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ABSTRACT

Video prediction is an essential task in the computer vision community, helping
to solve many downstream vision tasks by predicting and modeling future mo-
tion dynamics and appearance. In the deterministic video prediction task, current
methods mainly employ variants of stacked Recurrent Neural Networks (RNN)
to capture spatiotemporal coherence, overlooking the conflict between long-term
motion dynamics modeling and legible appearance generation. In this work, we
propose a Cascaded Decoupling Network (CDNet) to solve the video prediction
problem through two modules: motion LSTM to capture the motion trend and
variation in the temporal highway without considering the appearance details, and
refine LSTM to recover the detailed appearance according to the predicted motion
dynamics and historical appearance iteratively. The cascaded structure provides a
preliminary solution for the above conflict. We verify the rationality of our model
on two real-world challenging video prediction datasets and yield state-of-the-art
performance.

1 INTRODUCTION

Video prediction is the task of predicting future video frames conditioned on a few observed video
frames. Recently, it has attracted increasing attention for its self-supervised spatiotemporal feature
extraction ability, which benefits downstream visual tasks, such as Video Question Answer (Jing
et al., 2020), rainfall forecasting (Shi et al., 2015), robot motion planning (Finn et al., 2016), and au-
tonomous driving (Kwon & Park, 2019a). In our work, we focus on the deterministic self-supervised
video prediction task, which needs no intermediate information, such as semantic labels (Lee et al.,
2021), optical flow (Wu et al., 2020), or pre-trained model from other tasks, to guide the frame syn-
thesis. In this task, the modeling of motion dynamics and appearance is crucial for plausible video
prediction.

Recent state-of-the-art deterministic video prediction approaches focus on capturing spatiotemporal
coherence by stacked LSTM variants architectures (Wang et al., 2017; 2018a; 2019), motion dynam-
ics analyses architectures (Jin et al., 2020; Wu et al., 2021), or 3D convolutional architectures (Wang
et al., 2018b; Yu et al., 2020). In these approaches, the modeling of complex motion dynamics and
the generation of detailed frames are simultaneously done in one LSTM cell, so that the long-term
trend forecasting and specific pixel value prediction, which are often in conflict with each other, need
to be balanced at each time step. Over time, the simple LSTM will gradually forget the historical
appearance information, leading to significant degradation of the future appearance prediction.

Motivated by the above observations, we propose to use explicit structures to decouple motion dy-
namics and appearance information to reduce conflicts in predictions. Referring to the habits of
humans, we hypothesize that the recovery and refinement of the appearance information depend on
the prediction of motion dynamics, and design a cascade network to decouple the motion dynamics
and appearance information. Previous decoupling methods (Villegas et al., 2017; Guen & Thome,
2020) used the residual structure to predict the appearance which still models motion information,
ignoring the above-mentioned conflicts. While our network divides motion prediction and appear-
ance prediction into two individual processes in an end-to-end architecture. Firstly, our network
predicts motion dynamics for the next time step and generates a new position feature. Then, accord-
ing to the updated motion state, it synthesizes the new appearance of the foreground and recovers
the vacancy of the background. Such a cascaded decoupling method can not only make a plausi-
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ble prediction for complex motion but also generate a legible frame according to the deterministic
motion results.

However, it is difficult to keep observed long-term appearance information by simple cascaded ar-
chitecture. As in the Recurrent Neural Network, the forget gate usually forgets certain information
which is insignificant for current frame prediction or appearance information which is difficult to
predict in the future. To solve this drawback, a direct way is using self-attention (Bahdanau et al.,
2015) at every time step (Lin et al., 2020) which requires a huge number of parameters to store
keys and values for each frame. In our architecture, inspired by the structure of sequence to se-
quence information transfer, we extract global foreground and background appearance information
and store them in external memory, and design a novel refine LSTM cell to unite the global appear-
ance information and current appearance information iteratively. Thus, our network could refine the
appearance prediction at each refinement iterations by referring to the observed global appearance
information. Specifically, we reuse a single cell for the refining process, which is elastic in the re-
fining process for different data and reduces the number of parameters compared with the current
prevailing stacked LSTM architecture (Wang et al., 2017; Yu et al., 2020).

In order to clearly decouple the motion dynamics estimation and the appearance refinement process,
we assign the two tasks to two different structures with different losses. Specifically, a powerful
LSTM-based model is employed to capture the motion dynamics. Then, based on the current mo-
tion dynamics, a cyclic refinement module with information integration capabilities is employed for
the filling and refinement of pixels. There is no temporal information transfer between the refine-
ment modules of the same layer at adjacent moments. We use the hierarchical constraint for different
processes in the pixel refinement phase and motion area constraint for motion dynamics prediction.
The pixel loss gives decreasing restriction from the final refinement iteration to the beginning refine-
ment iteration to enhance the refining ability in appearance prediction, while the area loss provides
a looser constraint for motion dynamics prediction which convergences to predict the motion area
of objects. Based on the above structures and losses, we divide the difficult pixel-level prediction
task into motion dynamics modeling and appearance recovery. Compared with normal stacked RNN
architecture, our architecture can deal with gradient diffusion in the deep architecture, since our loss
can directly pass down to the beginning process of the refining model and coarse motion prediction
layer. The contributions of our work can be summarized as:

1) We propose a Cascaded Decoupling Network (CDNet) together with two loss functions to
explicitly decouple motion dynamics and appearance information for video prediction.

2) We design a novel refinement LSTM unit, which can integrate predicted frame feature and
global appearance information iteratively to refine the prediction results.

3) The proposed architecture achieves state-of-the-art performances in two real-world video
datasets.

2 RELATED WORK

According to the forecasting reference and forecasting ways, most video prediction methods can be
classified as direct pixel prediction (Wang et al., 2017; Guen & Thome, 2020), explicit transform
prediction (Reda et al., 2018), and trend probabilistic prediction (Chiu et al., 2020; Kwon & Park,
2019b). In our work, we focus on the self-supervised direct pixel prediction task.

RNN based methods have recently achieved promising results in video prediction. (Shi et al.,
2015) initially proposed to replace the fully connected network with the convolution network in
RNN gating control to extract spatiotemporal information, providing a powerful base model for
subsequent networks. To enhance the spatiotemporal coherence, (Wang et al., 2017) proposed a
horizontal memory flowing in the zigzag direction. Considering the linear translation restriction of
gates in Long-Short Temporal Memory, (Wang et al., 2018a) and (Wang et al., 2019) introduced
cascaded gate structures for forgetting gate and output gate, respectively. (Wang et al., 2018b; Yu
et al., 2020) proved that 3D convolution architecture is useful for video prediction task by capturing
the local temporal relation. (Lin et al., 2020) introduced a global attention module embedded in
the traditional convolutional LSTM that the prediction of each time step depends on the correlation
between current features and past features.
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Considering the complex variations within the motions, (Guen & Thome, 2020) and (Wu et al.,
2021) proposed specific motion dynamic capture units for motions in videos. (Guen & Thome,
2020) disentangled the motion dynamics into known physical dynamics and unknown factors. The
motion unit leveraged partial differential equations to capture the motion dynamics. (Wu et al.,
2021) presented a MotionGRU unit to inference the transient variation and the motion trend simul-
taneously.

We also adopt decoupling architecture for video prediction. Different from previous decoupling
methods (Guen & Thome, 2020), our architecture explicitly decouples the motion dynamics pre-
diction and appearance prediction in a cascade structure. The refinement module could iteratively
refine the details in both the foreground and background based on the motion prediction results.
For preserving global information, our architecture integrates the global appearance information in
a single memory, which reduces the correlation search space from past time dimension to one.

3 APPROACH

Video prediction is to extrapolate future video frames based on the observed video frames. To
unify the symbolic identification, we define the observed frame and predicted frame as x and x̂,
respectively. Given the observed frames x1:t = {x1, x2, ..., xt}, we predict the future frames
x̂t+1:t+T = {x̂t+1, x̂t+2, ..., x̂t+T } for T time steps. In our work, we iteratively generate new
frames based on the previous frames by using recurrent neural network.

Fig. 1 illustrates the pipeline of stacked ConvLSTM (Xingjian et al., 2015) and our Cascaded De-
coupling Network (CDNet). Note that the stacked ConvLSTM directly predicts spatial-temporal
evolution with multi-layers for complex structures in videos. While our CDNet predicts the motion
and appearance in a cascade manner. Inspired by the observation that when facing an ambiguous
future, human beings tend to obtain a plausible prediction of motion trends and a legible frame,
we decouple the video prediction task into the temporal motion dynamics prediction module and the
spatial appearance refinement module. Compared with previous residual decoupling methods (Guen
& Thome, 2020; Villegas et al., 2017), we cascade these two modules to synthesize convincing
frames. The refinement module relies on the output of the motion prediction module in an end-to-
end architecture.

As diagrammed in Fig. 1(b), the prediction of frames is achieved by frame encoding, motion dynam-
ics prediction, appearance refinement, and frame decoding. To preserve the observed foreground and
background information, a global information integration process is added during the generation of
future frames.

3.1 CDNET

Encoder and Decoder. The frame encoder extracts the spatial feature of the current input, while
the decoder recovers the frames from the predicted next frame feature. In this work, we use the
reversible encoder-decoder module with 3D convolution kernel (Yu et al., 2020) which extracts the
feature by a two-way crossed encoder gEnc, represented by F enck = gEnc (xk:k+2) at time k.

Motion LSTM. As shown in Fig. 1(b), The bottom of our CDNet is the motion LSTM, which is
the only explicit connection in the temporal dimension in the CDNet. Given observed frames, the
CDNet first extrapolates the motion dynamics for individual objects in the current frame by one-
layer LSTM and ignores the pixel changing. Two constraints are employed to decouple the motion
dynamics from the input. In structure, future motion dynamics prediction relies on the temporal
coherent capturing of this layer. In loss design, we abandon fine-grained pixel error and adopt
motion change constraint, which will be elaborated in Section 3.3.

The motion LSTM is implemented by the ConvLSTM with memory cell (Wang et al., 2017). The
input of the motion LSTM cell includes the encoding feature F enck−1, the spatial information Hk−1,
the temporal dynamics Ck−1, and spatiotemporal coherence Mk−1 at previous time k − 1. The
output is the motion changing feature F dynk−1[

F dynk , Hk, Ck,Mk

]
= fMot (F enck , Hk−1, Ck−1,Mk−1) , (1)
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Figure 1: Pipeline of our framework: (a) Stack ConvLSTM (Xingjian et al., 2015). (b) Our CD-
Net. The CDNet consists of four modeling components: Encoder-Decoder module, motion LSTM
for motion dynamics prediction, global information integration for preserving global appearance
information, and refine LSTM for appearance refinement.

where fMot denotes the motion LSTM module. The [Hk, Ck] is passed directly to the next moment
for motion modeling. The

[
F dynk ,Mk

]
is passed into the refine LSTM to provide intermediate

features after motion prediction.

Refine LSTM. The refine LSTM is designed for appearance recovery and can refine the predicted
frame from coarse-grained to fine-grained. It predicts a new prediction feature iteratively by reusing
one cell, which also reduces the number of parameters compared with stacked ConvLSTM. With
the motion dynamics changed but appearance preserved input F dynk , the Refine LSTM generates the
new prediction feature at layer l by[

F refk , H l
k, C

l
k,M

l
k

]
= fRef

(
F ref

l−1

k , H l−1
k , Cl−1k ,M l−1

k , F enck

)
, (2)

where fRef denotes the refine LSTM module. We show the detail of the refine LSTM cell in Section
3.2. At the beginning phase of the refine LSTM, the refine prediction F ref

l−1

k and the spatiotemporal

coherence M l−1
k are equal with the outputs of the motion LSTM: F ref

l−1

k = F dynk ,M l−1
k = Mk.

Since pixel information is omitted during the motion LSTM prediction process, we re-add pixel
information F enck during refinement.

Global information integration. During the prediction phase for x̂t+1:t+T , the LSTM easily for-
gets the long-term spatial information. In our work, we propose a global information preserving
memory in a seq2seq way to memorize the past appearance in both foreground and background.
The global information G is extracted by a multi-layer CNN structure,

G = {Relu (W ∗ F enc1:t + b)}p. (3)

where ∗ is convolution operator with corresponding weights W and bias b, and the p is the layer
number of the convolution. Given the global information, the appearance preserving input F dynk is
replaced by G.

3.2 REFINE LSTM CELL

We design the refine LSTM cell to refine the predicted frame from coarse-grained to fine-grained.
In the refine LSTM module, temporal motion dynamics transformation is cut from two adjacent
moments, which makes the refine LSTM cell focus on the appearance refining and the recovery of
motion area. As formulated in Equation 2, the feature prediction simultaneously refers to the output
of the previous LSTM module and global appearance information. For the prediction of refinement
feature, the refine LSTM first generates the new appearance update state Cl and new spatiotemporal
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Figure 2: (Left) The design for the refine LSTM cell. The refine LSTM cell iteratively refines
the predicted feature referring to the global foreground and background information. (Right) The
hidden state update strategy. The hidden state H refers to the mask B to update the information, i.e.
shielding the unchanged part and updating the changed part.

coherence M l at level l as follows:

gc = tanh
(
Wg ∗

[
xl−1;H l−1]+ bg

)
ic = σ

(
Wi ∗

[
xl−1;H l−1]+ bi

)
fc = σ

(
Wf ∗

[
xl−1;H l−1]+ bf

)
Cl = fc � U

(
Cl−1, G

)
+ ic � gc

gm = tanh
(
W ′g ∗

[
xl−1;M l−1]+ b′g

)
im = σ

(
W ′i ∗

[
xl−1;M l−1]+ b′i

)
fm = σ

(
W ′f ∗

[
xl−1;M l−1]+ b′f

)
M l = fm �M l−1 + im � gm,

(4)

where � indicates Hadamard product. The cell gate activation function uses sigmoid function σ.
The g, i, f, o are gates of LSTM which control the information flow from coarse-grained to fine-
grained. The updater U is a multi-layer CNN structure to reintegrate the historical appearance
information G into the appearance update state Cl−1. At each iteration, the appearance update
state C refreshes its state according to its new refinement state. According to the new appearance
update state Cl and new spatiotemporal coherence M l, we update predicted frame feature H l and
information preserving mask state Bl, referring their previous state:

oh = σ
(
Wo ∗

[
xl−1;H l−1;Cl;M l

]
+ bo

)
Ĥ l = oh � tanh

(
W1×1 ∗

[
Cl,M l

])
ok = σ

(
Wk ∗

[
xl−1;Bl−1;Cl;M l

]
+ bk

)
Bl = ok � tanh

(
W1×1 ∗

[
Cl,M l

])
.

(5)

As shown in Fig. 3.2 (right part), to explicitly preserve previous unchanging features in the back-
ground and foreground during the iteratively refining process, we generate the predicted frame fea-
ture Ĥ l and mask stateBl at the same time. Then, the updated hidden state of the lth layer can be
calculated by:

H l = Ĥ l �Bl +H l−1 � (E −Bl), (6)

whereE is a matrix with single value {1}. In this way, we update the feature state for the foreground
and avoid unnecessary forced adjustments for the background. At the beginning of refinement phase,
the input is equal with motion changing feature xl−1 = F ref . After iterative updating, we get the
final refinement frame feature F refk = HL, which is decoded to obtain the predicted frame.
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3.3 LOSS FUNCTION

Previous works (Wang et al., 2017; Yu et al., 2020; Guen & Thome, 2020) used L1 or L2 loss func-
tion to train the model. Without the shortcut between lower-layers and higher-layers, the vanishing
gradient problem appears not only in the temporal dimension but also between the top layer and
bottom layer in the stacked RNN structure. To alleviate this problem, we propose to constrain the
hidden state of each layer during the training phase.

In the refine LSTM, the predicted frames are supposed to be clearer as the refine RNN iterative
generating. Therefore, we adjust the multi-layer loss by weighted loss function:

Lpixel =

L∑
l=1

αL−l
∥∥xlt:t+T − x̂lt:t+T∥∥τ , (7)

In the motion LSTM, we propose a practical loss to decouple the motion dynamics from spa-
tiotemporal encoding features. Specifically, we provide motion changing area loss for the motion
LSTM which ignores the exact pixel value error and focuses on the area changing at adjacent mo-
ments. The area At+k is a binary mask {0, 1}, which is calculated from the residual of frames
A′t+k = |xt+k − xt+k−1| with threshold of θ. The output frames of motion LSTM are supposed to
match the ground truth:

Larea =
∥∥∥At:t+T − Ât:t+T∥∥∥

2
. (8)

where τ means L1 and L2 loss and αL−l is the loss weight for different iterations of the refine LSTM
cell. It provides a ground truth guide for both preliminary forecast and final forecast. Compared with
previous deep architecture for complex spatiotemporal coherence modeling, our refinement LSTM
predicts future frames with explicit intermediate results that are more intuitive.

The overall loss of our CDNet is

L = λarea Larea + λpixel Lpixel , (9)

where λpixel and λarea are adaptive weights.

4 EVALUATION

4.1 DATASETS

We evaluate our CDNet on two challenging datasets: Human 3.6M dataset (Ionescu et al., 2013) and
UCF101 dataset (Soomro et al., 2012).

Human 3.6M dataset is a human motion analysis dataset, which contains 15 kinds of motions acted
by 11 actors in a stationary background. The RGB data in human 3.6m dataset is used for the video
prediction task. The same with previous work (Wang et al., 2019), all images are cropped from the
center and resized to the resolution of 128 × 128. Both in the training phase and prediction phase,
4 future frames are predicted based on the past 4 frames. We use a variety of evaluation metrics to
measure the prediction quality, including the Mean Square Error (MSE), Structural Similarity Index
Measure (SSIM), Peak Signal to Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018), and the Mean Absolute Error (MAE). All the metrics are frame-wise.
To facilitate reading, we changed the order of magnitude of the indicators in the following tables.
That is, MSE*, LPIPS*, and MAE* are used to represent MSE/10, LPIPS∗1000, and MAE/100,
respectively.

UCF101 dataset is originally an action recognition dataset collected from YouTube. Recently,
considering its rich action categories and complex background, it is gradually used for the video
prediction task. There are various pre-processing ways for UCF101 in previous work. In this work,
we evaluate our method in two settings. One is that the resolution is reduced to 64 × 88 and 10
future frames are predicted based on the past 10 frames. The other is that the resolution is reduced
to 160 × 120 and 10 future frames are predicted based on the past 4 frames. We sub-sample each
video by a factor of two, and use the same evaluation metrics with human 3.6m dataset.
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Table 1: Results on the Human3.6M dataset. Lower MSE, MAE, LPIPS scores and higher SSIM,
PSNR scores mean better results.

Method MSE*(↓) SSIM(↑) PSNR(↑) LPIPS*(↓) MAE*(↓)
ConvLSTM (Xingjian et al., 2015) 50.4 0.776 - - 18.9

FRNN (Oliu et al., 2018) 49.8 0.771 - - 19.0
MIM (Wang et al., 2019) 42.9 0.79 - - 17.8

PredRNN (Wang et al., 2017) 48.4 0.781 - - 18.9
MotionRNN (Wu et al., 2021) 34.2 0.846 - - 14.8

PhyDNet (Guen & Thome, 2020) 22.1 0.903 24.5 11.2 13.6
CrevNet (Yu et al., 2020) 19.6 0.921 25.5 8.8 9.9

CDNet 15.9 0.936 26.5 7.4 8.3

Figure 3: Given 4 frames on the human 3.6m dataset, we specifically show the prediction results of
each frame predicted by the model in the future 4 frames. All the referenced models are trained by
their open-source code.

4.2 ARCHITECTURE SETUP

Our Cascaded Decoupled Network (CDNet) is composed of one layer motion LSTM and 5 layers of
the refine LSTM. The dimension of the hidden state is set as 32 for each frame feature representation.
The encoder and decoder are using the same 3 convolution layers with batch normalization (Ioffe &
Szegedy, 2015) and Relu activate function (Glorot et al., 2011) for 4 times. The global information
integration consists of 4 convolution layers with Relu, and the updater U consists of 2 convolution
layers with Relu. We adopt the ADAM optimizer (Kingma & Ba, 2014) with the initial learning rate
set as 5e − 4. The loss weight α is set as 0.8 and L is equal with the number of the refine LSTM
layers. λarea and λpixel are set as 1e − 4 and 1, respectively. The threshold of area loss is set as
0.05 for normalized pixel value. Our CDNet is implemented in PyTorch (Paszke et al., 2019). More
details can be found in Appendix A.

4.3 RESULTS ON HUMAN 3.6M DATASET

Table 1 summarizes the quantitative results of state-of-the-art methods and our CDNet on the human
3.6m dataset. We can see that our CDNet achieves the best performance on both accuracy metrics
(MSE, MAE) and human sensory metrics (SSIM, PSNR, LPIPS), which experimentally proves that
our cascaded decoupling structure is effective in modeling motion dynamics and appearance infor-
mation.

Qualitative Results. Fig. 4 shows some samples of the predicted frames and the residual map
between the predicted frames and the ground truth. It can be seen that the PhyDNet (Guen &
Thome, 2020) and CrevNet (Guen & Thome, 2020) cannot hold the background information and
gradually forgetting appearance details over time. The generated frames are blurry in both the static
area and motion area. While our CDNet can predict more reasonable motion dynamics in video
frames. In the residual map, our CDNet generates less noise in the background and has low values
in the foreground, which means that the CDNet can separate the static region from the motion
region, and can syntheses vacant backgrounds and the foreground by referring to global appearance
information. Both the quantitative and qualitative results prove the rationality of our architecture.
More qualitative results can be found in Appendix B.
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Figure 4: Qualitative results on Human 3.6M dataset.

Table 2: Ablation study on the human3.6m dataset. ”L1&L2” means that we use L1&L2 to con-
strain the refined forecast of the last iteration. ”without G” means that we remove the global appear-
ance information during the refinement phase. ”without mask” means that the predicted hidden state
is directed used in next refinement cell. ”without area loss” means that we train the network without
restriction for the motion LSTM.

Method MSE*(↓) SSIM(↑) PSNR(↑) LPIPS*(↓) MAE*(↓)
L1&L2 20.1 0.916 25.2 9.3 10.6

without G 17.0 0.928 26.1 8.9 9.7
without mask 16.3 0.928 26.3 9.0 9.7

without area loss 18.1 0.924 25.7 9.3 10.3

CDNet 16.0 0.934 26.4 8.1 8.5

Ablation study. We evaluate the effect of each module of our CDNet on human 3.6m dataset, and
show the Ablation study results in Table 2. It can be seen that the weighted loss and area loss
contribute a lot to the improvement of performance, and the global information integration structure
and mask structure in the refine LSTM can further improve the performance.

Intermediate representation. To explore the feature representations after decoupling, we decode
each predicted feature representation into a visual frame. As shown in Fig. 5, we unpack the gen-
erative process at every iteration. It can be seen that the overall trend of numerical results and
visualization results is getting better. The image generated by the motion LSTM shows the move-
ment trends, including direction and position, and looks similar to the previous frame in appearance.
Later in the refinement process, the human body parts are gradually legible in the predicted position
and the missing areas are recovered.

t+1

t+2

𝑙 𝑙 + 1 𝑙 + 2 𝑙 + 3 𝑙 + 4 𝑙 + 5 G.T.

Figure 5: Intermediate representation on human3.6M dataset. (left) MSE, MAE and PSNR results in
1 motion prediction layer and 5 refinement layers at t+1 frame prediction and t+2 frame prediction.
(right) Visualization of the CDNet intermediate prediction. The output in l is the prediction results
of the Motion LSTM. Larger visualization can be found in Appendix B.
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Figure 6: Qualitative results on UCF101 dataset.

4.4 UCF101

Table 3 shows the experimental results on the UCF101 dataset. The results of FRNN is obtained
in (Oliu et al., 2018) and we convert the Structural Dissimilarity (DSSIM) in their paper into SSIM
by SSIM(x, y) = 1 − 2 SSIM(x, y). It can be seen that our CDNet achieves comparable results
in low-resolution setting and better performance than state-of-the-art methods in more challenging
high-resolution setting. In the case of low resolution, CrevNet prefers to take the last frame of
observation as the future frame, so it has lower LPIPS error and higher MSE error.

Table 3: Results on the UCF101 dataset. We test the CDNet in two settings, including predicting 10
frames based on the past 10 frames at 64× 88 resolution and predicting 10 frames based on the past
4 frames at 160 × 120 resolution.

Method
MSE*(↓) SSIM(↑) PSNR(↑) LPIPS*(↓) MAE*(↓)

10→10

FRNN (Oliu et al., 2018) 14.82 0.74 23.87 - -
PhyNet (Guen & Thome, 2020) 18.85 0.74 21.92 23.62 10.54
CrevNet 23.95 0.74 22.00 7.29 9.44

CDNet 16.48 0.75 22.06 21.37 9.31
4→10

PhyNet (Guen & Thome, 2020) 72.56 0.73 20.91 36.27 36.65
CrevNet (Yu et al., 2020) 78.31 0.72 21.10 25.21 34.68

CDNet 68.38 0.76 21.75 24.21 31.12

Qualitative Results. Fig. 6 shows the qualitative high-resolution video prediction results of PhyD-
Net, CrevNet, and our CDNet. We can see that our CDNet can predict more details in both fore-
ground and background, and the predicted frames are more similar to the ground truth, which
demonstrates the strong generalization ability of our CDNet on real-world large datasets.

5 CONCLUSION

In this paper, we propose a cascaded network architecture for video prediction by decoupling motion
dynamics estimation and appearance refinement into two phases. In the motion dynamics estimation
phase, the proposed direct highway structure and the motion changing area loss can effectively
model the temporal motion dynamics. While in the appearance refinement phase, the proposed refine
LSTM cell and the weighted loss function can iteratively refine the predicted frame by referring to
the global foreground and background information. Our method achieves better quantitative and
qualitative results than state-of-the-art methods on two challenging datasets, which demonstrates
the effectiveness of the proposed cascaded network architecture.
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A STRUCTURE DETAILS AND EXTENDED QUALITY EVALUATION

Structure of Information Integration. In Section 4.2, we list the number of CNN layers of in-
formation integration and updater U in the refine LSTM. Here we show the detailed structure in
Fig. 7. The encoded features of observed video frames are stored in memory through a stacked
structure {I1, I2, ..., It} to save all available appearance information for both foreground and back-
ground. Since shooting camera and moving objects only have small offsets on adjacent frames, the
stored appearance information is redundant with each other. We alternately leverage 1x1 convolu-
tion kernels and 3x3 convolution kernels to reduce dimensionality and enhance spatial features. The
information integration module integrates the encoded features into a unified global appearance fea-
ture G. During the prediction phase, refine LSTM refer the global appearance information at each
iteration by the 2-layer CNN updater U .

I1
I2

I𝑡

…

Conv 1x1

ReLU

Conv 3x3

ReLU

Conv 1x1

ReLU

Conv 3x3

𝐺

Conv 1x1

ReLU

Conv 3x3

…

…

𝐶𝑙

𝐶′𝑙

U

Information Integration

Memory

Global 

Appearance 

Figure 7: Details of the global information integration and updater U in refine LSTM.

Whole architecture setting. Encoder-Decoder module is directed implemented by the source code
of invertible two-way autoencoder in (Yu et al., 2020). The motion LSTM is implemented by the
PredRNN (Wang et al., 2017) with the hidden state size, cell state size, and memory state size of 32.
In refine LSTM, the hidden state size, cell sate size, memory state size, and mask sate size are also
32. We initialize these states by mapping the encoding state of the first observed frame. During the
training phase, we use scheduled sampling to guide the model training, in which we set a probability
of 90% to use the ground truth for the next frame predicting, otherwise use the predicted frame of
the current time step. This probability decreases exponentially by 0.9 every five epochs.

Additional ablation study. In this section, we test the effect of hyper-parameters on the prediction
results. Table 4 shows the prediction results with different iteration number. When the number of
iterations is too small, it is difficult for the model to gradually improve the prediction effect. The
predictive ability of the model is also related to the dimension of hidden state. Appropriate dimen-
sions can not only reduce computations and memory but also effectively update motion dynamics
and appearance state. In addition, we compare the parameters of CrevNet and our CDNet in Table 5.
In the case of using 3d convolution, compared with them, we reduce the parameters by 50%. In
Fig. 8, we demonstrate the generalization ability of our model. The model is still trained by generat-
ing the next 4 frames based on the past 4 frames. During the test, we compare the 8-frame prediction
results with PhyDNet (Guen & Thome, 2020), and CrevNet (Yu et al., 2020). In the first 4 frames,
our method obviously predicts frames more accurately, and in the next 4 frames, our model still
maintains stable prediction. This proves the generalization ability of our model for unlimited length
video prediction.
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Table 4: Ablation stydy about super-parameters
model MSE*(↓) SSIM(↑) PSNR(↑) LPIPS(↓) MAE*(↓)

refine iterations
3 16.6 0.929 26.2 8.9 9.6
4 18.5 0.911 25.3 10.4 11.8
5 15.9 0.936 26.5 7.4 8.3

dimension of hidden state
16 20.5 0.891 24.7 13.6 13.7
32 15.9 0.936 26.5 7.4 8.3
64 16.7 0.930 26.2 8.0 9.6

Table 5: Parameters comparison of CrevNet and CDNet. Parameters are counted by predicting
future 4 frames based on the past 4 frames on Human 3.6m.

Parameters (×10e7) 5
CrevNet 4.70 -
CDNet 2.31 50.73%

Figure 8: Prediction of 8 future frames based on the model trained by 4→4 setting.
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B MORE QUALITATIVE EVALUATION ON HUMAN3.6M DATASET AND
UCF101 DATASET

We provide more qualitative results in this section due to the page restriction of the main paper.

Preprocessing of Human3.6M dataset. Human3.6M dataset consists of 15 kinds of actions. The
same with previous works (Wang et al., 2019), We just use ”walking” for the video prediction task.
The original resolution of the frames is 1000 × 1000 × 3. They are center cropped to 500 × 500
× 3 and resized to 128 × 128 × 3. From the total 7 subjects, we select the S1, S5, S6, S7, S8 for
training and S9, S11 for testing. During training and testing phases, we randomly select the starting
frame from the frame sequence, as long as the sequence length is adequate.

Qualitative evaluation on human 3.6m dataset. In addition to the Fig. 4 in main paper, we show
more qualitative results in Fig. 10 and Fig. 11. We compare our CDNet with state-of-the-art methods,
PhyDNet (Guen & Thome, 2020) and CrevNet (Yu et al., 2020) both in RGB frames and error maps.
Fig. 10 and Fig. 11 show the predicted 4 future frames. From the predicted RGB frames, we can
see that our method predicts human motion dynamics and appearances excellently, significantly
outperforming the other two blurry predictions. From the error map, we can also find that our
CDNet maintains the human appearance and restores the background area that appears after human
movement, which is a difficult task for previous methods.

Preprocessing of UCF101 dataset. UCF101 dataset consists of 101 actions, and each action con-
tains 25 videos. Each video is segmented into a different number of segments. All videos have
a resolution of 320 × 240 pixels. We evaluate our method at two resolutions, including 64 × 88
× 3 and 160 × 120 × 3. In the resolution of 64 × 88 × 3, the same with (Oliu et al., 2018),
the videos are randomly split into 9957 training segments and 3363 test segments. The frames are
down-sampled for every two steps and resized to 64 × 85 × 3. In order to better apply the Encoder-
Decoder structure, we change the resolution to 64× 88× 3. For the high resolution of 160× 120×
3, this requires the model to generate more details. Considering that the results may be affected by
random selection of segments, we select 1-19 videos as training sets and 20-25 videos as test sets.
The training set contains 10160 segments and the test set contains 3160 segments. The frames are
also down-sampled for every two steps and directly resize to 160 × 120 × 3.

Qualitative evaluation on UCF101 dataset. In addition to the Fig. 6 in the main paper, we provide
more qualitative results in Figure 12. We can see that although none of the methods predicted the
exact movement, our CDNet preserve more appearance information for the unchanging area.

t+1

t+2

𝑙 𝑙 + 1 𝑙 + 2 𝑙 + 3 𝑙 + 4 𝑙 + 5

Figure 9: Larger visualization of intermediate representation on human 3.6M dataset, corresponding
to Fig. 5 in the main paper.
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Figure 10: Qualitative comparisons on Human 3.6M. We display predictions of PhyDNet (Guen &
Thome, 2020), CrevNet (Yu et al., 2020) and our CDNet starting from the 5th frame to 8th frame.
Sample (1).
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Figure 11: Qualitative comparisons on Human 3.6M. We display predictions of PhyDNet (Guen &
Thome, 2020), CrevNet (Yu et al., 2020) and our CDNet starting from the 5th frame to 8th frame.
Sample (2).
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Figure 12: Qualitative comparisons on UCF101. We display predictions of PhyDNet (Guen &
Thome, 2020), CrevNet (Yu et al., 2020) and our CDNet starting from the 5th frame to 14th frame,
with 3 frames interval. They are trained by past 4 high resolution frames.
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