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Abstract

Analyzing inherent temporal dynamics is a criti-
cal pathway for time series classification, where
Reservoir Computing (RC) exhibits effectiveness
and high efficiency. However, typical RC con-
siders recursive updates from adjacent states,
struggling with long-term dependencies. In re-
sponse, this paper proposes a Spectral-Aware
Reservoir Computing framework (SARC), incor-
porating spectral insights to enhance long-term
dependency modeling. Prominent frequencies
are initially extracted to reveal explicit or im-
plicit cyclical patterns. For each prominent fre-
quency, SARC further integrates a Frequency-
informed Reservoir Network (FreqRes) to ade-
quately capture both sequential and cyclical dy-
namics, thereby deriving effective dynamic fea-
tures. Synthesizing these features across various
frequencies, SARC offers a multi-scale analysis
of temporal dynamics and improves the model-
ing of long-term dependencies. Experiments on
public datasets demonstrate that SARC achieves
state-of-the-art results, while maintaining high
efficiency compared to existing methods.

1. Introduction
Time series classification (TSC) plays a significant role in
numerous applications, such as diagnosing medical condi-
tions (Malik et al., 2022), identifying financial fraud (Al-
ghofaili et al., 2020), detecting anomalies in industrial pro-
cesses (Wang et al., 2024), and classifying music genres
(Chen et al., 2024b). This broad applicability has sparked
considerable research interest in developing efficient and
robust TSC methods (Iwana & Uchida, 2021).
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Unlike other forms of sequential data, time series data typi-
cally record only a few numerical values at each time step,
leading to insufficient information at individual time points
(Wu et al., 2021). Consequently, researchers have focused
on inherent temporal dynamics of time series for classifi-
cation (Wang et al., 2022). This stems from the observa-
tion that each point in a time series is influenced by both
adjacent point and several past ones, as real-world data of-
ten possesses cyclical patterns at multiple frequency scales
(Wen et al., 2021). For example, weather data exhibits
daily and seasonal cycles, while electrocardiograms display
short-term repeats and circadian rhythms. Identifying such
explicit or implicit cyclic patterns through spectral analysis
and mining for prominent frequencies enhances the mod-
eling and classification of time series data (Yi et al., 2024;
Wu et al., 2023).

Following the widespread use of Deep Learning (DL), deep
neural networks, particularly Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs),
have been applied to TSC tasks (Ismail Fawaz et al., 2019).
CNN-based methods mainly slide convolutional kernels
along the temporal dimension to capture changing patterns
in time series (Franceschi et al., 2019; Tang et al., 2022).
However, the locality of CNN kernels limits their ability
to handle long-term dependencies. RNNs generate hidden
states by combining the current input with past states (Shen
et al., 2020). Nevertheless, due to issues like gradient vanish-
ing or exploding, RNNs may struggle with memory decay,
thereby hindering the capture of long-term dependencies.
Recent studies (Wu et al., 2023; Yang et al., 2024) have also
introduced spectral information into DL to enhance time se-
ries modeling. Yet, such methods remain resource-intensive
and time-consuming, referring to the reliance on gradient
descent for optimization.

As a subset of RNNs, Reservoir Computing (RC) demon-
strates effectiveness and high efficiency in processing time
series data (Chen et al., 2015). Typically, RC uses fixed,
randomly initialized recurrent cells (the reservoir) to pro-
duce a rich set of high-dimensional states, facilitating the
derivation of valuable dynamic features (Yan et al., 2024).
A key characteristic of RC is that only the output layer is
trainable, thus eliminating the need for backpropagation
through time. Although such simplification significantly
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Figure 1. Overview of the SARC framework. Input series is decomposed into multi-scale cyclical components and analyzed spectrally to
extract prominent frequencies (Section 4.1). An ensemble of FreqRes then captures temporal dynamics at local levels and across various
cyclical intervals, deriving effective dynamic features for classification (Section 4.2).

reduces computational costs, a single and standard reservoir
falls short in modeling long-term dependencies and cyclical
patterns due to its recursive updates from adjacent states
(Liu et al., 2025). Moreover, directly applying gating mech-
anisms (e.g., LSTM or GRU) to the reservoir also yields
unsatisfactory results, as evident in our experimental study.

Addressing the above issues, we propose a novel Spectral-
Aware Reservoir Computing (SARC) framework, which
introduces spectral insights into RC, comprehensively cap-
turing temporal dynamics within time series. As illustrated
in Figure 1, SARC consists of two stages: Extracting multi-
scale prominent frequencies to reveal explicit or implicit
cyclical patterns, and Capturing dynamic information within
each cyclical pattern for dynamic feature derivation. The
first stage begins with detrending, which removes a long-
term trend and preserves the cyclical residual. Wavelet
decomposition then separates the residual into multi-scale
components, representing multiple cyclical patterns. These
components are analyzed through Fast Fourier Transform
(FFT) to select frequencies with the highest amplitudes. Af-
terward, to enrich analytical scales, we extend the selected
frequencies to their sub-harmonics. These comprise a set
of multi-scale prominent frequencies, allowing SARC to
capture a broader range of cyclical dynamics.

Subsequently, we integrate a modular component, namely
the Frequency-informed Reservoir Network (FreqRes), for
each extracted frequency. Unlike standard RC models, Fre-
qRes features two reservoirs in its hidden layer, each repre-
senting connections between adjacent time steps and across
cycles at the given frequency. When fitting a time series,
FreqRes considers both of the two aspects to update the cur-
rent state, enabling it to simultaneously capture sequential
dynamics and long-span cyclical dynamics1. Building upon

1Henceforth, “cyclical dynamics” refers to the dynamic infor-
mation within a specific cyclical pattern or at a certain frequency.

this, an autoregressive task is applied to derive a “readout
model” for each FreqRes. This model maps past states to fu-
ture inputs, reflecting the dependencies between time steps.
Hence, it encapsulates the captured dynamic information
and serves as a dynamic feature. Synthesizing these fea-
tures across various frequencies, SARC offers a multi-scale
representation of time series and improves the modeling of
long-term dependencies. As a result, even a simple classifier
could be used for effective classification.

Summarily, our main contributions are as follows2:

• SARC innovatively introduces spectral insights to RC,
capturing temporal dynamics both within neighbor-
hoods and across long-span cycles. This provides a
multi-scale analysis for time series, effectively model-
ing long- and short-term dependencies.

• Our framework is highly lightweight, requiring no gra-
dient backpropagation. FreqRes independently oper-
ates on each sequence and directly solves for dynamic
features using ridge regression. These allow for excep-
tional efficiency compared to baselines.

• SARC adapts to different RC implementations. Exper-
imental studies on public datasets validate this flexi-
bility, and also demonstrate that SARC achieves con-
sistently superior performance when equipped with
various RC implementations.

2. Related Work
We briefly review state-of-the-art TSC methods, followed by
an introduction to reservoir computing and its applications.

State-of-the-art TSC methods can be broadly divided into

2Code is available at https://github.com/ZOF-pt/
SARC.
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four categories: dictionary-based, shapelet-based, ensem-
ble, and deep learning methods. As a latest dictionary-
based method, Hydra (Dempster et al., 2023) transforms
time series using random convolutional kernels arranged
into groups, counting the kernel with the maximum and
minimum response to represent key patterns. In contrast,
Shapelet Transform (ST; Hills et al. 2014) identifies the
most discriminative subsequences, or shapelets, from time
series, and then converts them into features for classification.
Regarding ensemble methods, Collection of Transformation
Ensembles (COTE; Lines et al. 2018) integrates multiple
classifiers, such as Time Series Forest (Deng et al., 2013),
Bag-of-SFA-Symbols (Schäfer, 2015), and Elastic Ensem-
ble (Lines & Bagnall, 2015), to enhance TSC performance.

On the other hand, deep learning methods leverage neural
networks to automatically extract features from time series
data, achieving remarkable results in various TSC tasks
(Ismail Fawaz et al., 2019). For example, InceptionTime
(Ismail Fawaz et al., 2020) employs an ensemble of Incep-
tion modules to capture complex temporal patterns. LSTNet
(Lai et al., 2018) combines CNNs and RNNs to extract lo-
cal dependencies and incorporates a recurrent-skip layer to
handle long-term dependencies. Another notable method
is TimesNet (Wu et al., 2023), which is more related to our
approach as it also introduces periodicity. TimesNet uses
the periods obtained from Fourier Transform to segment and
transform time series into 2D formats, then employs vision
backbones for classification. Besides, transformers (Wu
et al., 2021; Zhou et al., 2022) have also gained attention
for their ability to handle long-term dependencies. Despite
the effectiveness of these methods, they are all constrained
by the high computational and time costs.

Reservoir Computing uses reservoirs with randomly inter-
connected neurons to adeptly capture temporal dynamics
from time series (Yan et al., 2024). Unlike traditional neural
networks, it offers an efficiency advantage by maintaining
fixed connection weights. The foundational concepts of
RC were introduced via two primary models: Echo State
Networks (ESNs; Jaeger 2001) and Liquid State Machines
(LSMs; Maass et al. 2002). Following these, researchers
have proposed various alternatives such as the Echo State
Gaussian Process (Chatzis & Demiris, 2011), Delayed Feed-
back Reservoir (Appeltant et al., 2011), DeepESN (Gal-
licchio et al., 2018), and 2D-ESN (Chen et al., 2024a).
Recently, RC has been increasingly applied to time series
classification, demonstrating its efficacy in many tasks (Liu
et al., 2024). For instance, ConvMESN (Ma et al., 2019)
incorporates reservoirs with varying skips to compute multi-
timescale echo states, followed by a 1D convolutional layer
for feature extraction. Additionally, rmESN (Bianchi et al.,
2021) fits a linear transformation between adjacent echo
states, using the weights as a representation of temporal
dynamics. However, simplifying the reservoir in standard

RC models can sometimes limit their accuracy, suggesting
a need for more complex or nuanced RC architectures.

3. Preliminaries
Our framework adapts to various RC implementations. For
a clear illustration of its core improvements, we formalize
the simplest form of RC, namely the ESN, which underpins
the subsequent methodological explanation.

An ESN consists of three main components: fixed, ran-
domly initialized linear input layer and reservoir, along with
a readout layer. During iteration, its hidden states are up-
dated based on the previous state and the current input. The
readout layer then converts these states into final outputs.
Formally, the iterative and output formulas are as follows:

x(n) = f(Wx(n− 1) +Winu(n)), (1)

y(n) = Woutx(n), (2)

where u(n), x(n), and y(n) denote the input, hidden state,
and output at time step n; Win and Wout are the input
and readout weight matrices; W represents the reservoir
weight matrix; and f is an activation function, typically
tanh. According to Equation (1), a typical ESN only con-
siders recursion between adjacent hidden states, struggling
to capture long-term dependencies within time series.

4. Methodology
The proposed SARC framework comprises two main parts:
1) Extracting multi-scale prominent frequencies to identify
potential cyclical patterns; 2) Capturing cyclical dynamics
via FreqRes and deriving dynamic features. These parts are
illustrated in Figure 1 and further elaborated below.

4.1. Identifying Potential Cyclical Patterns

To identify cyclical patterns and capture long-span cycli-
cal dynamics, it is crucial to extract prominent frequencies
from time series data. A straightforward approach involves
selecting the top-k amplitudes from FFT (Wu et al., 2023).
However, this strategy risks neglecting higher frequencies
(Duhamel & Vetterli, 1990; Zhou et al., 2022). Additionally,
if the time series shows a clear non-cyclical trend, the high-
est amplitudes tend to concentrate near zero frequency, ren-
dering the extraction less meaningful. In response, SARC
detrends the time series and decomposes the residual into
multi-scale cyclical components, after which the prominent
frequencies are extracted from each scale.

4.1.1. DETRENDING AND CYCLICAL DECOMPOSITION

Given a time series u = {u(n)}Ln=1 of length L with C
variables, detrending is initially conducted to reduce non-
cyclical influences. To this end, we apply the Hodrick-
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Figure 2. An illustration of prominent frequency extraction: The
series u is first detrended and decomposed into cyclical compo-
nents {rj}Jj=0. Each component then undergoes FFT to extract
the highest amplitude and the corresponding frequency fj .

Prescott filter (Hodrick & Prescott, 1997) featuring high
efficiency and effectiveness in estimating long-term trends
from time series data (Wen et al., 2021). This involves
minimizing the following objective function:

τ̂ (n) = argmin
τ

{
1

2

N∑
n=1

(u(n)− τ (n))2

+ λ

N−1∑
n=2

[(τ (n+ 1)− 2τ (n) + τ (n− 1)]
2

}
,

(3)

where τ̂ = {τ̂ (n)}Ln=1 is the estimated trend of u; λ is
the smoothing parameter: a smaller λ retains more short-
term fluctuations in τ̂ , while a larger λ makes it smoother.
Typically, λ is set to 1600, and this problem can be solved
using dynamic programming.

Through the above, the long-term trend is removed from the
original time series, yielding a cyclical residual r = u− τ̂ .
This residual represents a mixture of multiple cyclical influ-
ences within the data. Decoupling the mixture, we employ
wavelet decomposition and separate r into J + 1 cyclical
components at different scales, including one approxima-
tion component ra and J levels of detail components rd,j ,
j ∈ {1, 2, . . . , J}. Each of these components reflects a po-
tential cyclical pattern, aligned with a prominent frequency
to be extracted. Note that, for simplicity and uniformity in
notation, we will henceforth adopt the following conven-
tions: r0 := ra, and rj := rd,j .

4.1.2. PROMINENT FREQUENCY EXTRACTION

Once wavelet decomposition is complete, we extract the
corresponding prominent frequencies. Each cyclical compo-

nent is analyzed through FFT:

Aj = |FFT(rj)|, fj = argmax
f∈{1,...,⌊L

2 ⌋}
(Aj). (4)

Specifically, |FFT(·)| calculates the magnitude of the FFT
results. Aj contains the non-normalized amplitudes of rj at
different frequencies. The most prominent frequency fj is
determined by selecting the highest amplitude in Aj . This
frequency accurately reflects the cyclical pattern, with a
cycle length of pj = [L/fj ], as it is free from long-term
trends and other prominent frequencies.

To fully capture the cyclical dynamics at these frequencies,
we design to model the multi-scale dependencies spanning
multiple cycles. Concretely, the selected frequencies are
extended to their sub-harmonics, comprising a set of multi-
scale prominent frequencies F :

F =

J⋃
j=0

Hκ(fj) =

J⋃
j=0

{
fj
k

| k ∈ N+, kpj < κ

}
. (5)

Here, Hκ denotes the transformation from a frequency to
its sub-harmonics with a threshold parameter κ. Each sub-
harmonic fj/k characterizes a dependency spanning k cy-
cles of length pj , constrained by κ. Therefore, κ defines the
maximum span of dependencies that needs to be modeled.
Typically, a larger κ implies more meticulous analysis but
also leads to higher computational complexity.

4.2. Frequency-informed Reservoir Network (FreqRes)

For each frequency f ∈ F , SARC integrates a FreqRes
module. Unlike a standard reservoir with only adjacent con-
nections, FreqRes features an additional cycle connection,
which updates the hidden state by combining states from
both previous steps and cycles. This improvement simul-
taneously captures the sequential dynamics and long-span
cyclical dynamics for more comprehensive modeling of time
series. Moreover, given the diversity of cycle lengths, inte-
grating multiple FreqRes modules facilitates a multi-scale
analysis of the temporal dynamics, thus effectively handling
both short- and long-term dependencies. Incorporating such
a cycle connection into any existing RC model results in a
different FreqRes implementation. For clarity, we now pro-
pose the iteration of FreqRes and the derivation of dynamic
features based on an ESN model introduced in Section 3.

4.2.1. ITERATION OF FREQRES

As shown in Figure 3, FreqRes iterates in a 2D grid-like
pattern. Given an input time series u ∈ RL×C and a specific
frequency f , the process starts with an initial state x(0) =
0. Step by step, the raw inputs are weighted through a
linear input layer and fed into a hidden layer containing
two independent reservoirs. Each reservoir is composed

4
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Figure 3. An example of the FreqRes iteration with a cycle p = 5.
Hidden states are arranged in a 2D layout, each row containing
p contiguous time steps. Hidden state update considers the state
from the previous time step (left) and cycle (below). Ws and Wc

represent the influence of the two independent reservoirs.

of randomly connected neurons, reflecting the influence
of historical data on present states. One of the reservoirs
accounts for variations between adjacent time steps, while
the other focuses on dynamics across cycles with a span of
p = [L/f ]. During the first p steps (n ≤ p), hidden states of
the previous cycle are not available; hence, FreqRes adheres
to the base iteration formula in Equation (1). Then, for
n > p, the hidden states are updated as follows:

x(n) = f(Wsx(n− 1) +Wcx(n− p) +Winu(n)). (6)

Here, Win is the input weight matrix. Ws and Wc are the
reservoir weight matrices that describe the interconnections
among neurons within each reservoir, modulating the influ-
ence of states from the previous time step and cycle. Similar
to the original ESN, these three matrices are randomly ini-
tialized, remaining fixed and untrainable.

In alignment with the added cyclical connection, the output
formula of FreqRes has been refined accordingly. Rather
than mapping x(n) directly, the output layer now uses a
combined state x̃(n) = [x(n− 1);x(n− p)] to determine
the target output y(n):

y(n) = Woutx̃(n) =
[
Wout,s Wout,c

] [x(n− 1)
x(n− p)

]
. (7)

Here, Wout is partitioned into Wout,s and Wout,c to map the
contributions from x(n− 1) and x(n− p), respectively.

4.2.2. DERIVATION OF DYNAMIC FEATURES

Leveraging the rich hidden states from each FreqRes, we
derive a representative “readout model” to serve as the dy-
namic features. Concretely, an autoregressive “next-step

Algorithm 1 Spectral-Aware Reservoir Computing

Input: Time series u ∈ RL×C , smoothing parameter λ, thresh-
old parameter κ, regularization parameter ζ.

Initialize: F ← ∅, x(0)← 0, Win,Ws,Wc ∼ N (0, 1)3.
Output: Dynamic feature F.
1: τ̂ ← HPFilter(u, λ), r← u− τ̂ . // Detrending.
2: {rj}Jj=0 ← WaveDec(r). // Wavelet decomposition.
3: for j = 0 to J do
4: Aj ← |FFT(rj)| .
5: fj ← argmax

f∈{1,...,⌊L
2
⌋}
(Aj).

6: F ← F ∪ { fj
k
| k ∈ N+, kpj < κ}.

7: end for // Extract prominent frequencies.
8: for f ∈ F do
9: p← [L

f
].

10: for n = 1 to L do
11: Update state x(n) according to Eq. (1) and (6).
12: x̃(n)← [x(n− 1);x(n− p)].
13: end for
14: U,X← u[p : L+ 1], x̃[p : L+ 1].
15: Wout ← UXT (XXT + ζI)−1. // Ridge regression.
16: Ff ← flatten(Wout).
17: end for // Derive dynamic features from p.
18: F = concatenate(Ff for all f ∈ F).

prediction task” is implemented. It requires the output y(n)
to approximate input u(n), enabling the output layer to
carry the transformation from previous states (both the pre-
vious time step and cycle) to current sequence values. This
approach models the recursive relationships within the in-
put time series. Consequently, the derived readout model,
y = Woutx̃, is considered to encapsulate the temporal dy-
namics across both sequential and cyclical dimensions, and
thus serve as the dynamic features from frequency f . In
practice, this readout model is represented by Wout, which
can be solved using ridge regression:

Wout = UXT (XXT + ζI)−1, (8)

where U = [u(p),u(p+ 1), ...,u(L)] is the target matrix;
X = [x̃(p), x̃(p+1), ..., x̃(L)] is the combined state matrix;
ζ is a regularization parameter; and I is the identity matrix.
By flattening and concatenating the Wout derived from all
frequencies, final dynamic features F are obtained. For
further insights into the overall procedure, we detail our
framework in Algorithm 1.

5. Experiments
In this section, we evaluate the SARC on public benchmarks.
As aforementioned, the FreqRes is not confined to a specific
RC model. By default, we implement FreqRes based on a
Bidirectional ESN (BiESN), which is demonstrated to be
optimal across four conventional RC models in our ablation

3For brevity, input weight scaling for Win and spectral radius
adjustments for Ws and Wc are omitted in Algorithm 1.
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Table 1. Comparison of accuracy and F1-score between the proposed SARC and baselines across 128 datasets. Bold values represent the
maximum scores for each metric. P-values > 0.05 are underlined, indicating no statistically significant difference. “Wins/Ties/Losses”
count the datasets where each baseline performed better, equally, or worse than SARC, respectively.

Methods
Accuracy F1-score

Avg. Acc. Avg. Rank P-value Wins/Ties/Losses Avg. F1 Avg. Rank P-value Wins/Ties/Losses

rmESN 0.7689 6.7266 1.60E-20 9/5/114 0.7560 6.7265 7.08E-20 7/5/116
ConvMESN 0.8108 5.8164 4.01E-16 20/3/105 0.7929 5.9487 3.15E-15 18/2/108
TimesNet 0.6867 8.3984 1.76E-22 1/1/126 0.6714 8.1624 8.41E-23 2/3/123
InceptionTime 0.8352 4.5234 1.60E-03 42/10/76 0.8313 4.4188 4.03E-03 45/6/77
COTE 0.8484 3.7539 4.03E-01 59/8/61 0.8405 3.9017 5.48E-01 56/8/64
Hydra 0.8423 4.2695 3.78E-03 41/10/77 0.8377 4.3120 7.52E-03 45/9/74
Rocket 0.8450 3.8008 2.21E-01 56/12/60 0.8410 3.7991 1.73E-01 53/14/61
MiniRocket 0.8411 4.3711 1.81E-03 42/10/76 0.8368 4.3761 2.50E-03 44/10/74
SARC 0.8508 3.3398 - - 0.8449 3.3547 - -

studies (Section 5.3)4. All experiments are conducted using
Python 3.11 on a desktop with an Intel Core i7-14700KF
CPU, and an NVIDIA GeForce RTX 4090D GPU.

5.1. Experimental Settings

5.1.1. DATASETS

We use the full UCR Time Series Archive (Dau et al., 2019)
with 128 datasets spanning various applications such as
activity recognition, health monitoring, and spectrum anal-
ysis. These datasets encompass time series lengths from
15 to 2844, classes ranging from 2 to 60, and training sets
from 16 to 8926 samples. Such diverse characteristics and
complexity enable a thorough evaluation of our method.

5.1.2. COMPARATIVE METHODS

The proposed SARC is evaluated against 8 state-of-the-art
methods, which have been introduced in the Related Work.
These include two RC-based methods: rmESN (Bianchi
et al., 2021) and ConvMESN (Ma et al., 2019); two deep
neural networks: InceptionTime (Ismail Fawaz et al., 2020)
and TimesNet (Wu et al., 2023); and four advanced methods
on the UCR Archive, namely COTE (Lines et al., 2018),
Rocket (Dempster et al., 2020), MiniRocket (Dempster
et al., 2021), and Hydra (Dempster et al., 2023). Similar to
our approach, TimesNet identifies cyclical patterns within
time series for classification. InceptionTime and COTE
both demonstrate strong performance. Additionally, Rocket,
MiniRocket, and Hydra are relatively lightweight, making
them suitable for assessing SARC’s efficiency.

5.1.3. IMPLEMENTATION DETAILS

In our experiments, all datasets are standardized to maintain
uniformity across evaluations. For datasets with variable

4FreqRes based on BiESN involves: performing forward and
backward iterations as in Eq. (6), concatenating the bidirectional
hidden states and calculating dynamic features using Eq. (8).

123456789

8.398TimesNet
6.727rmESN
5.816ConvMESN
4.523InceptionTime
4.371MiniRocket

4.270 Hydra

3.801 Rocket

3.754 COTE

3.340 SARC

Figure 4. Critical Difference diagram for accuracy on 128 datasets.

lengths or missing values, we first interpolate middle NaNs
(i.e., those surrounded by real values), then align real values
to the right end of the tensor, and finally fill leading NaNs
with zeros. Key hyperparameters are determined through a
five-fold cross-validation on the training set, selecting input
scaling from {0.5, 1, 2, 4}, spectral radii from {0.4, 0.6,
0.8}, regularization ζ from {0.5, 1}, and leaky rates ranging
from 0 to 0.8 in 0.2 increments. The reservoir size is set
to 10, the connectivity is 1, and the threshold κ is set to
100. For classification, we concatenate the derived dynamic
features with the max-pooled hidden states and feed them to
a default Ridge classifier. The experiments are repeated five
times using different random seeds. Regarding the baselines,
we use official implementations or configurations from the
original papers. More detailed information is provided in
Section A.1 of the Appendix.

5.2. Classification Performance Evaluation

5.2.1. ACCURACY AND F1 SCORE

We analyze accuracy and F1 scores across 128 datasets
from multiple perspectives, including average metrics,
rankings, the Wilcoxon Signed-Rank Test, and counts of
wins/ties/losses. From the results in Table 1, SARC achieves
the overall best performance, surpassing state-of-the-art
methods like COTE, Rocket, and Hydra. It not only boasts
the highest average accuracy of 0.8508 and the highest aver-
age F1 score of 0.8449, but also maintains the top average

6
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Figure 5. Runtime comparison (in log scale) on 128 UCR datasets.

ranking. Statistically, SARC exhibits significant differences
from most comparative methods and consistently wins more
in pairwise comparisons. Compared to rmESN and Con-
vMESN, which are also RC-based, SARC demonstrates
significant performance advantages, with average accuracy
improvements of 8.19% and 4.00%, respectively, highlight-
ing the benefits of incorporating spectral awareness.

5.2.2. COMPLEXITY AND TIME

The main factors affecting SARC’s complexity include sam-
ple size M , series length L, threshold κ, and reservoir size
S. According to experiments, SARC’s runtime is primarily
spent on iteration of FreqRes modules and computation of
dynamic features, with a complexity of O(κM(S2L+S3)).
This means that under specific settings, the runtime is nearly
linear with the data complexity (characterized by M and L),
showcasing exceptional efficiency.

Figure 5 compares the runtime of various methods on 128
datasets. Clearly, SARC is faster than most baseline meth-
ods. Compared to ConvMESN and InceptionTime, which
require gradient descent, SARC is tens to hundreds of times
faster in training. Considering relatively lightweight ap-
proaches like MiniRocket, SARC’s training is still several
times faster, and the advantage is even more pronounced in
the testing phase. This exceptional efficiency stems from
the absence of gradient backpropagation and the high paral-
lelizability among FreqRes modules. The only method that
slightly exceeds SARC in runtime is rmESN; however, its
accuracy lags substantially, rendering it less comparable.

5.3. Ablation Study

5.3.1. IMPACT OF RC MODELS

We evaluate SARC based on four conventional RC models:
ESN, LeakyESN, BiESN, and DeepESN, and two gated
RNN models: LSTM and GRU, with implementation de-
tails provided in Section A.2 of the Appendix. From Figure
6a and Table 2, we find no significant differences when us-
ing the four RC models, while LSTM and GRU lag behind.
Compared to BiESN, other RC models show only minor
declines, with a maximum reduction of 1.55% in accuracy

123456
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4.329GRU
3.299ESN 3.171 DeepESN

3.111 LeakyESN

2.709 BiESN

(a) Varying RC Models
1234

3.504Final State
2.726Avg. Pooling 1.991 Max Pooling

1.778 Ours

(b) Varying Feature Utilization
12345

3.654KNN
3.432LR
2.786RF

2.628 SVM

2.500 Ridge

(c) Varying Classifiers

Figure 6. Critical Difference diagrams for ablation study on 128
datasets, based on accuracy rankings.

and 1.61% in F1 score. Even using the weakest ESN, SARC
remains competitive with the state-of-the-art InceptionTime,
highlighting its superiority and flexibility. This demon-
strates SARC’s potential to accommodate advancements in
the field of RC and leverage its strengths. On the other hand,
a notable accuracy decline is observed when implementing
SARC based on LSTM and GRU, which confirms that di-
rectly applying gating mechanisms in RC without adequate
training often leads to unsatisfactory results.

5.3.2. IMPACT OF FEATURE UTILIZATION

To validate the performance improvement from incorporat-
ing the derived dynamic features, we compare the utilized
features with three commonly used RNN feature types: Max
Pooling and Average Pooling of hidden states, and the Fi-
nal State. From the results in Figure 6b and Table 2, using
only Max Pooling shows a modest performance decline,
while the others lead to significant decreases in average ac-
curacy by 5.97% and 10.81%. This is because the derived
dynamic feature effectively integrates past and present in-
formation, encapsulating the inherent temporal dynamics,
which leads to improved performance.

5.3.3. IMPACT OF CLASSIFIERS

We also assess the impact of different classifiers, including
Logistic Regression (LR), Random Forest (RF), K-Nearest
Neighbors (KNN), Support Vector Machines (SVM), and
Ridge Regression (Ridge) classifier. Figure 6c shows that
Ridge achieves the best performance, which is why we use it
by default. RF and SVM are relatively weaker, yet not statis-
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Figure 7. Impact of input scaling, leaky rate, threshold κ and reservoir size on average accuracy and total runtime across 128 datasets.
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Figure 8. (a) Accuracy comparison between SARC and BiESN,
and (b) the impact of spectral radius on average accuracy.

tically significant, indicating that the derived features adapt
well to various classifiers. However, both LR and KNN
yield inferior outcomes. Results in Table 2 also confirm
this lag, suggesting their difficulties in integrating features
across multi-scale prominent frequencies.

5.3.4. COMPARISON WITH BIESN

To further investigate the contribution of spectral awareness
in the SARC framework, we compare it with a variant lack-
ing this mechanism, namely a single BiESN. As illustrated
in Figure 8a, SARC consistently surpasses the BiESN in
accuracy across 119 datasets, achieving over a 10% im-
provement in 65 cases. This highlights that incorporating
spectral insights into RC models enhances the capture of
temporal dynamics within time series data, leading to more
discriminative dynamic features for classification.

5.4. Hyperparameter Study

We now turn to the impact of key hyperparameters in SARC.
Figure 7a shows a notable rise in accuracy as input scaling
increases to about 2.8, beyond which the changes become
minimal, suggesting that a larger input scaling might be
preferable. In contrast, Figure 7b indicates that average
accuracy slightly improves with a leaky rate increase from 0
to 0.2, but diminishes with further increases, recommending
a smaller leaky rate close to zero.

Figure 7c also shows that average accuracy markedly im-
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Figure 9. Impact of varying reservoir connectivity and regulariza-
tion on average accuracy across 128 datasets.

proves as threshold κ increases. This confirms that extend-
ing prominent frequencies provides richer scale insights and
effectively enhances TSC performance. Unexpectedly, reser-
voir size has minimal impact on accuracy but significantly
elevates runtimes, as depicted in Figure 7d. Thus, we have
fixed it at 10 for efficiency. From Figure 8b, Spectral radii
markedly influence SARC’s performance, with optimal ac-
curacy near a spectral radius of 0.8 for Ws and 0.6 for Wc.
This implies a weighting between sequential and cyclical
dynamics: the former should slightly outweigh the latter.

From Figure 9a, accuracy remains stable as connectivity
increases, with a dip around 0.5 and peaks near 0.1 or 1.0.
Conversely, the standard deviation is lowest at 0.5, and high-
est at 0.1, highlighting a trade-off between accuracy and
stability. Even so, the standard deviation stays below 0.5%,
demonstrating the overall stability of SARC. Figure 9b fur-
ther illustrates that average accuracy is highest around ζ =
0.5 to 1.0. Low ζ values can cause overfitting, leading to the
capture of excessive details and reducing generalizability.
High ζ values may result in underfitting, as the regulariza-
tion suppresses informative temporal dynamics, diminishing
the category-discriminability of the derived features.

6. Conclusion
This paper proposes SARC, a novel Reservoir Computing
framework with spectral awareness, integrating multiple
FreqRes modules corresponding to multi-scale prominent
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frequencies. These modules simultaneously capture both
sequential and cyclical dynamic information within time
series, providing a comprehensive analysis of temporal dy-
namics and deriving effective dynamic features for TSC. Ex-
periments demonstrate that SARC achieves state-of-the-art
accuracy while maintaining exceptional efficiency. Future
work could delve into the mechanisms by which spectral
information influences TSC performance or explore appli-
cations in other tasks such as time series anomaly detection.
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A. Implementation Details
A.1. Comparative Methods

The eight advanced baselines are sourced from official im-
plementations to ensure reproducibility and consistency.
Specifically, TimesNet are from the TSLib package5. In-
ceptionTime, COTE, Rocket, and MiniRocket are imple-
mented using the sktime package6. Additionally, Con-
vMESN and Hydra are available from their respective
repositories78, while rmESN follows the hyperparameter
settings from its original paper.

A.2. SARC Variants

The variants of SARC in Table 2, achieved by employing
different RC models or RNNs, are detailed as follows:

• SARC with ESN: Iterations and feature derivation of
FreqRes modules conform to equations (6)-(8). The
leaky rate is fixed at 0. Other key hyperparameters not
mentioned here follow the settings in Section 5.1.

• SARC with LeakyESN: A leaky integrator is incorpo-
rated into equation (6). The update of x(n) includes
leakage from x(n−1), weighted by the leaky rate. The
leaky rate for all FreqRes is uniformly set and chosen
from {0, 0.2, 0.4, 0.6, 0.8}.

• SARC with DeepESN: For a given layer, the hidden
states derived from equation (6) serve as inputs for
the next layer, and those from the final layer are used
for subsequent processing. The number of layers is
selected from {2, 3}, and the leakage is also adopted.

• SARC with LSTM / GRU: For each extracted fre-
quency, a single-layer LSTM / GRU is implemented,
with its hidden dimension set to 10, matching the reser-
voir size of the default SARC.

B. Complexity Analysis
In the SARC workflow, operations such as the HP filter,
wavelet decomposition, FFT, and Ridge Classifier are effi-
ciently handled by well-established libraries, ensuring rapid
computation. The runtime is mainly spent on the itera-
tion of FreqRes modules and dynamic feature derivation.
We demonstrate that the complexity of these processes is
O(κM(S2L+ S3)), where M denotes the sample size, L
the series length, κ the period limit, and S the reservoir size.

5https://github.com/thuml/
Time-Series-Library

6https://github.com/sktime/sktime
7https://github.com/qianlima-lab/ConvMESN
8https://github.com/angus924/hydra

Table 2. Ablation results on 128 UCR datasets.

Avg. Acc. Avg. F1-score

Varying RC Models
BiESN 0.8508 0.8449
→ ESN 0.8353 (-1.55%) 0.8288 (-1.61%)
→ LeakyESN 0.8416 (-0.92%) 0.8350 (-0.99%)
→ DeepESN 0.8394 (-1.14%) 0.8325 (-1.24%)
→ LSTM 0.7896 (-6.12%) 0.7852 (-5.97%)
→ GRU 0.7926 (-5.82%) 0.7874 (-5.75%)

Varying Feature Utilization
Utilized Feature
→Max Pooling 0.8365 (-1.43%) 0.8301 (-1.48%)
→ Avg. Pooling 0.7911 (-5.97%) 0.7835 (-6.14%)
→ Final Staste 0.7427 (-10.81%) 0.7343 (-11.06%)

Varying Classifiers
Ridge
→ LR 0.8253 (-2.55%) 0.8069 (-3.80%)
→ RF 0.8391 (-1.17%) 0.8309 (-1.40%)
→ KNN 0.8218 (-2.90%) 0.8178 (-2.71%)
→ SVM 0.8456 (-0.52%) 0.8307 (-1.42%)

Proof: For each sample and FreqRes module, the iteration
includes an O(S2) operation for updating hidden states at
each step, culminating in O(S2L) operations for the en-
tire series. Subsequent feature derivation, as delineated in
Equation (8), requires S2L operations for XXT , O(S3) op-
erations for matrix inversion, and O(SL+ S2) operations
for the remaining matrix multiplications. The combined
complexity thus amounts to O(S2L+ S3). Given that each
FreqRes corresponds to a cycle interval less than κ, the num-
ber of FreqRes modules is bounded by κ. Hence, the overall
complexity for all samples is O(κM(S2L+ S3)). □

C. Supplementary Experiments
C.1. Impact of Sequence Length on Efficiency

For a deeper insight into the computational efficiency of
the proposed SARC framework, we compare its time cost
with four relatively lightweight baselines: rmESN, Hydra,
Rocket, MiniRocket, and LSTNet, across datasets with
varying sequence lengths. Specifically, we selected six
datasets, including Crop(46), ElectricDevices(96), Straw-
berry(235), FordA(500), StarLightCurves(1024), and
HandOutlines(2709), with sequence lengths noted in paren-
theses. From the results shown in Figure 10, SARC exhibits
the highest efficiency in scenarios with sequence lengths
under 100, where training the classifier takes up most time.
In this case, features derived by SARC have the lowest di-
mensionality, thus the time spent on the classifier is shorter.
However, as the sequence length increases, SARC’s run-
time becomes slightly higher than that of rmESN, since
the iterative process of the latter is simpler. Nevertheless,
SARC remains faster than MiniRocket, Hydra, and Rocket,
demonstrating its superior efficiency.
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Figure 10. Comparison of time cost across five lightweight methods on datasets with varying sequence lengths: runtime per sample in
subfigure (a), training time per sample in subfigure (b), and test time per sample in subfigure (c). The time axis is on a logarithmic scale.
Sequence lengths are indicated in parentheses on the x-axis.

Table 3. Average accuracy ranks of different methods on the 128
UCR datasets, grouped by sequence length. Bold indicates the best
rank, while underlined indicates the second-best.

Methods 1-200 201-500 501-1000 1000+

#Datasets 41 45 20 22

rmESN 6.6098 7.3111 5.3750 6.9773
ConvMESN 5.5366 6.1222 5.6500 5.8636
TimesNet 8.1707 8.5667 8.0250 8.8182
InceptionTime 4.5610 4.1667 4.8250 4.9091
COTE 3.6463 4.1333 4.7250 2.2955
Hydra 4.4878 4.0333 4.5500 4.0909
Rocket 4.0000 3.3000 4.2000 4.0909
MiniRocket 4.3171 3.9556 5.1750 4.5909
SARC 3.6707 3.4111 2.4750 3.3636

C.2. Accuracy Comparison by Sequence Length

In Table 3, we group 128 datasets by sequence length and
report the average accuracy rank of different methods across
each group. The results show that SARC achieves the best
average rank of 2.475 in the length range of 501-1000. In
contrast, Rocket performs best in the 201-500 range, while
COTE ranks first in the remaining two groups. Despite this,
SARC attains at least the second-best performance across
all cases, demonstrating consistent competitiveness.

C.3. Impact of Spectral Insights across Different Models

Table 4 provides a pairwise comparison of whether Spectral
Insights (SI) are incorporated across various base models
(in terms of accuracy). Specifically, Column 4 reports the
win/tie/loss counts of “w/ SI” version against “w/o SI”, and
the p-values between them are from Wilcoxon tests. Results
demonstrate that incorporating SI achieves average accuracy
improvements ranging from 13.86% to 18.97% across all
base models. Statistics further confirm the significance of
these improvements. This validates the consistent effective-
ness of our approach across a broader range of models.

Table 4. Pairwise accuracy comparison with and without Spectral
Insights across different models. “Wins/Ties/Losses” indicate the
respective counts for the model with SI versus without SI.

Models Avg. Acc.
w/o SI

Avg. Acc.
w/ SI Wins/Ties/Losses P-value

ESN 0.6456 0.8353 122/1/5 6.44E-22
LeakyESN 0.7030 0.8416 117/0/11 3.79E-20
BiESN 0.7055 0.8508 119/3/6 1.58E-21
DeepESN 0.6752 0.8394 117/2/9 1.05E-20
LSTM 0.6212 0.7896 115/0/13 5.05E-20
GRU 0.6295 0.7926 114/0/14 2.18E-20

123456789

8.162TimesNet
6.726rmESN
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4.312 Hydra

3.902 COTE

3.799 Rocket
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Figure 11. Critical Difference diagrams for different methods on
128 datasets in terms of F1-score.

D. Extension to Multivariate Case
The proposed SARC could be adapted to multivariate sce-
narios in a straightforward manner: it extracts required fre-
quencies from the mean series across variables, then applies
FreqRes modules to iterate on the raw multivariate series.
Another feasible extension involves separately extracting fre-
quencies and modeling patterns for each individual variable
before concatenating the derived features. While preserving
variable-specific information, it would require more sophis-
ticated implementations to ensure parallelization efficiency.
Moreover, inter-variable interactions are unaddressed in this
design. Further improvements could focus on the modeling
of inter-variable relationships during feature extraction.
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SARC: Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

Dataset rmESN Conv. Times. Incep. COTE Hydra Rocket Mini. SARC

ACSF1 0.8300 0.8320 0.8200 0.8300 0.9360 0.8800 0.8700 0.8920 0.8500
Adiac 0.6859 0.7381 0.6609 0.7673 0.8128 0.8107 0.7754 0.8143 0.7683
AllGestureWiimoteX 0.4686 0.6714 0.4274 0.7600 0.6680 0.6926 0.7771 0.6951 0.7234
AllGestureWiimoteY 0.5826 0.6803 0.4997 0.7783 0.6831 0.7431 0.7549 0.7043 0.7583
AllGestureWiimoteZ 0.6151 0.6060 0.4323 0.7797 0.6520 0.6966 0.7494 0.6809 0.7474
ArrowHead 0.8000 0.8400 0.7943 0.8480 0.8446 0.7943 0.8011 0.8091 0.8537
Beef 0.7667 0.8667 0.5667 0.6600 0.8867 0.8200 0.8000 0.8667 0.9133
BeetleFly 0.8500 0.9000 0.6500 0.8500 0.9500 0.9500 0.9000 0.9100 0.9500
BirdChicken 0.8000 0.9000 0.8500 0.8000 0.8900 0.9000 0.9000 0.8000 0.9400
BME 0.9067 0.9933 0.8280 0.9933 0.9000 1.0000 1.0000 1.0000 1.0000
Car 0.7667 0.8833 0.6500 0.9000 0.8833 0.9267 0.8833 0.9167 0.9267
CBF 0.9016 0.9727 0.9476 0.9956 0.9920 0.9778 0.9989 0.9989 0.9882
Chinatown 0.9708 0.9837 0.9598 0.9825 0.9825 0.9755 0.9796 0.9825 0.9808
ChlorineConcentration 0.6534 0.7905 0.6766 0.8616 0.7424 0.7540 0.8061 0.7395 0.8672
CinCECGTorso 0.8061 0.8967 0.5817 0.8239 0.9981 0.9959 0.8275 0.8652 0.9468
Coffee 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Computers 0.7880 0.7488 0.6328 0.7880 0.7320 0.7160 0.7720 0.7880 0.7936
CricketX 0.5708 0.7046 0.4626 0.7451 0.8046 0.7923 0.8164 0.8010 0.8036
CricketY 0.5759 0.7097 0.4492 0.8231 0.8364 0.8195 0.8421 0.8313 0.7887
CricketZ 0.5785 0.7077 0.5005 0.8354 0.8067 0.8026 0.8467 0.8046 0.8097
Crop 0.5739 0.7528 0.6107 0.7608 0.7551 0.7205 0.7543 0.7427 0.7238
DiatomSizeReduction 0.9510 0.9549 0.9281 0.9837 0.8856 0.9301 0.9673 0.9190 0.9843
DistalPhalanxOutlineAgeGroup 0.7482 0.7813 0.7281 0.7511 0.7626 0.7525 0.7410 0.7237 0.7612
DistalPhalanxOutlineCorrect 0.7681 0.7899 0.7326 0.7746 0.7855 0.7739 0.7645 0.7739 0.7746
DistalPhalanxTW 0.7079 0.7079 0.6763 0.6978 0.7036 0.7022 0.6777 0.6863 0.7396
DodgerLoopDay 0.4375 0.5750 0.3750 0.5175 0.5500 0.4375 0.5925 0.5900 0.5875
DodgerLoopGame 0.7971 0.8130 0.4942 0.8551 0.9188 0.8333 0.8406 0.8725 0.9304
DodgerLoopWeekend 0.8768 0.9072 0.7333 0.9565 0.9710 0.9594 0.9710 0.9725 0.9826
Earthquakes 0.7597 0.7770 0.7482 0.7410 0.7482 0.7295 0.7424 0.7367 0.7568
ECG200 0.8900 0.9100 0.7900 0.9000 0.8800 0.8660 0.9100 0.9140 0.8980
ECG5000 0.9292 0.9412 0.9344 0.9398 0.9471 0.9472 0.9460 0.9437 0.9456
ECGFiveDays 0.9895 0.9965 0.5626 1.0000 1.0000 0.9981 1.0000 1.0000 1.0000
ElectricDevices 0.7189 0.7480 0.6782 0.7189 0.7622 0.7325 0.7268 0.7388 0.7387
EOGHorizontalSignal 0.5171 0.5945 0.4066 0.5663 0.6343 0.5713 0.6177 0.5707 0.6155
EOGVerticalSignal 0.3956 0.5459 0.3436 0.4762 0.5260 0.4718 0.5365 0.5110 0.5271
EthanolLevel 0.4736 0.6420 0.3028 0.7700 0.7076 0.5668 0.5868 0.5728 0.6036
FaceAll 0.8214 0.7937 0.6112 0.8130 0.7934 0.8155 0.9462 0.8046 0.9140
FaceFour 0.6500 0.9227 0.5114 0.9659 1.0000 0.8932 0.9773 0.9773 0.9341
FacesUCR 0.7999 0.9088 0.5637 0.9634 0.9565 0.9560 0.9611 0.9546 0.9410
FiftyWords 0.4677 0.7833 0.4958 0.8044 0.7820 0.8325 0.8290 0.8316 0.7776
Fish 0.8297 0.9097 0.8069 0.9851 0.9874 0.9851 0.9829 0.9623 0.9646
FordA 0.9117 0.9427 0.7211 0.9524 0.9465 0.9591 0.9353 0.9464 0.9561
FordB 0.7301 0.8032 0.6415 0.8432 0.8331 0.8175 0.7993 0.8123 0.8398
FreezerRegularTrain 0.9790 0.9920 0.9830 0.9959 0.9979 0.9949 0.9973 0.9975 0.9959
FreezerSmallTrain 0.9204 0.8575 0.7862 0.8406 0.9945 0.8640 0.9478 0.9648 0.9254
Fungi 0.9677 0.9366 0.8817 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GestureMidAirD1 0.4615 0.6769 0.5154 0.7385 0.6154 0.7585 0.7231 0.6938 0.7600
GestureMidAirD2 0.6308 0.6538 0.6000 0.6846 0.6154 0.6585 0.6692 0.6338 0.6877
GestureMidAirD3 0.3477 0.3862 0.2154 0.3923 0.4077 0.4831 0.3938 0.3800 0.4615
GesturePebbleZ1 0.7047 0.8791 0.5872 0.9291 0.9070 0.9012 0.9070 0.9093 0.8837
GesturePebbleZ2 0.6342 0.8241 0.6203 0.8633 0.8861 0.8696 0.8241 0.8190 0.8266
GunPoint 0.9533 0.9867 0.7813 0.9933 1.0000 1.0000 1.0000 0.9960 1.0000
GunPointAgeSpan 0.9557 0.9842 0.9304 0.9937 0.9968 1.0000 0.9968 0.9949 0.9956
GunPointMaleVersusFemale 0.9937 0.9968 0.9918 0.9968 0.9968 0.9968 0.9968 0.9968 1.0000
GunPointOldVersusYoung 0.9905 0.9346 0.9752 0.9937 0.9968 0.9924 0.9879 0.9937 0.9981
Ham 0.6667 0.6876 0.6095 0.7810 0.6743 0.7067 0.7143 0.7086 0.7505
HandOutlines 0.8141 0.9351 0.8357 0.9508 0.9324 0.9416 0.9405 0.9427 0.9470
Haptics 0.4714 0.5266 0.4169 0.5519 0.5675 0.5078 0.5266 0.5500 0.5773
Herring 0.6250 0.6281 0.5938 0.7031 0.6344 0.7313 0.5938 0.6594 0.6188
HouseTwenty 0.9664 0.8756 0.7983 0.9496 0.9832 0.9580 0.9580 0.9445 0.9630
InlineSkate 0.4113 0.4658 0.2658 0.4818 0.4796 0.4873 0.4662 0.4345 0.5044

Table 5: Summary of Accuracy Results Across 128 Datasets.
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SARC: Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

Dataset rmESN Conv. Times. Incep. COTE Hydra Rocket Mini. SARC

InsectEPGRegularTrain 1.0000 1.0000 0.9960 1.0000 0.9992 1.0000 1.0000 0.9952 1.0000
InsectEPGSmallTrain 0.9197 0.9598 0.9044 0.8594 0.9671 0.9614 0.9799 0.9438 0.9831
InsectWingbeatSound 0.3904 0.6563 0.4276 0.6157 0.6553 0.6503 0.6599 0.6663 0.6542
ItalyPowerDemand 0.9592 0.9679 0.9372 0.9673 0.9670 0.9656 0.9689 0.9668 0.9668
LargeKitchenAppliances 0.8693 0.7520 0.6912 0.8805 0.7573 0.8635 0.8965 0.8491 0.8901
Lightning2 0.7869 0.7705 0.7377 0.8197 0.7639 0.7377 0.7738 0.7443 0.8197
Lightning7 0.7397 0.7671 0.7123 0.7452 0.7507 0.7753 0.8082 0.6849 0.8274
Mallat 0.9494 0.9441 0.9034 0.8936 0.9719 0.9485 0.9557 0.9357 0.9597
Meat 0.9500 0.9367 0.9167 0.9300 0.9000 0.8933 0.9500 0.9667 0.9800
MedicalImages 0.7961 0.7924 0.7221 0.7950 0.7587 0.7553 0.7911 0.8053 0.7511
MelbournePedestrian 0.8731 0.8891 0.8304 0.9117 0.8921 0.8804 0.9031 0.8891 0.8815
MiddlePhalanxOutlineAgeGroup 0.5455 0.5338 0.6234 0.5519 0.5740 0.5909 0.5532 0.5468 0.6273
MiddlePhalanxOutlineCorrect 0.8213 0.8014 0.7567 0.8275 0.8488 0.8275 0.8289 0.8419 0.8474
MiddlePhalanxTW 0.5831 0.5519 0.5974 0.5065 0.5818 0.5299 0.5403 0.5338 0.5805
MixedShapesRegularTrain 0.9089 0.9264 0.8268 0.9563 0.9742 0.9801 0.9676 0.9720 0.9494
MixedShapesSmallTrain 0.8829 0.9037 0.7238 0.9039 0.9533 0.9620 0.9347 0.9492 0.8934
MoteStrain 0.6589 0.8922 0.7059 0.8778 0.9593 0.9462 0.9152 0.9321 0.8997
NonInvasiveFetalECGThorax1 0.9077 0.9297 0.8031 0.9376 0.9296 0.9440 0.9524 0.9464 0.9539
NonInvasiveFetalECGThorax2 0.9223 0.9484 0.8494 0.9532 0.9469 0.9576 0.9656 0.9651 0.9595
OliveOil 0.8333 0.7400 0.8333 0.8333 0.8933 0.9333 0.9000 0.9333 0.9600
OSULeaf 0.8438 0.8372 0.4463 0.9215 0.9942 0.9876 0.9347 0.9603 0.8248
PhalangesOutlinesCorrect 0.7858 0.7932 0.7744 0.8399 0.8317 0.8189 0.8275 0.8310 0.8235
Phoneme 0.3189 0.3315 0.1800 0.3204 0.3783 0.3205 0.2759 0.2897 0.3387
PickupGestureWiimoteZ 0.7600 0.7600 0.5400 0.6160 0.7160 0.8280 0.8400 0.6800 0.8160
PigAirwayPressure 0.2308 0.1779 0.1356 0.5529 0.7788 0.7519 0.3913 0.8702 0.3750
PigArtPressure 0.8712 0.8577 0.1779 0.9952 0.9856 0.9856 0.9519 0.9808 0.9837
PigCVP 0.7462 0.8817 0.1260 0.9173 0.9663 0.9423 0.9327 0.9096 0.9029
PLAID 0.8719 0.7568 0.7654 0.9128 0.8466 0.8648 0.8819 0.8879 0.9084
Plane 1.0000 0.9905 0.9714 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PowerCons 0.9444 0.9467 0.8733 0.9444 0.9589 0.9511 0.9333 0.9733 0.9467
ProximalPhalanxOutlineAgeGroup 0.8654 0.8439 0.8449 0.8107 0.8439 0.8537 0.8449 0.8459 0.8634
ProximalPhalanxOutlineCorrect 0.8729 0.8873 0.8351 0.9107 0.8790 0.8942 0.9003 0.8880 0.9003
ProximalPhalanxTW 0.8000 0.8195 0.7912 0.7366 0.8195 0.8039 0.7912 0.7922 0.8117
RefrigerationDevices 0.5557 0.5253 0.5637 0.5387 0.5403 0.5013 0.5141 0.5152 0.5749
Rock 0.8200 0.8440 0.5000 0.8200 0.9720 0.8600 0.9000 0.8400 0.8560
ScreenType 0.5691 0.5104 0.4517 0.5653 0.4800 0.4736 0.4677 0.5035 0.5883
SemgHandGenderCh2 0.8540 0.8763 0.7523 0.8687 0.9617 0.8587 0.9223 0.8870 0.8967
SemgHandMovementCh2 0.5680 0.5680 0.4280 0.4813 0.7840 0.4609 0.6298 0.5591 0.6036
SemgHandSubjectCh2 0.7698 0.7564 0.6938 0.7844 0.9356 0.8009 0.8676 0.8689 0.8884
ShakeGestureWiimoteZ 0.8400 0.7840 0.7600 0.8000 0.7720 0.9000 0.9000 0.8840 0.9040
ShapeletSim 0.9722 0.8144 0.6333 0.9889 1.0000 0.9833 1.0000 1.0000 1.0000
ShapesAll 0.6930 0.8120 0.6457 0.9300 0.9380 0.9273 0.9033 0.9203 0.8713
SmallKitchenAppliances 0.7707 0.7424 0.7205 0.7611 0.8133 0.8037 0.8091 0.8011 0.7675
SmoothSubspace 0.7733 0.9000 0.8200 0.9667 0.9773 0.9333 0.9773 0.9507 0.8880
SonyAIBORobotSurface1 0.9408 0.8812 0.8106 0.9334 0.8439 0.9185 0.9158 0.8892 0.9464
SonyAIBORobotSurface2 0.9412 0.8959 0.7142 0.9234 0.9383 0.9467 0.9196 0.9037 0.9324
StarLightCurves 0.9589 0.9189 0.9292 0.9777 0.9795 0.9814 0.9806 0.9812 0.9813
Strawberry 0.9514 0.9827 0.9200 0.9768 0.9751 0.9719 0.9811 0.9789 0.9757
SwedishLeaf 0.9347 0.9274 0.8531 0.9616 0.9507 0.9798 0.9616 0.9648 0.9533
Symbols 0.8400 0.9254 0.8868 0.9739 0.9727 0.9791 0.9729 0.9783 0.9574
SyntheticControl 0.7033 0.9967 0.9800 0.9980 1.0000 0.9767 1.0000 0.9920 0.9993
ToeSegmentation1 0.9211 0.8526 0.6754 0.9693 0.9737 0.9632 0.9518 0.9658 0.9518
ToeSegmentation2 0.9077 0.9154 0.8154 0.9308 0.9538 0.9108 0.9231 0.9077 0.9185
Trace 1.0000 0.9800 0.8900 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9991 0.9473 0.7034 0.9965 0.9939 0.9991 0.9991 0.9982 0.9991
TwoPatterns 0.5100 0.9958 0.8008 1.0000 0.9975 0.9858 1.0000 0.9961 0.9961
UMD 0.8403 0.9722 0.9861 0.9653 0.9931 0.9889 0.9931 0.9931 0.9944
UWaveGestureLibraryAll 0.7085 0.9515 0.6289 0.9370 0.9674 0.9706 0.9739 0.9691 0.9523
UWaveGestureLibraryX 0.6602 0.7286 0.6640 0.8110 0.8130 0.8575 0.8557 0.8510 0.8211
UWaveGestureLibraryY 0.6884 0.6304 0.6266 0.7499 0.7367 0.7931 0.7772 0.7740 0.7452
UWaveGestureLibraryZ 0.6912 0.6940 0.6116 0.7552 0.7633 0.7992 0.7950 0.7968 0.7697

Table 5: Summary of Accuracy Results Across 128 Datasets.
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SARC: Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

Dataset rmESN Conv. Times. Incep. COTE Hydra Rocket Mini. SARC

Wafer 0.9904 0.9972 0.9883 0.9978 0.9997 1.0000 0.9979 0.9993 0.9978
Wine 0.7778 0.7444 0.8148 0.7222 0.8481 0.8815 0.7815 0.8667 0.8667
WordSynonyms 0.5185 0.6890 0.4875 0.7132 0.6994 0.7382 0.7467 0.7251 0.7213
Worms 0.7403 0.6909 0.5974 0.7792 0.7117 0.7325 0.7273 0.6831 0.7896
WormsTwoClass 0.8052 0.7662 0.6234 0.7792 0.8182 0.7610 0.8052 0.7532 0.8286
Yoga 0.8451 0.8591 0.7899 0.9050 0.9203 0.9210 0.9066 0.9137 0.8793

Table 5: Summary of Accuracy Results Across 128 Datasets.
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