93.4%, respectively. This suggests that the varia- 391
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Target Span LLM published in 1993. The novel tells the story of a young Jewish slave, Hadassah,

k-NN Spans

LLM (0.92) and was first published in 1936. The book tells the story of three orphaned sisters,
LLM (0.92) published in 2012. The novel revolves around the story of a young woman
LLM (0.90) and published in 2010. The novel tells the story of Michael Beard, a
LLM (0.90) ling of the biblical book, Song of Solomon, and is considered one of the
LLM (0.90) man and published in 1963. The book was later adapted into a Disney film of the
LLM (0.90) . The film tells the story of a young
Human (0.89) the Xanth series. It is the second book of a trilogy beginning with Vale of the
LLM (0.89) published in 1959. The novel is set in the Arctic region and follows the story of Dr.
Human (0.89) . It is the third novel in the Dahak trilogy, after the de
LLM (0.89) for his semi-autobiographical novel, “The Watch that Ends the Night”. Born in

Table 3: Examples of k-NN spans for a target span retrieved by ExaGPT. The colored part represents the original
label for each span (LLM in blue and Human in red, respectively). In the part of k-NN spans, the similarity between
the target span and each k-NN span is added.

Figure 5: Impact of α on the detection performance
of ExaGPT, including the AUROC and the accuracy
at 1% FPR, across four domains using ChatGPT as a
generator.

tion of α in ExaGPT does not lead to its substantial392

performance drop that could greatly affect the per-393

formance ranking of detectors. We find similar394

overall trends of the impact of α for other LLMs,395

including GPT-4 and Dolly-v2 as generators. The396

impact of α on detection performance of ExaGPT397

in all generators can be found in Appendix C.398

4.3 Impact of the Datastore Size399

In our evaluation, ExaGPT leverages our train split400

as the datastore from which it retrieves top-k similar401

spans for each span in a target text. To explore402

the robustness of ExaGPT against the size of the403

datastore, we examine the detection performance404

variation according to various sizes of the datastore.405

Specifically, our train split contains 2,000 pairs406

of human-written and LLM-generated texts. We407

randomly sample {500, 1,000, 1,500, 2,000} pairs408

from our train split as datastores of different sizes.409

Figure 6 presents the relationship between the410

datastore size and the detection performance of411

ExaGPT across four domains using ChatGPT as412

Figure 6: Effect of the datastore size on the detection
performance of ExaGPT, including the AUROC and
the accuracy at 1% FPR, across four domains using
ChatGPT as a generator.

a generator. Overall, we find that the larger the 413

size of the datastore, the higher the detection per- 414

formance. Interestingly, we also observe that even 415

when the datastore size is limited to 500 pairs, the 416

detection performance remains quite strong. Partic- 417

ularly, the detection accuracy at 1% FPR is at least 418

94.5% across the four domains, outperforming all 419

other baselines in Table 2. See Appendix C for 420

consistent trends in all generators, including GPT-4 421

and Dolly-v2. 422

5 Related Work 423

LLM-Generated Text Detection. Prior studies 424

have presented various types of detection algo- 425

rithms for LLM-generated texts. They primar- 426

ily fall into three categories: text watermarking, 427

metrics-based, and supervised classifiers. Text wa- 428

termarking is a detection approach by calculating 429

the ratio of secret tokens in a target text. Such 430

tokens are randomly selected by a hash function, 431

and their probabilities are intentionally increased 432

at each time step during the LLM decoding process 433
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(Kirchenbauer et al., 2023). The metrics-based434

methods mainly catch the probabilistic discrep-435

ancy of a text with the predicted distribution of436

LLMs. These metrics include token log probabili-437

ties (Gehrmann et al., 2019), token ranks (Solaiman438

et al., 2019; Su et al., 2023b), entropy (Lavergne439

et al., 2008), perplexity (Beresneva, 2016; Hans440

et al., 2024), and negative curvature of perturbed441

text probabilities (Mitchell et al., 2023; Bao et al.,442

2024). The supervised classifiers are basically mod-443

els specifically fine-tuned to discern human-written444

and LLM-generated texts with labeled datasets.445

The classifiers vary from probabilistic (Ippolito446

et al., 2020; Crothers et al., 2023) to neural meth-447

ods (Uchendu et al., 2020; Rodriguez et al., 2022;448

Guo et al., 2023).449

Interpretability of the Detection Results. To450

minimize the undesired consequences of LLM de-451

tection (e.g., undermining student’s academic dig-452

nity), there is need to develop an LLM detector that453

provides interpretable evidence for the decision.454

While most detectors output only binary predicted455

labels, there have been a few studies aiming to456

provide interpretable evidence. Gehrmann et al.457

(2019) built a detection tool (called GLTR) that458

color-highlights tokens in a text with high like-459

lihood under the predicted distribution of LMs.460

Mitrović et al. (2023); Wang et al. (2024) used ex-461

plainable machine learning methods, such as LIME462

(Ribeiro et al., 2016) and SHAP (Lundberg and Lee,463

2017), to supervised classifiers. Both explanation464

approaches basically apply random perturbations465

to a text and estimate the contribution of each fea-466

ture to the decision based on the prediction shift.467

Yang et al. (2023) presented DNA-GPT, a detection468

method by examining the average ratio of over-469

lapped n-gram spans between a truncated target470

text and multiple LLM-generated continuations.471

This approach can provide actual LLM-generated472

texts, including n-gram overlaps with the target473

text as evidence of the detection.474

Unlike prior interpretable detectors, our ExaGPT475

is grounded by the human decision-making process476

(Maurer et al., 2006; Barrón-Cedeño et al., 2013)477

of verifying the origin of a text and can provide478

more interpretable evidence, as explained in the479

previous sections.480

Example Retrieval for Interpretability. Be-481

yond the field of LLM text detection, presenting re-482

trieved similar examples has contributed to improv-483

ing the interpretability of models in various natural484

language processing tasks. These tasks range from 485

text generation, e.g., machine translation (Khandel- 486

wal et al., 2020), to sequential text classification, 487

e.g., part-of-speech tagging (Wiseman and Stratos, 488

2019), named entity recognition (Jurafsky et al., 489

2020), and grammatical error correction (Kaneko 490

et al., 2022). At each time step, these methods pre- 491

dict a token or a label from the output distribution 492

of a base model interpolated with the distribution 493

derived from retrieved nearest neighbor examples. 494

Our work has a similar direction of using re- 495

trieved similar examples for better interpretability 496

with prior studies in other NLP tasks. In LLM text 497

detection, it is particularly crucial to segment the 498

target text into n-gram spans for better interpretabil- 499

ity, with labels assigned individually (Cheng et al., 500

2025). Thus, ExaGPT offers a unique mechanism 501

that retrieves similar span examples for each n- 502

gram span in the target text and optimizes the final 503

span segmentation based on the examples using 504

dynamic programming. 505

6 Conclusion and Future Work 506

We introduced ExaGPT, an interpretable human 507

vs. machine detection approach grounded in the 508

human decision-making process of verifying the 509

origin of a text. In particular, ExaGPT classifies a 510

text by examining whether it shares more verbatim 511

and semantically similar spans with human-written 512

vs. with LLM-generated texts from an available 513

datastore. As evidence of the detection, ExaGPT 514

offers similar span examples for each span in the 515

text. The human evaluation and further analysis 516

show that providing similar span examples allows 517

users to judge the correctness of the detection more 518

effectively than prior interpretable detectors. More- 519

over, extensive experiments in various domains 520

and generators revealed that ExaGPT has shown 521

notably superior detection performance compared 522

to previous strong detectors, even at a false positive 523

rate of 1%. These results indicate that ExaGPT 524

is a detector with both high interpretability in its 525

decision and high detection performance. 526

Our work focused on the in-domain setting 527

where the domain and the generator are the same 528

between the target text and the datastore. In future 529

work, we plan to investigate the behavior of Ex- 530

aGPT in cross-domain and cross-generator settings. 531

This will lead to identifying common distinctive 532

features of LLMs across different domains and dif- 533

ferent generators. 534
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7 Limitations535

Inference Cost. ExaGPT includes a mechanism536

for retrieving similar spans with each target span537

from a datastore. In our experiments, the datas-538

tore consists of n-gram spans (1 ≤ n ≤ 20) from539

a pair of 2,000 human-written and 2,000 LLM-540

generated texts. We used four NVIDIA A6000541

GPUs to perform the detection within a reason-542

able time by searching through a vast number of543

the span instances, which is relatively costly. We544

could reduce this cost a bit by decreasing the size545

of the datastore without sacrificing the detection546

performance (as explained in §4.3).547

Bias in the Human Judgments. Human judg-548

ments always carry the risk of subjectivity. More-549

over, our evaluation of detector interpretability in-550

volves four participants, all of whom are familiar551

with natural language processing, but in reality,552

most detector users would not have such expertise.553

This should be taken into account when interpreting554

our evaluation results on interpretability.555

8 Ethics and Broader Impact556

Human Subject Considerations. In our study,557

human subjects are engaged in identifying the cor-558

rectness of the detection based on evidence. All559

annotators provided informed consent, were fully560

aware of the study’s objectives, and had the right561

to withdraw at any time.562

Transparency and Reproducibility. To promote563

open research, we release our code and data to the564

public, including all human annotations.565
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Sandra Mitrović, Davide Andreoletti, and Omran Ay- 689
oub. 2023. Chatgpt or human? detect and explain. 690
explaining decisions of machine learning model for 691
detecting short chatgpt-generated text. Preprint, 692
arXiv:2301.13852. 693

OpenAI. 2023a. How can educators respond to stu- 694
dents presenting ai-generated content as their own? 695
Accessed: 2024-6-10. 696

OpenAI. 2023b. Introducing ChatGPT. Accessed on 697
2024-03-10. 698

Marco Tulio Ribeiro, Sameer Singh, and Carlos 699
Guestrin. 2016. "why should i trust you?": Ex- 700
plaining the predictions of any classifier. Preprint, 701
arXiv:1602.04938. 702

Juan Diego Rodriguez, Todd Hay, David Gros, Zain 703
Shamsi, and Ravi Srinivasan. 2022. Cross-domain 704
detection of GPT-2-generated technical text. In Pro- 705
ceedings of the 2022 Conference of the North Amer- 706
ican Chapter of the Association for Computational 707
Linguistics: Human Language Technologies, pages 708
1213–1233, Seattle, United States. Association for 709
Computational Linguistics. 710

Irene Solaiman, Miles Brundage, Jack Clark, Amanda 711
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford, 712
Gretchen Krueger, Jong Wook Kim, Sarah Kreps, 713
Miles McCain, Alex Newhouse, Jason Blazakis, Kris 714
McGuffie, and Jasmine Wang. 2019. Release Strate- 715
gies and the Social Impacts of Language Models. 716
Preprint, arXiv:1908.09203. 717

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. 718
2023a. Detectllm: Leveraging log rank information 719
for zero-shot detection of machine-generated text. 720
Preprint, arXiv:2306.05540. 721

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. 722
2023b. Detectllm: Leveraging log rank information 723
for zero-shot detection of machine-generated text. 724
Preprint, arXiv:2306.05540. 725

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 726
2023. The science of detecting llm-generated texts. 727
Preprint, arXiv:2303.07205. 728

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 729
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 730
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 731
Bhosale, et al. 2023. Llama 2: Open founda- 732
tion and fine-tuned chat models. arXiv preprint 733
arXiv:2307.09288. 734

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. 735
2020. Authorship attribution for neural text gener- 736
ation. In Proceedings of the 2020 Conference on 737
Empirical Methods in Natural Language Processing 738
(EMNLP), pages 8384–8395, Online. Association for 739
Computational Linguistics. 740

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and 741
Dan Klein. 2024. Ghostbuster: Detecting text 742
ghostwritten by large language models. Preprint, 743
arXiv:2305.15047. 744

10

https://arxiv.org/abs/1702.08734
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2022.acl-long.496
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://ceur-ws.org/Vol-377/paper4.pdf
https://ceur-ws.org/Vol-377/paper4.pdf
https://ceur-ws.org/Vol-377/paper4.pdf
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://tinyurl.com/how-to-respond-student
https://tinyurl.com/how-to-respond-student
https://tinyurl.com/how-to-respond-student
https://openai.com/blog/chatgpt
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.18653/v1/2022.naacl-main.88
https://doi.org/10.18653/v1/2022.naacl-main.88
https://doi.org/10.18653/v1/2022.naacl-main.88
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2303.07205
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://arxiv.org/abs/2305.15047
https://arxiv.org/abs/2305.15047
https://arxiv.org/abs/2305.15047


Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan745
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-746
house, Osama Mohammed Afzal, Tarek Mahmoud,747
Toru Sasaki, Thomas Arnold, Alham Fikri Aji,748
Nizar Habash, Iryna Gurevych, and Preslav Nakov.749
2024. M4: Multi-generator, multi-domain, and multi-750
lingual black-box machine-generated text detection.751
In Proceedings of the 18th Conference of the Euro-752
pean Chapter of the Association for Computational753
Linguistics (Volume 1: Long Papers), pages 1369–754
1407, St. Julian’s, Malta. Association for Computa-755
tional Linguistics.756

Sam Wiseman and Karl Stratos. 2019. Label-agnostic757
sequence labeling by copying nearest neighbors. In758
Proceedings of the 57th Annual Meeting of the Asso-759
ciation for Computational Linguistics, pages 5363–760
5369, Florence, Italy. Association for Computational761
Linguistics.762

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan,763
Derek F. Wong, and Lidia S. Chao. 2023. A survey764
on llm-generated text detection: Necessity, methods,765
and future directions. Preprint, arXiv:2310.14724.766

Xianjun Yang, Wei Cheng, Yue Wu, Linda Petzold,767
William Yang Wang, and Haifeng Chen. 2023.768
Dna-gpt: Divergent n-gram analysis for training-769
free detection of gpt-generated text. Preprint,770
arXiv:2305.17359.771

A Detailed Configurations of Baselines772

LR-GLTR. Following the setting of (Wang et al.,773

2024), we leverage the two categories of GLTR774

features: (1) the number of tokens in the top-{10,775

100, 1,000, 1,000+} ranks in the predicted prob-776

ability distribution of LLMs (four features), and777

(2) the probability distribution of the word divided778

by the maximum probability of any word at the779

same position over 10 bins between 0.0 and 1.0780

(ten features).781

B Detection Evidence of Baselines782

RoBERTa with SHAP. Figure 7 depicts an exam-783

ple of evidence by RoBERTa with SHAP. We visu-784

alize the evidence using the SHAP library10. Over-785

all, the red parts are spans that contribute to pre-786

dicting LLM-generated. The blue parts are spans787

that contribute to predicting human-written. In the788

evidence, if the prediction value, f(inputs) moves789

further to the right compared to the base value (the790

expected value across all data samples), it is more791

likely to be LLM-generated. When we hover over a792

colored part, we can also see a score of how much793

the part contributes to the detection result. The794

more a span contributes to the decision, the darker795

its color.796
10https://shap.readthedocs.io/

LR-GLTR. Figure 8 displays an example of ev- 797

idence by LR-GLTR. We leverage a demo app11 798

of GLTR, provided by Gehrmann et al. (2019). It 799

highlights tokens in different colors based on their 800

rank of top-{10, 100, 1,000, 1,000+} in the pre- 801

dicted token distribution from an LLM. The higher 802

the rank of the token, the more likely an LLM is 803

to generate the token. The green parts are spans 804

that an most likely LLM-generated. The degree 805

decreases in the order of green, yellow, red, and 806

purple. When we hover a cursor on a colored part, 807

we can also see the predicted token distribution of 808

an LLM. 809

DNA-GPT. Figure 9 shows an example of evi- 810

dence by DNA-GPT. We implemented a demo app 811

of DNA-GPT with the streamlit framework12. It 812

shows overlapped n-gram spans between a trun- 813

cated target text and multiple LLM-generated con- 814

tinuations. The more blue spans, the more likely 815

the text is LLM-generated. For span matching, 816

we follow the original implementation of DNA- 817

GPT13 where it was achieved by token-level match- 818

ing based on preprocessing of the lower casing and 819

stemming. We also set n to 8 in order to show a 820

large number of overlapped spans enough to inter- 821

pret as evidence. 822

C Analysis Details 823

Impact of α. Figure 10 showcases the impact of 824

α on the detection performance of ExaGPT across 825

four domains and three generators. We found simi- 826

lar overall trends of the impact of α in other LLMs, 827

including GPT-4 and Dolly-v2, with the impact in 828

ChatGPT, as explained in §4.2. 829

Impact of the Datastore Size. Figure 11 show- 830

cases the impact of the datastore size on the detec- 831

tion performance of ExaGPT across four domains 832

and three generators. We can observe similar over- 833

all trends of the impact of datastore size in other 834

LLMs, including GPT-4 and Dolly-v2, with the 835

impact in ChatGPT as explained in §4.3. 836

D Computational Budget 837

We run all the experiments with two AMD EPYC 838

7453 CPUs and four NVIDIA A6000 GPUs. The 839

total processing time is approximately 25 hours. 840

11http://demo.gltr.io/client/index.html
12https://github.com/streamlit/streamlit
13https://github.com/Xianjun-Yang/DNA-GPT
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Figure 7: Example of evidence by RoBERTa with SHAP.

Figure 8: Example of evidence by LR-GLTR.

Figure 9: Example of evidence by DNA-GPT.

12



Figure 10: Impoact of α on the detection performance of ExaGPT, including the AUROC and the accuracy at 1%
FPR, across four domains and three generators.

Figure 11: Impact of the datastore size on the detection performance of ExaGPT, including the AUROC and the
accuracy at 1% FPR, across four domains and three generators.
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