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Abstract
Graph neural networks (GNNs) achieve remark-
able performance in graph machine learning tasks
but can be hard to train on large-graph data, where
their learning dynamics are not well understood.
We investigate the training dynamics of large-
graph GNNs using graph neural tangent kernels
(GNTKs) and graphons. In the limit of large
width, optimization of an overparametrized NN is
equivalent to kernel regression on the NTK. Here,
we investigate how the GNTK evolves as another
independent dimension is varied: the graph size.
We use graphons to define limit objects—graphon
NNs for GNNs, and graphon NTKs for GNTKs—,
and prove that, on a sequence of graphs, the GN-
TKs converge to the graphon NTK. We further
prove that the spectrum of the GNTK, which is re-
lated to the directions of fastest learning which be-
comes relevant during early stopping, converges
to the spectrum of the graphon NTK. This implies
that in the large-graph limit, the GNTK fitted on
a graph of moderate size can be used to solve
the same task on the large graph, and to infer the
learning dynamics of the large-graph GNN. These
results are verified empirically on node regression
and classification tasks.

1. Introduction
Several real-world systems such as social-interactions, brain-
connectome, epidemic spread, recommender systems, and
traffic patterns are best represented by structured data in the
form of large graphs. Graph neural networks (GNNs) are
deep neural network architectures that leverage these graph
structures to learn meaningful representations of node and
edge data (Kipf & Welling, 2017; Hamilton et al., 2017;
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Defferrard et al., 2016; Gama et al., 2018). GNNs have
shown remarkable empirical performance in a number of
graph machine learning tasks, but can be hard to train on
large-graph data. Recent research efforts have attempted
to understand the large-graph behavior of GNNs, and in
particular why GNNs trained on small graphs scale well to
large networks (Ruiz et al., 2020; Levie et al., 2021; Keriven
et al., 2020). However, the specific learning dynamics of
a GNN trained directly on the large network, which are
known to be challenging, are not as well understood.

Modern deep neural networks (DNNs) are typically over-
parametrized. The benefits of overparametrization include
faster convergence (Allen-Zhu et al., 2019; Arora et al.,
2018) and better generalization (Cao & Gu, 2019), but on the
other hand the parameters can be more difficult to interpret
and the learning dynamics harder to understand. A remark-
able contribution of Jacot et al. (2018) was the observation
that, in the infinite width limit, learning the weights of a
DNN via gradient descent reduces to kernel regression with
a deterministic and fixed kernel called the neural tangent
kernel (NTK), which captures the first-order approximation
of the neural network’s evolution during gradient descent
(Lee et al., 2019). Since its introduction, the NTK has been
an important and widely-studied tool in the machine learn-
ing toolbox, and kernel regression using the NTK has shown
strong performance on small datasets (Arora et al., 2019b).

In the graph case, it is straightforward to define the NTK
associated with a GNN, or the graph neural tangent kernel
(GNTK) (Du et al., 2019). The GNTK allows studying the
training dynamics of the GNN when the number of features
(the analog of width in the DNN) is large. Nonetheless, the
effect of graph size on the GNN learning dynamics, which
can itself be thought of as another ‘width dimension’, is not
well understood, and there is limited research that investi-
gates this rigorously. Herein, we propose to to understand
the training dynamics of GNNs that are wide in both of these
senses by combining the NTK formalism with the theory of
graphons (Lovász, 2012; Borgs et al., 2008).

A graphon is a symmetric bounded measurable function W :
[0, 1]2 → [0, 1] representing the limit of a sequence of dense
graphs. It can also be interpreted as a random graph model,
in which case we can use the graphon to sample stochastic
graphs. The interpretation of W as both a graph limit and a
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random graph model makes it so that each graphon defines
a family of similar graphs. Hence, one can expect properties
of a graphon to generalize, in a probabilistic sense, the prop-
erties of graphs belonging to its family. Graphons have been
used to study the limit behavior of GNNs, which converge
to so-called graphon neural networks (WNNs) (Ruiz et al.,
2020). The fact that GNNs have a limit on the graphon
implies that they are transferable across graphs in the same
family, thus allowing a GNN to be trained on a graph of
moderate size and transferred to a larger graph.

1.1. Contributions

In this paper, our first contribution is to define the graphon
NTK (WNTK) associated with the WNN (Sec. 4). We then
prove, using mathematical induction, that the GNTK con-
verges to the WNTK (Thm. 5.1). In practice, this implies
that GNTKs, like GNNs, are transferable across graphs of
different sizes associated with the same graphon. That is to
say, one can subsample a small graph and the correspond-
ing data from a large graph, then fit the subsampled data
to the small-graph GNTK via kernel regression, and then
transfer the fitted model to the large-graph GNTK, which is
particularly important for large graphs.

A more important implication of the convergence of the
GNTK is that it is possible to understand the training dy-
namics of GNNs on large graphs by analyzing the behavior
of the corresponding GNTK in graphs of moderate size. For
instance, the eigenvalues of the NTK are associated with
the speed of convergence along the corresponding eigendi-
rections (Jacot et al., 2018). In Thm. 5.2, we show that
the eigenvalues of the graph GNTK, which indicate the di-
rections of fastest convergence of the GNN, converge to
the eigenvalues of the WNTK. This allows these eigenval-
ues to be estimated from GNTKs associated with smaller
graphs. Lastly, we verify our theoretical results in three
numerical applications: prediction of opinion dynamics on
random graphs, movie recommendation using the Movie-
Lens dataset, and node classification on the Cora, CiteSeer
and PubMed networks. We observe the convergence of the
GNTK (Sec. 6.1), the effect of width in kernel regression
and GNN training (Sec. 6.2), and the convergence of the
GNTK eigenvalues on sequences of graphs (Sec. 6.3).

2. Related Work
Neural tangent kernels. The connection between infinitely
wide DNNs and kernel methods (Gaussian processes) has
been known since the 1990s (Neal & Neal, 1996; Williams,
1996), but a more theoretical formulation was presented by
Jacot et al. (2018), which introduced the NTK and proved its
constancy property in the infinite width limit, with Liu et al.
(2020) later showing that constancy only holds for architec-
tures with linear output layer. Several works have derived

NTKs for a generalized classes of neural networks, includ-
ing convolutional neural networks (Arora et al., 2019a; Li
et al., 2019), ResNets (Huang et al., 2020) and, most closely
related to our work, GNNs (Du et al., 2019).

Graphons and size generalization in deep learning.
Graphons have been used to understand GNN convergence
and transferability (Ruiz et al., 2020; 2021a; Maskey et al.,
2023), to analyze the generalization properties of GNNs in
large graphs (Maskey et al., 2022), and to propose more
computationally efficient training algorithms for large-scale
GNNs (Cerviño et al., 2023). More recently, Xia et al.
(2022) proposed implicit graphon neural representations,
which use neural networks to estimate graphons.

Yehudai et al. (2021) study graphs in which the local struc-
ture depends on the graph size—which is analogous to the
dense graphs associated with graphons—, and find that
GNNs are not guaranteed to scale to large graph sizes. How-
ever, their result foregoes the normalization of the adjacency
matrix by the graph size, while we leverage this normal-
ization to show operator norm convergence of the kernels
associated with the graph convolution. It is also worth
noting that our work is fundamentally different than GNN
convergence or transferability results, because it relates not
to the GNN architecture but to the GNN learning dynam-
ics, and uses a mathematical induction proof as opposed to
the spectral convergence argument typically used in GNN
convergence proofs.

3. Graph and Graphon Neural Networks
Let Gn = (V, E , w) be a graph where V , |V| = n, is the
set of nodes or vertices, E ⊆ V × V is the set of edges
and w : E → R is a map assigning weights to the edges in
E . The size-normalized adjacency matrix of Gn, denoted
An ∈ Rn×n, is given by [A]ij = w(i, j)/n. In this paper
we focus on undirected graphs Gn, with symmetric An.

3.1. Graph Neural Networks

Supported on the graph Gn with n nodes, we define node
data xn ∈ Rn—also called graph signals (Shuman et al.,
2013)—where [xn]i is the value of the signal at node i.
GNNs iteratively update each node’s data by aggregating
the data from its neighbors using graph convolutions. An
order-K graph convolution is defined as

yn = H(xn) =

K−1∑
k=0

hkA
k
nxn (1)

where h0, . . . , hK−1 are the convolution coefficients. When
K = 2 and An is binary, (1) can be seen as an aggre-
gation operation akin to the AGGREGATE operation in,
e.g., (Xu et al., 2019; Hamilton et al., 2017), or as the
message-passing operation in message-passing neural net-
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Table 1. Description of variables.
Variable Description
An Adjacency matrix of graph Gn

xn Graph signal on Gn

Wn Graphon induced by Gn

Xn Graphon signal induced by xn

W Limiting graphon
X Limiting graphon signal

works (MPNNs) (Gilmer et al., 2017).

More generally, let Xn ∈ Rn×F and Yn ∈ Rn×G be
F - and G-dimensional signals respectively, where the f th
(gth) column is a feature xf

n (yg
n). In this case, the graph

convolution generalizes to

Yn = H(Xn) =

K−1∑
k=0

Ak
nXnHk (2)

with weights H0,H1, . . . ,HK−1 ∈ RF×G. Note that the
number of parameters of the graph convolutions in (1) and
(2), K and KFG respectively, are independent of n.

A GNN consists of L layers, each of which composes a
graph convolution and a nonlinear activation function. Ex-
plicitly, the lth layer of a GNN can be written as

Xl,n = σ (Ul,n)

Ul,n = H(Xl−1,n) =

K−1∑
k=0

Ak
nXl−1,nHl,k

(3)

where Xl−1,n ∈ Rn×Fl−1 is the layer input, Xl,n ∈ Rn×Fl

is the layer output, Hl,k ∈ RFl−1×Fl are the layer weights
and σ is a pointwise nonlinear activation function, i.e.,
[σ(X)]ij = σ([X]ij). Typical choices for σ include ReLU,
tanh, and sigmoid. At the first layer of the GNN, the input
X0,n is the input data X. Similarly, the GNN output Yn is
given by the last layer output Xn,L.

In the following, we represent the entire GNN consisting
of the concatenation of L layers like (3) as the parametric
map Yn = f(Xn;An,H), where H = {Hl,k}l,k groups
the learnable weights Hl,k at all layers. This more concise
representation highlights the independence between the ad-
jacency matrix An (i.e., the graph) and the parameters H,
which the GNN inherits from the graph convolution. We
note that while we describe a general class of GNNs here,
the methods in our paper can be directly adapted to other
types of GNNs.

3.2. Graphon Neural Networks

Graphons are bounded, symmetric, measurable func-
tions W : [0, 1]2 → [0, 1] representing limits of sequences

of dense graphs (Lovász, 2012; Borgs et al., 2008). A
graph sequence {Gn} converges to a graphon in the sense
that the densities of homomorphisms of any finite, un-
weighted and undirected graph F = (V ′, E ′) into Gn con-
verge to the densities of homomorphisms of F into W.
The graphs F can be thought of as motifs, such as trian-
gles, k-cycles, k-cliques, etc. Explicitly, let hom(F,Gn)
denote the total number of homomorphisms between V ′

and Vn. The density of such homomorphisms is given by
t(F,Gn) = hom(F,Gn)/n

|V′| and we can similarly de-
fine t(F,W) (see (Borgs et al., 2008)). Then, we say that
Gn → W if and only if

lim
n→∞

t(F,Gn) = t(F,W) (4)

for all simple F (Lovász & Szegedy, 2006).

Alternatively, the graphon can also be seen as a generative
model for stochastic (also called W-random) graphs. Nodes
are picked by sampling points ui, 1 ≤ i ≤ n, from the unit
interval and connecting edges between nodes i and j with
probability W(ui, uj). Importantly, sequences of stochastic
graphs generated in this way converge almost surely to the
graphon (Lovász, 2012)[Cor. 10.4].

The notion of graph signals is extended to graphons by
defining graphon signals, which are functions X : [0, 1] →
R (Ruiz et al., 2021a). We restrict attention to graphon
signals with finite energy, i.e., X ∈ L2([0, 1]).

Analogously to (2), given F - and G-dimensional graphon
signals X : [0, 1] → RF and Y : [0, 1] → RG, the graphon
convolution is defined as (Ruiz et al., 2021a)

Y = THX =

K−1∑
k=0

T
(k)
W XHk

T
(k)
W X =

∫ 1

0

W(u, v)T
(k−1)
W X(u)du

(5)

where T
(0)
W = I is the identity and the convolution weights

are collected in the matrices H0,H1, . . . ,HK−1 ∈ RF×G.

The extension of the GNN to graphon data is the graphon
neural network (WNN). Akin to the GNN, the WNN is
formed by L layers each of which composes a graphon
convolution and a nonlinear activation function. Explicitly,
the lth layer of the WNN is given by

Xl = σ (Ul)

Ul = THl
Xl−1 =

K−1∑
k=0

T
(k)
W Xl−1Hl,k

(6)

where Xl−1 : [0, 1] → RFl−1 is the layer input, Xl :
[0, 1] → RFl is its output, Hl,k ∈ RFl−1×Fl are its weights
and σ is a pointwise nonlinearity (e.g., the ReLU). The input
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of the first layer of the WNN is X0 = X , and the output of
the WNN is the last layer ouput, i.e., Y = XL.

We can describe the WNN more compactly as the map
Y = f(X;W,H), with H = {Hl,k}l,k the set of learnable
parameters at all layers. Note that, if the weights H are
the same, the WNN map f(X;W,H) is the same as the
GNN map f(X;An,H) with An swapped with W. This is
important because it implies that, similarly to how graphons
are generative models for graphs, WNNs are generative mod-
els for GNNs. Indeed, we can use the WNN f(X;W,H)
to sample the GNN yn = f(xn;An,H) with

[An]ij ∼ Ber(W(ui, uj))

[xn]i = X(ui) (7)

where the ui are sampled uniformly and independently at
random from [0, 1] and Ber() is the Bernoulli distribution.

As n → ∞, sequences of GNNs sampled from the WNN
as described above converge to the WNN. In fact, as long
as H is the same, any GNN f(xn;An,H) applied to a
sequence {(Gn,xn)} converging to (W, X) converges to
f(X;W,H) (Ruiz et al., 2021a). A more important result
in practice is that this convergence implies that GNNs are
transferable across graphs associated with the same graphon,
i.e., they can be trained on graphs Gn and executed on
graphs Gm with an error that decreases asymptotically with
n and m (Ruiz et al., 2021b; 2020).

In Sec. 5, we prove a similar convergence result for the neu-
ral tangent kernels (NTKs) associated with f(xn;An,H)
and f(X;W,H), but before doing so, we need to intro-
duce induced WNNs. The WNN induced by the GNN
f(xn;An,H) is defined as Yn = f(Xn;Wn,H), with

Wn(u, v) =

n∑
i=1

n∑
j=1

[An]ijI(u ∈ Ii)I(v ∈ Ij),

Xn(u) =

n∑
i=1

[xn]iI(u ∈ Ii)

(8)

and where I is the indicator function, Ii = [(i− 1)/n, i/n)
for 1 ≤ i ≤ n− 1, and In = [(n− 1)/n, 1]. The graphon
Wn is induced by the graph Gn, and the graphon signals
Xn and Yn are induced by the graph signals xn and yn. A
succinct description of all graph and graphon variables is
provided in Table 1.

4. Graph and Graphon Neural Tangent Kernel
Consider a general, fully-connected neural network f(x;H),
with layers given by xl = σ(Hlxl−1), input x0 = x ∈
Rd0 and learnable parameters H = {Hl}l ∈ Rdl−1×dl ,
[Hl]pq = hl,pq. For a training set {xi, ỹi}Mi=1, assume that
the loss to be minimized is the mean squared error (MSE)

or quadratic loss

min
H

ℓ(H) = min
H

M∑
i=1

(f(xi;H)− ỹi)
2. (9)

As the training progresses, the output of the neural network
for input xi is updated as yi(t) = f(xi;H(t)). As such,
the weight update rule is given by ∂H

∂t = −∇ℓ(H(t)) and
so the output evolves as

∂yi(t)

∂t
=

∑
j Θ(xi,xj ;H(t))(f(xi;H(t))− ŷi),

Θ(xi,xj ;H) =
∑
l,p,q

∂f(xi;H)

∂hl,pq

∂f(xj ;H)

∂hl,pq
.

(10)

In the infinite-width limit as dl → ∞, Jacot et al. (2018);
Liu et al. (2020) showed that, provided that the last layer
has linear output (i.e., it does not have an activation σ),
Θ(xi,xj ;H) converges to a limiting kernel, the NTK. This
kernel stays constant during training—a property called
constancy—, which is equivalent to replacing the outputs
of the neural network by their first-order Taylor expansion
in the parameter space (Lee et al., 2019). Hence, in the
infinite-width limit the training dynamics of (10) reduce to
kernel ridge regression1 on the NTK, which has a closed-
form solution. This facilitates understanding the learning
dynamics of overparametrized neural networks, which are
notoriously difficult to study directly, by analysis of the
corresponding NTK.

4.1. Graph Neural Tangent Kernel

For simplicity, we will consider a GNN with only one fea-
ture per layer; the generalization to multiple features is more
involved but straightforward. Recall that the L-layer GNN
supported on An ∈ Rn×n is written as

xn,0 = xn ul,n = Hl(xl−1,n)

xl,n = σ(ul,n) f(xn;An,H) = xL,n.

The graph NTK (GNTK) associated with this GNN is

Θ(xn,x
′
n;An,H) =∇Hf(xn;An,H)T∇Hf(x′

n;An,H)

=
∑

k σ
′(uL,n)A

k
nxL−1,n ⊗ σ′(u′

L,n)A
k
nx

′
L−1,n

+ σ′(uL,n)(σ
′(uL−1,n)A

k
nxL−2,n)

⊗ σ′(u′
L,n)HL(σ

′(u′
L−1,n)A

k
nx

′
L−2,n) + . . .

1In practice, it is not necessary to consider the MSE for this
derivation. It suffices for the loss to be such that the norm of the
training direction f(H0) − f(H⋆) is strictly decreasing during
training (Jacot et al., 2018). E.g., if we consider the cross-entropy
loss, the training dynamics reduce to kernel logistic regression.
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where there are L terms; the first term corresponds to the
last layer, the second term to the second-last layer, and so
on. We have used σ′(u) to denote the diagonal matrix with
jjth entry equal to σ′([u]j), where σ′ is the derivative of σ.
Note that ∇Hf is a |H| × n matrix, hence the GNTK is a
matrix Θn(xn,x

′
n;An,H) ∈ Rn×n.

4.2. Graphon Neural Tangent Kernel

To derive the WNTK, we will also consider a WNN with
only one feature per layer for simplicity. Recall that the
L-layer WNN associated with the graphon W is given by

X0 = X Ul = THl
Xl−1

Xl = σ(Ul) f(X;W,H) = XL.

Therefore, the WNTK is given by

Θ(X,X ′;W,H) =

=
∑

l,k ∂hl,k
f(X;W,H)⊗ ∂hl,k

f(X ′;W,H).
(11)

Calculating the derivative with respect to the kth weight in
layer lj = L− j, we get

∂hlj ,k
uL = T

(k)
W XL−1

for j = 0, and similarly for 0 < j < L,

∂hlj ,k
uL = THL

σ′(UL−1) . . . THlj−1
σ′(UL−j)T

(k)
W Xlj−1

.

Hence, (11) has L terms in total, explicitly

Θ(X,X ′;W,H) =

=
∑

k σ
′(UL)T

(k)
W XL−1 ⊗ σ′(U ′

L)T
(k)
W X ′

L−1

+ σ′(UL)THL
(σ′(UL−1)T

(k)
W XL−2)

⊗ σ′(U ′
L)THL

(σ′(U ′
L−1)T

(k)
W X ′

L−2) + . . .

where σ′(UL) is now evaluated and multiplied pointwise.
Note that Θ is a linear operator on graphon signals, i.e.,
given a signal Y ∈ L2([0, 1]), the WNTK applied to this
signal yields

Θ(X,X ′;W,H)Y =
∫ 1

0

∑
k σ

′(UL(u))T
(k)
W XL−1(u)

× σ′(U ′
L(v))T

(k)
W X ′

L−1(v)Y (v)

+ σ′(UL(u))THL
(σ′(UL−1)T

(k)
W XL−2)(u)

× σ′(UL(v))THL
(σ′(UL−1)T

(k)
W XL−2)(v)Y (v) + . . . dv

where the first term corresponds to the last layer, the second
corrresponds to the second-last layer and so on.

For a graph An sampled from W with associated induced
graphon Wn, and for input features xn sampled from a
graphon signal X and associated induced graphon signal
Xn [cf. (8)], the induced WNTK is given by the same
formula as (11) but with W, X replaced by Wn, Xn.

5. Graph NTK Converges to Graphon NTK
Next, we consider a sequence of graph signals {(Gn,xn)}
converging to a graphon signal (W, X) to evaluate the con-
vergence of the GNTK Θ(xn,x

′
n;An,H) to the WNTK

Θ(X,X ′;W,H). First, for each pair of signals X,X ′, the
WNTK Θ(X,X ′;W,H)—which we denote Θ(X,X ′) to
simplify notation—is a linear operator on functions in L2.
Hence, to prove convergence to this operator we introduce
the operator norm

||Θ(X,X ′)|| = sup
Y ̸=0

||Θ(X,X ′)Y ||
||Y || . (12)

Let W be a graphon and X,X ′ be fixed graphon signals.
Consider a sequence of graph signals {(Gn,xn)} (respec-
tively {(Gn,x

′
n)}) converging to (W, X) (respectively

(W, X ′)) in the sense of (Ruiz et al., 2021a)[Def. 2]. The
notion of convergence of graph signals on a sequence of
dense graphs is simple; Gn converges to W in the homo-
morphism density sense [cf. (4)], and Xn, the graphon
signal induced by xn, converges to X in the L2 norm, i.e.

∥Xn −X∥ → 0 (13)

up to node relabelings (see (Ruiz et al., 2021a) for further de-
tails, and in particular Lemma 2 for the relationship between
(Gn,xn) and the induced signal (Wn, Xn)).

Let (Wn, Xn) be the graphon signal induced by the graph
signal (Gn,xn) [cf. (8)]. The main result of this paper is
the following theorem that shows that the WNTK induced
by the GNTK converges to the limiting WNTK. The proof
is deferred to Appendix A.
Theorem 5.1. Let W be a graphon and X,X ′ ∈ L2([0, 1])
be arbitrary graphon signals. Suppose that {Gn} is
a sequence of graphs converging to W [cf. (4)] and
{xn} , {x′

n} are sequences of graph signals converging to
X [cf. (13)]. Then, for any L-layer GNN with finite K,
fixed weights H and 1-Lipschitz nonlinearity σ, the asso-
ciated GNTKs Θ(xn,x

′
n;An,H) converge in the operator

norm:

lim
n→∞

||Θ(Xn, X
′
n;Wn,H)−Θ(X,X ′;W,H)|| = 0

where Θ(Xn, X
′
n;Wn,H) is the WNTK induced by the

GNTK Θ(xn,x
′
n;An,H).

The convergence of the GNTK to a limit object—the
WNTK—has two important implications for machine learn-
ing on large-scale graphs. First, consider that we have
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Figure 1. Difference between the test error achieved by the GNTK fitted on the n-node graph when used for prediction the n-node graph,
and the test error achived by the same GNTK when used for predicition on the N -node graph. (left) Opinion dynamics on geometric and
SBM graphs, where the test error is the MSE N = 300. (right) Node classification on Cora, CiteSeer and Pubmed, where the test error is
the CE and N = 2708, 3327, and 10000 respectively.

a large graph GN on which we want to predict signals
yN using the GNTK, but that we do not have enough
computational resources to compute the full-sized GNTK
Θ(xN ,x′

N ;AN ,H). This is expected, since calculating the
kernel regression weights on this graph requires inverting
a matrix with dimension proportional to M , the number of
training samples, and the graph size N , see Sec. 4. Thm.
5.1 implies that we can subsample the GNTK and the labels
YN on a smaller graph Gn, n ≪ N—as Θ(xn,x

′
n;An,H)

and yn respectively—and fit the data to the GNTK on this
smaller graph. Once the kernel regression weights are ob-
tained, they can then be transferred to make predictions
on GN . Naturally, there will be an error associated with
this transference; however, due to convergence, this error
vanishes asymptotically in n.

The precise convergence bounds for different graphs can be
computed by plugging into (26). For instance, for graphs
sampled from the graphon as in (Ruiz et al., 2021b)[Def. 1],
the bound is given by

||Θ(Xn, X
′
n)−Θ(X,X ′)|| ≤ C(K4+L 2Aw

n
+K2+LAx

n
).

where C is a constant, and Aw and Ax are the Lipschitz
constants of the graphon and the graphon signal respectively.

In practice, transferability is useful in a variety of real-world
applications, especially on large graphs. For instance, one
may be interested in the learning dynamics of a GNN trained
to provide ad recommendations on a growing, dense social
media network. Our theoretical results show that one can
calculate the GNTK on a smaller subgraph, e.g., the same
social media network at an earlier time, and then transfer
it to the large target graph with theoretical performance
guarantees. This works because dense networks growing
under the same underlying ‘rule’ or ‘process’ should have

similar homomorphism densities, and converge to similar
graphons; or, inversely, they can be thought of as being
sampled from similar graphons. The more similar these
limiting graphons are (under a metric such as the cut metric
or the L2 norm), the lower the error when transferring the
GNTK across graphs.

A second implication of Thm. 5.1, which is perhaps more
important, is that GNTK convergence implies that a GNTK
fitted on a smaller graph can be used to infer details about
the training dynamics of wide/overparametrized GNNs on
larger graphs. This follows from Thm. 5.1 in conjunc-
tion with theoretical results by Liu et al. (2020), which
proves that in the infinite-width limit the training dynamics
of general convolutional models (including GNNs) reduces
to kernel ridge regression on the corresponding NTK; and
empirical results by Sabanayagam et al. (2021) showing that
even when the output layer is nonlinear, constancy of the
GNTK can still be observed.

An example of property of a large-graph GNTK
Θ(xN ,x′

N ;AN ,H) that can be estimated from a small-
graph GNTK Θ(xn,x

′
n;An,H) is its eigenvalue spec-

trum. As we show in Thm. 5.2, the spectrum of
Θ(Xn, X

′
n;Wn,H) converges to the the spectrum of

Θ(X,X ′;W,H). The proof is deferred to Appendix B.

Theorem 5.2. Let {xi,n}Mi=1 be a set of M signals on the
graph Gn, and {Xi,n}Mi=1 the corresponding induced sig-
nals on the induced graphon Wn. Assume that Gn → W
[cf. (4)] and Xi,n → X [cf. (13)] for all i. Define the op-
erators Θn and Θ where [Θn]ij = Θ(Xi,n, Xj,n;Wn,H)
and [Θ]ij = Θ(Xi, Xj ;W,H). Let λp(T ), p ∈ Z \ {0},
denote the pth eigenvalue of a compact, self-adjoint opera-
tor T , with λ−1 < λ−2 < . . . ≤ 0 ≤ . . . < λ2 < λ1. If the
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Table 2. Movie recommendation results. Relative difference be-
tween the test MSE achieved by the GNTK fitted on the n-node
graph when used for prediction the n-node graph, and the test
error achived by the same GNTK when used for predicition on the
N -node graph, where N = 1000.

Number of nodes 100 200 300 400 500
Mean (%) 6.80 0.78 0.09 0.03 0.03
Std. dev. (p.p.) 3.51 1.16 0.03 0.01 0.02

weights in H are bounded, then, for all p,

lim
n→∞

|λp(Θn)− λp(Θ)| → 0.

Moreover, the corresponding eigenspaces converge in the
sense that the spectral projectors converge.

This is an important result because, as proved by Jacot et al.
(2018), the convergence of kernel gradient descent follows
the kernel principal components. Thus, if the GNN f(H)
is sufficiently wide, and if f(H0)− f(H⋆) is aligned with
the ith GNTK principal component, we can expect gradient
descent to converge with rate proportional to λi, the ith
eigenvalue of the GNTK. Thm. 5.2 shows that the GNTK
eigenvalues converge to the eigenvalues of the WNTK. As
such, we can estimate the speed of convergence of a large-
graph GNN f(xN ;AN ,H) from the eigenvalues of a small-
graph GNTK Θ(xn,x

′
n;An,H). A numerical example of

this application of Thms. 5.1 and 5.2 is given in Sec. 6.3.

Spectral convergence of the GNTK is particularly relevant
for practical applications on large graphs. Convergence of
the spectrum implies convergence of the directions of learn-
ing. Intuitively, one can calculate the GNTK on the smaller
graph, then transfer it to the large graph with the guarantee
that the dominant directions of fastest convergence are be-
ing captured. We can learn GNN architectures that harness
this property by pretraining on a smaller graph, and making
adjustments on the large graph; or, by iterating between
different resolutions of graph size.

6. Numerical Results
In the following, we illustrate the convergence of the GNTK
to the WNTK on a simulated opinion dynamics model on
random graphs; on a movie recommendation graph; and on
citation networks (Sec. 6.1). In the opinion dynamics prob-
lem, we further vary the width of the network to analyze the
large width behavior of the GNTK and how it relates to the
behavior of the GNN (Sec. 6.2). We conclude with an ex-
ample of how the convergence of the GNTK can be used in
practice to estimate the eigenvalues of the GNTK, and thus
the speed of GNN training along its principal components,
on large-scale graphs (Sec. 6.3).

Opinion dynamics. This is a node-level task modeling the

outcomes of a mathematical model for studying the evo-
lution of ideologies, affiliations, and opinions in society
(Lorenz, 2007), including topics of important practical inter-
est such as political ideologies and misinformation spread.
On an undirected n-node graph G = (V, E), we consider
an opinion dynamics process xt ∈ Rn. The node data [xt]i
is the opinion of individual i under a standard bounded-
confidence model described by Hegselmann et al. (2002):

[xt]i =
∑

j∈Si,t−1

c[xt−1]j . (14)

where c > 0 is the so-called influence parameter and
Si,t−1 = Ni ∩ Xi,t−1 is the intersection of Ni = {j ∈
V | (i, j) ∈ E}, the neighborhood of i, and Xi,t = {j ∈
V | |[xt]j − [xt]i| ≤ ϵ}, the set of nodes whose opinion at
time t diverges by at most 0 ≤ ϵ ≤ 1 of the opinion of node
i. This model reduces to the classic De-Groot (DeGroot,
1974) opinion model for ϵ = 1. We fix ϵ = 0.3 and c = 0.1.

After drawing the initial opinions x0 from a Gaussian dis-
tribution with µ = 0 and Σ = 2I, we run the process
(14) until convergence (for at most T = 1000 iterations)
to obtain the final opinions xT . The goal of the learning
problem is then to predict y = xT from x = x0. We fix
the training set size to 300 samples, and use 30 samples for
both validation and testing.

Movie recommendation. In this problem, the graph is a
movie similarity network, the data are existing user ratings
(ranging from 1 to 5), and the task is to use the existing
ratings to fill in the missing ratings for movie recommen-
dation. The movie similarity graph is a dense correlation
graph built by computing pairwise correlations between the
rating vectors of the movies rated in the MovieLens-100k
dataset (Harper & Konstan, 2016). We only consider movies
with at least 10 ratings, and the large graph has N = 1000
nodes sampled at random from the set of admissible movies.
The learning problem is to predict the ratings of the movie
“Contact”. We use a 90-10 train-test split of the data, and
build the graph using only the training samples. Due to
memory limitations, we only use 25% of the users (samples)
to compute the GNTK.

Citation networks. The third problem we consider is a node
classification problem on the Cora, CiteSeer and PubMed
networks, where nodes represent documents and undirected
edges represent citations between papers in either direction.
The nodes a bag-of-words representations are grouped in
X ∈ {0, 1}n×F and each node is associated with one of
C classes. We consider the networks and train-test-splits
from the full distribution (Bojchevski & Günnemann, 2017)
available in PyTorch Geometric, but only sample F = 1000
features for CiteSeer and N = 10000 nodes for PubMed due
to memory limitations. Through studying citation networks,
we illustrate the empirical manifestation of our results on
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Figure 2. Projections of the inputs and outputs of the GNTK and GNN, and of the target or true labels onto the second eigenvector of the
adjacency matrix of a 80-node SBM graph for widths F = 10 (left), F = 50 (center) and F = 250 (right).

real-world graphs. Although citation networks are not best
modeled by graphon limits, they certainly have limits, and
our results suggest that convergence is a global property of
GNTKs and graph limits.

Architectures and experiment details. In all experiments,
the GNNs have L = 1 layer (3) with ReLU nonlinear-
ity followed by a perceptron layer. For opinion dynamics,
K = 2, and for movie recommendation, K = 5. In both
cases, we consider the MSE and fit the GNTK using linear
regression. In the citation network experiment, the GNN ar-
chitecture has K = 2 and includes a softmax layer followed
by argmax; and we consider the cross-entropy (CE) and fit
the GNTK using logistic regression. All reported results are
averaged over 5 and 10 realizations for opinion dynamics
and movie recommendation/citation networks respectively.
Additional architecture and experiment details are listed in
each subsection. The code can be found in this repository.
All experiments were run on a NVIDIA RTX A6000 GPU.

6.1. Convergence

To visualize the convergence of the GNTK, we fit a GNTK
with F1 = 10 in the opinon dynamics and citation network
experiments, and F1 = 16 in the recommendation exper-
iment, on the training set of a small n-node graph; and
transfer this GNTK, without retraining, to predict the out-
puts on the test set of both the same n-node graph and a
larger N -node graph. To visualize convergence, we plot
in Fig. 1 the absolute difference between the test errors at-
tained on the n-node and the N -node graph (normalized by
the test error on the N -node graph) as a function of the size
of the smaller graph n, for both the opinion dynamics (left)
and node classification (right) experiments. The results of
the recommendation experiment are reported in Table 2.

In opinion dynamics, N = 300. We consider two types
of graphs, corresponding to two graphon families: (a) a
symmetrized geometric k-nearest neighbor graph where
nodes are drawn at random from a 50× 50 square and k =

10 1 100

Eigenvalue magnitude (normalized)

Cora

CiteSeer

PubMed

n=2000
n=1800
n=1600

n=1400
n=1200
n=1000

n=800
n=600
n=400

Figure 3. The leading eigenvalue of the GNTK with width F = 10
for Cora, CiteSeer and PubMed as a function of the graph size n.

n/10; and (b) a stochastic block model (SBM) graph with
intra-community probability p = 0.1 and inter-community
probability q = 0.05. As n increases from 20 to 100, we
observe that the difference between the MSEs for the n-node
and the N -node graphs decrease steadily from ∼ 70% to
∼ 20% on the geometric graphs and from ∼ 90% to ∼ 40%
on the SBM graphs.

In the recommendation experiment, N = 1000. As n in-
creases from 100 to 500, we see from Table 2 that the aver-
age test MSE difference on the large graph decreases from
6.8% to 0.3%, and so does the standard deviation, thus con-
firming our theoretical findings. In particular, n = 300 is
enough to achieve an MSE difference of less than 1%.

In the node classification experiment, N = 2708 for Cora,
N = 3327 for CiteSeer, and N = 10000 for PubMed (sam-
pled from the 19717 nodes in the original due to memory
limitations). For all datasets, the difference between the CE
loss for the n-node and the N -node graph also decreases as
n increases. This can be interpreted to mean that node classi-
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fication on these citation networks depends largely on local
information, so beyond a critical size n, the transference
error saturates. An interesting point to make is that although
these citation networks are not dense (i.e., are not best mod-
eled by a graphon), we still see the empirical manifestation
of our theoretical results.

6.2. Wide Network Behavior

Next, we analyze the effect of width on both the GNN and
the GNTK when they are trained/fitted on a small graph
and transferred to a large graph. From the NTK analysis by
Jacot et al. (2018), as the GNN width increases we expect
(i) the GNTK and the GNN to exhibit less variance over
multiple weight initializations and (ii) the GNN outputs to
approach those of kernel regression with the GNTK.

For the opinion dynamics experiment on SBMs, we consider
three GNNs with widths (number of features) F (1)

1 = 10,
F

(2)
1 = 50, and F

(3)
1 = 250 supported on the same 80-node

graph. Using their initial weights, we construct the corre-
sponding GNTKs. We train the three GNNs by minimizing
the MSE loss over 20 epochs and with batch size 32, using
ADAM (Kingma & Ba, 2015) with learning rate 1e−3 and
weight decay 5e−3. Simultaneously, we fit the GNTKs to
the training set, and then transfer both the GNNs and the
corresponding GNTKs to the N -node graph and compute
their outputs on the test set.

In Fig. 2, we plot the projection of the outputs y onto the sec-
ond graph eigenvector v2, [ŷ]2 = vT

2 y against the projec-
tions of the inputs onto the same vector [x̂]2 = vT

2 x (sorted
in ascending order) for both the GNNs and the GNTKs
for F (1)

1 = 10 (left), F (2)
1 = 50 (center), and F

(3)
1 = 250

(right). The second graph eigenvector was chosen as it cap-
tures the community structure, however, note that the same
behavior was observed upon projecting onto other eigenvec-
tors, as shown in Appendix C. The results are averaged over
5 GNN initializations, with the solid lines representing the
mean and the shaded areas representing the standard devi-
ation. The behavior is as expected: as the width increases,
the GNN and the GNTK have smaller variance in behavior
for different weight initializations, and the GNN and GNTK
curves align. In Appendix C, we include additional plots dis-
playing the mean and variance over different initializations
as we vary the graph size.

6.3. Application: Eigenvalue Convergence

In this section, we elucidate an important application of the
convergence of the GNTK. Jacot et al. (2018) shows that the
convergence of kernel gradient descent follows the kernel
principal components. Therefore, if the GNN is sufficiently
wide, and f(Xn;An,H0)−f(Xn;Sn,H⋆) is aligned with
the ith GNTK principal component, we can expect gradient

descent to converge with rate proportional to λi, the ith
eigenvalue of the GNTK2.

Recall that we prove, in Thm. 2, that the spectrum
of the GNTKs converge in the graphon limit. In this
context, a simple application of the convergence of the
GNTK spectrum is as follows: say that we know that
f(XN ;AN ,H0)−f(XN ;AN ,H⋆) is aligned with the pth
GNTK eigenvector, and we want to estimate its speed of
convergence, but the kernel Θ(XN ,X′

N ;AN ,H) is too ex-
pensive to compute. We could in this case sample a graph
Gn, n ≪ N from the induced graphon WN and calculate
Θ(Xn,X

′
n;An,H). From Thm. 5.2, λn,p converges to

λN,p. Hence, for large enough n, λn,p should provide a
good approximation of λN,p.

To illustrate this empirically, in Fig. 3 we plot the domi-
nant eigenvalues of the GNTK associated with a GNN with
F1 = 10 features supported on graphs of increasing size n
sampled from the Cora, CiteSeer, and PubMed networks
(averaged over 10 initializations). As n grows, we see that
the difference between the dominant eigenvalues of consec-
utive GNTKs reduces. I.e., for each citation dataset, the
value of the dominant eigenvalue converges as n increases,
indicating that the speed of convergence of the GNN along
the dominant GNTK eigenvector converges as the graph
grows. For all but the PubMed dataset, the 1600-node graph
gives an approximation of λN,1 that is over 70% good.

7. Conclusions
In this paper, we define WNTKs as the limiting objects of
GNTKs, and study how the GNTK evolves as the under-
lying graph of the corresponding GNN grows. We show
that GNTKs converge to the WNTK and that their spec-
tra also converges, thus providing theoretical insight into
how the learning dynamics of a GNN evolves as an impor-
tant dimension—the graph size—grows. In practice, these
convergences imply that one can transfer the GNTK of a
smaller graph to solve the same task on a larger graph with-
out any further optimization, with theoretical guarantees
of performance and insight on the rates of learning along
eigendirections that converge as the graph grows. These
results were demonstrated through simulations on synthetic
and real-world graphs. To conclude, a limitation of this work
is that graphons are only good models for dense graphs. In
future work, we plan to extend our results to more gen-
eral graph models, and to better understand the relationship
between the spectra of the graph and of the GNTK.

2Theoretically, constancy of the NTK in the infinite-width limit
and equivalence between GNN training and kernel regression only
holds for architectures with linear output layer (Liu et al., 2020).
Although this is not the case of the GNNs used here, GNTKs
associated with GNNs with nonlinear output layers seem to exhibit
constancy empirically (Sabanayagam et al., 2021)
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A. Proof of GNTK Convergence
Proof of Thm. 5.1. To simplify notation, we will write Θ(X,X ′;W,H) = Θ(X,X ′) and Θ(Xn, X

′
n;Wn,H) =

Θ(Xn, X
′
n). Let Y be an arbitrary L2 signal. Using the triangle inequality,

||Θ(X,X ′)Y −Θ(Xn, X
′
n)Y || ≤

∑
k

||σ′(UL)T
(k)
W XL−1⟨σ′(U ′

L)T
(k)
W X ′

L−1, Y ⟩

− σ′(UL,n)T
(k)
Wn

Xn,L−1⟨σ′(U ′
L,n)T

(k)
Wn

X ′
L−1,nY ⟩||+ . . .

(15)

where there are L terms for each k.

Since σ is Lipschitz, from the formula we see that it suffices to prove the following convergence statements for all
k ∈ 1, ...,K − 1 as n → ∞:

∥Ul,n − Ul∥ → 0 (16)
∥U ′

l,n − U ′
l∥ → 0 (17)

as well as ∣∣∣∣∣∣T (k)
Wn

− T
(k)
W

∣∣∣∣∣∣ → 0 (18)∣∣∣∣Thl,n
− Thl

∣∣∣∣ → 0. (19)

Here, we prove these statements for each finite K using mathematical induction. For fixed, finite K, (18) implies (19). The
convergence in (16) and (17) are essentially the same, so let us focus on the first without loss of generality. Expanding the
first layer, we have

U1,n − U1 =
∑
k

h1,k(T
(k)
Wn

Xn − T
(k)
W X) =

∑
k

h1,k(T
(k)
Wn

Xn − T
(k)
W X + T

(k)
W Xn − T

(k)
W Xn)

=
∑
k

h1,k((T
(k)
Wn

− T k
W )Xn + T

(k)
W (Xn −X)).

Therefore, by the triangle inequality and the definition of the operator norm, we have

∥U1,n − U1∥ ≤
∑
k

|h1,k|∥T (k)
Wn

− T k
W ∥∥Xn∥+

∑
k

|h1,k|
∣∣∣∣∣∣T (k)

W

∣∣∣∣∣∣ ∥Xn −X∥ (20)

≤
∑
k

max(|h1,k|)∥T (k)
Wn

− T k
W ∥∥Xn∥+

∑
k

max(|h1,k|)∥T (k)
W ∥∥Xn −X∥. (21)

Looking at layer l, we have

Ul,n − Ul =
∑
k

hl,k(T
(k)
Wn

σ(Ul−1,n)− T
(k)
W σ(Ul−1)).

From 21, using mathematical induction, we have, for arbitrary l,

∥Ul,n − Ul∥ ≤ (∥Xn∥∥Xn −X∥+ ∥T (k)
Wn

− T k
W ∥) · (max(|h|)k)l (22)

+

l−1∑
j=1

(max(|h|)k)l−1−j max(|h|)∥T (k)
Wn

− T k
W ∥ (23)

where h is the max of hl,k over all l and k, and so convergence of T (k)
Wn

→ T
(k)
W as in (18) and Xn → X implies convergence

of U1,n → U1 and Ul,n → Ul. Since the nonlinearity σ is Lipschitz, convergence of (17) follows from convergence of (16).

We now focus on proving (18). By Cauchy-Schwarz,

||(TWn − TW )Y ||2 =

∫ 1

0

(∫ 1

0

(Wn(u, v)−W(u, v))Y (v)dv

)2

du

≤
(∫ 1

0

∫ 1

0

(Wn(u, v)−W(u, v))2dvdu

)
||Y ||2.

12
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Therefore, taking the square root, dividing by ||Y ||, and using (12), we get

||TWn − TW || ≤ ||Wn −W||L2 . (24)

It follows that convergence of the induced graphons Wn to the limiting graphon W implies (18) for k = 1. For higher
iterates we note∣∣∣∣∣∣(T (k)

Wn
− T

(k)
W )Y

∣∣∣∣∣∣2 ≤
∫ 1

0

(∫ 1

0

(WnT
(k−1)
Wn

Y (v)−WT k−1
W Y (v))dv

)2

du

≤
∫ 1

0

(∫ 1

0

Wn(T
(k−1)
Wn

− T
(k−1)
W )Y (v)dv

)2

du+

∫ 1

0

(∫ 1

0

(Wn −W)T
(k−1)
W Y (v)dv

)2

du.

Therefore, by the same Cauchy-Schwarz argument above,
∣∣∣∣∣∣T (k)

Wn
− T

(k)
W

∣∣∣∣∣∣ is upper bounded by

||Wn||
∣∣∣∣∣∣T (k−1)

Wn
− T

(k−1)
W

∣∣∣∣∣∣+ ||Wn −W ||
∣∣∣∣∣∣T (k−1)

W

∣∣∣∣∣∣
and so convergence Wn → W implies the convergence of all the iterates T (k)

Wn
→ T

(k)
W by induction. In fact, one can write∣∣∣∣∣∣T (k)

Wn
− T

(k)
W

∣∣∣∣∣∣ ≤ k ||Wn −W||L2 (25)

since
∣∣∣∣∣∣T (k−1)

W

∣∣∣∣∣∣ ≤ 1 and ||Wn|| ≤ 1.

From the proof one can, with some simple algebra, compute a quantitative estimate of ||Θ(Xn, X
′
n)−Θ(X,X ′)|| in terms

of ||Wn −W||, ||Xn −X||, ||X|| and ||X ′||. Precisely, by adding and subtracting cross-terms for each term in (15) and
using the triangle inequality, we get

||Θ(Xn, X
′
n)−Θ(X,X ′)|| ≤ C(K4+L ||Wn −W||+K2+L ||Xn −X||), (26)

where C is a constant in terms of ∥X∥, ∥X ′∥,max(|h|), l. For different choices of graphs, one can then compute these
quantities for an explicit estimate of the convergence bound. (Ruiz et al., 2021b)[Appendix B] provides quantitative
estimates on ||Wn −W|| and ||Xn −X|| for random graph models such as so-called template graphs, weighted graphs
and stochastic graphs.

B. Proof of Spectrum Convergence
Proof of Theorem 5.2. The proof relies on (Anselone & Palmer, 1968)[Prop. 7.1] which proves that if a sequence of
compact operators Tn converges to a compact operator T in the appropriate operator norm, the spectrum of Tn converges to
the spectrum of T . Additionally, from (Anselone & Palmer, 1968)[Thm. 6.3 and Prop 7.1], for every p, the eigenspace
associated with the pth eigenvalue of Tn also converge to the corresponding eigenspace of T . From Thm. 5.1, we know that
Θn → Θ. It remains to show that Θn and Θ are compact.

For any graphon W, the operators T (k)
W and TH [cf. (5)] are compact as they are linear compositions of compact operators

with bounded linear weights. From (11), we thus conclude ∥Θ(X,X ′;W,H)∥ < ∞. Therefore, for Y ∈ L2([0, 1]),
∥Θ(X,X ′;W,H)Y ∥ < ∞, by which we conclude that Θ is compact.

C. Wide Network Behavior: Additional Experiments
Under the same expeirmental setting of Sec. 6.2, in Fig. 4, we plot the projection of the outputs y onto the first graph
eigenvector v1, [ŷ]1 = vT

1 y against the projections of the inputs onto the same vector [x̂]1 = vT
1 x (sorted in ascending

order) for both the GNNs and the GNTKs for F
(1)
1 = 10 (left), F (2)

1 = 50 (center), and F
(3)
1 = 250 (right), and

n = 20, 40, 60, 80, 100 (top to bottom). The results are averaged over 5 GNN initializations, with the solid lines representing
the mean and the shaded areas representing the standard deviation. The behavior is as expected: as the width increases, the

13
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GNN and the GNTK have smaller variance in behavior for different weight initializations, and the GNN and GNTK curves
align. As n increases, we also observe a slight improvement in the variance of the GNN curves. This is expected as, when
GNNs are trained on larger graphs, they have better transferability (Ruiz et al., 2020). No significant trends are observed for
the GNTK curves for increasing n.

14



Graph Neural Tangent Kernel: Convergence on Large Graphs

−3 −2 −1 0 1 2

[x̂]1, sorted

−4

−3

−2

−1

0

1

2

3

[ŷ
] 1

True

GNTK

GNN

−3 −2 −1 0 1 2

[x̂]1, sorted

−3

−2

−1

0

1

2

3

[ŷ
] 1

True

GNTK

GNN

−3 −2 −1 0 1 2

[x̂]1, sorted

−3

−2

−1

0

1

2

3

[ŷ
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Figure 4. Projections of the inputs and outputs of the GNTK and GNN, and of the target or true labels onto the first eigenvector of
the adjacency matrix of a n-node SBM graph for widths F = 10 (left), F = 50 (center) and F = 250 (right). From top to bottom
n = 20, 40, 60, 90, 100.
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