
A Continuous Time Framework for Discrete Denoising
Models

Andrew Campbell1 Joe Benton1 Valentin De Bortoli2

Tom Rainforth1 George Deligiannidis1 Arnaud Doucet1

1Department of Statistics, University of Oxford, UK 2CNRS ENS Ulm, Paris, France
{campbell, benton, rainforth, deligian, doucet}@stats.ox.ac.uk

valentin.debortoli@gmail.com

Abstract

We provide the first complete continuous time framework for denoising diffusion
models of discrete data. This is achieved by formulating the forward noising process
and corresponding reverse time generative process as Continuous Time Markov
Chains (CTMCs). The model can be efficiently trained using a continuous time
version of the ELBO. We simulate the high dimensional CTMC using techniques
developed in chemical physics and exploit our continuous time framework to derive
high performance samplers that we show can outperform discrete time methods
for discrete data. The continuous time treatment also enables us to derive a novel
theoretical result bounding the error between the generated sample distribution and
the true data distribution.

1 Introduction

Diffusion/score-based/denoising models [1, 2, 3, 4] are a popular class of generative models that
achieve state-of-the-art sample quality with good coverage of the data distribution [5] all whilst using
a stable, non-adversarial, simple to implement training objective. The general framework is to define
a forward noising process that takes in data and gradually corrupts it until the data distribution is
transformed into a simple distribution that is easy to sample. The model then learns to reverse this
process by learning the logarithmic gradient of the noised marginal distributions known as the score.

Most previous work on denoising models operates on a continuous state space. However, there are
many problems for which the data we would like to model is discrete. This occurs, for example, in
text, segmentation maps, categorical features, discrete latent spaces, and the direct 8-bit representation
of images. Previous work has tried to realize the benefits of the denoising framework on discrete data
problems, with promising initial results [6, 7, 8, 9, 10, 11, 12, 13].

All of these previous approaches train and sample the model in discrete time. Unfortunately, working
in discrete time has notable drawbacks. It generally forces the user to pick a partition of the process at
training time and the model only learns to denoise at these fixed time points. Due to the fixed partition,
we are then limited to a simple ancestral sampling strategy. In continuous time, the model instead
learns to denoise for any arbitrary time point in the process. This complete specification of the reverse
process enables much greater flexibility in defining the reverse sampling scheme. For example, in
continuous state spaces, continuous time samplers that greatly reduce the sampling time have been
devised [14, 15, 16, 17] as well as ones that improve sample quality [4, 18]. The continuous time
interpretation has also enabled the derivation of interesting theoretical properties such as error bounds
[19] in continuous state spaces.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

{A,A,A,B,B,B,C,C,C}

{D,E,W,W,F,X,K,A,N}
{D,P,W,W,F,X,K,A,N}
{D,E,W,W,F,X,K,A,N}
{D,E,W,W,F,X,K,A,N}{D,E,W,W,F,X,K,Y,N}{D,E,W,W,F,X,K,Y,N}

{A,A,A,B,B,B,C,C,C}
{A,A,A,M,B,B,C,C,C}{A,A,A,M,B,B,C,C,C}{A,A,A,M,B,B,X,C,C}

t=0

t=T

=state change

can occur at any t ∈ ℝ

t=0

t=T

N
o
i
s
i
n
g

p
r
o
c
e
s
s

G
e
n
e
r
a
t
i
v
e

p
r
o
c
e
s
s

Noise

Discrete Data Denoising Network

{ }A,A,A,A,A,A,A,A A,
B,B,B,B,B,B,B,B B,
C,C,C,C,C,C,C,C C,

Figure 1: The forward noising process corrupts data according to Rt, the rate of corruption events
at time t. The noising process’ time reversal gives the generative process which is defined through
R̂θt , the rate of generative events at time t. R̂θt is parameterized through the denoising network,
pθ0|t(x0|xt), which outputs categorical probabilities over clean x0 values conditioned on a noisy xt.

To allow these benefits to be exploited for discrete state spaces as well, we formulate a continuous
time framework for discrete denoising models. Specifically, our contributions are as follows. We
formulate the forward noising process as a Continuous Time Markov Chain (CTMC) and identify
the generative CTMC that is the time-reversal of this process. We then bound the log likelihood
of the generated data distribution, giving a continuous time equivalent of the ELBO that can be
used for efficient training of a parametric approximation to the true generative reverse process. To
efficiently simulate the parametric reverse process, we leverage tau-leaping [20] and propose a novel
predictor-corrector type scheme that can be used to improve simulation accuracy. The continuous
time framework allows us to derive a bound on the error between the true data distribution and
the samples generated from the approximate reverse process simulated with tau-leaping. Finally,
we demonstrate our proposed method on the generative modeling of images from the CIFAR-10
dataset and monophonic music sequences. Notably, we find our tau-leaping with predictor-corrector
sampler can provide higher quality CIFAR10 samples than previous discrete time discrete state
approaches, further closing the performance gap between when images are modeled as discrete data
or as continuous data.

Proofs for all propositions and theorems are given in the Appendix.

2 Background on Discrete Denoising Models

In the discrete time, discrete state space case, we aim to model discrete data x0 ∈ X with finite
cardinality S = |X |. We assume x0 ∼ pdata(x0) for some discrete data distribution pdata(x0). We
define a forward noising process that transforms pdata(x0) to some distribution qK(xK) that closely
approximates an easy to sample distribution pref(xK). This is done by defining forward kernels
qk+1|k(xk+1|xk) that all admit pref as a stationary distribution and mix reasonably quickly. For
example, one can use a simple uniform kernel [6, 8], qk+1|k(xk+1|xk) = δxk+1,xk

(1 − β) + (1 −
δxk+1,xk

)β/(S − 1) where δ is a Kronecker delta. The corresponding pref is the uniform distribution
over all states. Other choices include: an absorbing state kernel—where for each state there is a small
probability that it transitions to some absorbing state—or a discretized Gaussian kernel—where only
transitions to nearby states have significant probability (valid for spaces with ordinal structure) [8].

After defining qk+1|k, we have a forward joint decomposition as follows

q0:K(x0:K) = pdata(x0)
∏K−1
k=0 qk+1|k(xk+1|xk).

The joint distribution q0:K(x0:K) also admits a reverse decomposition:

q0:K(x0:K) = qK(xK)
∏K−1
k=0 qk|k+1(xk|xk+1) where qk|k+1(xk|xk+1) =

qk+1|k(xk+1|xk)qk(xk)

qk+1(xk+1)
.

Here qk(xk) denotes the marginal of q0:K(x0:K) at time k. If one had access to qk|k+1 and could
sample qK exactly, then samples from pdata(x0) could be produced by first sampling xK ∼ qK(·)
and then ancestrally sampling the reverse kernels, i.e. xk ∼ qk|k+1(·|xk+1).

2

However, in practice, qk|k+1 is intractable and needs to be approximated with a parametric reverse
kernel, pθk|k+1. This kernel is commonly defined through the analytic qk|k+1,0 distribution and a
parametric ‘denoising’ model pθ0|k+1 [6, 8],

pθk|k+1(xk|xk+1) ≜
∑
x0
qk|k+1,0(xk|xk+1, x0)p

θ
0|k+1(x0|xk+1)

= qk+1|k(xk+1|xk)
∑
x0

qk|0(xk|x0)

qk+1|0(xk+1|x0)
pθ0|k+1(x0|xk+1). (1)

Though qK(xK) is also intractable, for large K we can reliably approximate it with pref(xK). Note
that the faster the transitions mix, the more accurate this approximation becomes. Approximate
samples from pdata(x0) can then be obtained by sampling the generative joint distribution

pθ0:K(x0:K) = pref(xK)
∏K−1
k=0 pθk|k+1(xk|xk+1),

where θ is trained through minimizing the negative discrete time (DT) ELBO which is an upper
bound on the negative model log-likelihood

Epdata(x0)

[
− log pθ0(x0)

]
≤ Eq0:K(x0:K)

[
− log

pθ0:K(x0:K)
q1:K|0(x1:K |x0)

]
= LDT(θ).

It was shown in [1] that LDT can be re-written as

LDT(θ) = Epdata(x0)

[
KL(qK|0(xK |x0)||pref(xK))− Eq1|0(x1|x0)

[
log pθ0|1(x0|x1)

]
+
∑K−1
k=1 Eqk+1|0(xk+1|x0)

[
KL(qk|k+1,0(xk|xk+1, x0)||pθk|k+1(xk|xk+1))

]]
where KL is the Kullback–Leibler divergence. The forward kernels qk+1|k are chosen such that
qk|0(xk|x0) can be computed efficiently in a time independent of k. With this, θ can be efficiently
trained by taking a random selection of terms from LDT in each minibatch and performing a stochastic
gradient step.

3 Continuous Time Framework

3.1 Forward process and its time reversal

Our method is built upon a continuous time process from t = 0 to t = T . State transitions can occur
at any time during this process as opposed to the discrete time case where transitions only occur when
one of the finite number of transition kernels is applied (see Figure 1). This process is known as a
Continuous Time Markov Chain (CTMC), we provide a short overview of CTMCs in Appendix A
for completeness. Giving an intuitive introduction here, we can define a CTMC through an initial
distribution q0 and a transition rate matrixRt ∈ RS×S . If the current state is x̃, then the transition rate
matrix entry Rt(x̃, x) is the instantaneous rate (occurrences per unit time) at which state x̃ transitions
to state x. Loosely speaking, the next state in the process will likely be one for which Rt(x̃, x) is
high, and furthermore, the higher the rate is, the less time it will take for this transition to occur.

It turns out that the transition rate, Rt, also defines the infinitesimal transition probability for the
process between the two time points t−∆t and t

qt|t−∆t(x|x̃) = δx,x̃ +Rt(x̃, x)∆t+ o(∆t),

where o(∆t) represents terms that tend to zero at a faster rate than ∆t. Comparing to the discrete time
case, we see that Rt assumes an analogous role to the discrete time forward kernel qk+1|k in how we
define the forward process. Therefore, just as in discrete time, we design Rt such that: i) the forward
process mixes quickly towards an easy to sample (stationary) distribution, pref, (e.g. uniform), ii) we
can analytically obtain qt|0(xt|x0) distributions to enable efficient training (see Section 4.1 for how
this is done). We initialize the forward CTMC at q0(x0) = pdata(x0) at time t = 0. We denote the
marginal at time t = T as qT (xT), which should be close to pref(xT).

We now consider the time reversal of the forward process, which will take us from the marginal
qT (xT) back to the data distribution pdata(x0) through a reverse transition rate matrix, R̂t ∈ RS×S :

qt|t+∆t(x̃|x) = δx̃,x + R̂t(x, x̃)∆t+ o(∆t).

In discrete time, one uses Bayes rule to go from qk+1|k to qk|k+1. We can use similar ideas to
calculate R̂t from Rt as per the following result.

3

Proposition 1. For a forward in time CTMC, {xt}t∈[0,T], with rate matrix Rt, initial distribution
pdata(x0) and terminal distribution qT (xT), there exists a CTMC with initial distribution qT (xT) at
t = T , terminal distribution pdata(x0) at t = 0 and transition rate matrix R̂t that runs backwards
in time and is almost everywhere equivalent to the time reversal of the forward CTMC, {xt}t∈[T,0].
Furthermore, R̂t is related to Rt by the following expression

R̂t(x, x̃) = Rt(x̃, x)
∑
x0

qt|0(x̃|x0)

qt|0(x|x0)
q0|t(x0|x) for x ̸= x̃,

where qt|0(x|x0) are the conditional marginals of the forward process and q0|t(x0|x) =
qt|0(x|x0)pdata(x0)/qt(x) with qt(x) being the marginal of the forward process at time t. When
x = x̃, R̂t(x, x) = −

∑
x′ ̸=x R̂t(x, x

′) because the rows must sum to zero (see Appendix A).

Unfortunately, R̂t is intractable due to the intractability of qt(x) and thus of q0|t(x0|x). Therefore,
we consider an approximation R̂θt of R̂t by approximating q0|t(x0|x) with a parametric denoising
model, pθ0|t(x0|x):

R̂θt (x, x̃) = Rt(x̃, x)
∑
x0

qt|0(x̃|x0)

qt|0(x|x0)
pθ0|t(x0|x) for x ̸= x̃

and R̂θt (x, x) = −
∑
x′ ̸=x R̂

θ
t (x, x

′) as before. As a further analogy to the discrete time case, notice
that when x ̸= x̃, R̂θt has the same form as the discrete time parametric reverse kernel, pθk|k+1 defined
in eq (1) but with the forward kernel, qk+1|k, replaced by the forward rate, Rt.

3.2 Continuous Time ELBO

In discrete time, θ is trained by minimizing the discrete time negative ELBO, LDT, formed from
the forward and reverse processes. We mirror this approach in continuous time by minimizing the
corresponding continuous time (CT) negative ELBO, LCT, as derived below.
Proposition 2. For the reverse in time CTMC with initial distribution pref(xT), terminal dis-
tribution pθ0(x0), and reverse rate R̂θt , an upper bound on the negative model log-likelihood,
Epdata(x0)[− log pθ0(x0)], is given by

LCT(θ) = T Et∼U(0,T)qt(x)rt(x̃|x)

[{∑
x′ ̸=x R̂

θ
t (x, x

′)
}
−Zt(x) log

(
R̂θt (x̃, x)

)]
+ C,

where C is a constant independent of θ and

Zt(x) =
∑
x′ ̸=xRt(x, x

′) rt(x̃|x) = (1− δx̃,x)Rt(x, x̃)/Zt(x).

Here rt(x̃|x) gives the probability of transitioning from x to x̃, given that we know a transition occurs
at time t. We can optimize this objective efficiently with stochastic gradient descent. For a gradient
update, we sample a batch of datapoints from pdata(x0), noise each datapoint using a random time,
t ∼ U(0, T), x ∼ qt|0(x|x0) and finally sample an auxiliary x̃ from rt(x̃|x) for each x. Intuitively,
(x, x̃) are a pair of states following the forward in time noising process. Minimizing the second term
in LCT maximizes the reverse rate for this pair, but going in the backwards direction, x̃ to x. This is
how R̂θt learns to reverse the noising process. Intuition on the first term and a direct comparison to
LDT is given in Appendix C.1.

The first argument of R̂θt is input into pθ0|t so we naively require two network forward passes on x
and x̃ to evaluate the objective. We can avoid this by approximating the qt(x) sample in the first term
with x̃ meaning we need only evaluate the network once on x̃. The approximation is valid because,
as we show in Appendix C.4, x̃ is approximately distributed according to qt+δt for δt very small.

4 Efficient Forward and Backward Sampling

4.1 Choice of Forward Process

The transition rate matrix Rt needs to be chosen such that the forward process: i) mixes quickly
towards pref, and ii) the qt|0(x|x0) distributions can be analytically obtained. The Kolmogorov

4

differential equation for the CTMC needs to be integrated to obtain qt|0(x|x0). This can be done
analytically when Rt and Rt′ commute for all t, t′, see Appendix E. An easy way to meet this
condition is to let Rt = β(t)Rb where Rb ∈ RS×S is a user-specified time independent base rate
matrix and β(t) ∈ R is a time dependent scalar. We then obtain the analytic expression

qt|0(x = j|x0 = i) =
(
Qexp

[
Λ
∫ t
0
β(s)ds

]
Q−1

)
ij

whereRb = QΛQ−1 is the eigendecomposition of matrixRb and exp[·] the element-wise exponential.

Our choice of β schedule is guided by [3, 4], β(t) = abt log(b). The hyperparameters a and b
are selected such that qT (x) ≈ pref(x) at the terminal time t = T while having a steady speed of
‘information corruption’ which ensures that R̂t does not vary quickly in a short span of time.

We experiment with a variety of Rb matrices, for example, a uniform rate, Rb = 11
T − SId, where

11
T is a matrix of ones and Id is the identity. For problems with a heavy spatial bias, e.g. images,

we can instead use a forward rate that only encourages transitions to nearby states; details and the
links to the corresponding discrete time processes can be found in Appendix E.

4.2 Factorizing Over Dimensions

Our aim is to model data that is D dimensional, with each dimension taking one value from S
possibilities. We now slightly redefine notation and say x1:D ∈ XD, |X | = S. In this setting,
calculating transition probabilities naively would require calculating SD rate values corresponding
to each of the possible next states. This is intractable for any reasonably sized S and D. We
avoid this problem simply by factorizing the forward process such that each dimension propagates
independently. Since this is a continuous time process and each dimension’s forward process is
independent of the others, the probability two or more dimensions transition at exactly the same
time is zero. Therefore, overall in the full dimensional forward CTMC, each transition only ever
involves a change in exactly one dimension. For the time reversal CTMC, it will also be true that
exactly one dimension changes in each transition. This makes computation tractable because of
the SD rate values, only D × (S − 1) + 1 are non-zero - those corresponding to transitions where
exactly one dimension changes plus the no change transition. Finally, we note that even though
dimensions propagate independently in the forward direction, they are not independent in the reverse
direction because the starting points for each dimension’s forward process are not independent for
non factorized pdata. The following proposition shows the exact forms for the forward and reverse
rates in this case.
Proposition 3. If the forward process factorizes as qt|s(x1:D

t |x1:D
s) =

∏D
d=1 qt|s(x

d
t |xds), t > s,

then the forward and reverse rates are of the form

R1:D
t (x̃1:D,x1:D) =

∑D
d=1R

d
t (x̃

d, xd)δx1:D\d,x̃1:D\d ,

R̂1:D
t (x1:D, x̃1:D) =

∑D
d=1R

d
t (x̃

d, xd)δx1:D\d,x̃1:D\d
∑
xd
0
q0|t(x

d
0|x1:D)

qt|0(x̃
d|xd

0)

qt|0(xd|xd
0)
,

where Rdt ∈ RS×S and δx1:D\d,x̃1:D\d is 1 when all dimensions except for d are equal.

To find R̂θ 1:Dt we simply replace q0|t(xd0|x1:D) with pθ0|t(x
d
0|x1:D) which is easily modeled with

a neural network that outputs conditionally independent state probabilities in each dimension. In
Appendix C.3 we derive the form of LCT when we use this factorized form for R1:D

t and R̂θ 1:Dt .

4.3 Simulating the Generative Reverse Process with Tau-Leaping

The parametric generative reverse process is a CTMC with rate matrix R̂θ 1:Dt . Simulating this process
from distribution pref(x

1:D
T) at time t = T back to t = 0 will produce approximate samples from

pdata(x
1:D
0). The process could be simulated exactly using Gillespie’s Algorithm [21, 22, 23] which

alternates between i) sampling a holding time to remain in the current state and ii) sampling a new
state according to the current rate matrix, R̂θ 1:Dt (see Appendix F). This is inefficient for large D
because we would need to step through each transition individually and so only one dimension would
change for each simulation step.

Instead, we use tau-leaping [20, 23], a very popular approximate simulation method developed in
chemical physics. Rather than step back through time one transition to the next, tau-leaping leaps

5

from t to t − τ and applies all transitions that occurred in [t − τ, t] simultaneously. To make a
leap, we assume R̂θ 1:Dt and x1:D

t remain constant in [t − τ, t]. As we propagate from t to t − τ ,
we count all of the transitions that occur, but hold off on actually applying them until we reach
t− τ , such that x1:D

t remains constant in [t− τ, t]. Assuming R̂θ 1:Dt and x1:D
t remain constant, the

number of times a transition from x1:D
t to x̃1:D occurs in [t− τ, t] is Poisson distributed with mean

τR̂θ 1:Dt (x1:D
t , x̃1:D). Once we reach t − τ , we apply all transitions that occurred simultaneously

i.e. x1:D
t−τ = x1:D

t +
∑
i Pi(x̃

1:D
i − x1:D

t) where Pi is a Poisson random variable with mean
τR̂θ 1:Dt (x1:D

t , x̃1:D
i). Note the sum assumes a mapping from X to Z.

t-𝜏

t
S1S2S3S4S5

S1
S2
S3
S4
S5

Figure 2: 3D visualization
of one tau-leaping step from
x1:2t = {S4, S1} to x1:2t−τ =
{S2, S3}. Here, D = 2,
|X | = 5, P12 = 1, P22 = 2,
all other Pds = 0.

Using our knowledge of R̂θ 1:Dt , we can further unpack this update.
Namely, R̂θ 1:Dt (x1:D

t , x̃1:D) can only be non-zero when x̃1:D has
a different value to x1:D

t in exactly one dimension (rates for multi-
dimensional changes are zero). Explicitly summing over these options
we get x1:D

t−τ = x1:D
t +

∑D
d=1

∑S
s=1\xd

t
Pds(s − xdt)ed where ed is

a one-hot vector with a 1 at dimension d and Pds is a Poisson random
variable with mean τR̂θ 1:Dt (x1:D

t ,x1:D
t +(s−xdt)ed). Since multiple

Pds can be non-zero, we see that tau-leaping allows x1:D
t to change

in multiple dimensions in a single step. Figure 2 visualizes this idea.
During the [t − τ, t] interval, one jump occurs in dimension 1 and
two jumps occur in dimension 2. These are all applied simultaneously
once we reach t− τ . When our discrete data has ordinal structure (e.g.
Section 6.2) our mapping to Z is not arbitrary and making multiple
jumps within the same dimension (

∑S
s=1\xd

t
Pds > 1) is meaningful.

In the non-ordinal/categorical case (e.g. Section 6.3) the mapping to
Z is arbitrary and so, although taking simultaneous jumps in different
dimensions is meaningful, taking multiple jumps within the same
dimension is not. For this type of data, we reject changes to xdt for
any d for which

∑S
s=1\xd

t
Pds > 1. In practice, the rejection rate is

very small when R1:D
t is suitable for categorical data (e.g. uniform),

see Appendix H.3. In Section 4.5, our error bound accounts for this
low probability of rejection and also the low probability of an out of
bounds jump that we observe in practice in the ordinal case.

The tau-leaping approximation improves with smaller τ , recovering exact simulation in the limit as
τ → 0. Exact simulation is similar to an autoregressive model in that only one dimension changes
per step. Increasing τ and thus the average number of dimensions changing per step gives us a
natural way to modulate the ‘autoregressiveness’ of the model and trade sample quality with compute
(Figure 4 right). We refer to our method of using tau-leaping to simulate the reverse CTMC as τLDR
(tau-leaping denoising reversal) which we formalize in Algorithm 1 in Appendix F.

We note that theoretically, one could approximate R̂θ 1:Dt as constant in the interval [t − τ, t], and
construct a transition probability matrix by solving the forward Kolmogorov equation with the
matrix exponential Pt−τ |t ≈ exp(τR̂θ 1:Dt). However, for the learned R̂θ 1:Dt ∈ RSD×SD

matrix, it is
intractable to compute this matrix exponential so we use tau-leaping for sampling instead.

4.4 Predictor-Corrector

During approximate reverse sampling, we aim for the marginal distribution of samples at time t to be
close to qt(xt) (the marginal at time t of the true CTMC). The continuous time framework allows
us to exploit additional information to more accurately follow the reverse progression of marginals,
{qt(xt)}t∈[T,0] and improve sample quality. Namely, after a tau-leaping ‘predictor’ step using rate
R̂θt , we can apply ‘corrector’ steps with rate Rct which has qt(xt) as its stationary distribution. The
corrector steps bring the distribution of samples at time t closer to the desired qt(xt) marginal. Rct is
easy to calculate as stated below

Proposition 4. For a forward CTMC with marginals {qt(xt)}t∈[0,T], forward rate, Rt, and corre-
sponding reverse CTMC with rate R̂t, the rate Rct = Rt+ R̂t has qt(xt) as its stationary distribution.

6

In practice, we approximate Rct by replacing R̂t with R̂θt . This is directly analogous to Predictor-
Corrector samplers in continuous state spaces [4] that predict by integrating the reverse SDE and
correct with score-based Markov chain Monte Carlo steps, see Appendix F.2 for further discussion.

4.5 Error Bound

Our continuous time framework also allows us to provide a novel theoretical bound on the error
between the true data distribution and the sample distribution generated via tau-leaping (without
predictor-corrector steps), in terms of the error in our approximation of the reverse rate and the mixing
of the forward noising process.

We assume we have a time-homogeneous rate matrixRt onX , from which we construct the factorized
rate matrix R1:D

t on XD by setting Rdt = Rt for each d. Note that by rescaling time by a factor of
β(t) we can transform our choice of rate from Section 4.1 to be time-homogeneous. We will denote
|R| = supt∈[0,T],x∈X |Rt(x, x)|, and let tmix be the (1/4)-mixing time of the CTMC with rate Rt
(see [24, Chapter 4.5]).

Theorem 1. For any D ≥ 1 and distribution pdata on XD, let {xt}t∈[0,T] be a CTMC starting in
pdata with rate matrix R1:D

t as above. Suppose that R̂θ 1:Dt is an approximation to the reverse rate
matrix and let (yk)k=0,1,...,N be a tau-leaping approximation to the reverse dynamics with maximum
step size τ . Suppose further that there is some constant M > 0 independent of D such that∑

y ̸=x

∣∣∣R̂1:D
t (x, y)− R̂θ 1:Dt (x, y)

∣∣∣ ≤M (2)

for all t ∈ [0, T]. Then under the assumptions in Appendix B.5, there are constants C1, C2 > 0
depending on X and Rt but not D such that, if L(y0) denotes the law of y0, we have the total
variation bound

||L(y0)− pdata||TV ≤ 3MT +
{(
|R|SDC1

)2
+ 1

2C2(M + C1SD|R|)
}
τT +2 exp

{
− T log2 2
tmix log 4D

}
The first term of the above bound captures the error introduced by our approximation of the reverse
rate R̂1:D

t with R̂θ 1:Dt . The second term reflects the error introduced by the tau-leaping approximation,
and is linear in both T and τ , showing that as we take our tau-leaping steps to be arbitrarily small,
the error introduced by tau-leaping goes to zero. The final term describes the mixing of the forward
chain, and captures the error introduced since pref and qT are not exactly equal.

We choose to make the dependence of the bound on the dimensionD explicit, since we are specifically
interested in applying tau-leaping to high dimensional problems where we make transitions in different
dimensions simultaneously in a single time step. The bound grows at worst quadratically in the
dimension, versus e.g. exponentially. The bound is therefore useful in showing us that we do not
need to make τ impractically small in high dimensions. Other than gaining these intuitions, we do not
expect the bound to be particularly tight in practice and further it would not be practical to compute
because of the difficulty in finding M , C1 and C2.

The assumptions listed in Appendix B.5 hold approximately for tau-leaping in practice when we use
spatially biased rates for ordinal data such that jump sizes are small or uniform rates for non-ordinal
data such that the dimensional rejection rate is small. These assumptions could be weakened, however,
Theorem 1 would become much more involved, obscuring the intuition and structure of the problem.

5 Related Work

The application of denoising models to discrete data was first described in [1] using a binomial
diffusion process for a binary dataset. Each reverse kernel pθk|k+1 was directly parameterized without
using a denoising model pθ0|k. In [25] an approach for discrete categorical data was suggested using a
uniform forward noising kernel, qk+1|k, and a reverse kernel parameterized through a denoising model,
though no experiments were performed with the approach. Experiments on text and segmentation
maps were then performed with a similar model in [6]. Other forward kernels were introduced in [8]
that are more appropriate for certain data types such as the spatially biased Gaussian kernel. [9, 13]
apply the approach to discrete latent space modeling using uniform and absorbing state forward

7

0.004 0.008 0.016 0.032 0.064 0.128

0.25

0.30

0.35

0.40

He
llin

ge
r D

ist
an

ce

tau-leaping
exact simulation

Figure 3: Left: Hellinger distance between the true training distribution and generated sample
distributions with exact simulation or tau-leaping. With τ small, we simulate the reverse CTMC
with the same fidelity as the exact simulation. Top Right: Histograms of the marginals during the
reverse generative process simulated using tau-leaping with τ = 0.004. Darker and larger diamonds
represent increased density. Bottom Right: The same for τ = 0.1, note the reduced sample quality.

kernels. Whilst a link to continuous time for the forward process is mentioned in [8], all of these
approaches train and sample in discrete time. We show in Appendix G that this involves making
an implicit approximation for multi-dimensional data. We extend this line of work by training and
sampling in continuous time.

Other works also operate in discrete space but less rigidly follow the diffusion framework. A
corruption process tailored to text is proposed in [12], whereby token deletion and insertion is also
incorporated. [26] also focus on text, creating a generative reverse chain that repeatedly applies
the same denoising kernel. The corruption distribution is also defined through the same denoising
kernel to reduce distribution shift between training and sampling. In [7], a more standard masking
based forward process is used but the reversal is interpreted from an order agnostic autoregressive
perspective. They also describe how their model can be interpreted as the reversal of a continuous
time absorbing state diffusion but do not utilize this perspective in training or sampling. [27] propose
a denoising type framework that can be used on binary data where the forward and reverse process
share the same transition kernel. Finally, in [11], the discrete latent space of a VQVAE is modeled by
quantizing an underlying continuous state space diffusion with probabilistic quantization functions.

6 Experiments

6.1 Demonstrative Example

We first verify the method can accurately produce samples from the entire support of the data
distribution and that tau-leaping can accurately simulate the reverse CTMC. To do this, we create a
dataset formed of 2d samples of a state space of 32 arranged such that the histogram of the training
dataset forms a ‘τ ’ shape. We train a denoising model using the LCT objective with pθ0|t parameterized
through a residual MLP (full details in Appendix H.1). We then sample the parameterized reverse
process using an exact method (up to needing to numerically integrate the reverse rate) and tau-
leaping. Figure 3 top-right shows the marginals during reverse simulation with τ = 0.004 and we
indeed produce samples from the entire support of pdata. Furthermore, we find that with sufficiently
small τ , we can match the fidelity of exact simulation of the reverse CTMC (Figure 3 left). The value
of τ dictates the number of network evaluations in the reverse process according to NFE = T/τ . In
all experiments we use T = 1. Exact simulation results in a non zero Hellinger distance between the
generated and training distributions because of imperfections in the learned R̂θt model.

6.2 Image Modeling

We now demonstrate that our continuous time framework gives us improved generative modeling
performance versus operating in discrete time. We show this on the CIFAR-10 image dataset. Images
are typically stored as discrete data, each pixel channel taking one value from 256 possibilities.
Continuous state space methods have to somehow get around this fact by, for example, adding a
discretization function at the end of the generative process [3] or adding uniform noise to the data.

8

Table 1: Sample quality metrics and model likelihoods for diffusion methods modeling CIFAR10
in discrete state space. Diffusion methods modeling CIFAR10 in continuous space are included for
reference. The Inception Score (IS) and Fréchet Inception Distance (FID) are calculated using 50000
generated samples with respect to the training dataset as is standard practice. The ELBO values are
reported on the test set in bits per dimension.

Method IS (↑) FID (↓) ELBO (↑)
Discrete state D3PM Absorbing [8] 6.78 30.97 −4.40

D3PM Gauss [8] 8.56 7.34 −3.44
τLDR-0 (ours) 8.74 8.10 −3.59
τLDR-10 (ours) 9.49 3.74 −3.59

Continuous state DDPM [3] 9.46 3.17 −3.75
NCSN [4] 9.89 2.20 -

64 128 256 512 1024
NFE

4

8

16

32

64

FI
D

(1
0k

)

LDR-0
LDR-3
LDR-10

Figure 4: Left: Unconditional CIFAR10 samples from our τLDR-10 model Right: FID scores
for the generated CIFAR10 samples versus number of pθ0|t evaluations during sampling (variation
induced by varying τ). Calculated with 10k samples, hence the discrepancy with Table 1 [28].

Here, we model the images directly in discrete space. We parameterize pθ0|t using the standard
U-net architecture [3] with the modifications for discrete state space suggested by [8]. We use a
spatially biased rate matrix and train with an augmented LCT loss including direct pθ0|t supervision,
full experimental details are in Appendix H.2.

Figure 4 left shows randomly generated unconditional CIFAR10 samples from the model and we
report sample quality metrics in Table 1. We see that our method (τLDR-0) with 0 corrector steps has
better Inception Score but worse FID than the D3PM discrete time method. However, our τLDR-10
method with 10 corrector steps per predictor step at the end of the reverse sampling process (t < 0.1T)
greatly improves sample quality, beating the discrete time method in both metrics and further closes
the performance gap with methods modeling images as continuous data. The derivation of the
corrector rate which gave us this improved performance required our continuous time framework.
D3PM achieves the highest ELBO but we note that this does not correlate well with sample quality.
In Table 1, τ was adjusted such that both τLDR-0 and τLDR-10 used 1000 pθ0|t evaluations in the
reverse sampling procedure. We show how FID score varies with number of pθ0|t evaluations for
τLDR-{0, 3, 10} in Figure 4 right. The optimum number of corrector steps depends on the sampling
budget, with lower numbers of corrector steps being optimal for tighter budgets. This is due to the
increased τ required to maintain a fixed budget when we use a larger number of corrector steps.

6.3 Monophonic Music

In this experiment, we demonstrate our continuous time model improves generation quality on
non-ordinal/categorical discrete data. We model songs from the Lakh pianoroll dataset [29, 30].
We select all monophonic sequences from the dataset such that at each of the 256 time steps either
one from 128 notes is played or it is a rest. Therefore, our data has state space size S = 129 and
dimension D = 256. We scramble the ordering of the state space when mapping to Z to destroy
any ordinal structure. We parameterize pθ0|t with a transformer architecture [31] and train using a
conditional form of LCT targeting the conditional distribution of the final 14 bars (224 time steps)
given the first 2 bars of the song. We use a uniform forward rate matrix, Rt, full experimental details

9

Table 2: Metrics comparing generated conditional samples and ground truth completions. We
compute these over the test set showing mean±std with respect to 5 samples for each test song.

Model Hellinger Distance Proportion of Outliers

τLDR-0 Birth/Death 0.3928± 0.0010 0.1316± 0.0012
τLDR-0 Uniform 0.3765± 0.0013 0.1106± 0.0010
τLDR-2 Uniform 0.3762± 0.0015 0.1091± 0.0014

D3PM Uniform [8] 0.3839± 0.0002 0.1137± 0.0010

E7
G#6

C6

So
ng

 A

Original Sample 1 Sample 2

0 4 8 12 16
Bar

E4
C4

G#3
E3

So
ng

 B

0 4 8 12 16
Bar

0 4 8 12 16
Bar

Figure 5: Conditional completions of an unseen music sequence. The conditioning 2 bars are shown
to the left of the black line. More examples and audio recordings are linked in Appendix H.3.

are given in Appendix H.3. Conditional completions of unseen test songs are shown in Figure 5. The
model is able to faithfully complete the piece in the same style as the conditioning bars.

We quantify sample quality in Table 2. We use two metrics: the Hellinger distance between the
histograms of generated and ground truth notes and the proportion of outlier notes in the generations
but not in the ground truth. Using our method, we compare between a birth/death and uniform
forward rate matrix Rt. The birth/death rate is only non-zero for adjacent states whereas the uniform
rate allows transitions between arbitrary states which is more appropriate for the categorical case thus
giving improved sample quality. Adding 2 corrector steps per predictor step further improves sample
quality. We also compare to the discrete time method D3PM [8] with its most suitable corruption
process for categorical data. We find it performs worse than our continuous time method.

7 Discussion

We have presented a continuous time framework for discrete denoising models. We showed how to
efficiently sample the generative process with tau-leaping and provided a bound on the error of the
generated samples. On discrete data problems, we found our predictor-corrector sampler improved
sample quality versus discrete time methods. Regarding limitations, our model requires many model
evaluations to produce a sample. Our work has opened the door to applying the work improving
sampling speed on continuous data [14, 15, 16, 17, 32] to discrete data problems too. Modeling
performance on images is also slightly behind continuous state space models, we hope this gap is
further closed with bespoke discrete state architectures and corruption process tuning. Finally, we
note that the ELBO values for the discrete time model on CIFAR10 are better than for our method. In
this work, we focused on sample quality rather than using our model to give data likelihoods e.g. for
compression downstream tasks.

Acknowledgements

Andrew Campbell and Joe Benton acknowledge support from the EPSRC CDT in Modern Statistics
and Statistical Machine Learning (EP/S023151/1). Arnaud Doucet is partly supported by the EPSRC
grant EP/R034710/1. He also acknowledges support of the UK Defence Science and Technology
Laboratory (DSTL) and EPSRC under grant EP/R013616/1. This is part of the collaboration between
US DOD, UK MOD and UK EPSRC under the Multidisciplinary University Research Initiative. This
project made use of time on Tier 2 HPC facility JADE2, funded by EPSRC (EP/T022205/1).

10

References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. International Conference on Machine
Learning, 2015.

[2] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 2019.

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 2020.

[4] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021.

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 2021.

[6] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in Neural
Information Processing Systems, 2021.

[7] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. International Conference on Learning
Representations, 2022.

[8] Jacob Austin, Daniel Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 2021.

[9] Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional
context with multinomial diffusion for autoregressive image synthesis. Advances in Neural
Information Processing Systems, 2021.

[10] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. International Conference on Machine Learning, 2022.

[11] Max Cohen, Guillaume Quispe, Sylvain Le Corff, Charles Ollion, and Eric Moulines. Diffusion
bridges vector quantized variational autoencoders. International Conference on Machine
Learning, 2022.

[12] Daniel D Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place
corruption: Insertion and deletion in denoising probabilistic models. ICML Workshop on
Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (INNF+),
2021.

[13] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan,
and Baining Guo. Vector quantized diffusion model for text-to-image synthesis. IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[14] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

[15] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[16] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
International Conference on Learning Representations, 2022.

[17] Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

11

[18] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with
critically-damped Langevin diffusion. International Conference on Learning Representations,
2022.

[19] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 2021.

[20] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. The Journal of Chemical Physics, 115(4):1716–1733, 2001.

[21] Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of Computational Physics, 22(4):403–434, 1976.

[22] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[23] Darren J Wilkinson. Stochastic Modelling for Systems Biology. Chapman and Hall/CRC, 2018.

[24] David Levin, Yuval Peres, and Elizabeth Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, 2009.

[25] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
International Conference on Learning Representations, 2021.

[26] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord.
Step-unrolled denoising autoencoders for text generation. International Conference on Learning
Representations, 2022.

[27] Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio. Variational walkback:
Learning a transition operator as a stochastic recurrent net. Advances in Neural Information
Processing Systems, 2017.

[28] Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to
find them. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[29] Colin Raffel. Learning-based methods for comparing sequences, with applications to audio-to-
midi alignment and matching. PhD thesis, Columbia University, 2016.

[30] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-track
sequential generative adversarial networks for symbolic music generation and accompaniment.
AAAI Conference on Artificial Intelligence, 2018.

[31] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation
with diffusion models. International Society for Music Information Retrieval, 2021.

[32] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of
the optimal reverse variance in diffusion probabilistic models. International Conference on
Learning Representations, 2022.

[33] David F Anderson. A modified next reaction method for simulating chemical systems with time
dependent propensities and delays. The Journal of Chemical Physics, 127(21):214107, 2007.

[34] Chie Furusawa, Shinya Kitaoka, Michael Li, and Yuri Odagiri. Generative probabilistic image
colorization. arXiv preprint arXiv:2109.14518, 2021.

[35] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. AAAI Conference on Artificial Intelligence,
2018.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

12

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. International Conference on Medical Image Computing and
Computer-assisted Intervention, 2015.

[38] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications. International
Conference on Learning Representations, 2017.

[39] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved
autoregressive generative model. International Conference on Machine Learning, 2018.

[40] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

[41] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.2.1.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We detail the continuous time framework in Section 3,
show our theoretical result in Section 4.5 and demonstrate improved performance in
Section 6

(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix I
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix
B.5

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] The code is
available at https://github.com/andrew-cr/tauLDR

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix H

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix H

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the authors
of the models and datasets we use in Section 6

(b) Did you mention the license of the assets? [Yes] See Appendix H
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our curated data in the supplement
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

13

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://github.com/andrew-cr/tauLDR

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

