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Abstract

Generating large-scale, diverse, and realistic paired data
for ultra-high-definition (UHD) image deblurring is chal-
lenging due to the complex textures and information con-
tained in UHD images. Existing synthetic methods often
fail to replicate the complex, spatially-varying blurs present
in real-world 4K imagery, limiting model performance. To
address this gap, we introduce two diffusion-centric con-
tributions: First, UHD-RealBlur, a large-scale 4K dataset
produced by our novel PhysicsGuided-BlurSynth frame-
work. PhysicsGuided-BlurSynth leverages a pre-trained
Stable Diffusion model controlled using both content guid-
ance from a clean input image and explicit conditioning on
real-world camera settings (ISO, aperture, shutter speed,
focus mode, etc.). Futhermore, we collected a set of real-
world blurred images (with 4K resolution) and adopted un-
paired training to fine-tune the distribution of generated
blurred images to make it closer to real-world distributions.
Second, we develope a FreqDiff, which incorporates essen-
tial frequency information from blurred inputs into the diffu-
sion process and is specifically engineered for UHD image
deblurring. Extensive experiments demonstrate that Fre-
qDiff trained solely on UHD-RealBlur exhibits outstanding
performance on real-world 4K blurred images.

1. Introduction

Image blur remains a persistent challenge that significantly
compromises visual quality in high-resolution imagery, par-
ticularly at 4K resolution (3840× 2160), where even subtle
degradations become visually apparent. This impairs hu-
man viewing experience and severely hinders downstream
computer vision tasks such as object recognition, scene un-
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Figure 1. Overview of our proposed realistic blur synthesis frame-
work. A pre-trained Stable Diffusion is controlled using both the
content guidance from a clean input image and explicit condition-
ing on real-world camera settings (ISO, aperture, shutter speed, fo-
cus mode, etc.). The distribution alignment of diffusion-generated
blurred images with unpaired real-world 4K blurred images is
achieved using GAN loss.

derstanding, and autonomous navigation [3, 24]. Despite
recent advances in image deblurring algorithms, their effec-
tiveness is fundamentally constrained by a critical data bot-
tleneck: the scarcity of large-scale, diverse, and accurately
paired real-world training data that captures identical scene
content in both sharp and naturally blurred states [14].

The conventional approach to addressing this data
scarcity relies on synthetic blur generation, primarily
through averaging adjacent video frames [1] or convolv-
ing clean images with predefined mathematical kernels [8].
While computationally efficient, these methods struggle to
capture the intricate complexity of real-world blur phe-
nomena. Real-world blur exhibits subtle spatial variations
and physical characteristics visible at high resolutions that
mathematical models often fail to replicate. This creates
a substantial domain gap between synthetic training data
and real-world conditions, severely limiting the generaliza-
tion capabilities of deblurring models in practical applica-
tions [22]. Despite architectural innovations in deblurring
networks, this fundamental data limitation creates a perfor-
mance bottleneck that persists across the field. Furthermore,
the task of recovering fine details from severely blurred
4K images presents unique challenges beyond data limita-
tions. Recent diffusion-based restoration approaches [20,
25] demonstrate considerable promise for generative image
restoration but encounter difficulties when scaled to UHD
deblurring. The reverse diffusion process requires sophis-
ticated conditioning mechanisms to recover high-frequency



details obliterated by complex blurs—information that cur-
rent approaches fail to effectively leverage during restora-
tion. The frequency characteristics of blur, which contain
crucial information about the degradation process, remain
underutilized in existing frameworks.

To address these issues, using our PhysicsGuided-
BlurSynth framework, we create UHD-RealBlur, a com-
prehensive dataset of high-quality 4K resolution image
pairs that replicates the complexity and diversity of real-
world blur. We further introduce FreqDiff, a diffusion-
based deblurring framework specifically engineered for
UHD restoration. The distinctive feature of FreqDiff is
its Frequency-Domain Conditioning mechanism that incor-
porates essential frequency information from blurred in-
puts into the diffusion process. Our experiments demon-
strate that FreqDiff, trained solely on UHD-RealBlur, con-
sistently surpasses existing methods across multiple bench-
marks, with particularly impressive results on challeng-
ing real-world blurred images. The model preserves intri-
cate details and suppresses artifacts effectively, especially
when handling complex blur patterns in 4K resolution. We
also confirm practical relevance through downstream vision
tasks, where our restored images substantially boost perfor-
mance in object detection and semantic segmentation appli-
cations. Our main contributions include:
• We propose a physics-aware UHD blur synthesis

paradigm that bridges the gap between synthetic and real-
world blurs by leveraging camera metadata, diffusion
models, and limited real-world 4K blurred images to gen-
erate realistic 4K training data.

• We propose a novel frequency-aware diffusion method
for UHD deblurring. This method uses frequency-domain
information to direct the restoration process. Abundant
experimental results show that our approach can effi-
ciently generalize to real-world blurry situations, setting
new state-of-the-art performance for high-resolution de-
blurring.

2. Related Work
Image deblurring has progressed from optimization-based
approaches [13, 26] to CNN architectures leveraging multi-
scale processing [11], recurrent structures [19], and atten-
tion mechanisms [2, 27]. Recent diffusion-based methods
[20, 25] show promise but remain limited by training data
quality. The scarcity of paired sharp-blurred images has led
to various synthetic data generation strategies. Convolution
with predefined kernels [6, 11] offers computational effi-
ciency but produces overly uniform blurs that poorly rep-
resent complex real-world degradations. Frame-averaging
from high-framerate videos [12] better simulates motion
blur but inadequately captures other blur types. Generative
approaches using GANs [5] and diffusion models [8, 22]
show potential but typically lack explicit control over phys-

ical blur formation processes. Existing methods fail to in-
corporate camera parameters (aperture, shutter speed, ISO,
etc.) into the parameters that fundamentally control blur
characteristics in real photographs. Our approach addresses
this limitation by explicitly conditioning the diffusion pro-
cess on camera metadata from real-world photos, generat-
ing physically accurate blur patterns under different capture
conditions with the help of GAN loss, thereby significantly
reducing the domain gap between synthesis and reality.
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Figure 2. Comparison of training sample sizes across various de-
blurring datasets published over the years. Our dataset has signif-
icantly improved in terms of quantity, resolution, and degradation
quality.

3. UHD-RealBlur Dataset of Synthesis Method

Figure 3. Qualitative comparison of blur synthesis methods. (a)
Original sharp 4K image (Isharp). (b) Blurred image generated
using a simple Gaussian blur kernel. (c) Blurred image (Iblur)
synthesized by GAN. (d) Blurred image (Iblur) synthesized by our
method using target parameters.

To address the critical scarcity of realistic training data
for UHD image deblurring, we develop PhysicsGuided-
BlurSynth, a novel framework for synthesizing authen-
tic, high-resolution blur. This framework generates UHD-
RealBlur, a large-scale dataset comprising paired sharp



Algorithm 1 PhysicsGuided-BlurSynth Process
Require: Clean image Isharp, Camera metadata M = {ISO, aperture, ...}
Ensure: Realistically blurred 4K image Iblur

1: Initialize pre-trained Stable Diffusion Dθ and its VAE Decoder.
2: Prepare content conditioning ccontent ← ControlNet(Isharp). ▷ Spatial

conditioning
3: Prepare physics conditioning cphysics ← CLIP. ▷ Text prompt
4: Fusion conditioning: c← Combine(ccontent, cphysics).
5: Sample initial noise latent zT ∼ N (0, I).
6: for t = T . . . 1 do ▷ Reverse diffusion process
7: Predict noise ϵθ ← Dθ(zt, t, c) using Stable Diffusion guided by c.
8: Update latent state zt−1 ← DDIMStep(zt, ϵθ, t). ▷ Using DDIM sampler
9: end for

10: Decode final latent state z0 using VAE: Iblur ← VAEDecoder(z0).
11: return Iblur

and realistically blurred 4K images, significantly bridging
the synthetic-to-real domain gap prevalent in conventional
datasets reliant on kernel convolution [8] or frame aver-
aging [1]. Unlike physical multi-capture approaches, our
method leverages generative modeling conditioned explic-
itly on photographic parameters.

The PhysicsGuided-BlurSynth method employs the Sta-
ble Diffusion [15] as its generative engine. Firstly, Control-
Net [29] integrates robust spatial guidance derived from the
clean 4K source image Isharp, preserving the underlying
scene structure throughout the synthesis. Secondly, phys-
ical realism is instilled by conditioning on target camera
metadata M , encompassing parameters like ISO, aperture,
shutter speed, and focus settings. This metadata is trans-
lated into descriptive text prompts and processed by Stable
Diffusion’s integrated text encoder, directly influencing the
characteristics of the generated blur. The synthesis, proce-
durally outlined in Algorithm 1, utilizes the DDIM sampler
[18] to iteratively refine a latent representation zt under the
joint influence of content (ccontent) and physics (cphysics)
conditions. Stable Diffusion’s VAE then decodes the fi-
nal latent z0 into the resulting blurred image Iblur. Here,
Iblur is constrained by GAN loss to match the distribution
of 1,000 real-world 4K blurred images. The UHD-RealBlur
of high-quality, sharp 4K source images (Isharp) spanning
various scene categories (including both indoor and outdoor
scenes, featuring not only natural objects but also text and
icons) is curated.

4. FreqDiff for UHD Deblurring

Leveraging the high-fidelity UHD-RealBlur dataset gener-
ated by PhysicsGuided-BlurSynth, we propose FreqDiff, a
novel diffusion-based deblurring framework tailored for the
challenges of UHD image restoration, illustrated in Figure
4. Standard diffusion models for image restoration often
rely solely on spatial conditioning from the degraded in-
put [17]. While existing methods may fail to fully capture
nuanced frequency characteristics altered by complex blur
(notably the attenuation of high-frequency details critical
for UHD perceptual quality), FreqDiff directly incorporates
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Figure 4. Overview of the FreqDiff framework. Frequency fea-
tures cfreq are extracted from the input Blurry Image Iblur . These
features, along with the noisy image xt and timestep t, serve as
conditions for the Diffusion Model (U-Net, ϵθ). The model is
trained (Eq. 2) to predict the noise component ϵθ(xt, t, cfreq).
During inference, starting from noise xT , the model iteratively
applies the reverse diffusion step, guided by the predicted noise
and the constant frequency condition cfreq , to generate the Deblur
Result Îsharp.

frequency-domain information from blurred inputs into the
diffusion model’s reverse process to guide accurate high-
frequency detail recovery.

The core of FreqDiff is a time-conditional U-Net archi-
tecture [4, 16], common in diffusion models. This network,
denoted as ϵθ, is trained to predict the noise component
ϵ added to a sharp image Isharp during the forward dif-
fusion process at timestep t. The forward process gradu-
ally adds Gaussian noise according to a variance schedule
β1, . . . , βT :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where x0 = Isharp. The reverse process, learned by ϵθ,
aims to denoise a sample xt drawn from q(xt|x0) to itera-
tively predict xt−1, ultimately recovering x0 ≈ Îsharp.

To enhance high-frequency restoration, FreqDiff intro-
duces a novel Frequency-Domain Conditioning mecha-
nism. As shown in Figure 4, given the blurred input image
Iblur, we first compute its frequency representation via FFT,
obtaining magnitude |F(Iblur)| and phase ∠F(Iblur). Rec-
ognizing that blur predominantly affects magnitude while
phase carries structural information, we extract relevant fre-
quency features cfreq from these components. These fea-
tures cfreq are then injected as conditional information into
the U-Net backbone ϵθ, potentially at multiple resolutions
analogous to spatial conditioning [29], allowing the net-
work to leverage frequency information pertinent to differ-
ent spatial scales.

The model is trained to predict the noise ϵ based on the
noisy image xt, the timestep t, and the crucial frequency
condition cfreq , minimizing the loss:

LFreqDiff = Et,Isharp,Iblur,ϵ ∥ϵ− ϵθ(xt, t, cfreq)∥2 (2)

where xt =
√
ᾱtIsharp +

√
1− ᾱtϵ, ᾱt =

∏t
i=1(1 − βi),

and cfreq = ExtractFreqFeatures(Iblur).



By explicitly conditioning on cfreq , FreqDiff encourages
the reverse diffusion process to prioritize the reconstruction
of frequency components attenuated by the blur. This is par-
ticularly advantageous for UHD images where fine textures
and sharp edges (high frequencies) are perceptually crucial.
The model learns to correlate patterns in the blurred im-
age’s frequency spectrum (cfreq) with the noise (ϵ) required
to reverse the degradation. Training on our UHD-RealBlur
dataset ensures the model learns realistic blur-frequency re-
lationships. During inference (Figure 4), cfreq is extracted
from the input Iblur and guides the iterative denoising from
xT ∼ N (0, I) to yield the restored image Îsharp ≈ x0.

5. Experiments

5.1. Experimental Setup
Datasets. We train our FreqDiff models primarily on the
UHD-RealBlur dataset generated using PhysicsGuided-
BlurSynth, ensuring exposure to physically realistic blur
characteristics common in UHD imagery. For evaluation
and comparison with state-of-the-art methods, we test on
a widely-used deblurring benchmark GoPro [11]. Im-
plementation Details. Our FreqDiff framework is imple-
mented using PyTorch. We train using the AdamW opti-
mizer [9] with a learning rate of 1.5 × 10−4 decayed using
a cosine schedule. Training is performed with a batch size
of 8 for 600k iterations on 4× NVIDIA A100 GPUs.

5.2. Comparison with State-of-the-Art Methods
Quantitative Comparisons. Table 1 presents the quanti-
tative results (PSNR / SSIM) on the GoPro test datasets.
Both FreqDiff variants demonstrate highly competitive per-
formance. Notably, FreqDiff-Adv consistently achieves
the best or second-best results across all datasets, particu-
larly showing significant gains on the challenging RealBlur
benchmarks, which contain complex, real-world blur pat-
terns. This highlights the effectiveness of incorporating ex-
plicit frequency-domain conditioning into the diffusion pro-
cess for high-quality deblurring.

Table 1. Quantitative comparison (PSNR / SSIM ↑) with state-
of-the-art and other restoration methods on the GoPro [11] and
our UHD-RealBlur datasets. Bold indicates the best performance,
underline indicates the second best for each dataset.

Method GoPro [11] UHD-RealBlur (Ours)

PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

Real-ESRGAN [21] 29.55 0.925 21.80 0.695
AirNet [7] 30.10 0.930 22.15 0.710
DGUNet [10] 30.50 0.938 22.50 0.725
MPRNet [27] 32.66 0.959 23.55 0.760
NAFNet [2] 32.72 0.960 23.68 0.765
Uformer [23] 32.88 0.961 23.80 0.770
Restormer [28] 32.92 0.961 23.95 0.775

FreqDiff-Base (Ours) 32.95 0.962 24.30 0.785
FreqDiff-Adv (Ours) 33.05 0.963 24.85 0.795
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Figure 5. Qualitative comparison of deblurring results on a sample
image. Our FreqDiff method demonstrates superior performance
in restoring sharp details and reducing blur compared to state-of-
the-art methods.

Input Ours

Figure 6. This figure demonstrates the restoration results of real-
world 4K blurred images.

Qualitative Comparisons. Figure 5 showcases the visual
results of our FreqDiff method compared to several state-
of-the-art deblurring techniques on a representative sam-
ple. The visualization highlights FreqDiff’s ability to re-
cover finer details and textures while effectively suppress-
ing blur artifacts, aligning with the superior quantitative
metrics presented in Table 1. Our method produces visu-
ally sharper and more faithful reconstructions compared to
other approaches.
Real-world deblurring. As shown in Figure 6, we also
present a case of real-world deblurred image restoration us-
ing our method.

6. Conclusion
We introduce PhysicsGuided-BlurSynth, a framework using
camera parameter conditioning to generate physically real-
istic UHD blurs for the UHD-RealBlur dataset, addressing
synthetic-to-real domain gaps. Complementing this, Fre-
qDiff incorporates frequency-domain conditioning into dif-
fusion restoration. Joint experiments demonstrate their syn-
ergy advances UHD deblurring, setting new state-of-the-



art performance, particularly on complex real-world bench-
marks.
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