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Abstract
Aligning data from different domains is a funda-
mental problem in machine learning with broad
applications across very different areas, most no-
tably aligning experimental readouts in single-
cell multiomics. Mathematically, this problem
can be formulated as the minimization of dis-
agreement of pair-wise quantities such as dis-
tances and is related to the Gromov-Hausdorff and
Gromov-Wasserstein distances. Computationally,
it is a quadratic assignment problem (QAP) that
is known to be NP-hard. Prior works attempted
to solve the QAP directly with entropic or low-
rank regularization on the permutation, which is
computationally tractable only for modestly-sized
inputs, and encode only limited inductive bias re-
lated to the domains being aligned. We consider
the alignment of metric structures formulated as
a discrete Gromov-Wasserstein problem and in-
stead of solving the QAP directly, we propose
to learn a related well-scalable linear assignment
problem (LAP) whose solution is also a minimizer
of the QAP. We also show a flexible extension of
the proposed framework to general non-metric
dissimilarities through differentiable ranks. We
extensively evaluate our approach on synthetic
and real datasets from single-cell multiomics and
neural latent spaces, achieving state-of-the-art per-
formance while being conceptually and computa-
tionally simple.

1. Introduction
Unsupervised alignment of data that are related, yet not
directly comparable, is a fundamental problem in machine
learning. This problem is ubiquitous across a multitude
of tasks such as non-rigid shape correspondence in com-
puter vision (Bronstein et al., 2006; Halimi et al., 2019),
unlabeled sensing in signal processing (Unnikrishnan et al.,
2018; Emiya et al., 2014), and latent space communication
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in representation learning (Moschella et al., 2022; Maiorca
et al., 2024). From an application perspective, we are par-
ticularly interested in single-cell biology. In fact, the de-
velopment of single-cell sequencing technologies has led
to the profiling of different molecular aspects within the
cell at an unparalleled resolution. Profiling techniques have
been developed to assay gene expression (Kukurba & Mont-
gomery, 2015), chromatin accessibility and 3D conforma-
tion (Grandi et al., 2022; Deshpande et al., 2022), DNA
methylation (Gouil & Keniry, 2019), and histone modifica-
tions (O’Geen et al., 2011). The analysis of genome (Navin
et al., 2011; Zong et al., 2012), transcriptome (Tang et al.,
2010; Guo et al., 2013), and DNA methylation (Smallwood
et al., 2014; Guo et al., 2013) profiles has led to enhanced
understanding of the heterogeneity across cell populations.
The development of high-throughput sequencing (Macosko
et al., 2015; Klein et al., 2015; Zheng et al., 2017), and spa-
tial transcriptomics (Rao et al., 2021) technologies further
enabled molecular profiling of cells at a high temporal and
spatial resolution. One of the central problems within single-
cell multiomics is integrating data from different molecular
profiles, which is crucial in understanding joint regulatory
mechanisms within the cell. Most single-cell sequencing
techniques are invasive; thus, carrying out multiple assays
on the same cell is rarely possible. While experimental co-
assaying techniques are an active area of research (Cheow
et al., 2016; Lee et al., 2020), they currently lack the high
throughput of their single-assay counterparts. Computation-
ally integrating data from different experimental modalities
is, therefore, an important problem, and is the focus of the
current paper.

Using the formalism of Gromov-Hausdorff (GH) (Gromov
et al., 1999) and Gromov-Wasserstein (GW) (Mémoli, 2011)
distances, unsupervised alignment can be formulated as the
minimization of disagreement in pair-wise distances. Given
two point clouds, both the GH and GW problems aim to
find an assignment that is invariant to distance-preserving
transformations (isometries) of the point clouds. GH seeks
an exact point-wise assignment and can be shown to be a
quadratic assignment problem (QAP) that is known to be an
NP-hard (Burkard et al., 1998) and, thus, computationally
intractable. GW relaxes the GH problem to find a soft assign-
ment and it is more tractable in practice. The most common
approach to solving QAP relaxations like GW is by solving
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a sequence of linear assignment problems (LAPs) (Gold &
Rangarajan, 1995) or entropy-regularized optimal transport
(ϵ-OT) (Cuturi, 2013) problems. This approach, coupled
with the idea of kernel matching and, specifically, simu-
lated annealing of kernel matrices, has been demonstrated
very successful in shape analysis, practically rendering non-
rigid shape correspondence a solved problem (Vestner et al.,
2017; Melzi et al., 2019). For more general, less structured
and higher-dimensional data, recent works have aimed to
accelerate the GW solver by (i) reducing the problem size
by applying recursive clustering (Blumberg et al., 2020) or
through the quantization of the input dissimilarities (Chowd-
hury et al., 2021); and (ii) imposing low-rank constraints
on the pairwise distance matrices and the assignment matrix
within the internal ϵ-OT solver (Scetbon et al., 2022).

Specifically on the problem of unsupervised alignment of
single-cell multiomic data, GW solvers have already shown
promise. Nitzan et al. (Nitzan et al., 2019) showed that they
could map spatial coordinates in 2D tissues that were ob-
tained with fluorescence in situ hybridization (FISH) to gene
expression data. More recently, Demetci et al. (Demetci
et al., 2022) demonstrated that GW solvers outperform other
unsupervised alignment approaches on real data generated
by the SNAREseq assay (Chen et al., 2019a), which links
chromatin expression to gene expression. Unfortunately,
existing solvers have several limitations, including poor
scalability to very large (N ∼ 104) datasets, convergence to
local minima, and lack of inductivity in the sense that the
solver has to be run anew once new data are obtained. This
paper proposes remedies to these shortcomings.

Contributions. In this work, we introduce a new frame-
work for solving GW-like problems. The core idea of our
approach is to learn the cost of an OT problem (essentially,
a LAP) whose solution is also the minimizer of the GW
problem (essentially, a QAP). Instead of explicitly learning
the cost matrix for the given set of samples, we propose to
implicitly parametrize the cost as a ground-cost measured
on neural network embeddings of the points that are being
aligned. In order to learn the the neural networks parametriz-
ing the cost, we render the entropy-regularized OT problem
as an implicitly differentiable layer using the methodology
proposed in (Eisenberger et al., 2022), and demand that
the soft assignment produced by ϵ-OT minimizes the GW
objective.

This framework offers unique advantages over the standard
approach of solving GW as a sequence of LAPs. Firstly,
our method is inductive. Since we implicitly parametrize
the cost with neural networks, when we encounter new
pairs of unaligned samples at inference, we simply need
to solve an ϵ-OT problem on the embeddings produced
by our trained network. This is in contrast to all the
other GW solvers that, to the best of our knowledge, are

transductive and would need to solve the GW problem anew
by augmenting the test points. Secondly, our framework is
scalable requiring to only solve a point-wise ϵ-OT problem
at inference. Compared to GW, ϵ-OT is far simpler, and
efficient solvers can be employed to solve this problem at
scale (Cuturi, 2013; Genevay et al., 2016). Thirdly, our
framework is gradient descent-based and is, therefore,
more expressive and general, as it is straightforward to
induce additional domain knowledge into the problem
or impose additional regularization on the minimizer.
Furthermore, it is straightforward to extend our method to
the semi-supervised setting where a partial correspondence
is known, and to the fused GW (Vayer et al., 2020) setting
where a shared attribute is provided in both domains.

Leveraging the advantages of the proposed framework, we
propose several novel extensions. Firstly, we demonstrate,
for the first time, solving arbitrary non-metric assignment
problems. To this end, we propose a new objective that
matches distance ranks instead of the absolute distances
themselves and demonstrate that it is more effective in
single-cell multiomic alignment. The standard GW solvers
rely on the linearization of QAPs, and it is unclear how
they can be extended to handle more complex objectives
such as those involving ranking. Secondly, inspired by tech-
niques in geometric matrix completion (Kalofolias et al.,
2014; Boyarski et al., 2022), by interpreting the learned cost
as a signal on the product manifold of both domains, we
impose a regularization that demands that the cost is smooth
on its domain. This is intuitive because similar samples in
one domain incur a similar cost with respect to the samples
from the other domain, and vice-versa. Thirdly, in order
to robustify training through ϵ-OT solvers, we propose a
simulated-annealing–based approach allowing tuning of the
regularization coefficient in the Sinkhorn algorithm during
the training process.

We evaluate our method both in inductive and transductive
settings, on synthetic and real data. We demonstrated in an
inductive setting our solver generalizes and scales to large
sample sizes. We demonstrate that it outperforms the en-
tropic GW solver on the SNARE-seq data from (Chen et al.,
2019b) and on human bonemarrow scATAC vs. scRNA
mapping task proposed in Luecken et al. (2021).

2. Background and closely related works in
Optimal Transport

Given two sets of points {x1,x2, . . .xN} ∈ X and
{y1, . . .yN} ∈ Y , the goal of unpaired alignment is to find
a point-wise correspondence P ∈ PN such that each point
in X is mapped to a point in Y , and vice-versa, where PN

is the space of permutations. The central theme of metric-
based alignment approaches (GH and GW) is to compare
the sets of points as metric spaces. X and Y are consid-
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ered similar if the metrics between corresponding points,
as defined by P, are similar as measured in X and in Y .
Denote by dX and dY the metrics associated to X and Y ,
and by DX ∈ RN×N and DY ∈ RN×N the corresponding
pairwise distance matrices computed over the points from
X and Y , respectively. Let further µ and ν be the associated
discrete probability measures on X and Y , respectively. De-
pending on what the spaces represent, these can be uniform
measures or incorporate discrete volume elements.

Gromov-Hausdorff distance. The distortion induced by
a correspondence P between (X , dX ) and (Y, dY) is de-
fined as dis(P) = ∥DX −PDYP

⊤∥∞. This measures how
well the distances between the matched points are preserved.
The Gromov-Hausdorff (GH) distance (Gromov et al., 1999)
is then defined as

dGH((X , dX ), (Y, dY)) = min
P∈PN

dis(P). (1)

The optimization problem in Eq. 1 results in an integer
linear program and is an NP-hard problem (Burkard et al.,
1998). Therefore, it is computationally intractable.

Gromov-Wasserstein distance. Mémoli (2011) proposed
relaxing the constraint on P from an exact assignment de-
fined over PN to a probabilistic (soft) assignment, i.e., to
the space of couplings with marginals µ and ν denoted
by U(µ, ν) := {Π ∈ RN×N

+ |Π1N = µ,Π
⊤
1N = ν}.

Using this relaxation, the squared Gromov-Wasserstein dis-
tance between discrete metric spaces is defined as

d2GW = min
Π∈U(µ,ν)

∑
i,j,i′,j′

(dX (xi,xi′)− dY(yi,yi′))
2
πijπi′j′

= min
Π∈U(µ,ν)

∥DX −ΠDYΠ
⊤∥2F.

(2)
To avoid confusion, we reserve the notation P to the true
permutation matrix, while denoting the “soft" assignment
by Π. Notice that the definition of the GW distance results
in a quadratic function in Π; thus, it is referred to as the
quadratic assignment problem. Alternative relaxations to
the GH problem exist based on semi-definite programming
(SDP) (Villar et al., 2016), but due to the poor scalability
of SDP problems, they do not apply to the scales discussed
in this paper.

Optimal transport. Aligning data that lie within the same
space is a linear optimal transport (OT) problem (Peyré
et al., 2019). Given two sets of points {xi}Ni=1 and {x′

j}Ni=1

in the same space X with two discrete measures µ and ν,
respectively, the OT problem is defined as the minimiza-
tion of

∑
i,j πi,jc(xi,x

′
j), such that Π satisfies marginal

constraints U(µ, ν) and c defines transport cost (often,
c(x,x′) = dX (x,x′)). Note that the objective is linear
in Π, in contrast to GW (Eq. 2), where it is quadratic.

Entropy-regularized OT (ϵ-OT) introduces an entropic reg-
ularization term, ϵ⟨Π, logΠ⟩, that can be very efficiently
solved using the Sinkhorn algorithm (Cuturi, 2013) (see
Appendix for details). More recently, Eisenberger et al.
(2022) introduced differentiable Sinkhorn layers that uses
implicit-differentiation (Amos & Kolter, 2017) to cast the
Sinkhorn algorithm as a differentiable block within larger
auto-differentiation pipelines. They calculate the Jacobian
of the resulting assignment matrix with respect to both the
primal and dual variables of the entropic-regularized OT
problem. While ϵ-OT solvers (minimizing a point-wise
loss) cannot directly solve the GW problem with its pair-
wise loss, it is a crucial building block in the most efficient
GW solver existing today, which is described below.

Entropic Gromov-Wasserstein. In a similar spirit to ϵ-
OT, Solomon et al. (2016) proposed to solve an entropy-
regularized version of GW problem (Eq. 2). Peyré et al.
(2019) introduced a mirror-descent-based algorithm that it-
eratively linearizes the objective in Eq. 2 and then performs
a projection onto U(µ, ν) by solving an ϵ-OT problem to
obtain an assignment (see Appendix for details). This pro-
cedure is repeated for a number of iterations. Since each
outer iteration involves solving an OT problem in the pro-
jection step, this quickly becomes expensive and intractable
even in moderate sample sizes. In our experiments, we ob-
served that entropic GW solvers result in out-of-memory
for N > 25000 even when running on optimized imple-
mentation from ott-jax (Cuturi et al., 2022) on a high-
end GPU, whereas the implementation in POT (Flamary
et al., 2021), since it is CPU-based, is intractable already
for N > 8000. Scetbon et al. (2022) proposed low-rank
GW that imposes low-rank constraints both on the cost and
assignment matrices as an alternative to entropic GW and
demonstrated that it could provide speed-up compared to
entropic counterpart. We observed that if the data violates
the low-rank assumptions, as is generally true for distance
matrices and was specifically the case in our real data ex-
periments, the benefits from this approach become void.
Explicitly imposing low-rank constraints led to a severe
degradation in the quality of the estimated assignment.

3. Our approach to the GW problem
In order to scale GW solvers to large sample sizes, we start
with the following question: can we find an entropic OT
problem whose solution coincides with that of the entropic
GW problem (Eq. 2)? The rationale is that, given an un-
paired set of samples, if we determine an equivalent entropic
OT problem, we can employ fast entropic OT solvers to
calculate the assignment. One obvious problem that fits this
criterion, by construction, is the entropic OT problem that is
solved in the last iterate of the entropic GW solver. However,
computing this problem would require iterating through
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Entropic GW Proposed approach

Figure 1: Entropic Gromov-Wasserstein solver (left) solves
a sequence of regularized optimal transport (ϵ-OT) problems
using the Sinkhorn algorithm. In contrast, the proposed
approach learns, via a pair of embeddings, fθ and gϕ, the
transport cost that directly produces the sought alignment
Π∗ by solving a single ϵ-OT problem. While the learning
of the embeddings still requires multiple calls to the ϵ-OT
solver, their cost is amortized at inference time.

the GW solver, and it is thus impractical. By phrasing this
question as an optimization problem, we get the following,

Π∗ =argmin
C

∥∥∥DX −Π(C)DYΠ
⊤
(C)

∥∥∥2
F

s.t. Π(C) = argmin
Π∈U(µ,ν)

⟨Π,C⟩.
(3)

It is a bilevel optimization problem: the inner problem is
linear OT and it produces an assignment that is optimal
with respect to the cost C, and the outer problem demands
that the resulting Π(C) is GW-optimal, i.e., it aligns the
metrics DX and DY . While seemingly elegant, Equation
(3) has two major problems: (i) because C is unbounded,
this objective is very unstable and difficult to optimize; (ii)
more practically, Eq. 3 results in a transductive approach;
given a new set of unpaired samples, this problem needs
to be solved anew, which is not scalable.

To mitigate this, instead of optimizing the cost matrix C
(in Eq 3), we propose to implicitly parametrize it as a pair-
wise cost measured on the learned embeddings of pointwise
features X and Y. This leads us to the following modified
objective,

Π∗ =argmin
θ,ϕ

∥∥∥DX −Π(θ, ϕ)DYΠ
⊤
(θ, ϕ)

∥∥∥2
F

s.t. Π(θ, ϕ) = argmin
Π∈U(µ,ν)

⟨Π, c(fθ(X), gϕ(Y))⟩,

(4)
where f, g are learnable functions, modeled via neural net-
works, embedding X and Y, respectively. It is important

to emphasize that the cost is realized through the embed-
ding, while the function c is fixed to the simple Euclidean
(c(z, z′) = ∥z − z′∥2) or cosine (c(z, z′) = z⊤z′) form.
We solve the above problem via gradient descent. In order
to backpropagate gradients to f and g, we first relax the
inner problem to be an ϵ-OT problem, and then employ
implicit differentiation (Amos & Kolter, 2017) to calculate
∂Π
∂c (Eisenberger et al., 2022) which is backpropagated to

update the weights of f and g.

From a geometric perspective, we are embedding the sam-
ples from X and Y into a common domain Z , where the
samples are OT-aligned with the same assignment that
makes the metric spaces (X , dX ) and (Y, dY) GW-aligned.
From a computational point of view, our framework can
be viewed as an amortized entropic GW solver. Figure 1
presents the parallels between our solver and the entropic
GW solver (Solomon et al., 2016). The ground cost of
measured on the embeddings c(fθ(X), gϕ(Y)) can be inter-
preted as the cost matrix Ck+1 = DXΠkDY (as depicted
in the Fig. 1) produced by running the entropic GW solver
for k iterations. Post training, the neural networks can be
viewed to be amortizing the GW iterations, in similar spirit
to recent amortized optimization techniques proposed for
fast calculation of convex conjugates (Amos et al., 2023;
Amos, 2022).

From a practical standpoint, this results in an inductive GW
solver. At inference, when a new set of unpaired samples
from X and Y are encountered, we simply need to solve an
entropic OT problem that is highly scalable. Moreover, since
our solver is gradient-descent-based, it allows the flexibility
to induce domain knowledge, additional regularization, and
inductive biases on the assignment, on the cost, and in the
neural networks f, g, respectively. We will discuss a few
such examples in the sequel. Finally, while our approach
may resemble the inverse OT (iOT) problem (Dupuy et al.,
2016; Chiu et al., 2022) in the sense that it involves the
learning of the transport cost, it greatly differs in the mini-
mized objective. While iOT targets finding a cost realizing a
given assignment (hence, requiring coupled data), our learn-
ing problem does not assume a known target permutation;
instead, it tries to find one minimizing the pairwise distance
disagreement on unaligned data. From this perspective, the
proposed approach can be seen as a variational analog of
the iOT problem.

4. Extensions
While the objective function in Eq. 4 is easy to evaluate,
the resulting optimization problem is still an NP-hard QAP.
In practice, it is challenging to reach good local minima
consistently without imposing further inductive biases. This
is also true for the entropic GW solver (Peyré et al., 2019) –
while sequential linearization and projection via Sinkhorn
algorithm works reasonably in practice, there exist no guar-
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Figure 2: The proposed solver generalizes to unseen samples and scales to large-sample sizes post-training. In both top
and bottom experiments, X and Y are ViT embeddings. The entropic GW solver can only operate in the transductive regime
and runs out of memory for N > 25000.

antees on its global convergence. In fact, there exist many
scenarios where it fails to recover a meaningful local mini-
mum. Here we introduce several regularization techniques
in the problem in Eq. 4 to remediate poor convergence: (i)
simulated annealing of the entropic regularization strength
ϵ, and (ii) spectral-geometric regularization of the OT cost.
We also propose a new objective that matches distance ranks
instead of distances themselves that can be employed as an
alternative Eq. 4.

Simulated annealing of ϵ. While evaluating our solver
on the scSNARE-seq data (Chen et al., 2019a), where the
goal is to align transcriptomic readouts against those of
chromatin accessibility and the ground-truth is available
thanks to a co-assaying technique developed by (Chen et al.,
2019a), we observed that our solver, while it is accurate
on average, it is sensitive to the initialization of the neural
networks f and g. As a result of symmetries in the metric
spaces of these data, we observed that the assignment some-
times consistently mismapped the cell line of GM12878 to
H1, and vice-versa. The right panel of Fig. 3 depicts the
distribution of alignment errors (lower is better) obtained
by solving Eq. 4 with multiple random initializations of the
embedding parameters θ and ϕ. In the right column, the
largest mode corresponds indeed to accurate assignment,
whereas the two other modes with larger errors represent the
aforementioned symmetry-induced cell-line mismappings.

We mitigate this problem by performing simulated anneal-
ing on ϵ of the entropic OT problem within the Sinkhorn
layer. We propose a schedule for ϵ that starts high and is
gradually decayed (see Fig. 3, left). Our rationale is that this
results in a coarse-to-fine refinement of the learned cost (im-
plicitly parametrized via f and g) during training, and it is
similar in spirit to the idea of a multi-scale version of kernel
matching in shape correspondence problems (Vestner et al.,

2017; Melzi et al., 2019; Holzschuh et al., 2020). When ϵ is
high, the entropic regularization is strong, and the resulting
assignment is “softer”. By scheduling ϵ from a large value
to a small one, we demand that the learned cost matrix, and
as a consequence, the resulting assignment, gets refined
during training. In practice, we observe that the proposed
ϵ-scheduling works remarkably well; it practically reduces
the variance across seeds to zero and is effective in breaking
symmetries in the metric spaces that lead to bad local min-
ima and making the solver more reliable (Fig. 3, middle).

Spectral representation on graphs. Before introducing
our proposed spectral-geometric regularization, we provide
a brief background on graphs. A familiar reader may skip to
the following paragraph. Let G = (V,E,Ω) be a weighted
graph with the vertex set V , edge set E, and adjacency
matrix Ω. The combinatorial graph Laplacian is defined
as L = D−Ω, where D = diag(Ω1) is the degree matrix.
Given a scalar-valued signal z ∈ R|V | on the graph G, the
Dirichlet energy is defined to be z

⊤
Lz, and it measures the

smoothness of z on G (Spielman, 2012). Given two graphs
G1 = (V1, E1,Ω1) and G2 = (V2, E2,Ω2), the Cartesian
product of G1 and G2, denoted by G1 □G2, is defined as a
graph with the vertex set |V1| × |V2|, on which two nodes
(u, v), (u′, v′) are adjacent if either u = u′ and (v, v′) ∈ E2

or v = v′ and (u, u′) ∈ E1. The Laplacian of G1 □G2 is
defined as a tensor sum of L1 and L2, i.e., LG1□G2

= L1 ⊕
L2 = L1 ⊗ I+ I⊗L2. Denote the spectral decompositions
of the Laplacians by L1 = ΦΛ1Φ

⊤
and L2 = ΨΛ2Ψ

⊤. A
signal Z on the product graph G1 □G2 can be represented
using the bases of the individual Laplacians as Z = Φ⊤FΨ,
with the coefficients F.

Spectral-geometric regularization of the OT cost. We
propose a spectral-geometric regularization on the learned
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Figure 3: Simulated annealing of ϵ and spectral geometric regularization are effective in stabilizing the solver and
improving the accuracy of the assignment. Left: simulated annealing schedule used. Middle: distribution of the alignment
error (measured as FOSCTTM) over 20 runs with and without ϵ-annealing. Right: distribution of the alignment error with
and without the spectral geometric regularization of the transport cost.

OT cost that demands “similar” items in X to incur “similar”
cost with respect to all items in Y , and vice-versa. To
formally represent this notion, let GX = (X , EX ,ΩX ) and
GY = (Y, EY ,ΩY), be two graphs inferred on X and Y ,
respectively, and let LX and LY be their corresponding
graph Laplacians. We interpret the learned OT cost C =
c(fθ(X), gϕ(Y)) from Eq. 4 as a signal on the product
graph GX □GY , and demand that C is smooth on GX □GY .
The latter smoothness can be expressed as the Dirichlet
energy of C measured on GX □GY ,

Esm = trace
(
C

⊤
(LX ⊗ I+ I⊗ LY)C

)
= trace

(
C

⊤
LXC+CLYC

⊤
)
,

(5)

and added to Eq. 4 as an additional regularization. Figure
3 (right) demonstrates the effectiveness of the proposed
spectral regularization on the task of aligning embeddings
from neural latent spaces.

From the spectral perspective, interpreting the OT cost C
as a signal on GX □GY , learning C given the pointwise fea-
tures from domains X and Y is equivalent to directly learn-
ing the functional map of C, this makes our work intimately
related to the works of that learn functional maps (Litany
et al., 2017; Halimi et al., 2019; Vestner et al., 2017; Bo-
yarski et al., 2022; Kalofolias et al., 2014) from shape cor-
respondence and geometric matrix completion literature.

Matching ranks instead of distances. The choice of the
comparison criterion for the pairwise distances crucially
influences the usability of the GW problem for real ap-
plications. Consider, for example, two point clouds that
differ only by a scale factor; since distances are not scale-
invariant, solving Eq. 4 to match distances would produce
meaningless results. As a remedy, we propose to match
the ranks of the pairwise distances instead of their abso-
lute values. Ranks preserve the order and are insensitive to
scale or, more generally, monotone transformations. This
departs from the standard framework of GH and GW, which
align metric spaces, and generalizes it to a more general

problem of performing unpaired alignment by matching
non-metric quantities. In order to be able to differentiate
the objective with respect to ranks, which is an inherently
non-differentiable function, we use the differentiable soft
ranking operators introduced by Blondel et al. (2020). We
optimize the following modified objective:

Π∗ =argmin
θ,ϕ

∥∥∥Rδ (DX )−Rδ

(
Π(θ, ϕ)DYΠ

⊤
(θ, ϕ)

)∥∥∥2
F

s.t. Π(θ, ϕ) = argmin
Π∈U(µ,ν)

⟨Π, c(fθ(X), gϕ(Y))⟩,

(6)
where Rδ is a soft-ranking operator applied separately to
each row of the matrix, and δ controls the level of “softness”
of the rank. Because ranking is a nonlinear operation, this
results in a problem that is no longer quadratic in Π, it is
unclear how standard GW solvers can be adapted to such
settings, and also highlights the benefit of having a gradient-
descent–based solver. Applying ranking to other groups of
distances effectively results in a different GW-like distance.
We defer the systematic exploration of this new family of
distances to future work.

Further extensions. Although we do not explore it within
this work, it is easy to see that (i) the proposed framework
can be extended to a fused GW (Vayer et al., 2020) setting
by adding a linear objective to Eqs. 4 and 6; (ii) the rank
of the OT cost can be controlled by modifying the dimen-
sion of the embeddings’ output by f and g; and (iii) when
partial supervision is available on the assignment (“semi-
supervised” alignment), it can be incorporated into the loss
as a data term.

5. Experiments
We split this experiment section into three parts. Firstly, we
demonstrate that our solver works in the inductive setting
and that is much more scalable to large sample sizes in this
setting. Secondly, we showcase experiments that demon-
strate the effects of (i) simulated annealing of ϵ, (ii) spectral
geometric regularization, and (iii) the ranking-based formu-
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Figure 4: Qualitative and quantitative results on the human bone marrow single-cell dataset. Top plots depict the
UMAP of the translated cells colored by domain (left) and by the cell type (right).Bottom plots report the FOCSTTM
metrics for Y projected onto X (left) and X projected onto Y (right).

lation. Thirdly, we demonstrate that the proposed solver,
in the transductive setting, outperforms the entropic GW
solver on two single-cell multiomics benchmarks. We use
both real and synthetic data wherever appropriate.

Inductivity and scale. In order to evaluate the inductivity
of the method and to benchmark it against the entropic GW
solver, we consider two experiments (i) when X and Y are
isometric, and (ii) when X and Y are not exactly isometric.
For the first experiment, we consider X to be CIFAR100
encodings obtained from a vision transformer (Dosovitskiy
et al., 2020). We apply an orthogonal transformation to each
element of X to generate Y . We parametrize our encoders
f and g to be 3-layer multi-layer perceptrons (MLPs), and
optimize the Eq. 4 with respect to their parameters on 200
unaligned samples for 500 iterations (12 seconds). Then, we
evaluate our method in an inductive setting with an increas-
ing number of unaligned samples available at inference up to
N = 45000. We benchmark it against the GPU-accelerated
entropic GW solver available from ott-jax (Cuturi et al.,
2022). The results are presented in the top panels of Figure
2. We measure accuracy as whether the predicted correspon-
dence is correct in terms of the class label. We observe that
both solvers recover the orthogonal transformation perfectly.
Further, we can observe that an inductive solver, because it
solves only a ϵ-OT problem at inference, is much faster and
more memory efficient. Employing an entropic GW solver,
on the other hand, goes out of memory for N > 25000.
Note that the times we reported do not include the time

required to compute a geodesic distance matrix for both
X and Y , which is significantly time-consuming at large
sample sizes (>10 mins for N = 20000). In contrast, us-
ing our solver would not require computing DX and DY
at inference. For the second experiment, we use the data
from (Maiorca et al., 2024) and choose X to be ViT em-
beddings as in the previous experiment, while Y is set to
be ViT embeddings generated from rescaled images. We
train the f and g for 1000 iterations (∼ 2 minutes), using
1000 unpaired samples during the training time. The results
are presented in the bottom two panels of Fig.2. The results
suggest, again, that our solver both generalizes well and
scales gracefully with sample sizes, whereas the entropic-
GW solver produced inferior results in this setting. These
experiments corroborate our claim that our solver both at-
tains high-quality solutions and scales well in the inductive
regime.

Spectral geometric regularization. For this experiment,
we consider the above setting where X and Y are two un-
aligned sets of embeddings obtained from a pre-trained
vision transformer (Dosovitskiy et al., 2020). We set f and
g to be 3-layer MLPs solve Eq. 4 with and without Esm reg-
ularization (Eq. 5). We solve this problem on 20 unaligned
datasets drawn from X and Y , each of size N = 1000. Fig-
ure 3 (right panel) presents the accuracy of the assignment
by measuring if the predicted corresponding point belongs
to the same class as the groundtruth correspondence. Notice
that geometric regularization improves the accuracy of the
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assignment (+20% in terms of mean accuracy over trials).
Moreover, it also reduces the variance thereby inducing
meaningful inductive bias into the solver.

Simulated annealing of ϵ. As discussed in Section 4, we
consider the scSNARE-seq data (Chen et al., 2019b), which
is a co-assay of transcriptome and chromatin accessibility
measurements performed on N = 1047 cells. We run
our experiment with and without the proposed simulated
annealing of ϵ for 20 random initializations of f and g, the
results are presented in Figure 3. We observe that using this
seed stabilizes the training process significantly. We used
this as a default choice across all real data experiments.

Ranking-based GW. Figure 5 (right panel) depicts the
assignment produced by the ranking-based GW solver in
an inductive setting. We observe that ranking-based GW
outperforms the distance-based counterpart in the setting of
single-cell multiomic alignment. Consequently, the results
that we present in the sequel (Figures 4 and 6) use ranking-
based loss and they outperform both the entropic GW solver
and the distance-based variant of our solver.

Single-cell multiomic alignment. We consider two real-
world datasets: (i) scSNARE-seq data which contains gene
expression (RNA) and chromatin accessibility (ATAC) pro-
files form 1047 individual cells from four cell lines: H1, BJ,
K562, nd GM12878, with known groundtruth thanks to a
co-assaying technique developed by (Chen et al., 2019b).
We obtained the processed data of RNA and ATAC fea-
tures from the Demetci et al. (2022), whose method uses
entropic GW to align these two modalities and serves as
the baseline we evaluate against. (ii) human bone marrow
single-cell dataset that contains paired measurements of
single-cell RNA-seq and ATAC-seq measurements released
by Luecken et al. (2021). We obtained the processed data
from moscot (Klein et al., 2023a). In the RNA space, we
used PCA embedding of 50 dimensions, and in the ATAC
space, we used an embedding given by LSI (latent semantic
indexing) embedding, followed by L2 normalization.

In the scSNARE-seq experiment, we used the entropic GW
solver with the same hyperparameters used by (Demetci
et al., 2022) as the baseline. It was shown by (Demetci
et al., 2022) to outperform the other baselines for unpaired
alignment on this data. In the bone marrow single-cell ex-
periment, we compared to the entropic GW solver with
Euclidean metric and the geodesic distance metric. To estab-
lish a fair baseline, following the methodology of Demetci
et al. (2022), for both baselines, we perform a grid search
on the ϵ used in Sinkhorn iterations of the solver, and k
corresponding to the k-NN graph constructed for geodesic
computation (for the latter setting), and pick the hyperpa-
rameters with the least GW loss. In the case of both bone
marrow data and the scSNARE-seq data, we observe that our
ranking-based solver produces the best FOCSTTM score

(see Appendix). In the case of bone marrow data, especially,
our solver produces a significant margin over the entropic
GW solvers. The results of scSNARE-seq alignment are
presented in Figure 6 in the Appendix. In scSNARE-seq, the
margin of our improvement is lower, this could be attributed
to limited diversity in cell-lines and small sample-size in
scSNARE-seq compared to the bone-marrow data.

6. Conclusion
In this paper, we presented a new scalable approach to the
Gromov-Wasserstein problem. The GW loss is pair-wise
and thus is hard to minimize directly yet simple to evaluate.
On the other hand, the OT loss is point-wise and is thus
simple to minimize efficiently. We showed practical ap-
proaches to learning data embeddings such that the solution
of the corresponding OT problem minimizes the GW loss.
Unlike existing GW solvers that optimize the assignment
matrix or the corresponding dual variables directly, our op-
timization variables are the parameters of the embedding
functions. In addition to better scalability in the transductive
regime, the proposed approach is also inductive, as the com-
puted embeddings can be applied to new data previously
unseen in training. We further proposed regularization tech-
niques demonstrating consistently better convergence. We
emphasize that GW is an NP-hard problem, and no existing
polynomial-time algorithms (including ours) are guaranteed
to find its global minimum. However, we showed in many
synthetic and real data experiments that the proposed solver
is significantly more accurate and scalable.

We also introduced a new distance between metric-measure
spaces in which distance ranks are matched instead of the
distances themselves, which is more appropriate for met-
ric structures coming from distinct modalities that do not
necessarily agree quantitatively. Being oblivious to any
monotone transformation of the metric structure, this new
distance can be applied to general non-metric dissimilar-
ities in the spirit of non-metric multidimensional scaling
(MDS) (Cox & Cox, 2000). We defer to future studies the
exploration of its geometric and topological properties.

Limitations. Our current approach focuses on the discrete
GW problem in which the correspondence is found explic-
itly. Future work should study the continuous setting, with
the correspondence represented, e.g., in the form of a func-
tional map (Ovsjanikov et al., 2012) – an operator mapping
functions on to X to functions on Y which can be repre-
sented efficiently using truncated bases of the product graph
constructed on X × Y . Another limitation is the use of full
batches for the minimization of the GW loss, which restricts
scalability in the transductive regime. Future studies should
consider extending the proposed approach to the mini-batch
setting, in the spirit of mini-batch optimal flow-matching
(Tong et al., 2023; Klein et al., 2023b).
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A. Appendix.
Sinkhorn algorithm. The Sinkhorn algorithm allows efficient solution of the entropy-regularized linear OT problem of
the form

min
Π∈U(µ,ν)

⟨C,Π⟩+ ϵ⟨Π, logΠ⟩.

Defining the kernel matrix K = e−C/ϵ and initializing u1 = v1 = 1, the algorithm proceeds with iterating

uk+1 =
µ

Kvk
; vk+1 =

ν

K⊤uk+1
,

from which the assignment matrix Πk+1 = diag(uk+1)K diag(vk+1). Here diag(u) denotes a diagonal matrix with the
entries of the vector u on the diagonal, and exponentiation and division are performed element-wise. The iterations are
usually stopped when the change ∥Πk+1 −Πk∥ falls below a pre-defined threshold.

Entropic GW solver. The entropic GW solver aims at solving the entropy-regularized GW problem

min
Π∈U(µ,ν)

∥DX −ΠDYΠ
⊤∥2F + ϵ⟨Π, logΠ⟩.

Without the entropy term, the problem is a linearly constrained quadratic program, which Gold and Rangarajan (Gold
& Rangarajan, 1996) proposed to solve as a sequence of linear programs. Applied here, this idea leads to a sequence of
entropy-regularized linear OT problems of the form

Πk+1 = arg min
Π∈U(µ,ν)

⟨Ck+1,Π⟩+ ϵ⟨Π, logΠ⟩,

with the cost Ck+1 = DXΠkDY defined using the previous iteration. Each such problem is solved using Sinkhorn inner
iterations.

Barycentric projection. For visualization and comparison purposes, it is often convenient to represent the points from X
and Y in the same space. Let X = (x1, . . . ,xN ) and Y = (y1, . . . ,yN ) denote the coordinates of the points in X and Y ,
respectively. Given the “soft" assignment Π and using Y as the representation space, we can represent X in the form of the
weighted sum, X̂ = YΠ, so that the representation of a point xi in Y becomes (Alvarez-Melis & Jaakkola, 2018)

x̂i =
∑
j

πijyj ,

We remind that Π is by definition a stochastic matrix, implying that the weights in the above sum are non-negative and sum
to 1.

FOSCTTM score. The fraction of samples closer than the true match (FOSCTTM) measures the alignment quality of
two equally-sized sets with known ground-truth correspondence. Let U = {ui} and V = {vi} be two sets of points in a
common metric space Z ordered, without loss of generality, in trivial correspondence order (i.e., every ui corresponds to
vi). Given a point ui, we define the fraction of points in V that are closer to it than the true match vi,

pi =
1

N
|{j : dZ(ui,vj) < dZ(ui,vi)}| .

Similarly, we define the fraction of points in U that are closer to vi and the true match ui,

qi =
1

N
|{j : dZ(vi,uj) < dZ(vi,ui)}| .

The FOCSTTM score is defined as

FOCSTTM =
1

2N

N∑
i=1

(pi + qi).

The score is normalized in the range of [0, 1] with perfect alignment having FOCSTTM = 0.
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Figure 5: Qualitative evaluation of the proposed GW solver in inductive setting. The plot depicts the assignment
produced by our distance-based GW solver (Eq. 4) on a new set of samples.

Figure 6: Qualitative and quantitative results on the scSNARE-seq dataset. Left and middle: Aligned samples from
ATAC and RNAl, colored by the domains (ATAC: black, RNA: red) and cell types, respectively. Right: the sorted FOCSTTM
plot, a quantitative metric measuring the quality of the assignment.
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