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Figure 1. Demonstration of image embedding search. The original image is displayed to the far left, with the most similar

images being displayed beside it.
Abstract

Detecting visually similar images is a particularly useful
attribute to look to when calculating product recommenda-
tions. Embedding similarity, which utilizes pre-trained com-
puter vision models to extract high-level image features, has
demonstrated remarkable efficacy in identifying images with
similar compositions. However, there is a lack of methods
for evaluating the embeddings generated by these models,
as conventional loss and performance metrics do not ade-
quately capture their performance in image similarity search
tasks.

In this paper, we evaluate the viability of the image embed-
dings from numerous pre-trained computer vision models
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using a novel approach named CorrEmbed. Our approach
computes the correlation between distances in image em-
beddings and distances in human-generated tag vectors. We
extensively evaluate numerous pre-trained Torchvision mod-
els using this metric, revealing an intuitive relationship of
linear scaling between ImageNet1k accuracy scores and tag-
correlation scores. Importantly, our method also identifies
deviations from this pattern, providing insights into how
different models capture high-level image features.

By offering a robust performance evaluation of these pre-
trained models, CorrEmbed serves as a valuable tool for
researchers and practitioners seeking to develop effective,
data-driven approaches to similar item recommendations in
fashion retail.!
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1 Introduction

There are several enticing aspects to using pre-trained com-
puter vision models to recommend similar products. It re-
quires no resources for model training, avoiding the need
for labeled data or the computation required to train ma-
chine learning models. Neither does it require any product
information beyond a product image, lending itself partic-
ularly well to relatively small online storefronts or online
second-hand sales. Similar item recommendations entail sim-
ply recommending items similar to a target item. Fashion,
in particular, as a domain has some distinctive properties
that make it uniquely suited for recommendations based on
image similarity search, namely its emphasis on the visual
appearance of the products. Extracting image embeddings
from pre-trained models for Recommender Systems(RS) is
used in production today. Tise?, for instance, is a large Nor-
wegian second-hand sales company and the employer of
two of our co-authors. The company used embedding com-
parisons in production as part of an ensemble similar-item
recommendation method.

However, existing methods face validation challenges be-
cause direct comparisons of image embeddings do not align
with the intended use case of pre-trained image models. Con-
sequently, neither their loss nor classification performance
metrics effectively indicate a model’s performance in this
domain. While the efficacy of retrieving similar images based
on computer vision model embeddings is apparent to human
observers, limited literature exists on evaluating their effec-
tiveness. This paper contributes a more rigorous evaluation
of how well each of the models performs as compared to
human tag annotation.

This paper introduces CorrEmbed, an evaluation metric
based on tag-based similarity within the fashion domain.
It takes advantage of human-tagged outfits to evaluate the
zero-shot performance of a model’s embeddings. The eval-
uation is performed by calculating the correlation between
distances in image-embedding space and in tag-embedding
space. These indicator variables, or tag vectors, are aug-
mented by weighting them according to category using sta-
tistical entropy.

CorrEmbed is used to provide a benchmark for the per-
formance of numerous pre-trained computer-vision models.
We discuss the performance of these and which features
and model architectures are more conducive to good tag-
correlation performance, such as the format of the tensors
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produced by different pre-trained model versions. In partic-
ular, we underline cases in which this performance deviates
from the pattern of increased image-classification perfor-
mance leading to increased CorrEmbed performance.

The pre-trained models evaluated for this project are from
Torchvision’s model set[16].

2 Related Work

RS can refer to numerous different approaches, from Col-
laborative Filtering[13] to Deep Learning[20][5] to (Deep)
Reinforcement Learning[1] to Tsetlin Machines[3]. At the
core of this paper lies the concept of similar item recom-
mendations. While collaborative filtering models have long
been the dominant method for providing recommendations,
content-based RSs have often been employed to address prob-
lems with linear scaling. These item-based RSs identify rela-
tionships between items and recommend items frequently
bought together, for which the capability of extracting in-
formation from for example text descriptions or images is
highly relevant[12]. Image embeddings have also been used
in the context of classification for a while. Akata et al.[2]
use it to perform zero-shot learning on unsupervised data
by detecting clusters of image embeddings. Fu. et al. [6] pro-
vide an overview of zero-shot learning in 2019. These papers
demonstrate how prevalent the use of image embeddings is
in the SotA.

Visual image attributes form the foundation of numer-
ous contemporary RSs, such as [8] and [25]. Evaluating how
similar images are is a necessity within Image Retrieval,
in this context, Tarasov et al.[22] utilize the embeddings
of a trained neural network for this task for which the dis-
tance between two images is the Euclidian distances between
embeddings. Garcia et al.[7] train a regression NN for this
purpose and compare performance to a few other metrics,
including cosine distance. Resnick et al. [18] utilize Pearson
correlation to measure user similarity. While these previous
works parse image (or user) embeddings in a manner com-
parable to CorrEmbed, none of them quantitatively evaluate
how well individual models perform at measuring image
similarity.

3 Methods

In summary, CorrEmbed entails retrieving image embed-
dings from pre-trained classification computer vision mod-
els and identifying similar items by calculating the distance
between them. We evaluate their performance by calculating
the correlation of the distances between pairs of image em-
beddings and the distances between pairs of tag embeddings.
The final score represents the mean correlation between
image and tag embeddings across k samples.

The datasets used in this paper are generated using data
from FJONG, a small clothing rental company with access
to approximately 10,000 human-tagged outfits and around
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18,000 corresponding images. 705 tags constitute the tag-
embedding space, each belonging to one out of the 13 tag
categories listed in Table 1.

All models and model weights are retrieved from Torchvi-
sion’s model set®. All classification models have trained on
the ImageNet[19] dataset with 1k classes.

3.1 Tag-Based metric

A one-hot-encoded vector of tags is calculated based on tag
presence, resulting in a vector with 705 dimensions. Similarly
to the image-embeddings, the clothing items are converted
into tag-based representations. We calculate the distances be-
tween an input embedding i and all n other embeddings for
both tag and image embeddings. (Eq. 1,3,2) in which T and I
refer to a set of all image and tag embeddings respectively
and T; or I; represents the ith element in both of these sets.
For a given set of image embeddings, we assess the perfor-
mance by calculating the correlation between the tag-based
metric distance and the distance between image embeddings.
This is done using the Pearson correlation coefficient. The
final score for a model is obtained by computing the mean
correlation across k image samples (Eq. 4). In which x; and
y; represent a set of n tag and image similarity scores for
the vector at index i and X and 7§ are the mean values of the
same sets.

A-B

TATIB] W

cosine_similarity (A, B) =

Image_Similarity(I;) = y; = {cosine_similarity(I;,I;) : j = 1,2,...,n}

)
Tag_Similarity(T;) = x; = {cosine similarity(T;, T;) : j = 1,2,...,n}
©)
k n - _
1 Zj:1(xji - %) (yji — 9)
CorrEmbed = % Z (4)

1 \/Zle(xj'i - 3?)2\/2?:1(yji - 7)?

In this dataset, tags are grouped into categories, e.g., “Col-
lar" is categorized as “Neckline". All tags present in the
dataset, except for brand tags, are shown in Table 1. As the
“Size" and “Shoe Size" category isn’t necessarily present in
the images of the dataset (The same clothing item in different
sizes will occasionally share the same product photo), this
category is dropped entirely. For the context of recommenda-
tion, some tags are more compelling to the average customer
than others. We are more interested in representations that
appropriately capture the user’s interests. A user browsing
for a new winter coat will be more interested in other winter
coats rather than products with the same color. We evaluate
the customers’ purchase history and compute the entropy

3TorchVision’s model set is available at https://pytorch.org/vision/stable/
models.html
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for each tag category. Calculating the entropy was done
to capture the likelihood of a customer re-purchasing an
item with a similar category, yielding a lower value if the
purchased outfits’ tag categories exhibit consistent sub-tags.
For example, if a user exclusively buys clothing items with
“Dots" or “Stripes" patterns, the “Pattern” category will have
a low entropy score. Conversely if the user prefers a variety
of colors, the “Color" category will have a high entropy score.
As shown in Equation 5, in which C; refers to a customer’s
rental history, c is the total number of customers evaluated,
Ci(x;) is the total occurrences of tag x; in the rental history
C;, and X refers to a tag category for which we want to
calculate the weights.

c 1X]

1 Ci(x;)
Entropy(X) = H(X) = - Z - Z ﬁ log
i=1  j=1 t

Ci(x;) 5)
ICill

We normalize these entropy values between 0 and 1 based
on the maximum possible entropy within this range, and
subsequently invert the weights (Eq. 6), min(H) and max(H)
refer to the largest and smallest calculated tag category value.
Our earlier tag embeddings are then weighted for their re-
spective tag category. This ensures, for example, that the
relative tag distance between a blue blazer and a red blazer
is shorter than the distance between a blue blazer and a blue
jumpsuit.

B H(X) — min(H)
max(H) — min(H)

Tag_Weights(X) =1 (6)

4 Results and Discussions

This section presents the results of our experiments, which
benchmark the performance of our pre-trained models. We
also employ t-Distributed Stochastic Embedding (t-SNE)
plots to visualize the clustering of embeddings in our models.
Model performance on CorrEmbed generally increases by
the model size and ImageNet performance, as seen in Figure 2.
While model performance doesn’t necessarily directly scale
in accordance with its ImageNet score, scaled-up versions
of the same model outperform their smaller counterparts.
This provides a good sanity check on the veracity of our
metric. The correlation between the ImageNet score and
the CorrEmbed score holds true for comparisons between
the scaled-up versions of the same architecture but isn’t
necessarily the case when comparing two different model
architectures. For instance, EfficientNet models outperform
ResNet models with the same accuracy score, e.g., ResNet50
V2 has an Acc@1 score of 80.858 and achieves a CorrEmbed
score of 0.249, as compared to EfficientNet B2 which has an
Acc@1 score of 80.608 and a CorrEmbed score of 0.273.
Table 2 (and Figure 3) provides an overview of the per-
formance of various model architectures. We selected the
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Category Tags
Brand 552 different fashion brands, omitted for brevity.
Material Triacetate, Lyocell, Polyester, Cashmere, Linen, Cupro, Velvet, Leather, Spandex, Lace, Beaded, Faux fur, Fur, Rayon, Down,
Acrylic, Bamboo, Polyethylene Terephthalate, Acetate, Satin, Chiffon, Silk, Polyamide, Tulle, Wool, Nylon, Denim, Cotton,
Vegan Leather, Viscose, Modal, Gold, Elastane, Lurex, Lycra, Lacquer, Silver, Tencel, Polyvinyl Chloride, Polyurethane, Metal
Category Blouses, Accessories, Jewelry, Shirts, Kimonos, Shoes, Bags, Pants, Suits, Coats, Sweaters, Vests, Outerwear, Jumpsuits, Skirts,
Blazers, Dresses, Cardigans, Knitwear, Jackets, Shorts, Tops
Color Yellow, Purple, Grey, Blue, Green, Brown, Pink, Multicolor, Beige, Orange, Black, Gold, Red, White, Navy, Silver, Turquoise,
Burgundy
Size XXS, Onesize, Large, 4XL, Medium, Extra Small, 3XL-4XL, Extra Large, 3XL, Small, 2XL, XXL-XXXXL
No category Sporty, Winter, Height - 180-190 cm, Dressed-up, Fall, New, Summer, Romantic, Edgy, Spring, Classic
Occasion FJONG Active, Going out, Black-tie, Everyday, FJONG Plus Size, Prom, Wedding, Party, FJONG Bump, Active, Business
Sleeve Mid arms, Spaghetti straps, T-shirt, Cold shoulder, Tube, Straps, Long arms
Embellishment Ruffles, Pearls, Sequins, Feathers, Glitter, Studs, Tassels
Neckline Boat Neck, Deep Neck, Halter Neck, V-neck, Round Neck, Collar, Turtleneck
Waist Empire, High, Normal, Adjustable, Stretchy, Low
Shoe Size 39, 36, 40, 38, 37, 41
Pattern Floral, Checkers, Dots, Stripes, Animal, Pattern
Fit Loose fit, Wrap, Pregnant-friendly, Slim fit
Length Midi, One, Mini, Maxi
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Figure 2. Comparison between ResNet [9] model correla-
tion score and ImageNet1k accuracy across differing ResNet
model sizes. CorrEmbed scores have been constrained to the
range of 0.2 to 0.26 to emphasize the score differences.

top-performing version of each architecture based on Ima-
geNet1k accuracy. We include two control methods for both
tag and image embeddings to establish a baseline for signifi-
cance. The first random model method generates a random
tensor with the same shape as the image embeddings for
each image, while the random tag vectors generate a binary
vector with the same shape as the tag vector. The two shuffle
control methods randomize the association between tag or

image embeddings and each outfit.
We observe a significant correlation between ImageNet1k

scores and CorrEmbed scores, albeit with some deviations.

Table 1. Tags present in the dataset of this paper

The top-performing models ViT, RegNetY[17], and EfficientNet[21]
outperform other models by a margin comparable to the per-
formance improvements between AlexNet[14] and ConvNext[15],
despite negligible differences in ImageNet1k scores. This ob-
servation makes some intuitive sense, as improving a model’s
accuracy score from, for instance, 87 to 88 likely corresponds
to a much greater enhancement of the model’s internal rep-
resentation than an improvement from 56 to 57, in line with
the Pareto Principle*. However, the observed increase in per-
formance exceeds what we would expect if this were the sole
contributing factor.

The embeddings evaluated in this case were all retrieved as
the standard output embeddings of the models. This had the
added advantage of removing the shape of the embeddings
as a factor for the CorrEmbed score since the final output
embedding of the classes remains the same 1000-dimensional
vector regardless of the model architecture.

The layers preceding the output layer tend to capture a
finer representation of the embeddings. Though the degree to
which this is the case depends on the model itself. Table 3 de-
tails the scores of the models based on the input embeddings
to the penultimate layer rather than the output. Working
with embeddings earlier than this is unfortunately too in-

consistent to make any direct comparisons. As happened
with SqueezeNet[11] in Table 3, any embeddings retrieved
before the model pools into the shape (1, —1) tend to reach
unworkable sizes.

Table 3 also logs inference time for batches of 90 im-
ages, along with the shapes of the evaluated tensors. Un-
surprisingly, the best-performing models also clocked in the
longest inference time, though in contrast to ImageNet accu-
racy, some models surpassed expectations significantly based
solely on inference time. MaxViT[23] and MobileNet[10] are
good examples of these. An explanation for this could be the
priorities of the original model developers. As we’ve only

4https://en.wikipedia.org/wiki/Pareto_principle
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l Model [ ImgNet Acc@1 ImgNet Acc@5 CorrEmbed Unweighted Random Shuffled ‘
random 0.0 0.0 0.0086 0.0088 0.0229 0.008
random shuffle 0.0 0.0 0.0016 -0.0032 0.0076 -0.0058
AlexNet 56.522 79.066 0.1463 0.1485 0.0165 0.0008
SqueezeNet1 1 58.178 80.624 0.1508 0.137 0.012 0.0038
GoogLeNet 69.778 89.53 0.2103 0.1933 0.0133 0.0036
VGG19 BN 74.218 91.842 0.1837 0.1733 0.0129 0.0023
MobileNet V3 Large | 75.274 92.566 0.2251 0.201 0.0174 0.0048
ShuffleNet V2 X2 76.23 93.006 0.2264 0.1977 0.0175 0.0051
DenseNet201 76.896 93.37 0.2121 0.1903 0.0146 0.0023
MNASNet1 3 76.506 93.522 0.2276 0.2083 0.0148 0.0058
Wide ResNet101 2 81.602 95.758 0.2445 0.2182 0.0075 0.0034
resnet152 V2 82.284 96.002 0.2493 0.2243 0.0119 0.0043
ResNeXt101 64X4D | 83.246 96.454 0.2393 0.2092 0.0096 0.0048
MaxViT T 83.7 96.722 0.1943 0.174 0.0044 0.0039
Swin V2 B 84.112 96.864 0.2649 0.2417 0.0151 0.0045
ConvNext Large vl | 84.414 96.976 0.2641 0.2383 0.0157 0.0032
EfficientNet V2 L 85.808 97.788 0.3680 0.3189 0.0176 0.0051
RegNet Y 32GF 86.838 98.362 0.3428 0.306 0.014 0.0038

ViT H 14 E2E 88.552 98.694 0.3633 0.3184 0.0114 0.0036

Table 2. Overview of the performance using the top-performing version of each model architecture, sorted by ImageNet1k score. ImgNet Acc@1 and ImgNet
Acc@5 refer to the model’s performance on accuracy at ImageNetlk top 1 and top 5, respectively. CorrEmbed is our weighted tag vector scoring, and
unweighted refers to the same vectors without the weights. Random and shuffle in both rows and columns are control methods. The CorrEmbed scores of this

table are visually represented in Figure 3

evaluated the top-performing models of each architecture,
these are likely the model iterations with the heaviest fo-
cus on performance to the detriment of other aspects of the
model and are, therefore, subject to a significant degree of
diminishing returns. Interestingly, despite the varying tensor
shapes, the CorrEmbed score is even more closely associated
with the ImageNet1k score in the penultimate model layers
(Table 2 compared to the output layer in Table 3, have a Pear-
son correlation of 0.767 and 0.941 respectively compared to
ImageNet accuracy@1)

The use of models trained on ImageNet, in particular, could
potentially have had the added advantage of the models ig-
noring any humans appearing in the image. For example,
the 4th most similar image detected by the upper model in
Figure 5. As none of ImageNet1k’s classes involve classify-
ing humans[19], the pre-trained models are incentivized to
ignore them. This congrues well with our metrics emphasiz-
ing the properties of worn clothing rather than the people
wearing them. The ability to overlook the human subjects in
images is more pronounced in the stronger models compared
to the weaker ones.

4.1 Evaluating Fashion-CLIP

To gain a better idea of how well the ImageNet1k models
perform as compared to other models, we run CorrEmbed
on Fashion-CLIP[4], an open vocabulary model fine-tuned
on the fashion domain. The model achieved a score of 0.396
as compared to our top-performing model of ViT_H_14_E2E,
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Figure 3. Graph representation of the results from Table 2.
Columns display the CorrEmbed score for the different mod-
els. The blue and red lines show performance on ImageNet

ImageNet Accuracy
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’ Model ‘ Model Params CorrEmbed Inference Time Embedding Shape ‘
AlexNet 61.1M 0.1775 0.052 (90, 4096)
SqueezeNet1 1 1.2M N/A 0.094 (90, 1000, 13, 13)
GooglLeNet 6.6M 0.2167 0.064 (90, 1024)
VGG19 BN 143.7M 0.2247 0.158 (90, 4096)
MobileNet V3 Large | 5.5M 0.2299 0.054 (90, 1280)
ShuffleNet V2 X2 7.4M 0.2290 0.057 (90, 20438)
DenseNet201 20.0M 0.2406 0.151 (90, 1920)
MNASNet1 3 6.3M 0.2375 0.079 (90, 1280)

Wide ResNet101 2 68.9M 0.2462 0.264 (90, 2048)
resnet152 V2 60.2M 0.2491 0.202 (90, 20438)
ResNeXt101 64X4D | 83.5M 0.2469 0.608 (90, 20438)
MaxViT T 30.9M 0.2516 0.197 (90, 512)

Swin V2 B 87.9M 0.2659 0.404 (90, 1024)
ConvNext Large vl | 197.8M 0.2695 0.559 (90, 1536)
EfficientNet V2 L 118.5M 0.3604 1.022 (90, 1280)
RegNet Y 32GF 145.0M 0.3824 1.137 (90, 3712)
ViT H 14 E2E 633.5M 0.4288 15.412 (90, 1280)

Table 3. Overview of CorrEmbed performance based on the input to the last layer. Inference time is the time taken to evaluate Zlmth of the dataset (90
images). Control values for both image and tag embeddings, along with binary tag vectors have been omitted for brevity. These maintain roughly the same

ratio to the CorrEmbed score as seen in Table 2. As the final layer of SqueezeNet is an Average Pooling layer, we were unable to perform our experiment on
it due to the size of the tensors it produced. The inference time documented for ViT was run in a separate batch from the rest of the models shown. It is,

therefore, possible external factors have influenced it.

which achieved a score of 0.471°. Interestingly, the Fashion-
CLIP model performs worse than ViT_H despite being fine-
tuned to the relevant domain.

4.2 Exploring embedding space

As shown in Figure 4, the high-dimensional embeddings
of each image can be visualized in low-dimensional space
by taking into account the relative distances between each
point using t-SNE[24]. Despite the models used not being
trained in this domain we observe some clear clustering of
embeddings based on their tags. Figure 4 label embeddings
tagged with the same “category” (essentially, the type of
clothing). Moreover, we notice significant improvements
in clustering for the better-performing model on the right
compared to the model on the left.

An expected flaw with recommending similar items using
embeddings is evident in the t-SNE diagrams. Some embed-
dings are naturally going to end up in isolated positions far
away from the larger clusters of embeddings. These isolated
items will effectively never be recommended based solely on
similar item recommendations. Steps can be taken to increase
the recommendation priority of these isolated items, but em-
beddings placed on the outskirts of clusters will likely rank

SThis experiment was performed on a later iteration of the dataset with
significantly reduced noise, this results in somewhat inflated CorrEmbed
scores as compared to the scores in Table 2

far too low in the similar item rankings among its neighbors
to ever actually be recommended in a natural setting.

4.3 Dataset Scale

The dataset used for this paper is relatively small, consisting
of around 18000 images in total. This scale ensures that the
direct comparison of all image embeddings is feasible even
in production when used for similar item recommendations.
However, this format also leads to a significant number of
outlier compositions. A good example is the input image in
Figure 7. The top-performing model picks up on the worn
fleece sweater and finds other warm clothing items to be
the most similar, while the lower-performing models are
more affected by composition. This makes some intuitive
sense. Each image in the ImageNet1k dataset consists of a
central subject to be classified and more-or-less irrelevant
background information. The better-performing models are
the ones able to adequately capture these subjects while
avoiding getting hung up on the other details of the images.
It is difficult to tell the degree to which the models are af-
fected by the composition, as the majority of the FJONG
dataset consists of images with uniform backgrounds and
often without a fashion model. A more expansive dataset
would better demonstrate how badly composition impacts
similarity predictions.

Further, the tagging of outfits within FJONG is signifi-
cantly noisier than we would prefer. The process of tagging
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Figure 4. t-SNE diagrams of our dataset’s images based on embeddings generated using ResNet50 V1 (left) and ViT H E2E
(right). The embeddings are colored according to the “Category" tag category. Only the top 10 categories are shown to maintain

legibility. All others are relegated to the "Other" category.

them has been carried out over several years by several
different individuals. Therefore, whether and how certain
categories of tags, such as “Color" or “Material" has been
applied is somewhat inconsistent. While we have not applied
CorrEmbed to any other fashion datasets, the noise present
in our current one is a good indication of transferability to
more thoroughly vetted datasets.

4.4 Qualitative performance analysis

The main purpose of this paper is to achieve a concrete metric
with which the capabilities of embedding evaluation could
be measured. Such a metric is of little use, however, if the
image similarity does not improve in the eyes of a human as
well. This section discusses a few qualitative observations
concerning the capabilities of higher-performing methods
as compared to lower-performing ones. Figure 6 emphasizes
how strong the contrast between the best and worst perform-
ing models, ViT_H_14_E2E and AlexNet, can be. The former
model can easily pick out a set of similar sweaters, while
the latter gets bogged down picking out clothes with similar
color schemes. Significant differences exist in the attributes
that the models choose to focus on, as illustrated in Figure 5.
Weaker models tend to put too much emphasis on whether a
fashion model is present in the image, as well as the model’s
pose. Stronger models, on the other hand, are more capable
of ignoring these factors and, for instance, picking out the
original clothing item worn in the input image.

The input image in Figure 7 is among the most challenging
images in the dataset. The uncommon composition intro-
duces a degree of visual noise, which causes difficulties with
image embedding comparison. The extent to which the vi-
sual noise affects the embeddings varies. For example, the
products identified by the vgg16 model appear close to ran-
dom, while the outfits found by the ViTy model focus on
the fleece sweater. Note that the actual product sold from
the input image is, in reality, the skirt, not the sweater. This
highlights another limitation of this method, the inability to
specify which component of the image is most relevant.

5 Conclusion

In this paper, we introduce and evaluate the performance of
CorrEmbed, a novel method designed to assess the zero-shot
image-embedding similarity performance of NNs. We em-
ploy this metric to evaluate a myriad of different pre-trained
ImageNet1k classification models. Of these models, the vi-
sion transformer ViT_H_14_EZ2E is found to be the most
performant, beyond even the performance of Fashion-CLIP,
a model tuned to the fashion domain. CorrEmbed score is
strongly correlated to ImageNet1k performance. While Cor-
rEmbed performance naturally tends to increase for each
successive layer of a model, the final output layer is found to
produce consistently worse embeddings than the second to
last layer. We note that specific model architectures tend to
surpass others with comparable performance on ImageNet.
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Figure 5. Comparison between a strong and weak model. The original image is displayed to the far left, with the most similar
images being displayed in order from left to right. The top row shows the stronger ViT_H_14_E2E model while the row below

shows the results from the weaker AlexNet model.

Figure 6. Comparison between a strong and weak model. The original image is displayed to the far left, with the most similar
images being displayed in order from left to right. The top row shows the stronger ViT_H_14_E2E model while the row below

shows the results from the weaker AlexNet model.

Figure 7. Comparison between ViT_H (top), resnet50_v2 (middle), and vgg16 (bottom) with a difficult image. The ViT performs
better than the resnet50 model which perform better than the vgg16 model.

For example, Torchvision’s v2 models consistently outper-
form their v1 counterparts. This study contributes valuable
insights into the performance of various models in the con-
text of image-embedding similarity. Though perhaps few
surprising conclusions can be drawn from the results, formal
evaluation compared to human annotators is an important
step to ensure our RSs are as rigorous as possible.

6 Acknowledgments

Funded by the Research Council of Norway through the
project “Your green, smart and endless wardrobe", project

number 309977. We thank FJONG for providing the data
used as a basis for the dataset in this paper.

References

[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement
learning based recommender systems: A survey. Comput. Surveys 55,
7 (2022), 1-38.

[2] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt
Schiele. 2015. Evaluation of Output Embeddings for Fine-Grained
Image Classification. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, San Juan, PR, USA,
10 pages.

[3] Karl Audun Borgersen, Morten Goodwin, and Jivitesh Sharma. 2023.
A Comparison Between Tsetlin Machines and Deep Neural Networks



CorrEmbed: Evaluating Pre-trained Model Efficacy

—
-~
fla’

—
Ne)
—

[10

=

[12

—

[13

—_

[14]

[15

—

(16]

[17

—

(18]

(19]

in the Context of Recommendation Systems. Northern Lights Deep
Learning Workshop 4 (2023), 8 pages. https://doi.org/10.7557/18.6807
Patrick John Chia, Giuseppe Attanasio, Federico Bianchi, Silvia Ter-
ragni, Ana Rita Magalhdes, Diogo Goncalves, Ciro Greco, and Ja-
copo Tagliabue. 2022. Contrastive language and vision learning
of general fashion concepts. Scientific Reports 12, 1 (2022), 18958.
https://doi.org/10.1038/541598-022-26364-y

Aminu Da’u and Naomie Salim. 2020. Recommendation system based
on deep learning methods: a systematic review and new directions.
Artificial Intelligence Review 53, 4 (2020), 2709-2748.

Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal,
and Shaogang Gong. 2018. Recent Advances in Zero-Shot Recognition:
Toward Data-Efficient Understanding of Visual Content. IEEE Signal
Processing Magazine 35, 1 (2018), 112-125. https://doi.org/10.1109/
MSP.2017.2763441

Noa Garcia and George Vogiatzis. 2019. Learning non-metric visual
similarity for image retrieval. Image and Vision Computing 82 (2019),
18-25.

Raul Gomez Bruballa, Lauren Burnham-King, and Alessandra Sala.
2022. Learning Users’ Preferred Visual Styles in an Image Marketplace.
In Proceedings of the 16th ACM Conference on Recommender Systems.
ACM, New York, NY, USA, 466-468.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. IEEE, New York,
NY, USA, 770-778.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay
Vasudevan, et al. 2019. Searching for mobilenetv3. In Proceedings of
the IEEE/CVF international conference on computer vision. IEEE, New
York, NY, USA, 1314-1324.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William ] Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360 1, 1 (2016), 13 pages.

George Karypis. 2001. Evaluation of item-based top-n recommenda-
tion algorithms. In Proceedings of the tenth international conference on
Information and knowledge management. ACM, New York, NY, USA,
247-254

Yehuda Koren, Steffen Rendle, and Robert Bell. 2021. Advances in
collaborative filtering. Recommender systems handbook 1, 1 (2021),
91-142.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet
classification with deep convolutional neural networks. Commun. ACM
60, 6 (2017), 84-90.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. 2022. A convnet for the 2020s. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, New York, NY, USA, 11976-11986.

TorchVision maintainers and contributors. 2021. Models and Pre-
Trained Weights. https://pytorch.org/vision/stable/models.html#
models-and-pre-trained-weights. Accessed: 2023-01-17.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He,
and Piotr Dollar. 2020. Designing network design spaces. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
IEEE, Seattle, WA, USA, 10428-10436.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. 1994. Grouplens: An open architecture for collaborative
filtering of netnews. In Proceedings of the 1994 ACM conference on
Computer supported cooperative work. ACM, New York, NY, USA, 175-
186.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recognition

[20]

[21]

[22]

[23]

[24]

[25]

Al-2023, Dec 12-14, 2023, Cambridge, England

challenge. International journal of computer vision 115 (2015), 211-252.
Igbal H Sarker. 2021. Deep learning: a comprehensive overview on
techniques, taxonomy, applications and research directions. SN Com-
puter Science 2, 6 (2021), 1-20.

Mingxing Tan and Quoc Le. 2021. Efficientnetv2: Smaller models and
faster training. In International conference on machine learning. PMLR,
Cambridge MA: JMLR, Cambridge Massachusetts, USA, 10096-10106.
Andrey S Tarasov, Valentina Yu Tarasova, Natalya N Grinchenko, and
Maxim A Stepanov. 2020. Development of a Search System for Similar
Images. In 2020 ELEKTRO. IEEE, 1-6.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman
Milanfar, Alan Bovik, and Yinxiao Li. 2022. Maxvit: Multi-axis vision
transformer. In Computer Vision—ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIV. Springer,
Springer Cham, Tel Aviv, Israel, 459-479.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data
using t-SNE. Journal of machine learning research 9, 11 (2008), 27 pages.
Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning
Based Recommender System: A Survey and New Perspectives. ACM
Comput. Surv. 52, 1, Article 5 (feb 2019), 38 pages. https://doi.org/10.
1145/3285029


https://doi.org/10.7557/18.6807
https://doi.org/10.1038/s41598-022-26364-y
https://doi.org/10.1109/MSP.2017.2763441
https://doi.org/10.1109/MSP.2017.2763441
https://pytorch.org/vision/stable/models.html#models-and-pre-trained-weights
https://pytorch.org/vision/stable/models.html#models-and-pre-trained-weights
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Tag-Based metric

	4 Results and Discussions
	4.1 Evaluating Fashion-CLIP
	4.2 Exploring embedding space
	4.3 Dataset Scale
	4.4 Qualitative performance analysis

	5 Conclusion
	6 Acknowledgments
	References

