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Figure 1: COLLABLLM Framework: Given a context 1 , the model generates a response 2 to maximize long-term collab-
oration gains, termed Multiturn-aware Rewards (MR). During training, MRs are estimated via 3 collaborative simulation,
which forward-samples conversations with simulated users. Finally, 4 reinforcement fine-tuning is applied using the MRs.

Abstract
Large Language Models are typically trained
with next-turn rewards, limiting their ability to
optimize for long-term interaction. As a result,
they often respond passively to ambiguous or
open-ended user requests, failing to help users
reach their ultimate intents and leading to inef-
ficient conversations. To address these limita-
tions, we introduce COLLABLLM, a novel and
general training framework that enhances mul-
titurn human-LLM collaboration. Its key in-
novation is a collaborative simulation that es-
timates the long-term contribution of responses
using Multiturn-aware Rewards. By reinforce-
ment fine-tuning these rewards, COLLABLLM
goes beyond responding to user requests, and ac-
tively uncovers user intent and offers insightful
suggestions—a key step towards more human-
centered AI. We also devise a multiturn interac-
tion benchmark with three challenging tasks such
as document creation. COLLABLLM signifi-
cantly outperforms our baselines with averages
of 18.5% higher task performance and 46.3%
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improved interactivity by LLM judges. Finally, we conduct
a large user study with 201 judges, where COLLABLLM
increases user satisfaction by 17.6% and reduces user spent
time by 10.4%

1. Introduction
Modern Large Language Models (LLMs) excel at gener-
ating high-quality single-turn responses when given well-
specified inputs. However, real-world users often do not
fully articulate their intents and sometimes initiate con-
versations with an imprecise understanding of their own
needs (Taylor, 1968). As a result, users routinely refine
their requests post hoc through iterative corrections, which
can increase frustration, hinder effective task completion,
and reduce conversational efficiency (Amershi et al., 2019;
Zamfirescu-Pereira et al., 2023; Wang et al., 2024; Kim
et al., 2024). Therefore, an open problem is to train mod-
els that actively guide users in clarifying and refining their
intents, and helps them achieve their goals. This key chal-
lenge would improve user satisfaction and efficiency and
streamline human-LLM interactions—especially as LLMs
are being applied to real-world tasks that are increasingly
complex and open-ended.

A notable limitation of established fine-tuning techniques,
such as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022), is that they primarily re-
ward LLMs for immediate, single-turn responses, reducing
their incentive to seek clarification or assist users in refin-
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Figure 2: Real examples from COLLABLLM and non-collaborative LLMs. (a) Non-collaborative LLM fine-tuing relies
single-turn rewards on immediate responses, which exhibits passive behaviors that follow the user’s requests, leading to
user frustration, less efficient process, and less satisfactory results. (b) COLLABLLM incorporates Multiturn-aware Re-
wards from collaborative simulation, enabling forward-looking strategies. This results in more high-performing, efficient,
and interactive conversations that anticipate future needs, propose timely clarification, and provide insightful suggestions.

ing their intents or preferences. As a result, commonly used
LLMs tend to prioritize direct answers, even though seek-
ing additional context would enhance task completion and
increase user satisfaction (Kim et al., 2024).

Here we introduce COLLABLLM, a novel and general
training framework that improves the ability of LLMs to
effectively collaborate with humans in multiturn scenar-
ios (Gao et al., 2019; Balog & Zhai, 2023; Rahmani et al.,
2023). The key innovation of COLLABLLM is to pro-
mote LLMs’ forward-looking behavior that leads to long-
term collaboration gains (Figure 1). We introduce a col-
laborative simulation module that samples future conversa-
tions with users to estimate the long-term impact of model
responses across multiple turns, a measure we term the
Multiturn-aware Reward (MR). The MR function evalu-
ates responses by incorporating both extrinsic metrics, such
as task-specific success, and intrinsic metrics, such as effi-
ciency, to holistically assess collaboration quality (cf. Sec-
tion 3). By fine-tuning with RL algorithms (Rafailov et al.,
2023; Schulman et al., 2017) on MRs, COLLABLLM pro-
motes responses that lead to better task completion and effi-
ciency in later conversation stages. As shown in Figure 2b,
the fine-tuned model goes beyond simply responding to
user requests in Figure 2a—it actively collaborates by ask-
ing follow-up questions about the writing tone, generating
targeted content about the role of optimism, and offering
insightful suggestions such as adding anecdotes.

We also introduce three challenging multiturn tasks
for training and evaluation in simulated environments:
MediumDocEdit-Chat, BigCodeBench-Chat, and
MATH-Chat, which respectively encompass document
creation, code generation, and multiturn question answer-

ing. On the three test sets, our approach improves task ac-
curacy metrics by 18.5% and interactivity by 46.3% on av-
erage compared to our best baselines, according to LLM
judges. Beyond the tasks that the COLLABLLMs are fine-
tuned on, we show COLLABLLMs are highly generalizable
to other data domains.

Moreover, we perform a large-scale and real-world user
study with 201 Amazon Mechanical Turkers (MTurk-
ers), who are asked to write documents with the help of
anonymous AI assistants, either COLLABLLM or non-
collaboratively trained LLMs. COLLABLLM achieves im-
pressive improvement with 17.6% increase in user satisfac-
tion and yield user time savings of 10.4% on average. The
qualitative analysis from MTurkers confirms our observa-
tions: non-collaboratively-trained LLMs passively agree
with users, while COLLABLLM actively provide insight-
ful questions and suggestions to guide writing processes.

2. Problem Formulation
In contrast to many existing tasks that are single-turn and
require no human involvement beyond the initial query, our
problem formulation reflects a real-world setting in which
a user’s underlying (implicit) goal is defined as g in a mul-
titurn conversational task. The conversation unfolds over
multiple turns tj = {uj ,mj}, where uj is the user input
and mj is the model’s response at each turn j = 1, . . . ,K,
where K is the number of turns in the conversation.

At the j-th turn, the model generates its response based
on the previous conversation turns t1:j−1 = {t1, . . . , tj−1}
and the current user response uj . For simplicity, we define
historical conversation at j-th turn as thj = t1:j−1 ∪ {uj},

2



COLLABLLM: From Passive Responders to Active Collaborators

therefore, mj = M(thj ). The objective is to generate a se-
quence of model responses {mj}Kj=1 that effectively and
efficiently achieve for goal g, e.g., answering a math ques-
tion, where goal achievement is assessed based on user sat-
isfaction or an external evaluation function, such as accu-
racy by LLM judge. Formally, we define the objective as
R∗(t1:K | g), where R∗ incorporate the achievement of
task success and user experience factors such as time cost.

3. Unified Collaborative LLM Training
Key Motivations. Established LLM training frameworks,
such as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022), focus on maximizing imme-
diate rewards for single-turn tasks. This cause a misalign-
ment between their single-turn objective and real-world
multiturn objective R∗(t1:K | g). Precisely, the model’s
accumulative single-turn reward

∑j=K
j=1 R(mj | thj ) may

not imply a higher final reward R∗(t1:K | g). In fact,
achieving high single-turn rewards at each turn may not
imply a higher final reward. For example, consider a task
where the user’s goal g is to write an engaging article. A
model trained with traditional RLHF might generate iso-
lated responses, like drafting an introduction or listing con-
clusions. While these responses are helpful in isolation,
they fail to consider how the sections flow together, result-
ing in an article that might not be cohesive and aligned with
the user’s goal.

Instead, effective multiturn collaboration requires model
responses that optimally contribute to the final reward. The
model should aim to align its responses with the user’s goal
g by considering their impact on the entire conversation tra-
jectory t1:K . In the previous example, instead of generating
a conclusion, asking, “Should I maintain an engaging tone
in the conclusion like the introduction?” offers better long-
term alignment with the goal.

3.1. Multiturn-aware Rewards

In Figure 1, our key insight is that effective multiturn col-
laboration relies on forward-looking strategies. Given a
context 1 , the model should consider how its response 2
influences the subsequent turns of the conversation. To cap-
ture this, we design a 3 collaborative simulation module
to estimate this impact. By 4 fine-tuning to distinguish
between potential future conversations resulting from dif-
ferent responses, the model generates responses that align
better with the overarching goal g.

This high-level design naturally aligns with causal effect
estimation (Pearl, 2009; Pearl et al., 2016), which eval-
uates the interventional effects of an action in sequential
decision-making. Appendix A provides further discussion
on the connection between causal effect estimation and our

approach. More specifically, we define the Multiturn-aware
Reward:

Multiturn-aware Reward (MR): The multiturn-aware re-
ward for model response mj at the j-th turn is given by:

MR(mj | thj , g)

= Etfj ∼P (tj+1:K |thj ∪{mj})R
∗(thj ∪ {mj} ∪ tfj | g)

= Etfj ∼P (tfj |t1:j)
R∗(t1:j ∪ tfj | g),

(1)

where t1:j denotes the conversation history up to and in-
cluding the j-th turn, and tfj = tj+1:K represents the for-
ward trajectory of turns following the j-th turn. The distri-
bution P (tfj | t1:j) models the possible forward conversa-
tions conditioned on the prior conversation history.

However, computing Equation 1 remains challenging as it
requires the following components: (a) A conversation-
level reward function, R∗(t | g), for evaluating an arbi-
trary multiturn conversation t, and (b) a sampling strategy
for obtaining forward conversations P (tfj | t1:j), which
represents the forward conversation distribution. We elab-
orate on the two components in Section 3.1.1 and 3.1.2.

3.1.1. CONVERSATION-LEVEL REWARD FUNCTION

We approximate the conversation-level reward R∗(t | g)
with a combination of extrinsic (goal-specific) and intrinsic
(goal-agnostic) metrics:

R∗(t | g) ≃ Rext(t, g) +Rint(t), (2)

where Rext(t, g) focuses on task success, and Rint(t) evalu-
ates user experience including efficiency and engagement.

• Extrinsic Reward Rext(t, g) measures how well the
conversation achieves the user’s goal g. Formally:

Rext(t, g) = S(Extract(t), yg), (3)

where Extract(t) extracts the final solution or response
from the conversation t, especially for tasks requiring
revisions or multi-step answers. yg is the reference so-
lution for the goal g, e.g., the ground truth solution for
a math problem. And S(·, ·) evaluates task-specific met-
rics like accuracy or similarity. This ensures the conver-
sation contributes directly to achieving the desired goal.

• Intrinsic Reward Rint(t) prioritizes conversations that
enhance user experience, defined as:

Rint(t) = −min[λ · TokenCount(t), 1] +RLLM(t), (4)

where we encourage conversational efficiency by penal-
izing excessive tokens that users read and write, with λ
controlling the penalty severity. This efficiency measure
is bounded by 1 to maintain balance with other metrics.
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The second term, RLLM(t), is assigned by an LLM-based
judge (Zheng et al., 2023) on a 0–1 scale, evaluating
user-valued objectives such as engagement / interactiv-
ity. Notably, additional conversational aspects, such as
clarity, can be further integrated into the objective.

The conversation-level reward incorporates task-specific
and human-centered metrics, encouraging the model to bal-
ance goal achievement, efficiency, and engagement.

3.1.2. FORWARD SAMPLING

To compute Eq. 1, we require samples from P (tfj | t1:j),
the distribution of forward conversation conditioned on the
conversation history. A simple approach is to use Monte
Carlo sampling, where the conversation is extended turn-
by-turn until it concludes. However, this can be computa-
tionally expensive for computing reward for every model
response. For a scalable approximation, we introduce a
window size w as a hyperparameter to limit the maximum
number of forward turns considered in tfj . This reduces the
computational cost while maintaining sufficient context.

More importantly, while real-world conversations could be
gathered from human participants, sampling multiple for-
ward conversations during training is costly and impracti-
cal. To further reduce cost and ensure scalability, we intro-
duce a user simulator U .

User Simulator:. A user simulator U : T → U is a func-
tion that maps a given conversation history t ∈ T to a user
response u ∈ U . Specifically, U generates a probabilistic
distribution P (u | t) over possible user responses condi-
tioned on the conversation history t, simulating realistic
user behavior.

Specifically, we prompt an LLM to role-play as users, ex-
plicitly asking the LLM to follow the same language style
as the previous user turns, and injecting typical user be-
haviors. The user simulator operates with an implicit goal
g, which it seeks to achieve over the course of the conver-
sation. This design emulates real-world scenarios where
users may have evolving needs, limited background knowl-
edge, or require clarification, resulting in naturally unfold-
ing multiturn conversations (Park et al., 2024).

3.2. Optimization & Synthetic Datasets

With the conversation-level reward function and forward
sampling strategy, we can compute MR for any model
response without requiring an additional reward model,
which is often costly and slow to train. Unlike traditional
single-turn reward approaches, MR explicitly accounts for
the impact of a response on future conversations, promot-
ing long-term collaboration.

Further, we employ reinforcement learning (RL) methods

such as PPO (Schulman et al., 2017) and DPO (Rafailov
et al., 2023) to guide the model in navigating complex
conversations. By optimizing for higher MR, the model
learns to generate responses that enhance overall effective-
ness and efficiency by the end of the conversation.

Moreover, MR can generate high-quality synthetic con-
versations (cf. Figure 8 in Appendix B) for both supervised
fine-tuning (SFT) and DPO. For SFT, it iteratively selects
top-ranked responses to build realistic, goal-directed con-
versation histories. For DPO, it constructs pairwise com-
parisons by ranking responses at each turn, distinguishing
“chosen” and “rejected” pairs based on MR scores. The
generated synthetic data aligns with multiturn objectives.

Overall, COLLABLLM enables scalable dataset generation
and online RL training without human annotation, mak-
ing it generalizable across diverse tasks. In Appendix 7,
we compare COLLABLLM with related prompting- and
training-based approaches, highlighting its contributions.

4. Experimental Setup*

For fine-tuning and evaluation, we create three multiturn
datasets using publicly available data across diverse do-
mains (Hendrycks et al., 2021; Zhuo et al., 2024; Chiusano,
2024): collaborative document editing, coding problem as-
sistance, and multiturn mathematics problem solving.

To build a multiturn environment (Figure 3), we employ
GPT-4o-mini as a user simulator LLM to role-play realistic
user behaviors, given the target problem and conversation
history. Our simulation-based evaluations are designed to
closely mimic real-world interactions (Park et al., 2024).
Unlike traditional single-turn tasks, our setup requires dy-
namic interactions over multiple turns to achieving a goal.
The three interactive datasets are:

MediumDocEdit-Chat: Document editing requires it-
erative feedback and refinements across multiple turns to
ensure coherence and alignment with user intent. We sam-
ple 100 Medium articles as goal documents, which are
summarized into target problems to guide the user simu-
lator. After each interaction, task performance is evaluated
using the BLEU score, measuring similarity between the
extracted document and the original articles.

BigCodeBench-Chat: Coding tasks inherently require
multiturn interactions, such as clarifying requirements and
debugging. We sample 600 coding problems from Big-
CodeBench (Zhuo et al., 2024) as the target problems given
to the user simulator. For evaluation, we compute the aver-
age Pass Rate (PR) of code at the end of the interactions.

*Dataset and training details in Appendix B; all prompts (e.g.,
prompts of user simulator and LLM judges) in Appendix D.
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…
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…

…
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Mathematics Problem solvingCoding AssistanceDocument Editing

Figure 3: Simulated Multiturn Environment for Evaluation. Our evaluation pipeline simulates real-world collaborations by
prompting an user simulator LLM to emulate diverse behaviors and personalities in multiturn conversations.

MATH-Chat: Math problem solving often requires
addressing implicit assumptions, verifying intermediate
steps, and clarifying reasoning. We sample 200 level-5
math problems from MATH (Hendrycks et al., 2021) to
prompt the user simulator, which interacts with the LLMs.
Task success is measured by the accuracy (ACC) of the
final solution, as evaluated by an LLM judge.

In addition to the above task-specific metrics, we incorpo-
rate two task-agnostic scores across all datasets: 1) Aver-
age Token Count, which quantifies the average number of
tokens generated by the LLM per conversation, reflecting
interaction efficiency. 2) Interactivity (ITR), which eval-
uates engagement levels using an LLM judge (Claude-3.5-
Sonnet), with scores rescaled to an upper bound of 1.

Fine-tuning COLLABLLMs. COLLABLLMs are based
on Llama-3.1-8B (Llama Team, 2024) with LoRA fine-
tuning (Hu et al., 2022). We train four model variants:
1) Offline models: SFT and Offline DPO are fine-tuned on
pre-generated multiturn conversational datasets guided by
Multiturn-aware Rewards (MR) (cf. Section 3.2). 2) On-
line models: PPO and Online DPO are further trained from
the SFT and Offline DPO models, respectively. The model
during online fine-tuning is involved in the collaborative
simulation to compute MRs, which, in turn, dynamically
adjust the model preference.

Baselines. We compare COLLABLLMs against (1) the
pretrained Llama-3.1-8B (Base), (2) the base model with
proactive prompt engineering (Proactive Base), which en-
courages follow-up and clarification questions.

5. Results of Simulated Experiments
We present the results in Table 1 and the takeaways are:

Prompt engineering is helpful, but limited in terms of
performance gains and flexibility. Proactive Base im-
proves base model performance by encouraging follow-

up questions and clarifications. For example, it increases
BLEU on MediumDocEdit-Chat from 32.2% to 35.0%
and reduces read tokens by 0.31k compared to the base
model. However, these gains are modest and do not fully
address the challenges of multiturn collaboration. We ob-
serve that prompting strategies remain rigid, relying on pre-
defined instructions rather than adapting dynamically to
user needs. For instance, the model sometimes asks clar-
ification questions even when unnecessary, leading to re-
dundant interactions that disrupt conversation flow.

COLLABLLM improves task performance, efficiency,
and engagement. COLLABLLM achieves 18.5% superior
task-specific performance, 13.3% more efficient conversa-
tions, and 46.3% enhanced interactivity compared to the
best baselines. We highlight that COLLABLLM engage
in more meaningful collaborations, with ITR shows sub-
stantial gains. For MediumDocEdit-Chat, the Online
DPO model increases ITR from 0.46 to 0.92. Moreover,
our framework significantly improves conversational effi-
ciency by minimizing the content users need to review to
arrive at the final solution. For MATH-Chat, Online DPO
decreases token count per conversation by 1.03k compared
to the base model.

5.1. Ablations on Reward Mechanisms (Figure 9)

To investigate how components contribute to COL-
LABLLM’s superior performance, we conduct an ablation
study focusing on the reward mechanisms used during fine-
tuning. We evaluate the following reward mechanisms:

• Variants of Multiturn-aware Reward: We vary the
forward sampling window size w = 1, 2, 3 to assess
their ability to capture long-term conversational effects
through simulated collaborations.

• Immediate Rewards evaluate the model’s immediate
response based on: 1) Helpfulness: Assessed by an LLM
judge; 2) Extrinsic Reward: Focuses on task-specific
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Table 1: Evaluation results on our multiturn datasets. Green zone: Baselines; Orange zone: Variants of COLLABLLMs.
Rel. Improv. indicates the relative improvements of CollabLLMs trained with Online DPO over Proactive Base.

MediumDocEdit-Chat BigCodeBench-Chat MATH-Chat
BLEU ↑ #Tokens(k) ↓ ITR ↑ PR ↑ #Tokens(k) ↓ ITR ↑ ACC ↑ #Tokens(k) ↓ ITR ↑

Base 32.2 2.49 46.0 9.3 1.59 22.0 11.0 3.40 44.0
Proactive Base 35.0 2.18 62.0 11.0 1.51 33.7 12.5 2.90 46.0

SFT 35.2 2.21 68.0 11.7 1.35 42.0 13.5 2.88 58.0
PPO 38.5 2.00 78.0 14.0 1.35 40.7 13.0 2.59 52.0

Offline DPO 36.4 2.15 82.0 12.3 1.35 46.7 15.5 2.40 50.0
Online DPO 36.8 2.00 92.0 13.0 1.31 52.0 16.5 2.37 60.0
Rel. Improv. 5.14% 8.25% 48.3% 18.2% 13.2% 54.3% 32.0% 18.3% 36.4%
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Figure 4: Selected Ablation Study of Reward Mechanisms on MediumDocEdit-Chat. This figure compares three
immediate reward mechanisms with three MR variants. MR consistently improves task-specific performance (BLEU),
conversational efficiency (# Tokens), and interactivity (ITR). See Appendix B.3 for the full results.

metrics like BLEU while ignoring intrinsic factors such
as efficiency; 3) Extrinsic + Intrinsic Reward: Com-
bines task-specific metrics with efficiency and interac-
tivity measures. This can be seen as a special case of the
multiturn-aware reward function with w = 0.

We present results in Figure 9. Interestingly, expanding the
forward sampling window w within the range generally en-
hances performance and efficiency by better capturing fu-
ture interactions. Notably, MR with w = 2 balances the
gains and additional costs to conduct forward sampling,
making it well-suited for large-scale fine-tuning. In con-
trast, immediate rewards, even with extrinsic and intrin-
sic components, fall short as they ignore long-term impact.
These findings validate the positive impact of the forward
sampling strategy in MRs.

5.2. Case Study (Figure 5 & 6)

We now offer a deeper insight into COLLABLLM’s behav-
ior as shown in Figure 5. In this example, the user request
to tokenize a text file is inherently open-ended due to un-
specified factors, such as the NLTK environment, tokenizer
selection, and optional preprocessing steps. The base LLM
makes several arbitrary assumptions, applying lowercase
conversion and stopword removal without user confirma-
tion. The user simulator later corrects these assumptions,
but the final solution remains incorrect due to missing stop-
words. In contrast, COLLABLLM actively clarifies user
intent by seeking confirmation on key decisions, ensuring
an aligned final solution with a 100% Pass Rate. This ap-

proach also reduces user effort with lower token usage.

In Figure 6, we compare different reward mechanisms for
responses A and B of Figure 5, to confirm that these re-
wards work as intended. The helpfulness rewards favor
response A due to its seemingly more well-round output.
Extrinsic rewards assign zero scores to both, as A provides
an incorrect solution and B defers answering. Extrinsic
+ Intrinsic rewards slightly favor B for efficiency and en-
gagement. Interestingly, MR assigns significantly higher
rewards to B, especially at w = 2 and w = 3, since the
response obtains useful information and provide a precise
answer within the future interaction window.

5.3. Model Generalization (Table 2)

Modern foundation models are expected to generalize
across a diverse range of tasks beyond their training do-
main. A key question is whether collaborative behaviors
learned by COLLABLLM during fine-tuning transfer effec-
tively to new tasks without additional adaptation.

We assess COLLABLLM, trained with online DPO on
BigCodeBench-Chat (the coding assistance task), on
Abg-CoQA (Guo et al., 2021), a question-answering (QA)
benchmark where questions are labeled as ambiguous or
non-ambiguous (cf. Appendix E). We categorize the
model’s responses into two actions—asking a clarifying
question or providing a direct answer—and evaluate action-
level accuracy within each question type. As shown in Ta-
ble 2, GPT-4o and Llama-3.1-8B rarely ask clarifying ques-
tions regardless of ambiguity. In contrast, COLLABLLM
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Hi, I need help writing a function that tokenizes a text file using NLTK. 

It should be named `task_func` and take a `file_path` as a parameter. Could you help me with that?

Before we start, make sure you have the NLTK installed. 

You can install it using pip:
pip install nltk

Here's the function that tokenizes a text file:
import nltk

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

import string

def task_func(file_path):

    

  # Initialize the NLTK data needed for processing text

  nltk.download('punkt')

  nltk.download('stopwords')

  # Open the file in read mode

  with open(file_path, 'r') as file:

      # Read the content of the file

      text = file.read()

  # Convert the text to lowercase

  text = text.lower()

  # Remove punctuation

  text = text.translate(str.maketrans('', '', string.punctuation))

  # Tokenize the text

  tokens = word_tokenize(text)

  # Remove stopwords

  stop_words = set(stopwords.words('english'))

  tokens = [token for token in tokens if token not in stop_words]

  return tokens

This is a basic example of tokenization. You may need to adjust the function 
based on your specific requirements. 

I'd be happy to help with your function! Could you provide the following:

1. The NLTK library's version you're using (or the version you've installed).
2. The specific NLTK tokenizer you'd like to use (e.g., WordTokenizer, RegexpTokenizer, etc.).
3. Confirm if you want me to the function to handle any potential errors (e.g., file not found, 

incorrect file path, etc.)

Also, I assume I don’t need remove any punctuations in the text. Please let me know otherwise.

Here's a simple implementation of the `task_func` function that uses NLTK's basic word tokenization:

import nltk

from nltk.tokenize import word_tokenize

def task_func(file_path):

    try:

        with open(file_path, 'r') as file:

            text = file.read()

            tokens = word_tokenize(text)

            return tokens

    except FileNotFoundError:

        print(f"Error: The file '{file_path}' was not found.")

        return None

If you're using NLTK for the first time, you might need to run nltk.download('punkt’).
Do you need further assistance on that?

I haven't noticed what version of the NLTK I have, but I installed it recently if that helps.
I would like to use the basic word tokenization. The error handling part doesn‘t have to 
be extensive, maybe just something simple if you have suggestions. Finally, you can
keep the punctuations as they are.

Non-collaborative LLM Ours: CollabLLM

A B

Figure 5: Case study on BigCodeBench-Chat. The non-collaborative LLM assumes user needs, adding unnecessary
steps like punctuation and stopword removal. In contrast, COLLABLLM clarifies tokenizer preferences, error handling,
and package installation, leading to a solution that precisely aligns with user intent.
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Figure 6: Reward comparison for response A
and B of Figure 5 shows different preferences.

Action-level Accuracy Macro Metric
Ambiguous Non-Ambiguous Accuracy F1

GPT-4o 15.44% 95.60% 55.52% 56.62%

Base (Llama-3.1-8B) 16.26% 90.40% 53.33% 53.31%
COLLABLLM 52.84% 72.32% 62.58% 55.08%

Table 2: Zero-shot generalization to Abg-CoQA, a conversational QA
benchmark to identify ambiguity. We assess action-level accuracy,
measuring whether the model asks a question for ambiguous inputs and
provides a direct answer for non-ambiguous ones.

proactively asks questions about 50% of the time while
maintaining high accuracy on unambiguous inputs. This
behavior leads to the highest Macro Accuracy across both
ambiguous and non-ambiguous sets and improves Macro
F1 over the base model, while leaving room for further
improvement against GPT-4o. These results suggest that
COLLABLLM effectively generalizes its learned collab-
orative strategies beyond its training domain.

6. Real-world User Study
Setup. We conduct a large-scale user study using Ama-
zon Mechanical Turk with 201 participants. Each partici-
pant is assigned a document type—randomly selected to be
either blog post, creative writing, or personal statement—
and chooses a topic from a predefined set. To simulate
real-world scenarios where users have only a rough idea

of the task, they are first asked to provide brief responses to
topic-related questions. Participants then engage in at least
eight turns of conversation with an anonymized AI assis-
tant, which can be Base, Proactive Base, or COLLABLLM.
Every three turns, they provide an interaction rating based
on their experience so far. After the conversation, partic-
ipants rate the final document quality and overall interac-
tion. All ratings are in a scale from 1 to 10. We also record
the total interaction duration to assess efficiency. The de-
tailed user study setup is provided in Appendix F.

Quantitative Results (Figure 7). Across multiple met-
rics, COLLABLLM consistently outperforms the baselines.
It achieves an average document quality score of 8.50.
Specifically, 91.4% of participants rate COLLABLLM’s
document quality as “good” (score 8–9), and 56.9% as
“very good” (score 9–10), compared to 88.5% and 39.3%
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(a) Document Quality Rating ↑ (b) Interaction Rating ↑ (c) Time Spent (s) ↓ (d) Multiturn Interaction Rating ↑

Figure 7: Our real-world user study includes 201 participants interacting with an anonymized AI assistant randomly
sampled from Base, Proactive Base, and COLLABLLM. Participants rate (a) document quality and (b) overall interaction
experience, with additional assessments (d) every three turns. We also measure (c) user spent time to evaluate efficiency.

Table 3: Representative Feedback from Human Participants.
Model Strengths Weaknesses
Base “Follows great instruction and does exactly what

I’m asking it to do.”, “It can create a nice form of
an outline to work with.”

“The AI just agreed with me on pretty much every-
thing. There was no discussion”, “I didn’t really
like that it kept coming up with different options”

Proactive
Base

“It is very organized and it actually asks you for
feedback after writing the revision.”

“The AI seemed to be very redundant and asked me
the same questions over and over.”

COLLAB
LLM

“Asking questions and making you think of things
you never thought of”, “The AI really helped me
with focusing on one part of the story at a time.”,
“It helped really well to navigate what to say and
what information is needed”

“The AI assistant was not up to date enough to help
with this recent sporting event. The AI assistant
also asked me to repeat information I had already
given it.”

for Base (Llama-3.1-8B), respectively. Similarly, 63.8%
of participants find COLLABLLM highly engaging, while
only 42.6% report the same for Llama-3.1-8B.

Interestingly, for multiturn interaction, the Base model
shows a declining trend in ratings from turns 6–9, indi-
cating reduced user experience in longer conversations. In
contrast, both COLLABLLM and Proactive Base exhibit in-
creasing ratings over time, with COLLABLLM consistently
achieving higher average ratings every three turns com-
pared to Proactive Base. This suggests that COLLABLLM
maintains sustained engagement more effectively.

Moreover, COLLABLLM improves task efficiency, reduc-
ing time spent by 10.4% compared to the Base model and
by 15.6% relative to Proactive Base. While Proactive Base
is prompted to maintain conciseness, it frequently asks un-
necessary questions, causing lower efficiency. In contrast,
COLLABLLM strikes a more streamlined user experience.

Qualitative Results (Table 3). We collected a total of 180
strengths and 180 weaknesses across the three models. Ta-
ble 3 presents representative feedback, while we summa-
rize here the mddels’ strengths and weaknesses: The base
model generates coherent content while effectively follow
user instructions, but it sometimes struggles with main-
taining context in long texts, and can be overly verbose

or repetitive in its responses. Proactive Base excels in re-
sponsiveness and adapting to user input but struggles with
memory retention, and could produce repetitive or overly
structured content. On the other hand, COLLABLLM is
highly engaging, effectively guiding users through writ-
ing, adapting seamlessly to feedback. However, users also
point out that COLLABLLM can occasionally feel bland,
lack of up to date information, and require additional ef-
fort to personalize the output. Overall, COLLABLLM en-
hances collaboration by guiding users through an interac-
tive and iterative refinement process, yet future improve-
ments should focus on increasing personalization, creativ-
ity, and real-time knowledge integration to further optimize
human-LLM collaboration.

7. Related Work
Non-collaborative LLM training. Existing LLM training
frameworks, including pre-training, supervised fine-tuning
(SFT), and reinforcement learning (RL) (Rafailov et al.,
2023; Schulman et al., 2017; Ouyang et al., 2022; Lee et al.,
2024), primarily optimize for next-turn response quality.
Standard RL methods such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) apply rewards to indi-
vidual model responses without accounting for their long-
term impact on conversation trajectories. While effective
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Table 4: Compare COLLABLLM with Selected Works. (1) Task-Agnostic, assessing whether the approach applies across
diverse domains rather than being task-specific; (2) Versatile Interaction, evaluating its ability to support diverse strategies
for intent discovery and efficient task completion beyond predefined behaviors; (3) User-Centric, determining whether
engagement, efficiency, and intent discovery are explicitly considered; and (4) Causal & Objective-Aligned Reward, mea-
suring whether reward estimation captures causal effects on future interactions and optimizes for long-term task success.

Task-Agnostic Versatile Interaction User-Centric Causal & Objective-Aligned Reward

ClarifyGPT (Mu et al., 2023) ✗ ✗ ✗ -
STaR-GATE (Andukuri et al., 2024) ✔ ✗ ✗ -
MTPO (Shani et al., 2024) ✔ ✔ ✗ ✗
COLLABLLM ✔ ✔ ✔ ✔

for single-turn objectives, these approaches fail to capture
how responses influence user intent discovery and long-
term task success (Amershi et al., 2019; Zamfirescu-Pereira
et al., 2023; Wang et al., 2024; Kim et al., 2024).

Prompting techniques for multiturn interaction. Prior
work has explored prompting strategies to enhance LLM
interactivity, particularly for clarification questions (Keh
et al., 2024; Mu et al., 2023; Zhang & Choi, 2023; Chi
et al., 2024; Kim et al., 2023; Deng et al., 2023b; Zhao
& Dou, 2024) and mixed-initiative dialogues (Deng et al.,
2023a; Chen et al., 2023; Liao et al., 2023). For instance,
Mu et al. (2023) prompt LLMs to ask clarification ques-
tions when code generation requests are ambiguous. How-
ever, such prompting-based approaches are constrained by
predefined interaction patterns, limiting adaptability across
different tasks and conversation stages. Moreover, their re-
liance on fixed prompts reduces generalization, as demon-
strated in our experiments where proactive prompting fails
to match the effectiveness of our fine-tuned models.

Learning-based methods for multiturn interaction.

• LLMs for generating clarification questions: Beyond
prompting, prior studies have explored supervised fine-
tuning (Andukuri et al., 2024), RL fine-tuning (Chen
et al., 2024; Zamani et al., 2020; Erbacher & Soulier,
2023), and active learning (Pang et al., 2024) to train
models to ask clarification questions. For example, Chen
et al. (2024) use Direct Preference Optimization (DPO)
to encourage models to request clarifications. However,
like prompting approaches, these methods primarily fo-
cus on clarification questions and do not generalize to
broader multiturn collaboration strategies.

• Multiturn training for LLMs: Recent bench-
marks (Abdulhai et al., 2023; Kwan et al., 2024) evalu-
ate LLMs’ performance in multiturn settings, measuring
the goal orientation and planning capabilities of mod-
els across interactions. Several studies extend RLHF
to multiturn settings by optimizing trajectory-level re-
wards (Shani et al., 2024; Zhou et al., 2024; Gao et al.,
2024; Shi et al., 2024b; Zhang et al., 2025). Other
works (Xu et al., 2023; Deng et al., 2024) leverage self-

chat or self-play to enhance model adaptation. However,
these methods primarily rely on post-hoc trajectory-level
data, learning from observed conversations rather than
explicitly modeling the causal effect of individual re-
sponses on task success (see Appendix A for further
explanations). Additionally, they often overlook open-
ended tasks such as document generation (Faltings et al.,
2023; Jiang et al., 2024), where user responses can be
highly diverse, and users may have limited capacity to
read and refine lengthy model outputs.

User simulators for enhancing AI systems. Recent works
employ user simulators to enhance dialogue systems (Shi
et al., 2019; Tseng et al., 2021) and LLMs (Hong et al.,
2023; Hu et al., 2023; Faltings et al., 2023). Recently, Hong
et al. (2023) leverage LLMs to create diverse synthetic dia-
logues with varying user personas to train smaller dialogue
models. CollabLLM differs in leveraging user simulators
in forward sampling to account for long-term effect in both
offline and online training.

In Table 4, we compare COLLABLLM with related meth-
ods across four key dimensions. COLLABLLM is a
general, user-centric, and multiturn-aware framework that
leverages more accurate reward estimation to better align
with real-world objectives, enhancing user satisfaction and
streamlining human-LLM interactions.

8. Conclusion
Multiturn human-LLM collaborations are increasingly
prevalent in real-world applications. Foundation models
should act as collaborators rather than passive responders,
actively uncovering user intents in open-ended and com-
plex tasks—an area where current LLMs fall short. The key
insight of COLLABLLM is making LLMs more multiturn-
aware by using forward sampling to estimate the long-term
impact of responses. Through extensive simulated and real-
world evaluations, we demonstrate that COLLABLLM is
highly effective, efficient, and engaging, while also gener-
alizing well to new tasks and interactions, advancing the
frontiers of human-centered LLMs.
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Impact Statement
This paper presents work aimed at making AI more user-
and human-centric, which, in our view, yields a positive
societal impact. Most current work on AI and its evalu-
ation focuses on fully automated tasks, with no user in-
volvement in solving the task or optimization for a col-
laborative experience with users. This has serious societal
drawbacks, given issues such as AI hallucinations (Huang
et al., 2025), biases (Gallegos et al., 2024), and unsafe
language (Shi et al., 2024a) that arise from a lack of hu-
man oversight. The common focus on having AI models
autonomously complete tasks also ignores the reality that
many scenarios have humans present regardless of the level
of automation, and that not priming AI models to proac-
tively seek human help, feedback, or clarifications misses
an opportunity to make generative AI more accurate, effec-
tive, and safe. This consideration would also help increase
the adoption of AI in safety-critical scenarios, such as med-
ical decision-making tasks (Liu et al., 2024), in which we
believe AI models should be inclined to seek confirmation
or verification (Gero et al., 2023) from an expert in case
of uncertainty—a behavior that is mostly absent in current
state-of-the-art LLMs.

Since the models in this work are trained collaboratively
and aim to better align with user intent, concerns may arise
regarding users with malevolent goals. However, we ar-
gue that COLLABLLM can help mitigate safety risks in
such cases—at least when used with LLMs that have been
aligned for safety (as is the case for all models used in this
work). Safety-aligned LLMs generally refuse to respond
to unsafe queries, which often leads malicious users to ob-
scure their true intentions in order to bypass safeguards.
This is where our approach offers an advantage: COL-
LABLLM often seeks to clarify user intent, creating ad-
ditional opportunities to detect misuse. For example, mali-
cious users might unintentionally reveal their actual goals,
or their vagueness and refusal to disclose motivations could

raise red flags—potentially providing the LLM with fur-
ther cues for identifying unsafe behavior. As presented in
Appendix C, we conducted various safety experiments and
show that COLLABLLM performs no worse than an equiv-
alent non-collaboratively trained model in terms of safety.

The data collected in our study involves human participants
recruited through Mechanical Turk. We took several mea-
sures to ensure the privacy of these workers in the docu-
ment creation tasks. First, we asked workers to confirm
that they were willing to share the text they wrote as part
of a public dataset. Second, we urged them not to include
any personally identifiable information (PII) in their writ-
ings and to focus only on topics of public knowledge or
fictitious stories. Third, we scanned the collected data to
ensure that no PII was included. For the final version of
the dataset, we will recruit additional workers to manually
review each collected conversation to ensure that no PII or
other safety issues (e.g., offensive language) exist in the
data. Mechanical Turk workers were paid $10 per conver-
sation. Given that conversations averaged 28.4 minutes,
including break times, this means workers were paid more
than $20 per hour on average—above the minimum wage
in the country where the data was collected.

This work presents one of the first attempts to train LLMs
in such human-centric environments. To promote future
research in this societally beneficial direction, we release
all the code, models, data, benchmarks, and user simulators
described in this work.
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A. Supplementary Discussion
A.1. Connection Between Multiturn-aware Reward and Causal Inference

Our approach naturally aligns with causal inference principles, as it aims to quantify how a model’s response influences
the future trajectory of a conversation. This aligns with the fundamental goal of causal effect estimation, which seeks to
isolate the impact of an intervention—in this case, a model response—on long-term outcomes.

From a causal perspective, given a conversation history thj at turn j, the causal effect of a model response mj on the final
conversation trajectory can be expressed using front-door adjustment (Pearl, 2009; Pearl et al., 2016):∑

R∗(t1:K | g)P (t1:K | thj )P (thj ) =
∑

R∗(t1:K | g)P (t1:K | thj ) = Et1:K∼P (t1:K |thj )R
∗(t1:K | g). (5)

This equation captures the expected long-term reward of a conversation conditioned on the model’s response at turn j. It
explicitly accounts for how mj intervenes in the conversation, influencing future turns and, ultimately, task success.

A.2. Distinction from Other Multiturn Training Frameworks

Existing multiturn trajectory-based training frameworks (Shani et al., 2024; Zhou et al., 2024; Gao et al., 2024) primarily
rely on learning from observed trajectory-level rewards. These methods estimate the utility of responses by assigning
rewards post hoc to completed conversations, typically training models to prefer higher-rated conversations over lower-
rated ones. However, this approach is fundamentally observational—it captures statistical associations between responses
and final outcomes, without disentangling how individual responses causally influence future turns. For example, in
MTPO (Shani et al., 2024), the learning signal remains coarse-grained: rewards are assigned at the trajectory level, and the
influence of specific turns within a conversation remains confounded and indirect.

In contrast, our Multiturn-aware Reward (MR) framework intervenes on individual model responses and uses forward
simulation to generate alternative future trajectories. This allows the model to estimate the counterfactual impact of
different responses at each turn, thereby enabling fine-grained optimization. By leveraging causal effect estimation, MR
training moves beyond passive imitation of high-reward conversations and instead actively selects responses to maximize
long-term task success. This interventional approach provides turn-level credit assignment that is critical in dynamic
human-LLM interactions, where user needs evolve and the consequences of early decisions compound over time.

B. Experimental Details
B.1. Dataset Generation for Offline Training

MR = 3.2 MR = 2.7

Chosen Rejected

SFT data DPO data

ChosenRejected

MR = 1.7 MR = 4.5

…

Figure 8: Generating high-quality conversation data with Multiturn-aware Rewards (MR).
The Multiturn-aware Reward (MR) function enables the generation of high-quality synthetic conversation datasets for
training. Given a user query, multiple LLM responses are sampled and ranked based on their MR scores, with higher-
ranked responses designated as Chosen and lower-ranked as Rejected. To simulate natural conversational flow, the first turn
from the chosen response’s forward interaction window is appended to the prompt for the next turn, iteratively extending
the conversation until completion. Solid red arrows denote data collection for Supervised Fine-Tuning (SFT), while dashed
blue arrows indicate preference data construction for Direct Preference Optimization (DPO). This approach systematically
curates multiturn conversations that enhance both response quality and collaborative efficiency, both of which are explicitly
captured by MR.
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Given (1) a user simulator LLM, e.g., GPT-4o-mini, (2) an assistant LLM, GPT-4o, and (3) arbitrary tasks with defined
task-specific metric, we can simulated and generate high-quality conversations following Figure 8. We create the following
training datasets in this simulated environments.

Table 5: Statistics of conversational datasets created from MR. Chosen/Rejected MR indicates the mean and standard
deviation (mean ± std) of MRs for chosen and rejected responses (cf. Figure 8).

# Train # Turns Average # Turns Chosen MR Rejected MR

MediumDocEdit-Chat 500 2,303 4.61 0.312 ±0.104 0.246 ±0.113
BigCodeBench-Chat 500 2,627 5.25 0.494 ±0.621 0.207 ±0.763

MATH-Chat 500 2,527 5.05 0.863 ±0.524 0.547 ±0.502

B.2. Training Details

Hyperparameters (Table 6). We provide the hyperparameters for COLLABLLM fine-tuning.

Notably, COLLABLLM relies on a minimal set of hyperparameters, using the same window size and sample size for
computing MRs across multiple datasets. The penalty factor on token count, λ, is set lower for MediumDocEdit-Chat
compared to BigCodeBench-Chat and MATH-Chat, as document lengths in MediumDocEdit-Chat can vary
significantly and may be easily bounded by 1 in Eq. 4 if λ is too large. Training Cost (Table 7). We compute average

Table 6: Hyperparameters for LoRA configuration, different stages of fine-tuning, and COLLABLLM-specific fine-tuning.

LoRA Configuration

Rank r 32
Scaling factor α 16
Dropout 0.1
Bias False

Fine-Tuning Hyperparameters

SFT Offline DPO Online DPO PPO

Learning rate 1e-5 5e-6 5e-6 2e-6
Total batch size 64 64 32 64
Number of epochs 3 8 1 5

COLLABLLM-specific Hyperparameters

MediumDocEdit-Chat BigCodeBench-Chat MATH-Chat

Window size w 2 2 2
Sample size for MR 3 3 3
Penalty λ 1e-4 5e-4 5e-4

statistics over 100 future conversations on MediumDocEdit-Chat, the document editing task, which incurs the highest
computational overhead among the three tasks. The table shows that even at the largest window size (w = 3), the total
per-sample cost remains low, suggesting that our multi-turn training setup is financially practical. To further reduce the
cost of simulating users, one could use an open-source model to role-play as users. Unfortunately, at the current stage,
we find that open-source models generally perform poorly, often getting “confused” and starting to solve problems
as an assistant rather than acting as a user. This raises an interesting research problem: while we have increasingly
capable LLM assistants trained to solve problems, we lack user models that learn from real-world user behavior. Building
better user models could be valuable for running simulations in real-world applications.

Policy Model
Input Tokens (k)

Policy Model
Output Tokens (k)

Policy Model
Time (s)

User Simulator
Input Tokens (k)

User Simulator
Output Tokens (k)

User Simulator
Cost ($)

w = 1 0.89 0.42 7.41 1.85 0.26 0.00174
w = 2 2.55 0.91 15.84 4.55 0.69 0.00439
w = 3 4.13 1.22 21.72 7.18 1.06 0.00685

Table 7: Comparison of policy model and user simulator’s compute (per forward sample) across different window sizes.
We use GPT-4o-mini as the user simulator. The results are averaged over 100 forward sampled conversations.
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B.3. Full Ablation Results

Figure 9: Full ablation study showing the impact of different reward types (Helpfulness, Extrinsic Only, Intrinsic Only) and
window sizes (w) on BLEU, token count (in thousands), and Interactivity Rate (ITR). The CollabLLM setting combines
intrinsic and extrinsic rewards using the multiturn-aware reward formulation.

To further understand the source of performance improvements, we conduct a full ablation by training models with isolated
reward signals—Helpfulness, Extrinsic Only, and Intrinsic Only—across window sizes w ∈ {0, 1, 2, 3}. The resulting
BLEU, token usage, and ITR scores are reported in Figure 9.

We make three key observations:

• Helpfulness alone leads to marginal improvements in BLEU and ITR, but significantly increases token usage, especially
at larger window sizes, suggesting verbosity rather than improved efficiency or interactivity.

• Extrinsic-only reward achieves strong BLEU scores (e.g., 0.377 at w = 1), indicating good task alignment. However,
it underperforms in ITR and often generates longer responses.

• Intrinsic-only reward improves ITR at w = 1 (e.g., 0.74), but offers lower BLEU and comparable or slightly lower
token efficiency, indicating better interactivity at the expense of task success.

The CollabLLM configuration, which combines both intrinsic and extrinsic rewards using a multiturn-aware framework,
achieves strong and balanced performances.

Note that the choice of reward type (intrinsic or extrinsic) is independent of the multiturn-aware reward design. In practice,
one can flexibly plug in different reward signals, which are then used to evaluate the responses’ long-term impact through
forward sampling.

C. Safety Evaluation
As the models in this work are collaboratively trained and designed to be more aligned with the user’s intent, concerns
may arise if a user happens to have malevolent intentions. However, we note that COLLABLLM models were finetuned
from Llama-3.1-8B, which has been aligned for safety—so jailbreaking COLLABLLM still poses a significant challenge.
To determine whether collaborative training weakens the safety features inherent to a model (Llama-3.1-8B) that has
undergone significant alignment steps for safety, we performed an adversarial evaluation using the Azure AI Evaluation
SDK† and prompted both the baseline and COLLABLLM with various offensive queries intended to elicit unsafe responses.

Specifically, we performed the following steps:

• Adversarial query selection: We used the SDK’s AdversarialSimulator to generate adversarial queries
(e.g., queries encouraging the LLM to produce hateful comments). We then used the SDK’s harm evaluators
(ViolenceEvaluator, SexualEvaluator, SelfHarmEvaluator, HateUnfairnessEvaluator) to
categorize each query into one of four harm types: violence, sexual, self-harm, and hate. For each query, we used
the highest score among the four evaluators to determine its harm category. We randomly selected 20 adversarial queries
per harm category, resulting in a total of 80 queries.

†https://learn.microsoft.com/en-us/python/api/overview/azure/ai-evaluation-readme
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Model Harm score (0–7 range, ↓)
Violence Sexual Self-harm Hate

Llama-3.1-8B 0.88 0.96 0.89 1.01
COLLABLLM 0.95 0.94 1.00 0.99

Table 8: Harm scores of responses generated by the two models under adversarial prompting. Scores range from 0 to 7,
with values between 0 and 1 indicating “very low” harm.

• Response generation: We generated responses to these 80 adversarial queries using both the Llama-3.1-8B baseline
model and COLLABLLM.

• Harm scoring: We evaluated each model-generated response using all four harm evaluators to ensure comprehensive
assessment.

The main safety results are shown in Table 8, which presents the average harm scores across the four categories. Although
all queries were adversarial and received high harm scores (typically between 4 and 7 on a 0–7 scale), both the Llama-3.1-
8B baseline and COLLABLLM produced responses that were, on average, very safe. Most scores are in the 0–1 range,
which corresponds to “very low” harm. COLLABLLM shows slightly lower harm in the Sexual and Hate categories and
slightly higher harm in the other two. In terms of defect rate, COLLABLLM produced only one response deemed unsafe
by the SDK (out of 80 queries × 4 categories = 320 evaluations), resulting in a pass rate of 99.7%. Coincidentally, this is
the same pass rate as Llama-3.1-8B, which also had one failed evaluation.

Overall, these results are encouraging. They suggest that COLLABLLM’s training did not degrade the safety capabilities
of the original LLM, even though no additional safety alignment was performed during COLLABLLM’s training.

D. Prompts
D.1. User Simulator

1 You are role-playing as a human USER interacting with an AI collaborator to complete a
specific task. Your goal is to generate realistic, natural responses that a user
might give in this scenario.

2

3 ## Input Information:
4 You will be provided with:
5 - Task Description: The type of task you are trying to accomplish.
6 - Complete Prompt or Reference Goal: This field may include the complete user request/

query or a reference answer to user's request. Use this field to understand the user
's intent, requirements, or what would count as a satisfactory outcome.

7 - Chat History: The ongoing conversation between you (as the user) and the AI
8

9 Inputs:
10 <|The Start of Task Description (Not visible to the AI)|>
11 {task_desc}
12 <|The End of Task Description|>
13

14 <|The Start of Complete Prompt or Reference Goal (Not visible to the AI)|>
15 {single_turn_prompt}
16 <|The End of Complete Prompt or Reference Goal|>
17

18 <|The Start of Chat History|>
19 {chat_history}
20 <|The End of Chat History|>
21

22

23 ## Guidelines:
24 - Stay in Character: Role-play as a human USER. You are NOT an AI. Maintain a consistent

personality throughout the chat.
25 - Minimize Effort: IMPORTANT! As a user, avoid being too detailed in your responses.

Provide vague or incomplete demands in the early stages of the conversation to
minimize your effort. Let the AI ask for clarification rather than providing
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everything upfront.
26 - Knowledge Background: Reflect the user's knowledge level in the role-playing. If the

user is less knowledgeable about a task, they might not notice incorrect statements.
Ask questions that demonstrate your current understanding and areas of confusion.

27 - Occasionally Make Mistakes: Real-world users might misspell words, provide incorrect
dates, give wrong information, or ask unclear questions. Simulate this behavior to
reflect natural interactions.

28 - Mention Personal Preferences: Include preferences or constraints that might influence
your requests or responses. For example, "I prefer short answers," "I need this done
quickly," or "I like detailed comments in code."

29 - Goal-Oriented: Keep the chat focused on your intent. Avoid small talk or digressions.
Redirect the chat back to the main objective if it starts to stray.

30

31 ## Output Format:
32 You should output a JSON object with three entries:
33 - "current_answer" (str): Briefly summerize the AI's current solution to the task.
34 - "thought" (str): Output your thought process as a user deciding what to say next.

Consider:
35 1. Have you obtained a satisfactory solution from the AI? If yes, you can terminate

this chat.
36 2. If not, what specific part of the problem or solution are you struggling with?
37 3. Has the AI asked you to perform a task or answer a question? If so, how should you

approach it?
38 4. Are you noticing any patterns or potential misunderstandings that need

clarification?
39 5. If you're stuck, how can you phrase your question to get the most helpful response

while demonstrating your current understanding?
40 - "response" (str): Based on your thought process, respond to the AI as the user you are

role-playing. Stop immediately when the user's response is completed.
41

42 ## Important Notes:
43 - Respond Based on Previous Messages: Your responses should be based on the context of

the current chat history. Carefully read the previous messages to maintain coherence
in the conversation.

44 - Conversation Flow: If "Current Chat History" is empty, start the conversation from
scratch with an initial request. Otherwise, continue based on the existing
conversation.

45 - Don't Copy Input Directly: Use the provided information for understanding context only
. Avoid copying target queries or any provided information directly in your
responses.

46 - Completion Signal: Use "{terminal_signal}" as your response when you believe your goal
has been solved or if you determine the AI cannot help further.

47 - Double check if the JSON object is formatted correctly. Ensure that all fields are
present and properly structured.

48

49 Remember to stay in character as a user throughout your response, and follow the
instructions and guidelines carefully.

D.2. Prompt for Proactive Base

1 You are an AI assistant interacting with a user to perform tasks such as writing,
analysis, question answering, math, coding. Your goal is to generate a response to
the user's last message in a conversation. You should be helpful, collaborative, and
highly interactive.

2

3 I will provide you with the following information:
4 - Conversation History: This is the complete chat history where you need to respond to

the last user message.
5 - Additional Information (Optional): This may include reference knowledge with a

question and answer to give you relevant context.
6

7 <|The Start of Conversation History|>
8 {chat_history}
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9 <|The End of Conversation History|>
10

11 <|The Start of Additional Information|>
12 {additional_info}
13 <|The End of Additional Information|>
14

15 # Guidelines:
16 1. Understanding and Engagement
17 - Accurately interpret the user's intent throughout the conversation.
18 - Acknowledge previous interactions to maintain context and continuity in the

conversation.
19

20 2. Interactivity (Important!)
21 - Ask clarifying questions if the user's request lacks detail or is ambiguous. Such

as the length of an essay, specific function format for a coding task, or the
context of a question.

22 - Ask specific follow-up questions to assist the user based on their intent. Avoid
general questions like "Do you have any further questions? Let me know." Instead,
focus on specifics like, "Would you like more information on X?" or "Can you

clarify your requirements for Y?"
23 - When seeking feedback, avoid generic requests like "Let me know if this is helpful

." Instead, ask for feedback on specific aspects, such as "Does this solution
meet your needs about X?"

24 - Collaboratively offer guidance, especially in complex or tricky situations. Provide
specific suggestions on potential next steps.

25 - Focus on the long-term goal, prioritize responses that not only solve the immediate
problem but also contribute to the user's long-term objectives. Foresee how your
response can shape the next few turns of the conversation by aligning with the

user's overarching goals.
26

27 3. Efficiency and User Consideration
28 - Be mindful of how much the user needs to read or type, keeping the interaction

concise and focused.
29 - When asking for feedback or presenting options, provide multiple-choice suggestions

or specific prompts to make it easier for the user to respond quickly.
30 - Avoid repeating information from earlier in the conversation unless it's necessary

for clarity. Ensure your responses are not redundant.
31

32 4. Communication Style
33 - Be honest in your responses. If you are unsure of something, say, "I don't know,"

and suggest ways the user could find the information.
34 - Align your tone and responses with the user's emotional state, adapting your style

to suit their mood or urgency.
35 - Ensure your responses are clear, well-structured, and free from grammatical errors.
36

37 # Output Format:
38 You should output a JSON object with three entries:
39 - "current_problem" (str): What is the current problem the user is facing, and what are

they confused about?
40 - "thought" (str): Output your thought process deciding what to say next. You may

consider the following:
41 1. If reference knowledge is provided, how do you make sure you don't overly use it

and simply assume the user's question is the same as the reference question?
42 2. What information is missing from the user's input? Does the user's message lack

any necessary details?
43 3. Is there a need to ask a clarifying question to better understand the user's

intent?
44 4. Does the user seem confused or unclear on a particular topic? How can you address

that confusion?
45 5. What follow-up can you suggest to help the user move forward with their task?
46 6. How can you ensure that your response is helpful, concise yet thorough, and

collaborative?
47 7. Whether your response can guide the conversation toward the user's long-term

objectives beyond the immediate problem?
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48 - "response" (str): Based on your thought process and chat history, provide your
response following the guidelines to the user. Keep your response within {
max_new_tokens} tokens to avoid being cut off.

49

50 # Notes:
51 - Clarifying Questions: If the user's message is unclear or lacks necessary details,

always ask for clarification rather than making assumptions. Ensure you have enough
information to provide an accurate and relevant response. For example, if the user
asks, "Can you solve this equation?" but doesn't provide the equation, respond with:
"Could you provide the equation you'd like me to solve?"

52 - Reference Knowledge Usage: If reference knowledge is provided in the additional
information, use it as context but do not assume that the user's question will
exactly match the reference question. Always adapt your response to the specific
context provided by the user in the conversation history.

53 - Ensuring Interactivity: Encourage more interaction with the user by engaging in at
least three conversational turns. This will help refine the conversation and ensure
the user's needs are fully addressed.

54 - Double check if the JSON object is formatted correctly. Ensure that all fields are
present and properly structured.

55

56 Take a deep breath and carefully follow the instructions and guidelines provided.

D.3. System Prompt

1 The assistant is designed to be helpful, proactive, and highly interactive.
2

3 The assistant strives to accurately interpret the user's intent throughout the
conversation, acknowledging previous interactions to maintain context and continuity
. If the user's message is unclear or lacks necessary details, the assistant always
asks for clarification rather than making assumptions. For example, if the user's
request is incomplete, the assistant responds with: "Could you provide more details
so I can assist you better?"

4

5 The assistant asks specific follow-up questions and offers suggestions based on the user
's needs, avoiding vague or generic prompts. It proactively provides guidance and
potential next steps, especially in complex tasks such as writing, analysis, coding,
and question answering.

6

7 The assistant is mindful of how much content the user needs to read or type, keeping
interactions concise and efficient. It reduces unnecessary repetition and ensures
responses are relevant, well-structured, and free from errors. When presenting
options or asking for feedback, the assistant simplifies interactions by offering
multiple-choice answers or specific suggestions to make it easier for the user to
respond quickly.

8

9 The assistant adapts its tone to align with the user's emotional state and style,
adjusting its approach as needed. If uncertain about something, the assistant
honestly says, "I don't know," and suggests ways for the user to find the
information.

10

11 The assistant provides factually accurate, coherent, and relevant responses, using
proper grammar and structure. It remains interactive and proactive across all tasks,
continually seeking feedback to refine and improve interactions.

D.4. Interactivity Metric by LLM Judge

For the prompt template below, the ITR results reported in Table 1 use weights A = 3, B = 2, and C = 1, with the
final score S rescaled as S′ = 2 · (S − 2.5), as all methods achieve an average ITR score above 2.5. Please use the same
configuration to reproduce the results shown in Table 1. Note that the absolute values of A, B, and C do not affect the
overall conclusions. In our most recent codebase, we adopt A = 1, B = 0.5, and C = 0 to eliminate the need for rescaling.
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1 You are a helpful and meticulous conversation evaluator. \
2 Your task is to evaluate the *interactivity* of the responses provided by an AI

assistant \
3 to user questions in a given conversation:
4

5 <|The Start of the Conversation to be Evaluated|>
6 {chat_history}
7 <|The End of the Conversation to be Evaluated|>
8

9 You should assess the assistant's engagement, clarity, and ability to understand the
user's needs. \

10 Give a float number between {C} and {A}, where:
11 {A} = Highly interactive: The assistant is very engaging, asks all relevant

questions, and significantly enhances understanding and problem-solving.
12 - Example: The assistant thoroughly understands the user's question, asks for

necessary clarifications, such as "It sounds like you're asking about the
causes of climate change. Are you looking for specific examples or a general
overview?"

13 {B} = Moderately interactive: The assistant is engaging, asks some relevant
questions, but can be substantially improved.

14 - Example: The assistant asks some relevant questions about the user's inquiry but
misses key details, such as "Are you asking about the effects of climate change
?" but does not probe further for clarification.

15 {C} = Low interactivity: The assistant shows low engagement, asks few relevant
questions, and barely try to understand the user's needs.

16 - Example: The assistant provides a vague or incomplete response without fully
understanding the user's intent, such as "Climate change is bad," without
asking any follow-up questions or providing detailed information.

17

18

19 Output format (JSON):
20 {{
21 "thought": "<How interactive is the assistant?>",
22 "interactivity": <score>
23 }}
24

25 Double check if the JSON object is formatted correctly. Ensure that all fields are
present and properly structured. Use " or """ to wrap up the thought content and use
single quotes inside the "thought" field to avoid JSON escape issues.

26

27 Your evaluation:

D.5. Helpfulness Reward by LLM Judge

1 You are a helpful and meticulous conversation evaluator. Your task is to assess the
helpfulness of an LLM-generated response in the context of the user intent and the
provided chat history. Focus on how effectively the response fulfills the user's
needs and intent.

2

3 Provided Information:
4

5 <|The Start of The User Intent|>
6 {question}
7 <|The End of The User Intent|>
8

9 <|The Start of The Historical Conversation|>
10 {chat_history}
11 <|The End of The Historical Conversation|>
12

13 <|The Start of The Response to be Evaluated|>
14 {chat}
15 <|The End of The Response to be Evaluated|>
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16

17 You should evaluate the follow-up conversation based on the following criteria:
18 Evaluate the response using the provided information below. Your evaluation should

consider the following aspects of helpfulness:
19 1. Alignment with Intent: Does the response address the user's question or request as

understood from the chat history?
20 2. Usefulness: Does the response provide actionable, relevant, and sufficient

information to assist the user effectively?
21 3. Clarity: Is the response expressed clearly and in a way that is easy for the user to

understand?
22

23 Scoring Criteria:
24 - 0.0: The response is completely unhelpful. It does not address the user's intent,

lacks useful information to solve the problem, and/or is entirely unclear.
25 - 0.2: The response is minimally helpful. It barely addresses the user's intent, lacks

key information to solve the problem, or is very unclear.
26 - 0.4: The response is somewhat helpful. It partially addresses the user's intent but

has notable inaccuracies, omissions, or clarity issues.
27 - 0.6: The response is moderately helpful. It addresses the user's intent with some

issues in completeness, accuracy, or clarity.
28 - 0.8: The response is quite helpful. It aligns well with the user's intent, provides

relevant and sufficient information to solve the problem, and is mostly clear.
29 - 1.0: The response is very helpful. It fully aligns with the user's intent, provides

thorough and accurate information to solve the problem, and is expressed clearly and
effectively.

30

31 Output Format:
32 {{
33 "helpfulness": {{"thought": "<How helpful is the assistant in the conversation?>", "

score": <score>}}
34 }}
35

36 Important Notes:
37 - The "User Intent" and "Historical Conversation" is provided only for reference to help

you understand the context of the response. You should focus your evaluation solely
on the "Response" provided above.

38 - Inside of the content of "thought", replace all double quotes (") with single quotes
(') to prevent JSON formatting issues. For example, you can output "thought": "'
Hello' is a common phrase."

39

40 Your evaluation:

E. Question Template and Example on Abg-CoQA
We use the following prompt format for the LLMs to answer the question given a story.

1 Can you help me answer a question about the following story?
2

3 {story}
4

5 My question is: {question}

For example:

1 Can you help me answer a question about the following story?
2

3 I spent last weekend with my grandma and grandpa. I love them very much! I always look
forward to visiting them! They always do fun things with me. Last weekend, we went
to the zoo together. I saw a great big elephant. It had a long nose. My grandpa and
I played a game to see who could be the most like an elephant. We stomped around a
lot and made trumpeting noises. I won! Grandma looked on and laughed. I saw a
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monkeys too! The monkeys swung through the trees. They even made monkey noises!
Grandma wanted to take a picture of me with the monkeys, but I was too busy
pretending I was monkey to stand still. After we left the zoo, I went home. We had
dinner together. Then, my grandma read me a story and tucked me into bed. I had a
great time with my grandparents. I love them a lot. I always look forward to
visiting them.

4

5 My question is: Where did they go when they left?

The label of the above question is ambiguous since the user’s query about “Where did they go when
they left?” could mean “Where did they go when they left the zoo?” or “Where did the
grandparents go when they left me?”.

F. User Study
F.1. User Study Platform

We provide screenshots of the interface used for human participants to interact with the AI assistants. The task consists
of three sequential steps, requiring users to complete periodic evaluations throughout the interaction, followed by a final
evaluation to complete the task. All data collection is fully anonymized to ensure user privacy.

(a) Overall interface (b) Step 1

Figure 10: Overall interface and Step 1 view.

(a) Step 2 (b) Step 3

Figure 11: Step 2 and Step 3 interfaces.
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(a) Multiturn evaluation view (b) Final evaluation view

Figure 12: Evaluation interface for multiturn and final user studies.

F.2. Analysis: Divergence Between Simulated and Real Users

While user simulators were employed exclusively during training due to the large-scale conversation demands of our
Multiturn-aware Reward computation, we provide a comparative analysis to study the divergence between user simulators
and real users. We summarize key differences and similarities in communication patterns between real and simulated users
below:

Table 9: Comparison of Simulated vs. Real Users

Differences Similarities

1) Real users tend to use shorter, fragmented sen-
tences with grammatical errors; simulators produce
more complete and polished responses.

1) Both exhibit iterative content develop-
ment—progressively revealing information rather
than specifying everything upfront.

2) Real users often shift direction mid-conversation and
introduce specific personal details (e.g., “eight dogs”);
simulated users remain more predictable and generic.

2) Both emphasize accessibility—frequently request-
ing simplifications, examples, and actionable guidance.

3) Real users express emotion more bluntly (e.g.,
“that’s awful”) and use informal language, abbrevia-
tions, or incomplete thoughts; simulators respond in a
more neutral and formal tone.

3) Both articulate preferences about content structure
or style, and provide feedback when expectations are
met or unmet.

Although our models were trained using simulated users, the user study demonstrates that they generalize effectively to real
users. This supports the feasibility of simulator-based training for scalable optimization, while also revealing opportunities
to enhance the realism and diversity of user simulators.
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