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Multimodal Contextual Interactions of Entities: A Modality
Circular Fusion Approach for Link Prediction

Anonymous Authors

ABSTRACT
Link prediction aims to infer missing valid triplets to complete
knowledge graphs, with recent inclusion of multimodal informa-
tion to enrich entity representations. Existing methods project
multimodal information into a unified embedding space or learn
modality-specific features separately for later integration. How-
ever, performance was limited in such studies due to neglecting the
modalities compatibility and conflict semantic carried by entities
in valid and invalid triplets. In this paper, we aim at modeling inter-
entity modality interactions and thus propose a novel Modality
Circular fusion approach (MoCi), which interweaves multimodal
contextual of entities. Firstly, unlike most methods in this task
that directly fuse modalities, we design a triplets-prompt modality
contrastive pre-training to align modality semantics beforehand.
Moreover, we propose a modality circular fusion model using a
simple yet efficient multilinear transformation strategy. This allows
explicit inter-entity modality interactions, distinguishing it from
methods confined to fuse within individual entities. To the best of
our knowledge, MoCi presents one of the pioneering frameworks
that tailored to grasp inter-entity modality semantics for better link
prediction. Extensive experiments on seven datasets demonstrate
our model yields SOTA performance, confirming the efficacy of
MoCi in modeling inter-entity modality interactions. Our code is
released at https://github.com/MoCiGitHub/MoCi.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
Multi-modal Knowledge Graph, Link Prediction, Knowlegde Em-
bedding, Multimodal Fusion

1 INTRODUCTION
Link prediction focuses on inferring missing valid triplets [9, 12, 19,
22, 29], represented as <head entity, relation, tail entity>, to enhance
the completeness of knowledge graphs (KG). However, traditional
link prediction methods face the challenge of structural bias among
triplets, which impacts the inferencing performance. To mitigate
these issues, multimodal contexts[8, 15, 24], including text and
images, have been integrated to enhance entity representations.
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Acted_In

Rain_Man

Dustin_Hoffman

Lion_King

Acted_In

CRain_Man

CHoffman

CLion_King

Rain Man tells 
the story of an 
autistic savant 

named Raymond.

Hoffman excels 
in antiheroes 

and vulnerable
characters.

The Lion King is
a American 

animated epic 
musical film 
produced. 

tRain_Man

tHoffman

tLion_King

vRain_Man

vHoffman

vLion_King

Figure 1: Examples of multimodal contextual interactions of
entities. The triplet (Dustin_Hoffman, acted_in, Rain_Man)
is valid, while (Dustin_Hoffman, acted_in, The_Lion_King) is
invalid. 𝐶𝐻𝑜𝑓 𝑓𝑚𝑎𝑛 indicates the multimodal context.

For example, a textual description 𝑡1 and visual image 𝑣1 form
the multimodal context of entity 𝑒1 , denoted as 𝐶𝑒𝑖 = {𝑡𝑖 , 𝑣𝑖 }.
Multimodal contexts capture rich information about entities and
are leveraged to improve link prediction[29].

In this context, several models have been proposed to utilize
multimodal information for link prediction. Among these, some
studies have focused on projecting modality-specific information
into a unified embedding space and incorporating it within entity
embeddings [18, 26, 37], as depicted in entity-level modality aggre-
gation models (Figure 2). However, this approach might lead to the
loss of unique information specific to each modality. In response,
as depicted in Figure 2, modality split and ensemble models have
been proposed to address this limitation. These models empha-
size the independent learning of distinct modality-specific features
followed by their integration during the inference stage [34, 39].
Nonetheless, the modality interactions in these methods are typ-
ically confined within individual entity (entity-specific modality
fusion). Thus neglecting the rich semantic information that can be
derived from interactions between multimodal contexts of different
entities, which could potentially contribute to the evaluation of
triplets.

Figure 1 provides illustrations of multimodal contextual inter-
actions of entities. Take the scenario in Figure 1 as an example,
where the triplet 𝑡𝑝1 (Dustin_Hoffman, acted_in, Rain_Man) is a
valid triplet, while 𝑡𝑝2 (Dustin_Hoffman, acted_in, The_Lion_King)
is an invalid triplet. The entities involved carry multimodal con-
texts, including textual and visual information, represented as
𝐶ℎ𝑜𝑓 𝑓𝑚𝑎𝑛 = {𝑡ℎ𝑜𝑓 𝑓𝑚𝑎𝑛, 𝑣ℎ𝑜𝑓 𝑓𝑚𝑎𝑛}. In contexts where 𝑡𝑝1 is valid
and 𝑡𝑝2 is not, the textual content 𝑡ℎ𝑜𝑓 𝑓𝑚𝑎𝑛 ("Hoffman excels in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Embedding
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Entity-Specific Modality Aggregation Modality Split Learning and Ensemble
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Context 

Entity

Figure 2: Structural comparisons among different approaches for Link Prediction. Right: Entity-Specific Modality Aggregation.
Middle: Modality Split Learning and Ensemble. Left: Inter-Entity Modality Interaction Model(Ours).

antiheroes and vulnerable characters") exhibits semantic incom-
patibility with the visual information 𝑣𝑇ℎ𝑒_𝐿𝑖𝑜𝑛_𝐾𝑖𝑛𝑔 to a greater
extent than with 𝑣𝑅𝑎𝑖𝑛_𝑀𝑎𝑛 . Conversely, the semantic compatibility
between 𝑡ℎ𝑜𝑓 𝑓𝑚𝑎𝑛 and 𝑣𝑅𝑎𝑖𝑛_𝑀𝑎𝑛 surpasses that between 𝑡ℎ𝑜𝑓 𝑓𝑚𝑎𝑛
and 𝑣𝑇ℎ𝑒_𝐿𝑖𝑜𝑛_𝐾𝑖𝑛𝑔 . A similar pattern of semantic compatibility and
incompatibility is observable in the visual context 𝑣ℎ𝑜𝑓 𝑓𝑚𝑎𝑛 with
respect to the textual descriptions of 𝑡𝑅𝑎𝑖𝑛_𝑀𝑎𝑛 and 𝑡𝑇ℎ𝑒_𝐿𝑖𝑜𝑛_𝐾𝑖𝑛𝑔 ,
which are carried by the validity or invalidity of triplets. This im-
plies that the semantic among different modalities of entities is
consistent with the validity or invalidity of the triplets formed by
these entities.

Inspired by this, we propose to extract and learn semantic criti-
cal from the multimodal contexts of different entities (inter-entity
modality interaction) for link prediction, rather than focusing solely
on intra-entity modality interactions. To this end, we introduce a
Modality Circular contrastive and fusion approach (MoCi). Specif-
ically, a triplets-prompt contrastive pre-training strategy is intro-
duced to align semantics across modalities. Subsequently, we em-
ploy a multilinear transformation strategy for modality circular
fusion inter entity. Finally, relational context-aware predictions are
integrated across modalities. To the best of our knowledge, MoCi
represents a pioneering framework that shifts modality fusion in
link prediction to the inter-entity perspective, thus significantly
advancing accuracy in link prediction. Our contributions are as
follows:

• MoCi is the first work to advance multimodal fusion in the
link prediction task toward an inter-entity perspective.

• Proposed triplets-prompt modality contrastive pre-training
aligns modality semantics in advance, rather than direct
modality fusion in most existing methods, addressing poten-
tial semantic gaps between modalities.

• We propose an efficient modality circular fusion model us-
ing multilinear transformation strategy. This allows explicit
inter-entity modality interactions, setting it apart frommeth-
ods confined to fuse within individual entities.

• Our approach was validated across seven datasets, marking
the most extensive experimentation to date. Experimental
results demonstrate that MoCi achieves state-of-the-art per-
formance, confirming the effectiveness of proposed method
in modeling inter-entity modality interactions.

2 RELATEDWORK
2.1 Uni-modal Link Prediction
Uni-modal link prediction utilizes the structural topology of KG and
embeddings to predict missing links. Models like RotatE[47] inter-
pret relations through complex space rotations, effectively handling
various relational properties, while ANALOGY[11] maintains ana-
logical consistency to boost reasoning. Additional models include
TransE[3], DistMult[4], ComplEx[31], GC-OTE[40], TuckER[14],
ConvE[30], PairRE[17], MDCN[44], WGCN[7], and JointE[45], each
offering distinct approaches to link prediction. The multimodal in-
formation of entities is not taken into account in these methods.

2.2 Entity-level Modality Aggregation
Entity-level modality aggregation models improve link prediction
by incorporating multimodal information such as visual images
and text description to enrich entity representations. For example,
HRGAT[27] uses a hierarchical graph attention network to integrate
modalities effectively, while IKRL[25] combines images with struc-
tured data to improve visual entity recognition. Additional models
likeMKGformer[32], OTKGE[49],MKBE[22], QEB[33], CMGNN[23],
TBKGC[13], RSME[20], TransAE[48], VBKGC[42],MULTIFORM[36]
and AdaMF-MAT[43] also utilize diverse modalities but often strug-
gle to preserve the unique properties of each modality when merg-
ing them into a single embedding space.

2.3 Modality Split and Ensemble
Modality split and ensemble models focus on learning modality
specific representations and integrating predictions from different
modalities in knowledge graphs. MoSE[39] pioneered this frame-
work by introducing an ensemble method that dynamically assesses
and integrates the importance of different modalities during infer-
ence. Building on this foundation, the IMF[34] model enhances the
approach by using a bilinear pooling module. Nonetheless, such
models usually restrict the interactions to within individual entity.
The performance was limited in such studies due to neglecting the
modalities compatibility and conflict semantics carried by entities
in valid and invalid triplets. The introduction of MoCi aims to ad-
dress this deficiency. It presents the first framework tailored to
capture inter-entity modality semantics for significantly improving
link prediction.
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Table 1: Notations and Definitions

Notations Descriptions

MoCi Our model name
𝐸, 𝑅, 𝑇 Set of entities, relations, and triplets

𝑀 = {𝑠, 𝑣, 𝑡} Set of modalities
|𝐸 |, |𝑅 |, |𝑀 | Length of set

𝑒 , 𝑟 Entity and relation
e𝑚 Features vectors of entity 𝑒 in modality𝑚
E𝑚 Feature matrix in modality𝑚

X |𝐸 |× |𝐷 |
|𝑀 | Tensor X with size |𝑀 | × |𝐸 | × |𝐷 |

3 DEFINITIONS
A knowledge graph is formalized as 𝐺 = {𝐸, 𝑅,𝑇 }, where 𝐸, 𝑅 de-
notes entity set and relation set, and 𝑇 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ 𝐸, 𝑟 ∈ 𝑅}
refers to triplets that describe relations between entities. In multi-
modal KG, each entity is associated with multi-modal context, in-
cluding textual, visual, and structural information. We define the
set of modalities as𝑀 = {𝑠, 𝑣, 𝑡}, where 𝑠 ,𝑣 ,𝑡 denote structural, vi-
sual, and textual, respectively. The objective of link prediction is
to infer missing triplets according to the existing factual triplets 𝑇
and multi-modal contexts, which could be generally represented as
(?, 𝑟 , 𝑡) or (ℎ, 𝑟, ?), namely predicting the possible subject or object.
Notations and their definitions are given in Table 1.

4 METHODOLOGY
In this section, we offer a comprehensive introduction to our pro-
posed models, which is designed to capture inter-entity modality se-
mantics to enhance link prediction. This includes modality-specific
embeddings initialization, triplets-prompt modality contrastive pre-
train, modality circular fusion, and relational context-aware predic-
tion. The overall framework of the proposed model is illustrated in
Figure 3.

4.1 Modality-Specific Embeddings Initialization
Distinguishing from traditional neural networks that directly take
raw data features as input and process them through large-scale
nonlinear networks, we introduce a novel strategy here: the fea-
tures of each modality are defined as learnable parameters, and
the corresponding parameter embedding is initialized by the entity
modality features. In this way, we effectively avoid the model’s
excessive dependence on deep nonlinear networks while graph is
highly sparse. Additionally, this initialization method better retains
and utilizes the original feature information of each entity, which
encourage the model converge to the appropriate solution faster.
In this subsection, we explore the initialization strategies for the
textual, and visual, structural modalities as follows:

TextualModality: Entity text descriptions usually contain some
valuable textual information, typically including name, type, at-
tribute etc. We utilize the BERT-Base[5] model pre-trained on a
large-scale corpus to capture word contextual semantic relations
and generate high-quality text feature representations on diverse
datasets, such as YAGO15K[29], VTKG-I[16] and MKG-Y[9]. This
approach provides more accurate textual semantic descriptions for
subsequent tasks.

Visual Modality: For the visual description of each entity, the
pretrained VGG16[28] model is utilized for feature extraction on
YAGO15K and DB15K datasets. Considering the diverse complexity
of the visual content of different datasets, such as VTKG-I, VTKG-V,
and WN18RR++, the Vision Transformer (ViT[2]) model is adopted
to generate more expressive feature representations, which could
effectively capture dependencies between different regions of given
complex images through their self-attention mechanism.

Structural Modality: KG is essentially a topological structure
that reflects the connection relation between known entities. Dif-
ferent from the visual and textual attributes of the entity itself, the
structural features could further reflect the association characteris-
tics between different entities. Hence, we employ a multi-relational
graph convolutional network (MR-GCN[46]) to learn the graph
structure and obtain the initial node embeddings.

The embeddings for textual, visual and structural modalities are
initialized with features extracted from models ideally suited to
their respective characteristics. This detailed strategy is further
discussed in Section 5.1, outlines our experimental setup and the
specific models employed for link prediction tasks.

4.2 Triplets-Prompt Modality Contrastive
Pre-train

Most existing methods typically directly fuse different modalities
[9, 12, 22, 27, 34, 39] without accounting for potential semantic
differences between them. We propose a pre-training strategy be-
fore modal feature fusion. The purpose of this strategy is to align
modality semantics in advance and interact modality information
between entities.

Triplets-Prompt Modality Contrastive Learning: In this
section, we introduce a novel cross-modal contrastive learning
in the context of triplets, which utilizes the semantic compatibil-
ity/incompatibility carried by valid/invalid triplets. Concretely, this
strategy focuses on triplet-prompt modal contrastive learning, and
carefully selects high-confidence positive samples from the existing
factual (valid) triplets and negative samples from the invalid context.
This strategy also allows for efficient learning of graph structure
by leveraging triplets without the need for costly inclusion of all
nodes.

Formally, the interaction patterns of entities in valid triplets
(ℎ, 𝑟, 𝑡) and invalid triplets (ℎ, 𝑟, 𝑡 ′), i.e. 𝑠𝑖𝑚 and 𝑑𝑠𝑖𝑚 are modeled
as follows:

𝑠𝑖𝑚(a𝑝
ℎ
, b𝑞𝑡 ) = 𝑐𝑜𝑠 (a𝑝

ℎ
, b𝑞𝑡 )

2 (1)

𝑑𝑠𝑖𝑚(a𝑝
ℎ
, b𝑞
𝑡 ′ ) = max(0, 𝑑 − 𝑐𝑜𝑠 (a𝑝

ℎ
, b𝑞
𝑡 ′ ))

2 . (2)

where 𝑝, 𝑞 ∈ 𝑀 are different modalities within the modalities set
𝑀 , which includes structural (𝑠), textual (𝑡 ), and visual (𝑣) modal-
ities. Additionally, a𝑝

ℎ
= concat(e𝑝

ℎ
, r𝑝𝑟 ) ∈ R2𝑑 is constructed by

concatenating head entity features e𝑝
ℎ
∈ R𝑑 with corresponding

relational features r𝑝𝑟 ∈ R𝑑 , and b𝑞𝑡 = 𝐴𝑔𝑔𝑅𝐶 (e𝑞𝑡 ) ∈ R2𝑑 represents
the tail entities’ representations after being enriched by the aggre-
gate relation context (𝐴𝑔𝑔𝑅𝐶). More details could be referred to
in Section 4.4 for an in-depth discussion on b𝑞𝑡 . And the margin 𝑑
distinguishes between different interaction pattern metrics used
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Figure 3: The framework of our method, MoCi, considers multimodal information (𝑠, 𝑣, 𝑡). Initial features are derived from
modality-specific embeddings initialization (Sec. 4.1), followed by contrastive pre-training (Sec. 4.2). Pre-aligned semantic
features are processed through the modality circular fusion module (Sec. 4.3). Then, these modality features and joint features
are input into the relational context-aware prediction module (Sec. 4.4).

to align inter-entity modality semantics, refining our model’s con-
trastive learning dynamic tradeoff. Cosine similarity (𝑐𝑜𝑠) is defined
as follows:

𝑐𝑜𝑠 (a𝑝
ℎ
, b𝑞𝑡 ) =

a𝑝
ℎ
· b𝑞𝑡

|a𝑝
ℎ
| |b𝑞𝑡 |

, (3)

Building on the above, we introduce the overall triplet contrastive
loss L𝑐𝐿 as follows:

L𝑐𝐿 =
1

𝑁 × |𝑂 |
∑︁

(𝑝,𝑞) ∈𝑂

𝑁∑︁
𝑖=1

[
𝑠𝑖𝑚(a𝑝

ℎ𝑖
, b𝑞𝑡𝑖 ) +

∑︁
𝑘≠𝑖

𝑑𝑠𝑖𝑚(a𝑝
ℎ𝑖
, b𝑞𝑡𝑘 )

]
(4)

where𝑂 = {(𝑝, 𝑞) | 𝑝, 𝑞 ∈ 𝑀} represents all modality combinations,
and 𝑁 is the total number of triplets.

Pre-training Loss: In L𝑐𝐿 , we have ensured inter-entity modal-
ity interaction. Furthermore, to enhance structural learning and
achieve clearer structural embeddings, we have incorporated con-
trastive and structural losses to define our pre-training loss L𝑝𝑟𝑒
as follows:

L𝑝𝑟𝑒 = L𝑐𝐿 + L𝑠 (5)
where L𝑠 = 𝑓 𝑠 (ℎ, 𝑟, 𝑡) is the structural loss function, with imple-
mentation details provided in Section 4.4.

4.3 Modality Circular Fusion
The highly sparsity of KG triplets directly affects the design of
subsequent network architecture, such as 10𝑒−6 on YAGO15K and
DB15K datasets[29], etc., which is calculated by dividing the total

number of known triplets by that of possible triplets. Hence, how to
effectively further avoid deepening the nonlinear inference layers
under good parameter initialization conditions, becomes the focus
of this section. To this end, we define a set of modality-shared
linear transformation parameters, and achieve efficient interaction
of multi-modal contexts through a circulant fusion strategy based
on Tensor product [41, 46]. This allows explicit inter-entitymodality
interactions, distinguishing it frommethods confined to fuse within
individual entities.

Specifically, we employ a simple yet effective multilinear trans-
formation strategy inspired by the Tensor product, in which each
element denotes a tube rather than a scalar in the conventional ma-
trix. The Tensor product of tensor X ∈ R𝑁×𝐷

𝑀
and corresponding

linear transformation parameter tensorW ∈ R𝐷×𝐷 ′
𝑀

is defined as:

Z = X ∗ Y = 𝑓 𝑜𝑙𝑑 (𝑏𝑐𝑖𝑟𝑐 (X) · 𝑢𝑛𝑓 𝑜𝑙𝑑 (W)) (6)

where Z ∈ R𝑁×𝐷 ′
𝑀

, ∗ indicates the Tensor product operator. The
𝑢𝑛𝑓 𝑜𝑙𝑑 (.) operator flattens tensor X ∈ R𝑁×𝐷

𝑀
to a matrix of size

𝑀𝑁×𝐷 , and 𝑓 𝑜𝑙𝑑 (·) corresponds to its inverse.𝑏𝑐𝑖𝑟𝑐 (X) ∈ R𝑀𝑁×𝑀𝐷

is the unfolding block circulant matrix ofX. For more detailed expla-
nations about the Tensor product, please refer to Reference [41, 46].
In such a paradigm, we formulate the modality circular fusion as:

F = E ∗W (7)

where E ∈ R |𝐸 |× |𝐷 |
|𝑀 | is stacked from |𝑀 | modalities, |𝐷 | denotes

dimension of features. Each frontal slice E(m) ∈ R |𝐸 |× |𝐷 | (i.e. fea-
tures of modalities 𝑚) in E is transformed linearly by learnable
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parameters W(𝑚) ∈ R |𝐷 |× |𝐷 ′ | of W, as general formulated in
Equation (8):

F(𝑚) = E(𝑚) ·W(1)+E(𝑚−1) ·W( |𝑀 |−𝑚+2)+. . .+E(𝑚+1) ·W(2) (8)

This implies that there are |𝑀 | different combination strategies
between E(𝑖 ) ∈ R |𝐸 |× |𝐷 | and W( 𝑗 ) ∈ R |𝐷 |× |𝐷 ′ | , determined by
the way the block circulant matrix 𝑏𝑐𝑖𝑟𝑐 (E) generated. Hence, the
derived embedding tensor F follows a circulant formulation to fuse
features from different modalities roundly, and also ensure semantic
consistency encoding among different modalities by parameter
sharing. Building on the above, the final joint features J are obtained
as follows:

J𝑖𝑘 =
𝑒
∑|𝑀 |

𝑚=1 F𝑖,𝑘,𝑚∑ |𝐷 ′ |
𝑙=1 𝑒

∑|𝑀 |
𝑚=1 F𝑖,𝑙,𝑚

(9)

The joint features J then undergo normalization and are processed
through activation functions.

Scalability: Our model MoCi includes three commonly used
modalities of entities, i.e. 𝑀 = {𝑠, 𝑣, 𝑡}. It is straightforward to
generalize the proposed method for fusing more modalities by
extending𝑀 . Moreover, despite the parameterW being a tensor,
its size is merely number of modalities× feature dimension × feature
dimension(transformed), where the number of modalities |𝑀 | = 3
in our work. This ensures efficiency and scalability even including
more modalities.

Explainability: The proposed circular fusion operation goes
beyond merely aggregating matrix multiplication results from cor-
responding frontal slices in the spatial domain. It embodies the
essence in Fourier domain since E∗W = 𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇 (E)Δ𝐹𝐹𝑇 (W)),
where Δ indicates slice-by-slice matrix multiplication. This implies
the linear fusion across modalities in the Fourier domain, thereby of-
fering a nuanced capture of inter-modality correlations and comple-
mentarity. For more detailed explanations about the Tensor product,
please refer to Reference [41, 46].

4.4 Relational Context-Aware Prediction
Relations as the most essential description of the association be-
tween entities. Therefore, our proposed model further considers
relations in the prediction phase. We enrich entity representations
through aggregate relation context by extend [21].

Aggregate Relation Context (AggRC): In our model, the con-
textual relation feature c ∈ R2 |𝑅 | is employed to accurately capture
the relational topology of the entity-oriented graph. The corre-
sponding feature is defined as follows:

c𝑒,𝑟 =

{
𝐻 (𝑒, 𝑟 ), if 𝑟 ≤ |𝑅 |,
𝑇 (𝑒, 𝑟 ), if |𝑅 | < 𝑟 ≤ 2|𝑅 |,

(10)

where |𝐻 (𝑒, 𝑟 ) | = {(𝑒, 𝑟, 𝑒𝑘 ) | ∃𝑒𝑘 , (𝑒, 𝑟, 𝑒𝑘 ) ∈ 𝑇 } denotes the
frequency of entity 𝑒 serving as the head of the relation 𝑟 , and
|𝑇 (𝑒, 𝑟 ) | = {(𝑒𝑘 , 𝑟 , 𝑒) | ∃𝑒𝑘 , (𝑒𝑘 , 𝑟 , 𝑒) ∈ 𝑇 } represents the frequency
of 𝑒 serving as the tail of relation 𝑟 . This bidirectional representation
ensures that the connections between each entity and all relations
within the graph are comprehensively captured, thereby providing
a rich relational context for the model.

Entity representation in eachmodality is further enhanced through
the aggregation of relation context information for entities as:

𝐴𝑔𝑔𝑅𝐶 (e𝑚
′
) = 𝑐𝑜𝑛𝑐𝑎𝑡 (e𝑚

′
, c⊤R𝑚

′
)) (11)

where 𝑚′ ∈ {𝑠, 𝑣, 𝑡, 𝑗} corresponds to structural (𝑠), visual (𝑣),
textual (𝑡 ) modalities and joint modalities ( 𝑗 ) that obtained from
the implement of modality circular fusion. Relation embedding
R ∈ R2 |𝑅 |×𝑑 encompasses both forward and reverse relations. The
forward relation can be represented as (ℎ, 𝑟+, 𝑡), while the reverse
relation can be represented as (𝑡, 𝑟−, ℎ).

Training Loss: We extentd the score function of the classical
ConvE[30] model by aggregating relation context into entity repre-
sentations. Given a triplet (ℎ, 𝑟, 𝑡), the prediction score is defined
as:

𝑓𝑚
′
(ℎ, 𝑟, 𝑡) = 𝜎 (𝑣𝑒𝑐 (𝜎 ( [𝑣𝑒𝑐 (b𝑚

′

ℎ
W𝑚′

ℎ
); 𝑣𝑒𝑐 (r𝑚

′
𝑟 )] ∗ 𝜔))W𝑓 )e𝑚

′
𝑡

(12)
where b𝑚

′
= 𝐴𝑔𝑔𝑅𝐶 (e𝑚′ ) ∈ R2𝑑 , represents the entities’ repre-

sentations after being enriched by the aggregate relation context
(𝐴𝑔𝑔𝑅𝐶). W𝑚′

ℎ
∈ R2𝑑×𝑑 represents the transformation matrix. The

convolutional filter is represented by 𝜔 , W𝑓 the is weight of the
fully connected layer. 𝜎 denotes a non-linear activation function
such as sigmoid or ReLU, which endows the model with the ca-
pacity to discern complex, non-linear relations present within the
dataset.

To optimize the model, a total loss function is defined to include
losses from multiple modalities and the joint modalities ( 𝑗 ), as
shown below:

L = L𝑠 + L𝑣 + L𝑡 + L 𝑗 (13)
Each loss term L∗ corresponds to a specific modality, aiming to
accurately grasp inter-entity modality semantics for better link
prediction.

Table 2: Statistical Information of Seven Multimodal Bench-
mark Datasets

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 |𝐸 | |𝑅 | 𝑇𝑟𝑎𝑖𝑛 𝑉𝑎𝑙𝑖𝑑 𝑇𝑒𝑠𝑡

YAGO15K 15,283 32 86,020 12,289 24,577
DB15K 14,777 279 69,319 9,903 19,806
VTKG-I 181 217 1054 131 131
VTKG-C 43,267 2,731 89190 11149 11152

WN18RR++ 41,105 11 86835 3034 3134
MKG-W 15000 169 34196 4276 4274
MKG-Y 15000 28 21310 2665 2663

Table 3: Feature Extraction Models and Multimodal Charac-
teristics of Datasets

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑇 − 𝑃𝑀 𝑉 − 𝑃𝑀 𝐸𝑇 𝐸𝑉 𝑅𝑇 𝑅𝑉

YAGO15K BERT-Base VGG16 ✓ ✓ × ×
DB15K BERT-Base VGG16 ✓ ✓ × ×
VTKG-I BERT-Base ViT ✓ ✓ ✓ ✓
VTKG-C BERT-Base ViT ✓ ✓ ✓ ✓

WN18RR++ BERT-Base ViT ✓ ✓ ✓ ×
MKG-W SBERT BEiT ✓ ✓ × ×
MKG-Y SBERT BEiT ✓ ✓ × ×
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Table 4: Comparative Analysis of Knowledge Graph Completion on DB15K, YAGO15K, MKG-Y and MKG-W.

Model
YAGO15K DB15K

MRR H@1 Hit@3 H@10 MRR H@1 Hit@3 H@10

TransE 0.1610 0.0510 - 0.3840 0.2560 0.1370 - 0.4690
ConvE 0.2670 0.1680 - 0.4260 0.3120 0.2190 - 0.5070
TuckER 0.2810 0.1830 - 0.4570 0.3410 0.2430 - 0.5380
IKRL 0.1390 0.0480 - 0.3170 0.2220 0.1110 - 0.4260
MKGC 0.1290 0.0410 - 0.2970 0.2080 0.1080 - 0.4190
MKBE 0.2730 0.1750 - 0.4230 0.3320 0.2350 - 0.5130
IMF 0.3120 0.2339 0.3432 0.4617 0.4410 0.3784 0.4721 0.5618

MANS - - - - 0.3320 0.2040 0.4200 0.5500
AdaMF-MAT - - - - 0.3514 0.2530 0.4111 0.5292

our (w/o MCF) 0.3594 0.2931 0.3925 0.4874 0.4227 0.3614 0.4517 0.5384
our (w/o PCL) 0.4189 0.3560 0.4508 0.5341 0.4578 0.3911 0.4890 0.5865

our (w/o AggRC) 0.4244 0.3602 0.4560 0.5438 0.4612 0.3959 0.4909 0.5871
our 0.4303 0.3688 0.4617 0.5449 0.4621 0.3977 0.4935 0.5889

Model
MKG-Y MKG-W

MRR H@1 Hit@3 H@10 MRR H@1 Hit@3 H@10

GC-OTE 0.3295 0.2677 0.3644 0.4408 0.3392 0.2655 0.3596 0.4605
IKRL 0.3322 0.3037 0.3428 0.3826 0.3236 0.2611 0.3475 0.4407

TBKGC 0.3399 0.3047 0.3527 0.4007 0.3148 0.2531 0.3398 0.4324
MMKRL 0.3681 0.3166 0.3979 0.4531 0.3010 0.2216 0.3409 0.4469
RSME 0.3444 0.3178 0.3607 0.3909 0.2923 0.2336 0.3197 0.4043
OTKGE 0.3551 0.3197 0.3718 0.4138 0.3436 0.2885 0.3625 0.4488
KBGAN 0.2971 0.2281 0.3488 0.4021 0.2947 0.2221 0.3487 0.4064
MANS 0.2903 0.2525 0.3135 0.3449 0.3088 0.2489 0.3363 0.4178
MMRNS 0.3593 0.3053 0.3907 0.4547 0.3413 0.2737 0.3748 0.4682
IMF 0.3580 0.3300 0.3710 0.4060 0.3450 0.2880 0.3660 0.4540

our (w/o MCF) 0.3546 0.3162 0.3763 0.4204 0.3151 0.2536 0.3416 0.4269
our (w/o PCL) 0.3761 0.3481 0.3903 0.4288 0.3342 0.2846 0.3547 0.4314

our (w/o AggRC) 0.3796 0.3494 0.3960 0.4367 0.3440 0.2912 0.3673 0.4438
our 0.3887 0.3562 0.4041 0.4495 0.3581 0.3074 0.3801 0.4593

5 EXPERIMENTS
5.1 Datasets
Our model was evaluated on seven diverse multimodal publicly
available datasets: YAGO15K, DB15K, VTKG-I, VTKG-C,WN18RR++,
MKG-W and MKG-Y. YAGO15K and DB15K datasets are obtained
fromMMKG[29]; VTKG-I, VTKG-C andWN18RR++ datasets are ob-
tained from VISTA[16]; MKG-W and MKG-Y datasets are obtained
from MMRNS[9]. Table 2 delivers a detailed statistical overview.
And the feature extraction models used for each dataset, along with
the availability of textual and visual features within entities and
relations, are shown in Table 3. The acronyms𝑇 − 𝑃𝑀 and𝑉 − 𝑃𝑀

denote the models used for textual and visual feature extraction, re-
spectively. The notations 𝐸𝑇 , 𝐸𝑉 , 𝑅𝑇 , and 𝑅𝑉 specify the availability
of textual, visual features for entities (𝐸) and relations (𝑅).

5.2 Baselines
To substantiate the effectiveness of our model, we selected 23 promi-
nent link prediction models proposed in recent years as our base-
lines. For clarity in comparison, these models are categorized into
unimodal knowledge graph embedding models and multimodal
knowledge graph embedding models.

• Unimodal Models: This category includes models such as
TransE [3], DistMult [4], RotatE [47], PairRE [17], GC-OTE
[40], TuckER [14], ConvE [30], ComplEx [31], and ANAL-
OGY [11], which focus exclusively on the structural learning
of given KG.

• MultimodalModels: This category includes models such as
IKRL[25],MKBE[22], TransAE[48], AdaMF-MAT[43],MMKRL
[35], KBGAN[6],MMRNS[10],MKGC[12], OTKGE[49], TBKGC
[13], RSME[20], MANS[38], MoSE[39], and IMF[34], which
focus on integrating multimodal data to enhance KG embed-
dings.
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Table 5: Comparative Analysis of Knowledge Graph Completion on VTKG-I, VTKG-C and WN18RR++.

Model
VTKG-I VTKG-C WN18RR++

MRR H@1 Hit@3 H@10 MRR H@1 Hit@3 H@10 MRR H@1 Hit@3 H@10

ANALOGY 0.3040 0.2328 0.3015 0.4466 0.2963 0.2609 0.3180 0.3532 0.4128 0.3969 0.4175 0.4438
ComplEx-N3 0.3911 0.3168 0.4046 0.5191 0.3944 0.3515 0.4079 0.4815 0.4745 0.4292 0.4895 0.5675

RotatE 0.3131 0.2099 0.3473 0.5267 0.3893 0.3473 0.4062 0.4704 0.4606 0.4274 0.4754 0.5230
PairRE 0.4104 0.3015 0.4504 0.6145 0.3876 0.3431 0.4013 0.4782 0.4529 0.4127 0.4663 0.5351
RSME 0.4027 0.3321 0.4122 0.5573 0.3942 0.3513 0.4096 0.4776 0.4567 0.4175 0.4751 0.5300

TransAE 0.2437 0.0687 0.3092 0.6374 0.0751 0.0053 0.1053 0.2072 0.0900 0.0040 0.1291 0.2511
OTKGE 0.4278 0.3588 0.4466 0.5458 0.3939 0.3446 0.4152 0.4881 0.4327 0.3722 0.4663 0.5407
MoSE-AI 0.4306 0.3473 0.4466 0.6221 0.3929 0.3186 0.4301 0.5210 0.4857 0.4255 0.5094 0.5996

IMF 0.4184 0.3282 0.4656 0.5649 0.4116 0.3706 0.4261 0.4935 0.4749 0.4397 0.4845 0.5469

our (w/o MCF) 0.3955 0.3206 0.4237 0.5382 0.3883 0.3522 0.4022 0.4586 0.4620 0.4314 0.4750 0.5282
our (w/o PCL) 0.4615 0.3740 0.4733 0.6565 0.4148 0.3705 0.4297 0.5028 0.5017 0.4561 0.5155 0.5949

our (w/o AggRC) 0.4709 0.3779 0.5082 0.6641 0.4186 0.3741 0.4335 0.5082 0.5105 0.4647 0.5244 0.6008
our 0.4779 0.3969 0.5153 0.6718 0.4234 0.3770 0.4405 0.5169 0.5149 0.4687 0.5303 0.6112

5.3 Implementation Details
Our experiments were conducted on an NVIDIA RTX A6000 GPU
with 48GB of RAM, utilizing the PyTorch[1] deep learning frame-
work for implementation. Throughout the training process, we
configured the number of training epochs to 1,000, with a batch
size of 256, modality embedding dimensions set at 256, and a learn-
ing rate of 0.0005. For baseline methods, we relied on both their
originally reported results and our reproduction of those results.
This experimental setup ensures a rigorous and fair comparison
across all evaluated models.

5.4 Overall Performance Analysis
MoCi has a significant performance improvement compared with
all baseline models, which fully demonstrates the effectiveness of
the proposed methods. As illustrated in Tables 4 and 5, the MoCi
model shows state-of-the-art performance on multiple evaluation
metrics. In details, on the YAGO15K dataset, MoCi achieves 11.83%
improvement in MRR over the current SoTA approaches, along
with improvement of 13.49% in H@1, 11.85% in H@3, and 8.32% in
H@10. Furthermore, on the VTKG-I dataset, MoCi achieves 4.73%
improvement in MRR compared with the suboptimal approaches,
alongwith enhancements of 4.96% in H@1, 6.87% in H@3, and 4.97%
in H@10. Moreover, MoCi also shows significant improvement on
the other five datasets.

Although unimodal models show more and more complex archi-
tectural designs to further enhance the ability to capture the rela-
tions between entities in KG, they still face performance limitations
due to potential structural biases. Different from these methods,
our MoCi effectively alleviates the structural bias of KG and im-
proves the performance link prediction by effectively exploiting the
interaction of multimodal complementary information. Moreover,
it is worth noting that our model can still achieve a competitive
performance level with the unimodal methods as shown in Table 6,

even when only structural information is utilized, which further
confirms the effectiveness of our model on structure learning.

Multimodal models leverage information from diverse modali-
ties, yet the fusion of modality features is often constrained within
individual entities, thereby limiting performance. As opposed to
such models, our approach further emphasizes learning inter-entity
modality interactions in addition to intra-entity modality interac-
tions. This comprehensive interaction approach enables MoCi to
effectively model and utilize the commonalities and complementar-
ities between different modalities, leading to significant improve-
ments in link prediction accuracy.

5.5 Module Ablation Study
To ascertain the importance of each module in MoCi, we conducted
a module ablation study by removing certain components: remov-
ing the multimodal circular fusion module as w/o MCF, removing
triplets-prompt modality contrastive pre-training module as w/o
PCL, and removing the aggregate relation context module is de-
noted as w/o AggRC. The results shown in Tables 4 and 5 demon-
strate a marked decrease in performance with the exclusion of each
module—underscoring their joint efficacy.

Table 6: Evaluation results on YAGO15K dataset using various
combinations of modalities

Model
YAGO15K

MRR H@1 Hit@3 H@10

S 0.3594 0.2931 0.3925 0.4874
S+V 0.3819 0.3104 0.4240 0.5092
S+T 0.3866 0.3169 0.4258 0.5098

S+V+T 0.4303 0.3688 0.4617 0.5449
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Figure 4: Visualization of low-dimensional representations for football players under the context playsFor. Each colored node
denotes a football player and the different colors denote four football clubs.

Table 7: Impact of Inter-Entity Multimodal Interactions on
YAGO15K

Pre-Cross Cross
YAGO15K

MRR H@1 Hit@3 H@10

× ×(Add) 0.3967 0.3349 0.4282 0.5143
× ×(BP) 0.4001 0.3361 0.4337 0.5154
✓ ×(Add) 0.3984 0.3338 0.4329 0.5133
✓ ×(BP) 0.4052 0.3468 0.4328 0.5200
× ✓ 0.4194 0.3562 0.4506 0.5343
✓ ✓ 0.4303 0.3688 0.4617 0.5449

Specifically, the w/o PCL variant validates the necessity of pre-
aligning modality semantics before modality fusion, which provides
more harmonious modality features for subsequent interaction and
fusion. Moreover, the w/o AggRC variant also illustrates the pos-
itive impact of considering relational context on link prediction
tasks. It is particularly noteworthy that the removal of the Modal-
ity Circulant Fusion (MCF) module, which undertakes the main
function of inter-entity modality interactions, has led to a signifi-
cant decrease in performance. This demonstrates the effectiveness
of employing simple yet effective multilinear transformations in
modeling inter-entity modality interactions.

5.6 Modality Ablation Study
To validate the impact of modal information on link prediction
accuracy enhancement, the modality ablation study is conducted,
as shown in Table 6. This involved assessing the contributions of
various combinations of modal embeddings, including structural
information (S), visual information (V), and textual information (T),
and the results clearly indicate that reliance on a single modality
results in the least effective performance, while the incorporation
of comprehensive multimodal information significantly improves
outcomes. This emphasizes our model’s proficiency in adeptly cap-
turing multimodal information to elevate the performance of link
prediction tasks.

5.7 Inter-Entity Modality Interactions Study
To verify the effectiveness of inter-entity modality interactions for
link prediction, we carried out experiments as depicted in Table 7.

The experiments examined whether inter-entity modality interac-
tions during the pre-training and training phases make a difference
within MoCi framework.

• ×: Indicates scenarios without inter-entity modality interac-
tions, focusing solely on intra-entity modality interactions.

• ×(𝐴𝑑𝑑): Signifies the additive fusion of modalities.
• ×(𝐵𝑃): Signifies the use of bilinear pooling used in IMF [34]
for the fusion of modalities.

• (✓): Symbolizes PCL in Pre-Cross, MCF in Cross.
The experimental results indicate that, whether during pre-training

or the training phase, results with inter-entity modality interactions
consistently outperform those without such interactions. This not
only validates the efficacy of our model’s multimodal fusion ap-
proach but also underscores the significance of inter-entitymodality
interactions in enhancing link prediction accuracy.

5.8 Case Study
To highlight the effectiveness of ourMoCimodel, we employ 𝑡−𝑆𝑁𝐸

for dimensionality reduction to visually represent the contextual
embeddings of football players across different football clubs. Fig-
ure 4 shows that representations based solely on unimodal data
tend to overlap, reflecting the inherent biases of this approach.
In contrast, MoCi leverages circulant interactive multimodal fu-
sion, effectively capturing the inter-entity modality semantics. This
method demonstrates MoCi’s advanced ability to discern complex
inter-entity modality interactions, distinguishing football players’
representations by their respective clubs more clearly.

6 CONCLUSION
Our paper introducesMoCi, a novel method thatmodels multimodal
contextual interactions of entities and achieves notable improved
link prediction. MoCi addresses the deficiency of limited modal
interactions within individual entities in most existing methods.
Specifically, our proposed triplets-prompt modality contrastive pre-
training strategy aligns modality semantics in advance. Moreover,
explicit inter-entity modality interactions are effectively modeled
by the proposed modality circular fusion method. MoCi represents
the first endeavor to model multimodal contextual interactions from
an inter-entity perspective. SOTA experimental results on seven
datasets validate MoCi’s efficacy in modeling inter-entity modality
interactions for improving link prediction performance.
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