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Abstract

Deep Gaussian Process (DGP) as a model prior in Bayesian learning intuitively exploits
the expressive power of function composition. DGPs also offer diverse modeling capabil-
ities, but inference is challenging because marginalization in latent function space is not
tractable. With Bochner’s theorem, DGP with squared exponential kernel can be viewed as
a deep trigonometric network consisting of the random feature layers, sine and cosine acti-
vation units, and random weight layers. In the wide limit with a bottleneck, we show that
the weight space view yields the same effective covariance functions which were obtained
previously in function space. Also, varying the prior distributions over network parameters
is equivalent to employing different kernels. As such, DGPs can be translated into the deep
bottlenecked trigonometric networks, with which the exact maximum a posteriori estimate
can be obtained. Interestingly, the network representation enables the study of DGP’s neu-
ral tangent kernel, which may also reveal the mean of the intractable predictive distribution.
Statistically, unlike the shallow networks, deep networks of finite width have covariance de-
viating from the limiting kernel, and the inner and outer widths may play different roles in
feature learning. Numerical simulations are presented to support our findings.

1 Introduction

Nearly a decade has passed since the proposal of Deep Gaussian Process (DGP) (Damianou & Lawrence,
2013) which, along with principled uncertainty estimation inherited from Gaussian Process (GP) (Rasmussen
& Williams, 2006), aimed to exploit the compositional structure like Deep Neural Network (DNN) for superior
expressivity and feature learning. Unfortunately, adopting DGP in application remains difficult due to costly
computation and challenging optimization (Dutordoir et al., 2021). In the Bayesian setting, computation of
exact posterior is impossible because one must marginalize multiple latent functions within the hierarchy.
Numerous approximate Bayesian inference schemes, see e.g. (Bui et al., 2016; Salimbeni & Deisenroth, 2017;
Ustyuzhaninov et al., 2020), have been proposed. Because of the intractability of inference, seemingly basic
questions, e.g. the expressivity of DGP, remain unanswered. Analytic methods, even only for maximum a
posteriori (MAP), would allow further insights.

One particular approximate DGP inference stands out among others as it does not rely on imposing inducing
points on latent functions and makes strong connection with DNN. Cutajar et al. (2017) utilized the concept
of expanding the squared exponential (SE) kernels in terms of Gaussian random features and sine/cosine
activation (Rahimi & Recht, 2008), which allows one to translate a GP with SE kernel into a shallow but
infinitely wide trigonometric network. Then DGP, as a cascade of GPs, is a random deep bottlenecked
network (Agrawal et al., 2020), i.e. the activation layers have infinite units but latent output layers are of
finite dimension. The bottlenecks ensure the heavy-tailed statistics (Pleiss & Cunningham, 2021) pertaining
to DGPs (Duvenaud et al., 2014; Lu et al., 2020), unlike the DNNs without bottlenecks are converged into
GP (Lee et al., 2018; Matthews et al., 2018). To pursue MAP of DGP in this context, we shall show that
varying prior over the weight parameters translates to different kernel compositions for DGPs (Lu et al.,
2020). Thus, we can apply gradient descent to the squared loss minus the log of prior over weights for
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obtaining a MAP estimate. More interestingly, the MAP solutions shall be closely related to those obtained
from the neural tangent kernel (NTK) regression (Jacot et al., 2018; Arora et al., 2019).

Therefore, the deep bottlenecked networks position us to understand the true expressive power of DGPs,
including whether simply stacking GPs is better than the tricks of kernel composition (Duvenaud et al.,
2013; Wilson et al., 2016; Sun et al., 2018) and activation design (Pearce et al., 2020). Nevertheless, DGPs
offer appealing flexibility such as multi-fidelity modeling (Kennedy & O’Hagan, 2000; Cutajar et al., 2019;
Lu & Shafto, 2021a) and can be regarded as a Bayesian deep kernel learning (Wilson et al., 2016; Ober et al.,
2021; Lu & Shafto, 2021b). Another critical issue is the general lack of feature learning for kernel based
models like GP and DGP. Kernel functions are fixed, not depending on training data whereas the features
learned in DNNs are result of back propagating the training error. We shall analyze the finite-width kernels
of the random deep bottlenecked networks, the results of which suggest that the learning with a finite-width
Bayesian deep network is similar with GP learning but with random kernels (Benton et al., 2019).

In this paper, we pursue analytical results and investigate the two-layer wide bottlenecked trigonometric
network, a proxy of two-layer DGP with SE kernels, and make four main contributions. (i) Covariance:
we show the equivalence between the two models as the bottlenecked random networks in the wide limit
yield the same exact covariance (Lu et al., 2020). (ii) Expressivity: we show shallow trig networks can
approximate a GP with spectral mixture kernel (Wilson & Adams, 2013) if the features are samples from
mixture of Gaussians. In addition, marginal prior distribution (Yaida, 2020; Zavatone-Veth & Pehlevan,
2021) of a shallow trig net can be non-Gaussian if an embedding phase shift network is incorporated. (iii)
NTK: translating DGPs to the deep trigonometric network representation allows us to derive a closed form
NTK for the corresponding DGPs. The expectation is that kernel regression using NTK shall correspond to
the exact MAP solution of DGP. (iv) Finite-width effects: We define a kernel estimator for a finite network
by marginalizing the random weight parameters. The kernel estimator is then a function of the random
features. Mean of the estimator only coincides with the exact DGP kernel in the wide limit, which signifies
the difference with the shallow network (Yu et al., 2016).

The paper has the following organization. A background for the trigonometric networks, deep Gaussian
processes, and the random feature expansion of kernels is introduced in Sec. 2. In Sec. 3, covariance of shallow
trig networks with different parameter distributions and its non-Gaussian function distribution are discussed.
The derivation of effective kernels for deep trigonometric networks with various parameter distributions is
given in Sec. 4. As the connection between deep trigonometric network and DGP is built, Sec. 5 is devoted
to the derivation of neural tangent kernel. Considering the reality for neural networks, Sec. 6 formulates the
framework for calculating the correction to covariance as a result of the finite width. Numerical simulations
are presented in Sec. 7. The context of literature in which the present work should be placed can be found
in Sec. 8, and a conclusion in Sec. 9 is provided.

2 Background

Consider a parametric function fW(x) which maps input x ∈ RD to real number. In Bayesian settings, given
the data {xi, yi}i=1:N denoted by D, the goal is to obtain the predictive distribution,

p(y∗|x∗,D) =
∫
dW p(y∗|fW(x∗))p(W|D) ,

for an unseen input x∗. A simple likelihood is Gaussian density, p(y|fW(x)) = N (y|fW(x), σ2
n). The poste-

rior is obtained through Bayes rule, p(W|D) ∝ p(W)
∏
p(yi|fW(xi)), with the normalization constant being

the evidence or marginal likelihood. In most cases for Bayesian deep neural networks, the marginalization
over the parameters W is not tractable, and one may seek the maximum a posteriori (MAP) solution.
Namely, p(y∗|fW(x∗)) becomes the predictive solution with

W = argmin
[

− log p(W) −
∑

log p(yi|fW(xi))
]
.

To understand the translation between the weight and function representations, we shall analytically inves-
tigate i) the marginal function prior for a single input and ii) the covariance

∫
dWfW(x)fW(y)p(W) in

weight representation for comparing with the covariance obtained in function representation.
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As the basis for theoretical findings in this paper, we outline three prior theoretical results: marginal prior
distribution for deep linear neural network (Zavatone-Veth & Pehlevan, 2021), exact covariance of two-
layer DGP with squared exponential kernel (Lu et al., 2020), and the random feature expansion of squared
exponential kernel (Rahimi & Recht, 2008).

2.1 Random neural networks

Neural networks are a class of parametric models in which one can regard the function output as the outcome
of propagating the input through a computational graph consisting of multiple layers of linear and nonlinear
mappings. For example, a shallow network can have the following form,

f(x) = wΦ(Ωx) , (1)

where the input x ∈ RD is sequentially propagated through the feature layer (producing preactivation from
multiplying Ω ∈ Rn×d with input), activation units (element-wise nonlinear mapping Φ(·)), and weight layer
(multiplying w ∈ R1×n). A deep neural network has similar structure. For instance,

f(x) = w2Φ
(
Ω2W1Φ(Ω1x)

)
, (2)

where the matrices in feature layers have Ω1 ∈ Rn1×D and Ω2 ∈ Rn2×H , and in weight layers W1 ∈ RH×n1

and w2 ∈ R1×n2 . The integer H represents the width of latent layer output in deep networks.

The inductive bias associated with neural networks is connected to the prior distributions from which the
random parameters in the computational graph are sampled. How well a model can generalize in Bayesian
learning is critically related to its inductive bias (Wilson & Izmailov, 2020). While it is usually difficult
to describe the inductive bias of neural networks quantitatively, some special cases do permit analytic
investigation. Zavatone-Veth & Pehlevan (2021) analytically investigated the marginal distribution over the
output of deep linear and ReLu networks. The following remark is about a particular shallow linear network.
Remark 1. Consider the linear network f(x) = WΩx, a special case of Eq. (1) with Φ being identity
mapping, and the entries in the random matrices Ω ∈ R2×D and W ∈ R1×2 are independent normal,
i.e. Ωij ∼ N (0, σ2

1) and Wij ∼ N (0, σ2
2). Then, the marginal distribution over the output is a Laplace

distribution p(f(x)) = exp(−|f(x)|/κ)/2κ with κ := σ1σ2|x|. The heavy-tailed character is consistent with
the findings in (Vladimirova et al., 2019).

Proof. It is easy to observe that the latent output h = Ωx has independent components hi ∼ N (0, σ2
1 |x|2).

Similarly, conditional on h, the output has f |h ∼ N (0, σ2
2 |h|2). To obtain the marginal distribution p(f) :=

EW,Ω[p(f |W,Ω)] = Eh[p(f |h)], one can integrate out h during the Fourier transformation and then apply the
inverse transform (Zavatone-Veth & Pehlevan, 2021). Namely, in this particular case with hidden dimension
n = dim(h) = 2, we can get,

p(f) =
∫

dq

2πdh eiqf p̃(q|h)p(h) =
∫

dq

2π
eiqf

1 + σ2
1σ

2
2 |x|2q2 = e−|f |/κ

2κ . (3)

In deriving the above, we have used the fact that the Fourier transformation of p(f |h) is p̃(q|h) =
exp(− 1

2q
2σ2

2 |h|2) and the residue theorem is applied to complete the last equality.

As the outputs of neural network are not independent given the shared parameters, another per-
spective of studying the inductive bias is to investigate the distribution over the function values, i.e.
p(f(x1), f(x2), · · · , f(xN )), indexed by the set of inputs. This is a more challenging task than the above
marginal distribution over the function at single input. Fortunately, the central limit theorem applies when
the number of activation units becomes infinity, the multivariate distribution converges to Gaussian, and the
limiting statistics only depends on the mean E[f(x)] and covariance E[f(x)f(y)]. Closed form covariance
functions can be derived for shallow networks with sigmoidal and ReLu activations (Williams, 1997; Cho &
Saul, 2009), but the same techniques do not seem to carry to the deeper networks. As for the deep networks
of finite width, various techniques from statistical physics (Dyer & Gur-Ari, 2019; Yaida, 2020; Roberts et al.,
2021) have been employed to compute the corrections.
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2.2 Gaussian process and deep Gaussian process

In parallel, Gaussian Processes (Rasmussen & Williams, 2006) (GPs) directly model the set of function
values with a Gaussian, p(f(x1:N )|θ) = N (µ(x1:N ),Σ(x1:N ,x1:N )), with θ being the hyper-parameters in
the mean function µ and covariance matrix Σ, which fully specify the model. Being Gaussian allows ana-
lytic marginalization, which leads to the defining property of the mean function E[f(xi)] = µ(xi) and the
covariance function,

Σij = E{[f(xi) − µ(xi)][f(xj) − µ(xj)]} = k(xi,xj) ,
where k is a predetermined kernel function, e.g. squared exponential function. In addition, a closed form
for the marginal likelihood p(y|X, θ) = Ef∼N (µ,Σ)[p(y|f(X))] can be obtained if a Gaussian likelihood is
adopted, with which the optimal hyper-parameters is determined. Conditional on the prior observations, the
responses y∗ at a set of inputs X∗ then follows another normal distribution N (y∗|µ∗,Σ∗) with conditional
mean,

µ∗ = Σ(X∗,X)[Σ(X) + σ2
sI]−1y , (4)

and conditional covariance,

Σ∗ = Σ(X∗) − Σ(X∗,X)[Σ(X) + σ2
sI]−1Σ(X,X∗) , (5)

where we take the prior mean to be zero, µ = 0, for easing the notation, and hyper-parameter σ2
s denoting

the noise variance connecting f to the observations.

Among many extensions of GPs for enhancing expressivity, e.g. warped GP in (Snelson et al., 2004), Deep
Gaussian Processes (DGPs) (Damianou & Lawrence, 2013) are a general hierarchical composition of GPs.
The compositional structure enhances its expressive power, e.g. a GP with SE kernel can not fit a step
function well but a DGP can. Consider for simplicity a two-layer function f(x) = f2(f1(x)) where the input
x ∈ RD is mapped to the hidden output h = f1(x) ∈ RH and then to a real output f2(h). The hidden layer
with finite H is referred to as the bottleneck in (Agrawal et al., 2020; Aitchison, 2020). DGP is defined by
the joint density p(f2(f1(x1:N )),

N (f2(h1:N )|0,Σ2(H))
H∏
i=1

N (hi(x1:N )|0,Σ1(X)) ,

where subscripts in covariance matrices remind us that the covariance functions in different layers can be
different. The hidden output H is a data matrix consisting of vector-valued hidden functions h(x1:N ),
entering as input to second GP. In Bayesian inference, the marginalization of the hidden random variables
h is not tractable, which leads to various approximation schemes including variational inference (Salimbeni
& Deisenroth, 2017; Salimbeni et al., 2019; Yu et al., 2019; Ustyuzhaninov et al., 2020; Ober & Aitchison,
2021) and expectation propagation (Bui et al., 2016).

One advantage of modeling with the function space view, such as GP, is that we can augment the model
by imposing constraint on the function through inducing points (Titsias, 2009; Titsias & Lawrence, 2010),
i.e. the random function has to pass through a set of points, f(z1:M ) = u1:M , in the absence of noise.
Those points can be treated as additional hyper-parameters to be optimized (empirical Bayes), or can be
treated as random variable so that one has to infer their distribution in a full Bayes setting. In the context
of DGP, these inducing points can serve as hidden function’s support in variational inference (Salimbeni
& Deisenroth, 2017), or they can be interpreted as the low fidelity observations in multi-fidelity regression
problems (Kennedy & O’Hagan, 2000; Cutajar et al., 2019). However, it becomes less straightforward to
incorporate these inducing points into the deep neural networks from a random weight space view (Ober &
Aitchison, 2021).

An alternative scheme for inference with DGP models is to view DGP as a GP at the level of the marginal
prior, i.e. the hidden function f1 being marginalized out from the joint, which is similar to the partially
collapsed inference in Gibbs sampling (Park & Van Dyk, 2009) and deep kernel learning (Wang et al., 2020).
The idea was motivated by the observation that the covariance of the marginal prior distribution over the
array of function values taken at inputs X,

p(f |X) =
∫
dF1 p(f2|F1)p(F1|X) , (6)
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can be computed analytically (Lu et al., 2020). As such, an approximating distribution q(f |X) = N (0,Σeff)
with the matched covariance [Σeff ]ij = E[f2(f1(xi))f2(f1(xj))] can be plugged into the standard GP inference
pipeline. The compositional hierarchy incorporates all scales from layers into the effective kernels, e.g.
keff = σ2

2
{

1 + 2σ
2
1
ℓ2

2
[1 − exp(−d2(xi,xj)

2ℓ2
1

)]
}− 1

2 for 2-layer DGP with SE kernels in both zero-mean GPs, and
the multi-scale character enables capturing complex patterns in some time series data (Lu & Shafto, 2021b).
Moreover, the model augmentation incorporating latent function supports as additional hyper-parameters
was shown to have better generalization (Lu & Shafto, 2021b). The closed form kernel for the 2-layer DGP
with learnable latent function support is in the following lemma. The proof can be found in (Lu & Shafto,
2021a).
Lemma 1. Consider the two-layer DGP, f(x) = f2(f1(x)), where the latent functions, f1 : RD 7→ RH being
a vector-valued GP and f2 : RH 7→ R being a GP with SE kernel. The latent function is conditioned on the
support, f1(z1:M ) = u1:M . The covariance has the following closed form (Lu & Shafto, 2021a),

Ef1 Ef2|f1 [f(x)f(y)] =
H∏
i=1

e
−

[µ∗,i(x)−µ∗,i(y)]2

2(1+δ2
i

)√
1 + δ2

i

, (7)

where the conditional means µ∗,i(x) and µ∗,i(y) are associated with the conditional Gaussian density
p(f1,i(x), f1,i(y)|z1:p, ui,1:p), and the positive value δ2

i = Σ∗(x,x) + Σ∗(y,y) − 2Σ∗(x,y).

2.3 Random feature expansion

To connect neural networks and above GPs with SE kernel, the following theorem based on the Bochner’s
theorem is needed. Its proof was provided in Rahimi & Recht (2008).
Theorem 1. The shallow cosine network (Sopena et al., 1999; Gal & Turner, 2015),

f(x) =
√

2
n

n∑
i=1

wi cos[ωi · (x − zi) + bi] , (8)

is a random parametric function mapping an input x ∈ RD to R. The collection of independent and normal
weight variables, w1:n ∼ N (0, σ2), and bias b1:n ∼ Unif[0, π]. In above expression, z1:n ∈ RD are a set of
shift vectors, and are referred to as inducing points in GP literature (Gal & Turner, 2015). The random
network has zero mean, and the covariance converges to,

E[f(x)f(y)] → σ2 exp[−1
2(x − y)TΛ(x − y)] , (9)

in the limit n → ∞ if the random vectors {ω1:n ∈ RD} are samples from a multivariate normal distribution
N (0,Λ).

3 Shallow trigonometric network

An alternative for the shallow networks in Eq. (8) which yields the same SE covariance was proposed
in (Cutajar et al., 2017). With the feature vectors ω1:n ∈ RD, and the random variables wc1:M and ws1:M
associated with the cosine and sine postactivation, respectively, we can write the random function as,

f(x) = 1√
n

n∑
i=1

wci cos(ωi · x) + wsi sin(ωi · x) , (10)

= wΦ(Ωx) , (11)

in which the compact notation in the second line has w = [wc1, wc2, · · · , wcn, ws1, · · · , wsn] ∈ R1×2n and Ω =
[ω1, · · · , ωn]T ∈ Rn×D. Activation here is a doublet which reads Φ( ) =

(
cos( )
sin( )

)
.
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Based on the same argument in Rahimi & Recht (2008), Eq. (10) represents a finite-basis model for random
smooth functions whose covariance converges to some fixed form in the limit of large n. If the features in
Ω are sampled from a distribution and remain fixed, then one can infer the weight parameters w given the
data (or hyperdata in Lu & Shafto (2021b)) Z,u, the prior distribution p(w) = N (0, σ2I2n), and observation
noise variance σ2

s . The notation means Z = ( z1, ··· , zM ) ∈ RD×M and u = ( u1, ··· , uM )T ∈ RM×1. Following
the linear Bayesian learning (Rasmussen & Williams, 2006), the posterior reads

p(w|Z,u) = N (w|w̄, A−1) , (12)

with the conditional mean and precision matrix,

w̄T = σ−2
s A−1Φ(ΩZ)u , (13)

A = σ−2
s Φ(ΩZ)ΦT (ΩZ) + σ−2I2n , (14)

where the postactivation matrix Φ(ΩZ) has shape (2n,M). Furthermore, the distribution over the predicted
value at a new input, y∗ = wΦ(Ωx∗), is still a Gaussian with mean,

f̄∗ = K∗
(
σ2
sI2n +K

)−1u ,

and variance
σ2

∗ = σ2
s +K∗∗ −K∗

(
σ2
sI2n +K

)−1
KT

∗ ,

where we have used the kernel expression K∗ = σ2ΦT∗ Φ, K∗∗ = σ2ΦT∗ Φ∗ and K = σ2ΦTΦ (Rasmussen &
Williams, 2006). The shorthand notation has Φ∗ = Φ(Ωx∗) and Φ = Φ(ΩZ). The above result is thus an
approximation for GP regression.

In the framework of GP regression, one way to enhance the expressive power of the nonparametric model
is, ironically, to form a linear combination of different kernels and treat the coefficients as hyper-parameters
optimizing the evidence. The classic regression on Mauna Loa dataset in Rasmussen & Williams (2006)
adopts the SE kernel along with rational quadratic and periodic kernels. One may also view the spectra
mixture kernel (Wilson & Adams, 2013) as a special kernel composition. For Bayesian neural network, on
the other hand, the prior function distribution induced by prior parameter distribution (Wilson & Izmailov,
2020; Zavatone-Veth & Pehlevan, 2021) encodes the expressive power. In practice, design of activation in a
network was shown to yield good extrapolation (Pearce et al., 2020). In the following two subsections, we
shall introduce two ideas improving the expressivity associated with the trig network representation of GP.

3.1 Features from mixture of Gaussians and spectra mixture kernel

Following the work of (Rahimi & Recht, 2008), one can obtain a shallow trig network representation of
GP regression model with SE kernel if the features Ω are sampled from a normal distribution. Similarly,
the GP regression models with Laplacian and Cauchy kernels can have their network representation if the
features are sampled from different single-mode distributions. The following lemma show that the model
with spectra mixture kernel is equivalent to the shallow trig network if the features are sampled from a
mixture of Gaussians.

Lemma 2. If the features are sampled from a mixture of multivariate Gaussians, ω1:n ∼
∑
a πaN (µa,Λa)

with positive π’s, and the weight w ∼ N (0, σ2I2n), then the covariance of outputs in Eq. (10) converges to
the spectrum mixture kernel,

k(x,y) = σ2
∑
a

πa cos[µTa (x − y)]e− (x−y)T Λa(x−y)
2 , (15)

in the wide network limit n → ∞.
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Proof. As the weight parameters are independent, one can easily see that the covariance in the large n limit
converges to

E[f(x)f(y)] → σ2
∫
dω p(ω) cos[ω · (x − y)]

= σ2Re
∑
a

πa

∫
dω N (ω|µa,Λa)eiω·(x−y)

= σ2
∑
a

πa cos[µa · (x − y)] exp[−1
2(x − y)TΛa(x − y)] .

In the first equality, Re refers to as the operation of taking real part.

3.2 Prior distribution over the network output

Here, we investigate the marginal prior function distribution p(f) =
∫
dw p(f |w)p(w) induced by the prior

weight distribution p(w). Following the technique in Remark 1, we can conclude that the prior function
distribution associated with the shallow trig network in Eq. (10) is Gaussian, independent of the feature
number n.
Remark 2. The probability density over the function Eq. (10) for a single input is always a Gaussian with
zero mean and variance σ2, independent of the width n and of the sampling distribution p(Ω).

Proof. Given w is independent normal with variance σ2, the conditional distribution p(f |Φ) is also a normal
with variance σ2

n

∑n
i=1 cos2 ω1 · x + · · · cos2 ωn · x + sin2 ω1 · x + · · · + sin2 ωn · x = σ2. Thus, p(f(x)) =

N (0, σ2).

It was suggested that the superior expressive power of deep linear network and ReLu network is related to
their non-Gaussian prior function distribution (Vladimirova et al., 2019; Roberts et al., 2021; Zavatone-Veth
& Pehlevan, 2021). Besides the network with finite width which lifts the Gaussianity (Yaida, 2020), the
following shallow network fψ : RD 7→ R with modified preactivation,

fψ(x) = 1√
n

n∑
i=1

wci cos[ωi · x + ψ(x)] + wsi sin[ωi · x − ψ(x)] , (16)

incorporating a phase shift network ψ(x) is proposed to lift the Gaussianity.
Lemma 3. The Fourier transformed p̃(q) associated with the prior distribution over the output in Eq. (16)
is,

p̃(q) = e− 1
2 q

2σ2
∫
dωp(ω)e 1

2 q
2σ2 sinψ(x) sin 2ω·x , (17)

where the feature ω ∈ RD are sampled from the high dimensional normal distribution p(ω) =∏D
d=1 N (ωd|0, σ2

d).

It can be seen that the phase shift network ψ(x) lifts the Gaussian character of the prior distribution,
but the intractable high-dimensional integral in Eq. (17) stands in the way of obtaining a closed form
for its characteristic function. Nevertheless, one can proceed with the approximation of Gauss-Hermite
quardature (Greenwood & Miller, 1948). Consider the case where the variances σ2

1:D = σ2
F associated with

the features in all dimensions are the same, and after including the most relevant terms,

p̃(q) ≈ e− 1
2 q

2σ2
( λ0√

π
)D

{
1 + 2λ1

λ0

D∑
d=1

cosh[12q
2σ2 sinψ(x) sin(2

√
2σF z1xd)]

}
, (18)

where the coefficients λ0 ≈ 1.181 and λ1 ≈ 0.295 are given in (Greenwood & Miller, 1948) and z1 ≈ 1.22
is the nonzero root of the third order Hermite polynomial. Consequently, the characteristic p̃ obtains a
non-Gaussian correction ∝ q4e−q2σ2 for small Fourier component q.
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4 Deep trigonometric network

Now we proceed to consider the deep trigonometric network proposed in Cutajar et al. (2017). With the
same notation as the shallow network, the deep trigonometric network of interest has the following matrix
representation,

f(x) = w2Φ(Ω2W1Φ(Ω1x)) , (19)

in which the random weight matrices w2 ∈ R1×2n2 , W1 ∈ RH×2n1 and the feature matrices Ω2 ∈ Rn2×H ,
Ω1 ∈ Rn1×D. Here, the hidden output h = W1Φ(Ω1x) has bottleneck (Agrawal et al., 2020) dimension
H collecting the n1 postactivations. Besides the compositional hierarchy which makes the function more
expressive than its shallow counterpart, one can also adopt different prior distribution over the weight and
feature matrices. In the following three subsections, we shall discuss the cases of (i) the entries in W1,
w2, Ω1, and Ω2 are all independent normal, which corresponds to the zero-mean two-layer DGP with SE
kernels (Lu et al., 2020), (ii) same as in (i) but in the first layer the weight entries in W1 ∼ p(w1|Z,U)
are not independent, which corresponds to the two-layer DGP for multi-fidelity regression (Lu & Shafto,
2021a) and hyper-data learning (Lu & Shafto, 2021b) with Z,U acting as the support in the latent function,
and (iii) same as in (ii) but the feature matrix Ω2 consists of samples from the mixture of Gaussians, which
corresponds to the two-layer DGP with outer GP using the SM kernel.

4.1 Deep trig net covariance and random matrix spectrum

To show that the deep trigonometric network yields the same covariance as the two-layer DGP when the
entries in weight matrices have independent normal distribution, the spectrum of the following square random
matrix with dimension 2n1,

G = [Φ(Ω1x) − Φ(Ω1y)][Φ(Ω1x) − Φ(Ω1y)]T , (20)

is critical in determining the statistics of network outputs.
Remark 3. The square matrix G has (2n1 − 1) zero eigenvalues and one nonzero eigenvalue. If the set
of feature vectors {ω1:n1} are sampled from N (ω|0, ID), then the nonzero eigenvalue shall converge to the
following,

∣∣Φ(x) − Φ(y)
∣∣2 = 1

n1

n1∑
i=1

(cosωix − cosωiy)2 + (sinωix − sinωiy)2

→ 2 − 2kSE(x,y) ,

in the limit n1 → ∞. kSE(x,y) = exp[− 1
2 |x − y|2] stands for the squared exponential covariance function

with all hyper-parameters set to unity.

Proof. First, one can view v = Φ(Ω1x) − Φ(Ω1y) as a fixed vector in the 2n1 dimensional space. The entries
read 1√

n1
[cosω1 ·x−cosω1 ·y, · · · , cosωn1 ·x−cosωn1 ·y, sinω1 ·x−sinω1 ·y, · · · ]. Then, one can in principle

find the orthogonal subspace, spaned by the set of vectors {v⊥,1:(2n1−1)}, to v in the space. Thus, we have
vTv⊥ = 0, one can write the zero eigenvalue equations,

Gv⊥ = vvTv⊥ = 0 ,

and the only nonzero eigenvalue one,
Gv = |v|2v .

With the knowledge of the spectrum of random matrix G, now we can go on to derive the desired covariance
of deep trigonometric network.

8
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Lemma 4. The covariance of the deep trigonometric network in Eq. (19),

EW1

{
Ew2|W1

[
f(x)f(y)

]}
→ kDGP(x,y) =

{
1 + 2[1 − kSE(x,y)]

}− H
2 , (21)

as the numbers of features n1 and n2 both approach infinity.

Proof. The independence among the zero-mean random weights w2 and uniform variance leads to
Ew2 [(w2Φ(Ω2hx))(w2Φ(Ω2hy))] = Φ(Ω2hx)TΦ(Ω2hy), which at the limit n2 → ∞ results in,

E[f(x)f(y)] → EW1

[
e− d2(x,y)

2
]
,

where the squared distance between the latent outputs h(x) and h(y) in the exponent can be rewritten as,

d2(x,y) = [h(x) − h(y)]T [h(x) − h(y)]
= Tr

{
W1[Φ(Ω1x) − Φ(Ω1y)][Φ(Ω1x) − Φ(Ω1y)]TWT

1
}

=
H∑
i=1

w1,iGwt
1,i ,

where the rows of W1 are written as {w1,1:H} in the last line. Lastly, the determinant of (I2n1 +G) enters
as a result of

Ew1,1:H ∼N (0,I2n1 )[e−d2(x,y)] = ΠH
i=1

1√
det[I2n1 +G]

. (22)

4.2 Deep trig net with weights representing latent function support

In above subsection, the deep trigonometric net with centered and independent Gaussian weights W1 and w2
is equivalent to composition of two zero-mean GPs. In Lu & Shafto (2021b), it was shown that treating the
support in latent function, i.e. M hyper-data points with h(z1:M ) = u1:M , as additional hyper-parameters
can enhance generalization of DGPs. z ∈ RD and u ∈ RH . Here, the function space view translates to the
weight parameters, W1|Z,U ∼

∏H
i=1 N (w1,i|w̄i, A

−1), conditional on the hyper-input and output matrices,
Z := ( z1, ··· , zM ) ∈ RD×M and U = ( u1, ··· , uM ) ∈ RH×M , respectively. The conditional precision matrix,

A =
[
I2n1 + Φ(Ω1Z)ΦT (Ω1Z)

]
(23)

and the conditional mean for each output dimension,

w̄1,i = A−1Φ(Ω1Z)UT
i,: , (24)

which can be found in Ch.2.1.2 in Rasmussen & Williams (2006) [also in Ober & Aitchison (2021)].
Lemma 5. If the latent layer weights W1 in Eq. (19) have the correlated prior distribution W1 ∼∏H
i=1 p(w1,i|Z,Ui,:), then the covariance converges to the DGP covariance in Eq. (7).

Proof. The proof follows the previous one except that we are evaluating the following expectation,

E[f(x)f(y)] = Ew1,1:H ∼N (w̄1:H ,A−1)

[
e−

w1,1GwT
1,1

2 e−
w1,2GwT

1,2
2 · · · e−

w1,H GwT
1,H

2

]
=

H∏
i=1

e− 1
2 w̄i(I+GA−1)−1Gw̄T

i√
|I +A−1G|

,

in which we just focus on one term in the product. By writing the matrix G = vvT related to the inputs
x,y (see Remark 7) and using the matrix inversion lemma, the exponent in above expression becomes

9
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− 1
2 w̄iv(1 + vTA−1v)−1vT w̄T

i . As for the determinant in denominator, the matrix A−1G does not couple
the vector v with its orthogonal subspace v⊥, leading to |I + A−1G| = 1 + (vTA−1Gv)/(vTv). With some
manipulation and lengthy calculation,∣∣I +A−1G

∣∣ = 1 + [Φx − Φy]T [Φx − Φy] − [Φx − Φy]TΦZ [I + ΦTZΦZ ]−1ΦTZ [Φx − Φy]
→ 1 + kxx + kyy − 2kxy − kxZK

−1
ZZkZx − kyZK

−1
ZZkZy + 2kxZK−1

ZZkZy .

It can also be seen that the above result is identical to (1 + vTA−1v). Similarly, one can show the scalar
w̄ivvT w̄T

i = (mx −my)2 with the limiting form mx → kxZK
−1
ZZUi,:.

4.3 Deep trig net with mixed spectrum features

The deep trigonometric networks are expressive as the choices over the weights’ prior distribution are flexible.
One may also consider employing different distributions over the features as we do in the shallow nets. Here,
we are interested in the resultant covariance when the outer features Ω2 consist of samples from mixture of
Gaussians at different centers and the inner weights W1 representing the latent function support.
Lemma 6. When the deep trigonometric network in Eq. (19) has fixed features ω2 ∈ R from samples
of a mixed distribution

∑
a πaN (µa, σ2

a) and the random variables w1 represent the weight space view of
latent function support w1Φ(Ω1z1:M ) = u1:M , it is equivalent to the DGP f(x) = f2(f1(x)) with f1|Z,u ∼
GP(m,Σ) and f2|f1 ∼ GP(0, kSM). m and Σ are the conditional mean and covariance matrix given the
hyper-data Z,u. The covariance is,

E[f(x)f(y)] =
∑
a

πa
(1 + σ2

aδ
2)1/2 exp

[
− σ2

a(mx −my)2 + δ2µ2
a

2(1 + σ2
aδ

2)
]

cos
[µa(mx −my)

1 + σ2
aδ

2

]
. (25)

Proof. It is easier to work out the covariance in the function space. Observing that

Ef1|Z,u
{
Ef2|f1 [f2(f1(x))f2(f1(y))]

}
= ReEf1|Z,u[Eω2 e

iω2[f1(x)−f1(y)]] ,

one can compute the expectation with respect to the latent function f1 first, followed by that of feature ω2.
Thus, we get the covariance,

Eω2∼
∑

a
πaN (µa,σ2

a)
{
E(f1(x),f1(y))T ∼N (m,Σ)[cosω2(f1(x) − f1(y))]

}
,

which can be computed analytically.

Such deep trigonometric network is closely related to the deep kernel learning with the SM kernel (Wilson
et al., 2016). Now it becomes clear that the outer network represents the random function f2 ∼ GP(0, kSM).
The hyper-data Z,u constrain the inner function f1, and in the limit when the hyper-data are dense the
function f1 becomes deterministic (Lu & Shafto, 2021b). Such situation is equivalent to passing the inputs
to a parametric function and then to a GP. However, the probabilistic nature in f1 in the sparse hyper-data
limit is helpful for preventing overfitting in deep kernel learning with over-parameterized f1 (Ober et al.,
2021).

5 Neural tangent kernel for trigonometric networks

For probabilistic regression problems with data matrix X and observations y, one has two choices over the
models for prediction. The first choice is function-based models, such as GPs and DGPs. The exact GP
inference produces a predictive distribution p(y∗|X,y,x∗) with closed form mean and variance that only
depends on the covariance function and hyper-parameters. However, such luxury is not carried over to DGP
as there is no corresponding exact inference. The second choice is weight-based models: the shallow Bayesian
neural network, Eq. (10), and its deep version, Eq. (19). For shallow trig network with fixed feature matrix
Ω, then it becomes a Bayesian linear regression problem (see Sec. 3), and the predictive mean and variance
converge to the GP’s result as the number of features n → ∞.

10
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It is not clear whether the appealing correspondence between shallow trig network and GP with SE kernel
can carry to the deep trigonometric network and 2-layer DGP discussed in this paper. Nevertheless, the
perspective from neural tangent kernel (Jacot et al., 2018; Arora et al., 2019) may shed some light on this
issue. For gradient based learning of infinite and deep neural network f(x|θ), the network function shall
eventually converge to the predictive mean of GP with the following kernel,

k(x,y) = Eθ
[∂f(x|θ)

∂θ
· ∂f(y|θ)

∂θ

]
, (26)

where the derivative operation ∂/∂θ with respect to all weight parameters in θ generates a vector. Moreover,
the neural tangent kernel remains a constant during the gradient descent, so its value is determined by the
initial distribution over θ (a recent study (Seleznova & Kutyniok, 2021) suggested that the neural tangent
kernels for deeper model may still evolve during training).

Now, given the fact that the deep trigonometric network yields the same covariance as the two-layer DGP
with SE kernels, it is interesting to derive the neural tangent kernel associated with Eq. (19), which may
reveal some insights into the correspondence between deep trigonometric network and DGP.
Lemma 7. Assume that the features Ω1,2 in the deep trigonometric network in Eq. (19) are fixed and the
weights w1,2 are learned through gradient descent with squared loss function. Then the associated neural
tangent kernel reads,

kNTK(x,y) = kDGP + kSEk
3
DGP , (27)

where kSE is the SE covariance function and kDGP is the exact covariance of the two-layer DGP. Note that
we have set all hyper-parameters to unit for ease of notation.

Proof. As only the weight parameters are learned, the neural tangent kernel has the following expression,

kNTK(x,y) = EW1

{
EW2|W1

[∂f(x)
∂W2

∂f(y)
∂W2

+ ∂f(x)
∂W1

∂f(y)
∂W1

]}
= KDGP +Ke ,

where we observe that the first term (derivative wrt second weight w2) is the same as the covariance of
DGP (see Sec. 4.1). Next, we shall focus on the second term, Ke. Notice that the order of differentiation
∂f/w1 and the expectation Ew2|w1 can be switched. To facilitate the computation, we can temporarily write
f(x) = w2Φ(Ω2waΦ(Ω1x)) and f(y) = w2Φ(Ω2wbΦ(Ω1y)) so that we can first compute the expectation
and then take the derivatives. The rest of derivations just rest on some simple tricks,

Ke = Ew1

{ n1∑
i=1

∂2

∂wa,i∂wb,i
Ew2|wa,b

[fa(x)fb(y)]
∣∣
wa=wb=w1

}
= Ew1

[
e−

w1GwT
1

2 ΦT (Ω1x)Φ(Ω1y)(1 − wGwT
1 )

]
= e− |x−y|2

2 (1 + 2 ∂

∂λ
)Ew1

[
e−λ

w1GwT
1

2
]∣∣
λ=1

= kSE(x,y)
[
1 + 2(1 − kSE(x,y))

]− 3
2 .

To arrive at the second equality, we have used∑
i

∂2
wa,iwb,i

e− 1
2 (wa·Φx−wb·Φy)2

= e− 1
2 (wa·Φx−wb·Φy)2

(Φx · Φy)
[
1 − (wa · Φx − wb · Φy)2]

.

As for the shallow trigonometric net in Eq. (10), it is easy to show that the NTK is the same as kSE if Ω
are independent and normal. Hence, the predictive distribution for y∗|x∗,Ω,X,y is the same for the shallow
Bayesian trigonometric network in wide limit and GP with SE kernel. Moreover, the mean of this distribution

11
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shall coincide with the prediction obtained using gradient descent as the equivalence between NTK and kSE
suggests. However, the correspondence between DGP and deep trigonometric network is intriguing as there
is no exact inference for both models. If one adopts the moment matching inference (Lu et al., 2020) which
treats the marginal prior distribution of DGP as a GP (Lu & Shafto, 2021b), then the predictive distribution
is the same as the GP with kDGP. With the equivalence between DGP and deep trigonometric net, one can
say that the single prediction made by gradient descent algorithm shall converge to the predictive mean of
a GP with kNTK in Eq. (27). The origin for the discrepancy between kDGP and kNTK is a very interesting
question as the exact DGP inference is impossible and the optimization of deep trigonometric network is not
convex.

6 Finite width corrections

For both the shallow and deep is much intriguing networks, their output f(x) depend on two sets of pa-
rameters: the weights W’s and the projections Ω’s. We have connected them with shallow GPs and deep
GPs, respectively. By treating the layer widths to be infinity, we have obtained the limiting kernel kDGP and
neural tangent kernel kNTK for the deep network. Here, we shall consider the deviation from the limiting
kernels when the layer width is large but finite. An important implication is that the kernel only converges
to its fixed and limiting form when the inner width n1 is infinite, suggesting that the inner layer is more
relevant to the feature learning than the outer one.

We follow (Yu et al., 2016) and define the kernel estimator, k̂DGP(x,y) := Ew[f(x)f(y)|Ω], for the deep net.
With some simple algebra,

k̂DGP = 1
n2

Re
∑
i

EW(1){
∏
k,m

exp[iω(2)
ik w

(1)
km(Φx − Φy)m]} (28)

= 1
n2

n2∑
i=1

exp{−σ2
w

H∑
k=1

[ω(2)
ik ]2 · 1

n1

n1∑
m=1

[
1 − cos Ω(1)

m · (x − y)
]
} (29)

where the components of post-activation vector read Φx = (1/√n1)[cos Ω(1)
1:n1

· x, sin Ω(1)
1:n1

· x], and the above
second equality follows from the fact that weights w(1) ∼ N (0, σ2

w) are iid. The two summations are over
the projection parameters ω(2) in outer layer and projection vectors Ω(1) in inner layer. Now the estimator
k̂DGP depends on the realizations of Ω(1)

1:n1
and Ω(2)

1:n2
.

Lemma 8. When the latent dimension H is finite and the inner layer width n1 is large but finite, the mean
of kernel estimator for the deep trig network approximately reads,

EΩ[k̂DGP(x,y)] ≈ [
∫
e−(1−k̂SE)ω2σ2

wdµ(ω)dµ(k̂SE)]H (30)

with the normal ω representing iid entries in Ω(2)
1:n2

and k̂SE := (1/n1)
∑
m cos Ω(1)

m · (x − y). Here dµ(k̂SE)
takes the approximate density N (µs, σ2

s) with mean µs := EΩ(1) [k̂SE] and variance σ2
s := VarΩ(1) [k̂SE].

Proof. First, rewriting the expectation of some smooth function α as EΩ(1) [α(k̂SE)] = Ek̂SE
[α(k̂SE)] is valid

so one can apply it to Eq. (29) as well. Next, k̂SE has mean µs = kSE and variance σ2
s = (1 − k2

SE)2/(2n1)
if Ω(1) is normal (Yu et al., 2016). For large but finite n1, the central limit theorem suggests that k̂SE can
be treated as a Gaussian. Lastly, the iid and normal assumption of entries in Ω(2) result in the product
form.

A few observations follow from the lemma. First, when n1 is infinite, the random variable k̂SE becomes
deterministic as σ2

s vanishes [(Lee et al., 2018) employed similar strategy in proving GP behavior for DNNs].
Thus the density dµ(k̂SE) approaches a delta function and the remaining integration over ω results in
E[k̂DGP] = kDGP. Note that, due to the randomness in ω, Var[k̂DGP] does not vanish, which signifies
the difference with NNGP. Secondly, when the latent dimension H is also infinite and when the weight

12
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variance has σ2
w = 1/H, then the term σ2

w

∑H
k=1[ω(2)

ik ]2 summing over squared projection parameters in outer
layer in Eq. (29) also converges to its fixed mean, which in turn leads to E[k̂DGP] = exp[kSE − 1] along with
vanishing Var[k̂DGP]. This limiting kernel first appeared in (Duvenaud et al., 2014) discussing asymptotic
kernel of DNNs, while it corresponds to the case when the variances in k̂SE and ω2 both vanish.

As for finite n1,2 and H, one can proceed to show E[k̂DGP] = ⟨[1 + 2σ2
w(1 − k̂SE)]−1/2⟩H after marginalizing

the entries in Ω(2)
1:n2

. The brackets ⟨·⟩ stands for averaging wrt the random variable k̂SE. However, even with
k̂SE approximately being a Gaussian, the mean does not have a closed form. Nevertheless, we again employ
the Gauss-Hermite quardature method to approximate the integration. The following remark summarizes
the deviation from the limiting kDGP due to the finite width n1,2.
Remark 4. Consider H = 1, one can show the approximate deviation yields,

|kDGP − EΩ[k̂DGP]| ≈ 3λ1z
2
1σ

4
w

n1
√
π

(1 − k2
SE)2k3

DGP , (31)

in which the values of Gauss-Hermite parameters λ0,1 and z1 are listed in (Greenwood & Miller, 1948).

Proof. Considering contributions from the three roots {z0, z±} of the third order Hermite polynomial, the
approximation of integral reads E[k̂DGP] =

∑
i=0,±1

λi√
π

[1 + 2σ2
w(1 − kSE +

√
2σszi)]−1/2, which, for zeroth

order of σs, gives E[k̂DGP] = (λ0 + 2λ1)kDGP/
√
π where the fact λ1 = λ−1 is used. The next order of

correction is O(σ2
s) due to the symmetry z1 = −z−1 and the expansion (1 + ϵ)−1/2 = 1 − ϵ/2 + 3ϵ2/8 + · · · .

One can thus recover the above expression if one further takes (λ0 + 2λ1)/
√
π ≈ 0.99918 to be unity.

It is interesting to note from the minimum deep model the nontrivial effect of depth on statistics of k̂DGP.
For the shallow model in (Yu et al., 2016), the mean coincides with the fixed kernel, i.e. E[k̂SE] = kSE. In
contrast, E[k̂DGP] ̸= kDGP when the inner width n1 is not infinite, which implies that the inner layer is more
relevant to feature learning than the outer one. Aitchison (2020) had similar observation in a two-layer linear
Bayesian model.

The same formulation can be applied to analytically investigate the finite-width effect on NTK. After some
manageable algebra, we can arrive the following estimator for NTK,

k̂NTK = 1
n2

n2∑
i=1

{1 + [ω(2)
i ]2 + ∂

σ2
w∂λ

}e−λσ2
w[ω(2)

i
]2(1−k̂SE)∣∣

λ=1 , (32)

for H = 1. The deviation |k̂NTK − kNTK| ≈ (6λ1/
√
π)(σ2

sσ
2
wz

2
1k

2
DGP)(1 + 2σ2

w) ∝ (1/n1) can be obtained by
similar computations. The NTK case of deep ReLu network was studied in (Hanin & Nica, 2019) but with
a rather different approach and assumption.

7 Simulations

In this paper, an important consequence of the translation between DGP in weight representation and
function representation is that one can pursue the MAP estimate of weight parameters from the exact
posterior. The point estimate then allows to obtain the mean of predictive prediction, which does not
seem possible with a function space approach. Another interesting perspective is to compare the predictive
means with those obtain from NTK regression, which corresponds to the gradient-based learning with an
infinitesimal learning rate.

The flexibility of DGP makes data fusion and multi-fidelity regression possible (Cutajar et al., 2019; Lu &
Shafto, 2021a). The translation, which also includes log of the correlated prior over weights, then allows the
neural network version of DGP multi-fidelity regression model. In such case, the regularizer contains the
term − log p(w1|z, u) (see Sec. (4.2), indicating the correlation between the components and the mode w1
as a representation of low-fidelity data {z,u} in weight space.
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Lastly, the analysis of shallow trig nets in Sec. 3 suggests that the expressive power may be enhanced with i)
adopting different weight prior distributions, which is equivalent to different GP kernels for function space
regression, and ii) inserting phase networks before entering the sine/cosine activation units, which in principle
removes the Gaussianity of the marginal prior distribution. Below, numeric simulations on real-world and
toy data are present to support our findings.

7.1 Approaching the exact predictive mean with deep trig nets

Here, we are interested in predicting the trend of carbon dioxide concentration in Mauna Loa data set. It
is well known that the GP regression with SE kernel fails to capture the short time scale variation as the
prior density has its mass concentrated on smooth functions. We implemented using PyTorch the moment
matching kernel correspond to the two-layer DGP with both kernels being SE (Lu et al., 2020) and the
corresponding NTK derived in Sec. 5. The GP kernel regression with these two kernels (left: moment
matching SE[SE] kernel, right: NTK) is shown in Fig. 1, in which the two results are only slightly different.
The fixed form of kernels and the learned length scale ℓ1 ≪ 1 in first layer leads to the constant predictive
mean in the extrapolation. The fact that the rapid variation present in the training data is learned but not
generalized can be considered a symptom of lack of feature learning.

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

SESE Kernel GP Fit
Test data
Training data
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Figure 1: GP fitting the standardized carbon dioxide concentration data. Left: with the moment matching
SE[SE] kernel. Right: with NTK.

With the translation from function space to weight space representation for DGP, it is interesting to apply
the gradient-based learning for prediction. The two-layer DGP is then transformed into the two-layer trig
network. We consider the squared loss together with the standard quadratic regularizer as the objective,

L =
∑
i

[yi − f(xi)]2 + λWtW . (33)

Here, W stand for the flattened collection of weight parameters within the two layers, corresponding to
the fact that the all the weights have independent and zero-mean Gaussian as prior. As for the random
frequencies Ω1,2, they are samples from N (0, 1/ℓ2

1) and N (0, 1), respectively, and we kept them fixed in the
process of gradient learning.

The two-layer trig network can have variation in the widths n1,2 and the bottleneck width H, respectively.
Fig. 2 shows the predictive means obtained with three variations in the network structure. Left panel
displays the results from running with the six structures, namely (n1, H, n2) = (24:9, 1, 300). Middle panel
is for (n1, H, n2) = (300, 1, 24:9), and right panel is for (n1, H, n2) = (300, 20:7, 300).

A few observations follow. The analysis in Sec. 6 suggests that deep trig network with the structure (n1 →
∞, H = 1, n2 < ∞) still converge to the limiting kernel kDGP. This is in contrast to the structure (n1 <
∞, H = 1, n2 → ∞) leading to a deviation ∝ 1/n1 from the limiting kernel. Therefore, the inner width
n1 plays a more critical role in learning than n2. In the left panel of Fig. 2, it is seen that when n1 ≥ 64
(green and above) the rapid variation in training data is learned. This feature is carried over to the future
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Figure 2: Predictive means from gradient-based learning with three sets of variation in network structures
specified by the three widths (n1, H, n2). We vertically shift these results for better visualization. Left panel
displays the six results from (n1, H, n2) = (24:9, 1, 300), middle panel for (n1, H, n2) = (300, 1, 24:9), and
right panel for (n1, H, n2) = (300, 20:7, 300).

times, but as n1 increases the result is more close to that in Fig. 1. In the middle panel, the outer width n2
does not seem to have effect on the learning and the generalization. Then, the variation in H theoretically
signifies the transition from DGP behavior to GP (Pleiss & Cunningham, 2021). In right panel, however,
we do not see significant difference by varying the bottleneck width.

With the weight representation of the two-layer zero-mean DGP, we are able to approach the exact mean of
intractable predictive distribution with the finite-width deep trig nets. Comparing with the kernel composi-
tion trick (Duvenaud et al., 2013) and the designed activation units (Pearce et al., 2020), we may conclude
that, for this particular data, simply stacking two vanilla GPs into a DGP does not excel in enhancing the
expressivity.

7.2 Toy multi-fidelity regression

DGP is a flexible prior exploiting the expressive power in compositionality, and an ideal model for fusing data
from different levels of precision (Cutajar et al., 2019). Given the two-fidelity data {X1,y1} (plentiful but
low fidelity) and {X2,y2} (rare but high fidelity), we may model the regression as inferring the composite
function f(x) = h(g(x)) and the data are treated as observations, namely y1 = g(x1) and y2 = f(x1). It
was shown in (Lu & Shafto, 2021a) that the moment matching kernel in Eq. (7) which takes the low fidelity
data as the support for latent function g(x) can reasonably well recover the truth function f(x) even though
the high-fidelity training data is rare. In the left panel of Fig. 3, we reproduced the simulation result in (Lu
& Shafto, 2021a) with a PyTorch-based implementation.

In Bayesian learning, the structure of multi-fidelity DGP has the advantage of marginalizing the latent
function g conditioned on the low-fidelity data. As discussed in Sec. 4.2, the conditional mean and covariance
for g is translated into w1 and precision matrix A in weight space. Thus, the objective function for deep
trig network learning becomes,

L =
∑
i

[yi − f(xi)]2 + λ1(w1 − w1)tA(w1 − w1) + λ2wt
2w2 , (34)

where the two regularizing terms come from minus log of the prior over weights. In the right panel of
Fig. 3, one can see the predictive mean from using λ1 = 0.001 (blue), 0.01 (orange), and 0.1 (green) given
the high fidelity data (blue dots) generated from the true function (red dashed curve). As λ1 increases,
the knowledge, including uncertainty, about the latent function g has more influence in learning the weight
parameters through w1 and A.

7.3 Expressive shallow trig nets

In the final subsection, we explore the possibility of enhancing the expressivity of shallow trigonometric
net by i). sampling the random frequencies from a mixture of Gaussians with nonzero centers, and ii) in-
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Figure 3: Network model fitting the multi-fidelity data. The aim is to learn composite function f(x) =
h(g(x)) with plenty of low fidelity data (not shown) seen from g(x) and very rare data seen from f(x) (blue
dots generated from the red dashed ground truth). Left: GP fitting with the moment matching kernel.
Right: deep trig net fitting with varying regularizing strength λ1’s.

serting a phase network before entering the sine/cosine activation units. With the shallow trigonometric
net, we can apply the standard linear Bayesian learning if the random frequencies in the feature func-
tion Φ(Ωx) are fixed. We generate three different sets of frequencies from different mixtures of Gaussians∑
i N (µiσ2

i ). We use (µi, σ2
i ,#) to denote the component center, variance, and number of samples. In

Fig. 4 one can see the predictive mean (black dashed) sandwiched by ±2 predictive std. The left panel
is for a single Gaussian Ω ∼ (0, 25, 75), middle for the mixture of [(0, 5, 40), (50, 25, 35)], and the right for
[(0, 5, 25), (50, 25, 25), (100, 25, 25)]. Given the same amount of activation units, the complexity of linear
Bayesian model increases from the sampling Ω from a single zero-mean Gaussian to sampling from three
Gaussians centered at 0, 50, and 100.
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Figure 4: Bayesian linear regression on airline passengers data set with variations in selecting the random
frequencies Ω discussed in Sec. 3. See text for details of the mixture of Gaussians.

Next, we are interested in fitting a pure noise data with the shallow trigonometric net. As discussed in
Sec. 3.2, the shallow network in Eq. (16) with the inserted phase network Ψ(x) is shown to have non-
Gaussian marginal prior. To see if the non-Gaussian character is related to its expressivity, we consider four
different setups for fitting the noise (red points shown in Fig. 5) generated from a normal distribution. In
addition to the case without the phase network, a slight modification of Eq. (16) in changing the sign of Ψ
within the sine function will lead the marginal prior distribution back to Gaussian. We implement Ψ with
another shallow width-50 ReLu network using PyTorch. In Fig. 5, the predictive means from the vanilla GP
and the shallow network without Ψ are both linear with small slope, which is reasonable as the vanilla GP
does not overfit. The phase network Ψ does increase the expressivity of shallow network as the result (black
solid) associated with Eq. (16) is more influenced by the outliers than the modified one (with +/+ sign for
Ψ) is.
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Figure 5: Fitting noise data (red dots) with GP and 3 shallow networks.

8 Related work

While Neal (1997) first pointed out the general correspondence between an infinite neural network and
Gaussian process (GP), Williams (1997) demonstrated that neural networks with iid Gaussian weights and
sigmoidal activation units are a representation of random functions drawn from a GP with arcsine covariance
function. Later, Cho & Saul (2009) obtained the arccosine kernel from computing the covariance of outputs
from the ReLu neural networks. Moreover, the correspondence holds beyond the shallow neural networks.
Matthews et al. (2018) and Lee et al. (2018) studied the deep and wide neural networks and obtained
a recursive relation for the emergent kernels. Similar techniques appeared in earlier work (Schoenholz
et al., 2016; Poole et al., 2016) describing the statistics of forward and backward propagation with which
phase transitions are identified in a number of learning phenomena. The connections between deep random
networks and GPs were also studied extensively in (Yang, 2019), and detailed effects of finite width can be
found in (Lee et al., 2020),

Theoretical progresses regarding understanding DGPs have been made via several important observations.
In the deep limit, DGPs collapse to a constant function for some subspace of hyperparameters (Duvenaud
et al., 2014; Dunlop et al., 2018; Tong & Choi, 2021) and carry a heavy-tailed distribution over function
derivatives (Duvenaud et al., 2014). Lu et al. (2020) showed that the covariance and kurtosis are analyt-
ical characteristics of some two-layer DGPs, and a similar transition into chaotic phase with heavy-tailed
multivariate statistics. Finite-width effects on statistics of the deep neural network were studied from field
theory perspective (Antognini, 2019; Yaida, 2020; Roberts et al., 2021), NTK perspective (Hanin & Nica,
2019; Arora et al., 2019), and deep linear network (Aitchison, 2020).

Deep bottlenecked network representation of DGP in weight space was first proposed by (Cutajar et al., 2017),
and (McDonald & Álvarez, 2021) generalized the idea to include the latent force model for composing the
kernels. Agrawal et al. (2020) provided a formal and mathematical description for the connection. Uncer-
tainty estimation in Bayesian deep neural network (Wilson & Izmailov, 2020) can be done with variational
inference (Blundell et al., 2015), ensemble method (Lakshminarayanan et al., 2017), random dropout (Gal
& Ghahramani, 2016), and Laplace approximation (Khan et al., 2019). The general issue about the under-
estimated in-between uncertainty due to the independent weight assumption in approximate posterior was
addressed in (Foong et al., 2020).

9 Conclusion

More precise understanding of deep learning is critical for exploiting its expressive power and potential
applications in high-stakes domains. In the wide limit as well as the case with finite width, we analyt-
ically investigated the covariance, marginal distribution, and neural tangent kernel of the trigonometric
networks, connecting them with the deep Gaussian processes which can carry squared exponential kernel,
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spectral mixture kernel, and a combinations thereof. We have shown that deep Gaussian processes and deep
trigonometric networks, one in function space and the other in weight space, yield the same covariance in a
minimum model under various weight distributions. The derivation for the deep models in weight space is
less intuitive, because it relies on an infinite dimensional Gaussian integral and knowledge of the spectrum of
a particular random matrix. For deeper bottlenecked trig networks, the recursive relations [Eq. (25) in (Lu
et al., 2020)] hold for the covariance approximately; without the bottlenecks the recursive relations [Eq. (22)
in (Duvenaud et al., 2014)] can describe the covariance. We have open a door to analyzing the effect of the
non-Gaussianity of deep Gaussian process on its modeling power. Specifically, the derived neural tangent
kernel kNTK with deep trigonometric net representation allows the possibility of analyzing the implication
of differences between kNTK and the exact kernel kDGP of deep Gaussian process, and the data-dependent
kernels as a result of finite-width.
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