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Abstract

We address the problem of view synthesis in complex outdoor scenes. We propose

a novel convolutional neural network architecture that includes flow-based and direct

synthesis sub-networks. Both sub-networks introduce novel elements that greatly improve

the quality of the synthesized images. These images are then adaptively fused to create

the final output image. Our approach achieves state-of-the-art performance on the KITTI

dataset, which is commonly used to evaluate view-synthesis methods. Unlike many

recently proposed methods, ours is trained without the need for additional geometric

constraints, such as a ground-truth depth map, making it more broadly applicable. Our

approach also achieved the best performance on the Brooklyn Panorama Synthesis dataset,

which we introduce as a new, challenging benchmark for view synthesis. Our dataset,

code, and pretrained models are available at https://mvrl.github.io/GAF.

1 Introduction

View synthesis is the task of generating novel views of a scene given only a set of known

images. Inferring the appearance of a scene from different viewpoints requires a rich under-

standing of its geometric and radiometric structure. As such, view synthesis has long been a

topic of interest in the computer vision and graphics communities. Early work focused on view

synthesis in laboratory settings. Recent work has explored view synthesis in natural, outdoor

scenes using convolutional neural networks (CNNs) that take as input a single source image

and a camera motion vector [13, 25]. There are two predominant approaches: flow-based

synthesis [25] and direct synthesis [19]. Flow-based methods use a CNN to predict a flow field

that is used to warp the input image using existing pixel content only. The main advantage

of flow-based methods is that the synthesized images are typically sharp and colors are

preserved. However, there are issues in dealing with disocclusion, because it is not possible

to copy occluded regions from the input image. Direct synthesis methods are not limited to

warping the input since the CNN outputs the raw pixel intensity values. Unfortunately, training
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Figure 1: Given an input image and camera transformation, our system synthesizes a flow-

based prediction (b) and a direct prediction (c). An adaptive fusion mask (a) is predicted to

fuse flow-based and direct predictions to make the final prediction (d). By fusing the results

of these two predictions, we produce a new image with the benefits of both.

such models is difficult, especially if the scene structure is unknown. This has motivated

recent approaches that use auxiliary geometric information, such as ground-truth depth during

training [8] or the semantic layout of the target image at inference time [18]. Without these

additional cues, synthesis approaches often generate sub-par results. Our approach addresses

this challenge without requiring additional information.

We propose a convolutional neural network (CNN) architecture that uses an adaptive

fusion process to combine flow-based and direct synthesis methods. See Figure 2 for an

overview of the full architecture. We use a fully convolutional flow-prediction sub-network

which uses a distributed encoding of the camera motion parameters that improves training

stability. Also, we propose using an adaptive image scale during training that allows for

progressive sharpening of generated images as training progresses. We use the output flow

from the flow sub-network to warp the intermediate features of a direct synthesis sub-network.

This warping significantly improves the quality of the predictions. Finally, we train a fusion

module that learns to combine direct and flow-based images to produce the final output.

A standard benchmark dataset for single-image view synthesis is KITTI [6], which

consists of perspective images and corresponding camera poses. We show that our method

achieves state-of-the-art performance on KITTI. Through an ablation study, we also show

that our flow-based network alone also improves upon previous work. However, the motion

involved in KITTI is limited, with little lateral or vertical camera movement. To address this

issue, we created the Brooklyn Panorama Synthesis (BPS) dataset. It consists of pairs of

panoramic images with corresponding relative camera motion.

Main Contributions We propose a novel view synthesis method that combines elements of

flow-based and direct synthesis approaches, achieving state-of-the-art performance. Our flow-

based sub-network includes three novel elements: a) a fully convolutional flow-prediction

network, b) a distributed motion encoding scheme, and c) an adaptive scale space training

method which is critical when image motion is large. This sub-network, by itself, improves

upon the state of the art. We also propose a novel direct synthesis method that integrates the

flow-field estimated by the flow-based sub-network. We evaluate our approach on the standard

KITTI benchmark and introduce a more diverse, large-scale dataset suitable for evaluating

outdoor, single-image view synthesis methods.
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2 Related Work

Given the long history of novel view synthesis, there exists a variety of methods and use

cases. Many modern view synthesis and next frame prediction methods rely on multiple

input images [2, 4, 5, 28]. These methods require several nearby views and tend to perform

poorly on low frame-rate video or when only a single reference view is given. NeRF [11] uses

several images of a scene to learn a radiance field that can be used to synthesize novel views

close to poses of training images. While this method achieves high quality results, it requires

per-environment training. We address the challenging problem of single image view synthesis

in complex outdoor environments with large camera transformations.

Traditional geometric methods of synthesizing novel views require estimating the 3D

layout of the scene [1, 23, 24]. Once the 3D information is available, the image can be warped

and rendered from the desired viewpoint. These methods typically cannot deal with the

difficult problem of occlusion that manifests through independent object motion and view

point transformation. Furthermore, estimating 3D geometry from color imagery is itself an

active research area. As opposed to geometric methods, learning-based approaches implicitly

learn to simultaneously understand and manipulate the 3D structure of the scene.

Direct Methods Image synthesis through CNNs has become extremely popular due to the

success of generative adversarial networks (GANs) and autoencoders. While most work is

focused on simply generating realistic images, several approaches perform an explicit view

transform. Tatarchenko et al. [19] propose a CNN to generate images from specific view

points through an encoder-decoder architecture. However, this method performs poorly on

real world data, producing blurry images that lack detail. Xu et al. [21] proposed a GAN for

generating images with view-invariant features. While this method performs well, applications

are limited to synthesis of single objects viewed from different angles.

Flow-Based Methods Zhou et al. introduced Appearance Flow [25], in which a CNN

outputs a dense, full-resolution pixel flow field. These 2D flow vectors specify the sampling

location in the source image for all coordinates of the output image. The underlying as-

sumption of this approach is that nearby images share much of the same structure and color

information. This method produces sharp images, but fails when the target image contains

content not seen in the input.

Refinement Based Methods There are existing methods that use direct synthesis networks

to improve the quality of synthesis from other methods. For example, Park et al. [13], uses a

refinement network, an encoder-decoder network, that improves the prediction of a flow-based

network. The method by Sun et al. [17] uses multiple views to synthesize a single target

image. The target view is synthesized by a recurrent direct synthesis method which does not

directly share information with the flow-based network.

Incorporating Geometry A common technique for improving performance for view syn-

thesis is by using additional details such as scene depth. These approaches take inspiration

from traditional view synthesis which uses explicit scene geometry to perform image warping.

Yin et al. [22] improve results on natural images through the use of inverse depth maps,

explicit camera geometry, and an adversarial loss. Similarly, the method of Liu et al. [8]

depends on separate depth, normal, and plane estimation networks and uses homography
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Figure 2: Our Generative Appearance Flow model consists of a flow-based synthesis network

(bottom) and a direct synthesis network (top) which uses the flow from the flow-network to

warp image features and then predicts the image output. A fusion network learns to combine

the flow-based and directly synthesized images to produce the final output.

transformations. These constraints limit the methods to images with known camera intrinsics

and environments where reasonable depth predictions can be made. SynSin [20] proposes

depth estimation and differentiable rendering for single-image view synthesis. Shih et al. [16]

propose a depth and color inpainting method for view synthesis for RGB-D images. Our

method differs in two main aspects. 1) We do not need to explicitly learn depth of the scene;

instead we propose to use the appearance flow between views and use that image-plane warp.

2) This enables us to train across different datasets and work in complex outdoor environments

with large camera viewpoint displacement without requiring 3D supervision for training.

3 Approach

We address the task of single-image view synthesis, focusing on translational motion in

outdoor scenes. We are given source and target images Is, It ∈ R
H×W×3 and a motion vector v

from camera pose of Is to It . The goal is to use Is and v to synthesize an output image Î that

is similar to the target image It . Flow-based methods first estimate a flow field f ∈ R
H×W×2

which specifies relative pixel motion between the source and target views. The flow-prediction

network is typically a CNN, which can be modeled as an encoder-decoder architecture:

f = F(EI(Is),EM(v)) where F is a decoder that generates the flow field, EI is an image

encoder, and EM is a motion encoder. The output image is synthesized by sampling the

input image with the estimated flow. This sampling is typically performed using bilinear

interpolation. Direct synthesis methods do not require intermediate outputs. Instead, the image

is directly computed by a decoder CNN: Î = D(EI(Is),EM(v)). These methods rely on the

decoder D to learn to apply the image transformation.

Overview We propose Generative Appearance Flow (GAF), shown in Figure 2, which

combines elements of flow-based and direct synthesis methods. The main components are 1)

a flow-based synthesis sub-network, 2) a direct synthesis sub-network that uses the flow field

estimated by the previous sub-network to improve output quality, and 3) an adaptive fusion
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sub-network that combines the outputs from the previous two.

3.1 Improved Appearance Flow (AF++)

Our flow-based sub-network, AF++, uses the framework introduced by Zhou et al. [25] but

makes three key improvements that result in state-of-the-art performance: fully convolutional

flow prediction, distributed motion encoding, and scale-adaptive spatial sampling.

Fully Convolutional Flow Prediction: We structure our network as a fully convolutional

encoder-decoder architecture. We concatenate the image and motion encodings and use a

decoder to obtain a two-channel flow field. This removes the fully connected layers present in

the the Appearance Flow framework, allowing the features to preserve spatial information.

We use ResNet-18 for the image encoder, which results in a feature map of 1
8

the input

image resolution. Our decoder contains three blocks. Each block upsamples the input feature

maps and performs two 2D convolution operations. We use nearest neighbor upsampling to

reduce checkerboard artifacts that are common in transposed convolutions [12]. The flow

field is dependent on the pixel location but the convolutional operation is independent of the

patch location. To deal with this problem in a fully convolutional network, we propose to use

CoordConv layer [9], which uses pixel location as an additional input feature. It is important

to include pixel location because the expected flow varies drastically across the image based

on the epipolar geometry induced by the camera motion. The first and last convolutional

layers in decoder are CoordConv layers. The predicted flow values are constrained to the

range [−1,1] using the tanh activation.

Distributed Motion Encoding A naïve way to incorporate the motion vector v is to append

the real-valued motion parameters directly to each pixel of the image feature map. However,

we found this to be unstable during training. We propose a distributed encoding for each

motion component vi which is, essentially, a soft form of one-hot encoding. We first define a

1D Gaussian distribution N (vi,σ
2
m), centered on the component motion. Given the known

maximum motion dmax along the axis, we linearly sample N displacements {−dmax, . . . ,dmax}
and evaluate the Gaussian distribution at each location. The result is an N-dimensional motion

encoding, Em(vi), with larger values for bins near the true motion. We compute encodings for

each dimension of the motion vector and concatenate them to produce an encoding of length

L = N ×K where K is the number of motion components. Finally, we tile the encoding vector

to the size H ′×W ′×L so that it can be concatenated with the image encoding.

Scale-Adaptive Spatial Sampling Traditional optical flow estimation methods commonly

use an image pyramid or smooth the input image to make pixel matching robust. Following

these ideas, we model the input image in scale-space before applying the warp to generate the

output image. The scale is applied to the input by convolving the image with a 2D Gaussian

kernel with scale σ .

A large σ helps training in the early stage, but prevents the network from preserving

fine details from the input image. To overcome this, we make σ a learnable parameter. We

initialize σ to 2, and found that σ decreases as training continues, converged to just below 1

roughly half way through training. This idea is similar to multi-scale loss evaluation common

in optical flow methods, but removes the need to create an explicit image pyramid.
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3.2 Flow-Guided Direct Synthesis (FDS)

Our direct synthesis sub-network, FDS, uses an encoder-decoder architecture. The key element

is incorporating the flow field f estimated by AF++ to warp the bottleneck feature maps. A

similar idea was proposed by Zhu et al. [27], where optical flow between video frames was

applied to feature maps to reduce the need for feature extraction. Using the image encoder EG
I ,

the output is synthesized as: ÎG = DG(S(EG
I (Is), f )) where DG is the decoder and S(EG

I (Is), f )
is the image feature map after applying the warp. To apply the flow field to the image features,

the field is down-sampled using nearest neighbor sampling to match the feature map resolution.

We found that a naïve use of the direct synthesis method that predicts pixel values based only

on the input image and the transformation vector to be suboptimal and observed significant

performance gain by introducing the feature flow transformation.

For the FDS network, we use a ResNet-50 encoder and a decoder similar to the one in

AF++, with the only difference being in the final layer. In DG, we replace the CoordConv

with a standard convolution and the three channel pixel values are predicted in the range [0,

1] by applying the sigmoid activation function.

3.3 Adaptive Image Fusion

While our flow-based method AF++ captures fine details and produces sharp results, the

direct synthesis method FDS is able to hallucinate missing pixels and generate more coherent

predictions. Motivated by this, we propose to adaptively fuse the images generated by these

sub-networks to produce the final output image. We train a standard U-Net [15] architecture

to predict a fusion weight for each pixel. The network takes as input the concatenation of

the predicted flow and the images generated by the first two sub-networks. The output A is a

single channel that predicts values in the range [0, 1] using the sigmoid activation function.

The final output image of GAF is computed using: Î = A⊙ ÎF +(1−A)⊙ ÎG, where ÎF is the

output of AF++, ÎG is the output of FDS, and ⊙ is element-wise multiplication. See Figure 4

for a visualization of the predicted per-pixel fusion mask.

3.4 Loss Functions

We train our full model, and all baseline models, using the same loss function, which combines

the following loss components. The first is a reconstruction loss, which in our case is the L1

loss between target image It and generated image Î: Lr(Î, It) = ‖Î − It‖1. To encourage more

realistic synthesized images, we add a perceptual loss [7] by extracting CNN features for the

synthesized and target image and minimize the mean squared error between the features. We

use a ResNet-18 pre-trained for Cityscapes [3] segmentation as the feature extractor. To deal

with small artifacts, we also include an adversarial loss by adding a discriminator which aims

to differentiate between real and synthesized images. For a set of image patches P, we use

a patch discriminator [26] with the least squares loss, LG(Î) [10]. For brevity, we omit the

loss function for training of the discriminator. We combine these component losses, using

hyper-parameters λ1, λ2, and λ3, to define our total loss:

L(Î, It) = λ1Lr(Î
′
, It)+λ2Lp(Î, It)+λ3LG(Î). (1)
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4 Evaluation

We present quantitative and qualitative results of the proposed methods, including an ablation

study to assess the contribution of various components. Source code, pre-trained models, and

the BPS dataset are available on our project page: https://mvrl.github.io/GAF.

See the supplemental material for dataset details, network architectures, and additional

visualizations.

4.1 Datasets

We evaluated our methods on two datasets that each consist of pairs of images of outdoor

scenes (Is, It) with corresponding motion vectors v. The KITTI dataset [6], containing images

from 11 sequences recorded in urban road scenes, is a standard benchmark for outdoor

view synthesis. Image pairs are captured with a front-facing camera and were sampled with

a maximum interval of one second. This means that the motions are mostly forward or

backward, simplifying the view synthesis task. While the raw images are around 1220×370,

the training size is reduced significantly be resizing or cropping [17]. Also, the horizontal

field of view of KITTI image is around ∼82◦, limiting the available information for view

synthesis under extreme view change. Following [8, 25], we use first 9 sequences of KITTI

for training and last 2 sequences for testing.

To overcome these limitations in KITTI, we created a dataset of outdoor panoramic images,

which we name the Brooklyn Panorama Synthesis (BPS) dataset. Images were randomly

sampled from Google StreetView such that each pair is within 10 meters. The image size is

960×160 pixels with the horizontal field of view of 360◦. In total, it contains 44092 image

pairs. We randomly split the dataset into training (40592 pairs) and testing (3500 pairs). Note

that BPS has more images, wider field of view, and larger average motion compared to KITTI.

We believe that BPS is a challenging dataset that will be useful for future work on outdoor

view synthesis. Please see supplemental material for detailed comparison of BPS and KITTI

dataset and distribution of viewpoint changes.

4.2 Baseline Methods

We compare our method to several state-of-the-art single image methods: Appearance Flow

(AF) [25], Geometry Aware (GA) [8], and Multi-View (MV) [17] trained for single image

view synthesis. We also include a trivial baseline, Identity, that always predicts the source

image. This method works surprisingly well, especially when image motion is small. For

fairness, we prepare a variant of AF, named AF-ResNet, that has the same ResNet encoder

that we are using in our flow-based method AF++.

4.3 Implementation Details

We implemented our approach using the PyTorch [14] framework. We train our networks

using the Adam optimizer with parameters β1 = 0.9 and β2 = 0.999. We used a learning rate

of 1e−5 and L2 regularization of 1e−6 with batch size of 16. All pixel values were scaled

to the range [0,1]. In panoramic images, it is possible that relevant information might be on

the wrong side of the image because of the wrap-around effect of equirectangular projection.

To address this, we add 48 pixels of wrap-around padding to both the left and right borders.

Only the original (unpadded) image pixels are used for evaluation purposes. We encode each
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Method L1 SSIM PSNR

Identity 0.4923 0.4159 12.0084

AF [25] 0.4643 0.4595 13.6917

GA [8] 0.340 - -

MV [17] 0.3971 0.5597 14.2942

AF++ (Ours) 0.3452 0.5395 16.0868

FDS (Ours) 0.3069 0.6079 16.0814

GAF (Ours) 0.2991 0.6102 17.1469

Table 1: Results on the KITTI dataset.

Method L1 SSIM PSNR

Identity 0.4890 0.3587 12.8998

AF [25] 0.4584 0.3540 13.4134

AF-ResNet 0.4399 0.3934 13.8985

AF++ w/o motion enc. 0.4207 0.4001 14.1073

AF++ w/o scaling 0.4341 0.4140 13.8688

AF++ (Ours) 0.3702 0.4534 15.0695

FDS (Ours) 0.3276 0.5257 16.3203

GAF (Ours) 0.3255 0.5276 16.3210

Table 2: Results on the BPS dataset.

Input AF [25] AF++(Ours) FDS(Ours) GAF(Ours) GT

Figure 3: Qualitative results on the KITTI dataset.

element of the vector v using our proposed motion encoding with a vector of size 25 with

σm = 0.75 and concatenate them to form a single vector of size 50. For KITTI, the odometry

provides complete motion in 3D. We use motion encoding for x and y axes with 21 elements

each. Since motion is typically along the z-axis, we encode z with 41 bins. This results in an

encoding of size 83. For each dimension we use σm = 0.75.

For training AF++, FDS, and GAF, we give higher weight to reconstruction and perceptual

loss, λ1 = 1, λ2 = 1, and lower weight for the GAN loss, λ3 = 0.01. We begin by training the

flow-based synthesis sub-network, AF++ for 25 epochs. The other flow-based methods, AF

and AF-ResNet, are also trained for 35 epochs. We then train our direct synthesis sub-network,

FDS. We pretrain FDS as an autoencoder, without using the flows from AF++, by setting the

motion encoding and flow to zero and using the same image for source and target. This is

done to initialize the image decoder for reasonable image generation. Next, we train FDS for

10 epochs, leaving AF++ frozen. For the final step, we freeze AF++ and FDS and train the

adaptive image fusion network for 5 epochs.

4.4 Results

We evaluate our method using standard metrics for testing image generation quality: L1 error,

peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Results on the KITTI
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Figure 4: Example outputs from our proposed methods. Fusion masks correctly capture the

best regions from AF++ and FDS predictions to synthesize the GAF prediction.

dataset, Table 1, show that our method outperforms AF and GA. Notice that Identity gets

reasonable metrics, highlighting the visual similarity between inputs and targets. Note that

our flow-based sub-network AF++ alone performs much better than the baseline methods.

We see consistent performance gains as we use our direct synthesis method FDS, and GAF

achieves the best results. Table 2 shows the performance of our models and the baselines on

the BPS dataset. We can see that AF++ gets better metrics than existing methods. Moreover,

our FDS and GAF models further improve the metrics. Since GA requires 3D supervision, we

are unable to evaluate it on BPS.

Ablation Tables 1 and 2 show that using FDS and GAF improve metrics of the flow method

AF++. We also perform an ablation study of AF++. We created two variants: one without the

motion encoding and one without the scale space training strategy, keeping all other aspects

unchanged. The results demonstrate that removing either component significantly decreases

performance, with the removal of scale space training having a larger impact.

Qualitative Analysis Qualitative results are shown in Figures 3 and 4. We can see that

AF++ retains fine details and produces sharp outputs, but there are noticeable artifacts. FDS

produces smooth output that is more globally consistent. The fusion mask from GAF correctly

selects the best parts from both intermediate outputs to synthesize images with fewer artifacts.

Please see the supplementary material for visualization of the predicted flow fields.
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5 Conclusions

We introduced a method for view synthesis that performs well on challenging outdoor scenes.

Our method integrates both flow-based and direct approaches. We also introduced a view-

synthesis evaluation dataset, BPS, containing panorama pairs. Our flow-based sub-network

includes several novel elements: fully-convolutional flow prediction, distributed motion

encoding, and an adaptive scale space training strategy. This sub-network alone achieves

state-of-the-art results on the KITTI and BPS datasets. Our full method contains a direct

sub-network which uses flow estimates from the flow-based sub-network to warp feature maps.

The output of both sub-networks are adaptively fused, resulting in further improvements to

the state of the art. All data, code, and trained models have been released publicly.
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