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Abstract

Generating large-scale, diverse, and realistic paired data001
for ultra-high-definition (UHD) image deblurring is chal-002
lenging due to the complex textures and information con-003
tained in UHD images. Existing synthetic methods often004
fail to replicate the complex, spatially-varying blurs present005
in real-world 4K imagery, limiting model performance. To006
address this gap, we introduce two diffusion-centric con-007
tributions: First, UHD-RealBlur, a large-scale 4K dataset008
produced by our novel PhysicsGuided-BlurSynth frame-009
work. PhysicsGuided-BlurSynth leverages a pre-trained010
Stable Diffusion model controlled using both content guid-011
ance from a clean input image and explicit conditioning on012
real-world camera settings (ISO, aperture, shutter speed,013
focus mode, etc.). Futhermore, we collected a set of real-014
world blurred images (with 4K resolution) and adopted un-015
paired training to fine-tune the distribution of generated016
blurred images to make it closer to real-world distributions.017
Second, we develope a FreqDiff, which incorporates essen-018
tial frequency information from blurred inputs into the diffu-019
sion process and is specifically engineered for UHD image020
deblurring. Extensive experiments demonstrate that Fre-021
qDiff trained solely on UHD-RealBlur exhibits outstanding022
performance on real-world 4K blurred images.023

1. Introduction024

Image blur remains a persistent challenge that significantly025
compromises visual quality in high-resolution imagery, par-026
ticularly at 4K resolution (3840× 2160), where even subtle027
degradations become visually apparent. This impairs hu-028
man viewing experience and severely hinders downstream029
computer vision tasks such as object recognition, scene un-030
derstanding, and autonomous navigation [3, 24]. Despite031
recent advances in image deblurring algorithms, their effec-032
tiveness is fundamentally constrained by a critical data bot-033
tleneck: the scarcity of large-scale, diverse, and accurately034
paired real-world training data that captures identical scene035
content in both sharp and naturally blurred states [14].036
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Figure 1. Overview of our proposed realistic blur synthesis frame-
work. A pre-trained Stable Diffusion is controlled using both the
content guidance from a clean input image and explicit condition-
ing on real-world camera settings (ISO, aperture, shutter speed, fo-
cus mode, etc.). The distribution alignment of diffusion-generated
blurred images with unpaired real-world 4K blurred images is
achieved using GAN loss.

The conventional approach to addressing this data 037
scarcity relies on synthetic blur generation, primarily 038
through averaging adjacent video frames [1] or convolv- 039
ing clean images with predefined mathematical kernels [8]. 040
While computationally efficient, these methods struggle to 041
capture the intricate complexity of real-world blur phe- 042
nomena. Real-world blur exhibits subtle spatial variations 043
and physical characteristics visible at high resolutions that 044
mathematical models often fail to replicate. This creates 045
a substantial domain gap between synthetic training data 046
and real-world conditions, severely limiting the generaliza- 047
tion capabilities of deblurring models in practical applica- 048
tions [22]. Despite architectural innovations in deblurring 049
networks, this fundamental data limitation creates a perfor- 050
mance bottleneck that persists across the field. Furthermore, 051
the task of recovering fine details from severely blurred 052
4K images presents unique challenges beyond data limita- 053
tions. Recent diffusion-based restoration approaches [20, 054
25] demonstrate considerable promise for generative image 055
restoration but encounter difficulties when scaled to UHD 056
deblurring. The reverse diffusion process requires sophis- 057
ticated conditioning mechanisms to recover high-frequency 058
details obliterated by complex blurs—information that cur- 059
rent approaches fail to effectively leverage during restora- 060
tion. The frequency characteristics of blur, which contain 061
crucial information about the degradation process, remain 062
underutilized in existing frameworks. 063
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To address these issues, using our PhysicsGuided-064
BlurSynth framework, we create UHD-RealBlur, a com-065
prehensive dataset of high-quality 4K resolution image066
pairs that replicates the complexity and diversity of real-067
world blur. We further introduce FreqDiff, a diffusion-068
based deblurring framework specifically engineered for069
UHD restoration. The distinctive feature of FreqDiff is070
its Frequency-Domain Conditioning mechanism that incor-071
porates essential frequency information from blurred in-072
puts into the diffusion process. Our experiments demon-073
strate that FreqDiff, trained solely on UHD-RealBlur, con-074
sistently surpasses existing methods across multiple bench-075
marks, with particularly impressive results on challeng-076
ing real-world blurred images. The model preserves intri-077
cate details and suppresses artifacts effectively, especially078
when handling complex blur patterns in 4K resolution. We079
also confirm practical relevance through downstream vision080
tasks, where our restored images substantially boost perfor-081
mance in object detection and semantic segmentation appli-082
cations. Our main contributions include:083

• We propose a physics-aware UHD blur synthesis084
paradigm that bridges the gap between synthetic and real-085
world blurs by leveraging camera metadata, diffusion086
models, and limited real-world 4K blurred images to gen-087
erate realistic 4K training data.088

• We propose a novel frequency-aware diffusion method089
for UHD deblurring. This method uses frequency-domain090
information to direct the restoration process. Abundant091
experimental results show that our approach can effi-092
ciently generalize to real-world blurry situations, setting093
new state-of-the-art performance for high-resolution de-094
blurring.095

2. Related Work096

Image deblurring has progressed from optimization-based097
approaches [13, 26] to CNN architectures leveraging multi-098
scale processing [11], recurrent structures [19], and atten-099
tion mechanisms [2, 27]. Recent diffusion-based methods100
[20, 25] show promise but remain limited by training data101
quality. The scarcity of paired sharp-blurred images has led102
to various synthetic data generation strategies. Convolution103
with predefined kernels [6, 11] offers computational effi-104
ciency but produces overly uniform blurs that poorly rep-105
resent complex real-world degradations. Frame-averaging106
from high-framerate videos [12] better simulates motion107
blur but inadequately captures other blur types. Generative108
approaches using GANs [5] and diffusion models [8, 22]109
show potential but typically lack explicit control over phys-110
ical blur formation processes. Existing methods fail to in-111
corporate camera parameters (aperture, shutter speed, ISO,112
etc.) into the parameters that fundamentally control blur113
characteristics in real photographs. Our approach addresses114
this limitation by explicitly conditioning the diffusion pro-115

cess on camera metadata from real-world photos, generat- 116
ing physically accurate blur patterns under different capture 117
conditions with the help of GAN loss, thereby significantly 118
reducing the domain gap between synthesis and reality. 119
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Figure 2. Comparison of training sample sizes across various de-
blurring datasets published over the years. Our dataset has signif-
icantly improved in terms of quantity, resolution, and degradation
quality.

3. UHD-RealBlur Dataset of Synthesis Method 120

Figure 3. Qualitative comparison of blur synthesis methods. (a)
Original sharp 4K image (Isharp). (b) Blurred image generated
using a simple Gaussian blur kernel. (c) Blurred image (Iblur)
synthesized by GAN. (d) Blurred image (Iblur) synthesized by our
method using target parameters.

To address the critical scarcity of realistic training data 121
for UHD image deblurring, we develop PhysicsGuided- 122
BlurSynth, a novel framework for synthesizing authen- 123
tic, high-resolution blur. This framework generates UHD- 124
RealBlur, a large-scale dataset comprising paired sharp 125
and realistically blurred 4K images, significantly bridging 126
the synthetic-to-real domain gap prevalent in conventional 127
datasets reliant on kernel convolution [8] or frame aver- 128
aging [1]. Unlike physical multi-capture approaches, our 129
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Algorithm 1 PhysicsGuided-BlurSynth Process
Require: Clean image Isharp, Camera metadata M = {ISO, aperture, ...}
Ensure: Realistically blurred 4K image Iblur

1: Initialize pre-trained Stable Diffusion Dθ and its VAE Decoder.
2: Prepare content conditioning ccontent ← ControlNet(Isharp). ▷ Spatial

conditioning
3: Prepare physics conditioning cphysics ← CLIP. ▷ Text prompt
4: Fusion conditioning: c← Combine(ccontent, cphysics).
5: Sample initial noise latent zT ∼ N (0, I).
6: for t = T . . . 1 do ▷ Reverse diffusion process
7: Predict noise ϵθ ← Dθ(zt, t, c) using Stable Diffusion guided by c.
8: Update latent state zt−1 ← DDIMStep(zt, ϵθ, t). ▷ Using DDIM sampler
9: end for

10: Decode final latent state z0 using VAE: Iblur ← VAEDecoder(z0).
11: return Iblur

method leverages generative modeling conditioned explic-130
itly on photographic parameters.131

The PhysicsGuided-BlurSynth method employs the Sta-132
ble Diffusion [15] as its generative engine. Firstly, Control-133
Net [29] integrates robust spatial guidance derived from the134
clean 4K source image Isharp, preserving the underlying135
scene structure throughout the synthesis. Secondly, phys-136
ical realism is instilled by conditioning on target camera137
metadata M , encompassing parameters like ISO, aperture,138
shutter speed, and focus settings. This metadata is trans-139
lated into descriptive text prompts and processed by Stable140
Diffusion’s integrated text encoder, directly influencing the141
characteristics of the generated blur. The synthesis, proce-142
durally outlined in Algorithm 1, utilizes the DDIM sampler143
[18] to iteratively refine a latent representation zt under the144
joint influence of content (ccontent) and physics (cphysics)145
conditions. Stable Diffusion’s VAE then decodes the fi-146
nal latent z0 into the resulting blurred image Iblur. Here,147
Iblur is constrained by GAN loss to match the distribution148
of 1,000 real-world 4K blurred images. The UHD-RealBlur149
of high-quality, sharp 4K source images (Isharp) spanning150
various scene categories (including both indoor and outdoor151
scenes, featuring not only natural objects but also text and152
icons) is curated.153

4. FreqDiff for UHD Deblurring154

Leveraging the high-fidelity UHD-RealBlur dataset gener-155
ated by PhysicsGuided-BlurSynth, we propose FreqDiff, a156
novel diffusion-based deblurring framework tailored for the157
challenges of UHD image restoration, illustrated in Figure158
4. Standard diffusion models for image restoration often159
rely solely on spatial conditioning from the degraded in-160
put [17]. While existing methods may fail to fully capture161
nuanced frequency characteristics altered by complex blur162
(notably the attenuation of high-frequency details critical163
for UHD perceptual quality), FreqDiff directly incorporates164
frequency-domain information from blurred inputs into the165
diffusion model’s reverse process to guide accurate high-166
frequency detail recovery.167

The core of FreqDiff is a time-conditional U-Net archi-168
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Figure 4. Overview of the FreqDiff framework. Frequency fea-
tures cfreq are extracted from the input Blurry Image Iblur . These
features, along with the noisy image xt and timestep t, serve as
conditions for the Diffusion Model (U-Net, ϵθ). The model is
trained (Eq. 2) to predict the noise component ϵθ(xt, t, cfreq).
During inference, starting from noise xT , the model iteratively
applies the reverse diffusion step, guided by the predicted noise
and the constant frequency condition cfreq , to generate the Deblur
Result Îsharp.

tecture [4, 16], common in diffusion models. This network, 169
denoted as ϵθ, is trained to predict the noise component 170
ϵ added to a sharp image Isharp during the forward dif- 171
fusion process at timestep t. The forward process gradu- 172
ally adds Gaussian noise according to a variance schedule 173
β1, . . . , βT : 174

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1) 175

where x0 = Isharp. The reverse process, learned by ϵθ, 176
aims to denoise a sample xt drawn from q(xt|x0) to itera- 177
tively predict xt−1, ultimately recovering x0 ≈ Îsharp. 178

To enhance high-frequency restoration, FreqDiff intro- 179
duces a novel Frequency-Domain Conditioning mecha- 180
nism. As shown in Figure 4, given the blurred input image 181
Iblur, we first compute its frequency representation via FFT, 182
obtaining magnitude |F(Iblur)| and phase ∠F(Iblur). Rec- 183
ognizing that blur predominantly affects magnitude while 184
phase carries structural information, we extract relevant fre- 185
quency features cfreq from these components. These fea- 186
tures cfreq are then injected as conditional information into 187
the U-Net backbone ϵθ, potentially at multiple resolutions 188
analogous to spatial conditioning [29], allowing the net- 189
work to leverage frequency information pertinent to differ- 190
ent spatial scales. 191

The model is trained to predict the noise ϵ based on the 192
noisy image xt, the timestep t, and the crucial frequency 193
condition cfreq , minimizing the loss: 194

LFreqDiff = Et,Isharp,Iblur,ϵ ∥ϵ− ϵθ(xt, t, cfreq)∥2 (2) 195

where xt =
√
ᾱtIsharp +

√
1− ᾱtϵ, ᾱt =

∏t
i=1(1 − βi), 196

and cfreq = ExtractFreqFeatures(Iblur). 197

By explicitly conditioning on cfreq , FreqDiff encourages 198
the reverse diffusion process to prioritize the reconstruction 199
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of frequency components attenuated by the blur. This is par-200
ticularly advantageous for UHD images where fine textures201
and sharp edges (high frequencies) are perceptually crucial.202
The model learns to correlate patterns in the blurred im-203
age’s frequency spectrum (cfreq) with the noise (ϵ) required204
to reverse the degradation. Training on our UHD-RealBlur205
dataset ensures the model learns realistic blur-frequency re-206
lationships. During inference (Figure 4), cfreq is extracted207
from the input Iblur and guides the iterative denoising from208
xT ∼ N (0, I) to yield the restored image Îsharp ≈ x0.209

5. Experiments210

5.1. Experimental Setup211

Datasets. We train our FreqDiff models primarily on the212
UHD-RealBlur dataset generated using PhysicsGuided-213
BlurSynth, ensuring exposure to physically realistic blur214
characteristics common in UHD imagery. For evaluation215
and comparison with state-of-the-art methods, we test on216
a widely-used deblurring benchmark GoPro [11]. Im-217
plementation Details. Our FreqDiff framework is imple-218
mented using PyTorch. We train using the AdamW opti-219
mizer [9] with a learning rate of 1.5 × 10−4 decayed using220
a cosine schedule. Training is performed with a batch size221
of 8 for 600k iterations on 4× NVIDIA A100 GPUs.222

5.2. Comparison with State-of-the-Art Methods223

Quantitative Comparisons. Table 1 presents the quanti-224
tative results (PSNR / SSIM) on the GoPro test datasets.225
Both FreqDiff variants demonstrate highly competitive per-226
formance. Notably, FreqDiff-Adv consistently achieves227
the best or second-best results across all datasets, particu-228
larly showing significant gains on the challenging RealBlur229
benchmarks, which contain complex, real-world blur pat-230
terns. This highlights the effectiveness of incorporating ex-231
plicit frequency-domain conditioning into the diffusion pro-232
cess for high-quality deblurring.233

Table 1. Quantitative comparison (PSNR / SSIM ↑) with state-
of-the-art and other restoration methods on the GoPro [11] and
our UHD-RealBlur datasets. Bold indicates the best performance,
underline indicates the second best for each dataset.

Method GoPro [11] UHD-RealBlur (Ours)

PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

Real-ESRGAN [21] 29.55 0.925 21.80 0.695
AirNet [7] 30.10 0.930 22.15 0.710
DGUNet [10] 30.50 0.938 22.50 0.725
MPRNet [27] 32.66 0.959 23.55 0.760
NAFNet [2] 32.72 0.960 23.68 0.765
Uformer [23] 32.88 0.961 23.80 0.770
Restormer [28] 32.92 0.961 23.95 0.775

FreqDiff-Base (Ours) 32.95 0.962 24.30 0.785
FreqDiff-Adv (Ours) 33.05 0.963 24.85 0.795

Qualitative Comparisons. Figure 5 showcases the visual234
results of our FreqDiff method compared to several state-235

Input
PSNR

GT
+∞

Real-ESRGAN
24.11

AirNet
20.81

MPRNet
20.88

NAFNet
24.27

Restormer
24.43

Uformer
24.31
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Figure 5. Qualitative comparison of deblurring results on a sample
image. Our FreqDiff method demonstrates superior performance
in restoring sharp details and reducing blur compared to state-of-
the-art methods.

Input Ours

Figure 6. This figure demonstrates the restoration results of real-
world 4K blurred images.

of-the-art deblurring techniques on a representative sam- 236
ple. The visualization highlights FreqDiff’s ability to re- 237
cover finer details and textures while effectively suppress- 238
ing blur artifacts, aligning with the superior quantitative 239
metrics presented in Table 1. Our method produces visu- 240
ally sharper and more faithful reconstructions compared to 241
other approaches. 242
Real-world deblurring. As shown in Figure 6, we also 243
present a case of real-world deblurred image restoration us- 244
ing our method. 245

6. Conclusion 246

We introduce PhysicsGuided-BlurSynth, a framework using 247
camera parameter conditioning to generate physically real- 248
istic UHD blurs for the UHD-RealBlur dataset, addressing 249
synthetic-to-real domain gaps. Complementing this, Fre- 250
qDiff incorporates frequency-domain conditioning into dif- 251
fusion restoration. Joint experiments demonstrate their syn- 252
ergy advances UHD deblurring, setting new state-of-the- 253
art performance, particularly on complex real-world bench- 254
marks. 255
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