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ABSTRACT

Representations from large pretrained models such as BERT encode a range of
features in a single vector that affords strong predictive accuracy on a multitude
of downstream tasks. In this paper we explore whether it is possible to learn dis-
entangled representations by identifying existing subnetworks within pretrained
models that encode distinct, complementary aspect representations. Concretely,
we learn binary masks over transformer weights or hidden units to uncover the
subset of features that correlate with a specific factor of variation; this eliminates
the need to train a disentangled model from scratch for a particular domain. We
evaluate the ability of this method to disentangle representations of syntax and
semantics, and sentiment from genre in the context of movie reviews. By combin-
ing masking with magnitude pruning we find that we can identify sparse subnet-
works within BERT that strongly encode particular aspects (e.g., movie sentiment)
while only weakly encoding others (movie genre). Moreover, despite only learn-
ing masks, we find that disentanglement-via-masking performs as well as — and
often better than — previously proposed methods based on variational autoen-
coders and adversarial training.

1 INTRODUCTION AND MOTIVATION

Large-scale pretrained models such as ELMo (Peters et al., 2018), BERT (Devlin et al., 2018), and
XLNet (Yang et al., 2019) have come to dominate in modern natural language processing (NLP).
Such models rely on self-supervision over large datasets to learn general-purpose representations of
text that achieve competitive predictive performance across a spectrum of downstream tasks (Liu
et al., 2019). A downside of such learned representations is that it is not obvious what information
they are encoding, which hinders model robustness and interpretability. The opacity of representa-
tions produced by models such as BERT has motivated a line of NLP research on designing probing
tasks as a means of uncovering what properties of input texts are encoded into token- and sentence-
level representations (Rogers et al., 2020; Linzen et al., 2019; Tenney et al., 2019).

In this paper we investigate whether we can uncover disentangled representations from pretrained
models. That is, rather than mapping inputs onto a single vector that captures arbitrary combinations
of features, our aim is to extract a representation that factorizes into distinct, complementary proper-
ties of the input. An advantage of explicitly factorizing representations is that it aids interpretability,
in the sense that it becomes more straightforward to determine what factors of variation inform
predictions in downstream tasks. Further, disentangled representations may facilitate increased ro-
bustness under distributional shifts by capturing a notion of invariance: If syntactic changes in a
sentence do not affect the representation of semantic features, and vice versa, then we can hope to
learn models that are less sensitive to any incidental correlations between these factors. A general
motivation for learning disentangled representations is to try and minimize — or at least expose —
model reliance on spurious correlations, i.e., relationships between (potentially sensitive) attributes
and labels that exist in the training data but which are not casually linked (Kaushik et al., 2020).
This is particularly relevant in the context of large pretrained models like BERT, as we do not know
what the representations produced by such models encode.

To date, most research on disentangled representations has focused on applications in computer vi-
sion (Locatello et al., 2019b; Kulkarni et al., 2015; Chen et al., 2016; Higgins et al., 2016), where
there exist comparatively clear independent factors of variation such as size, position, color, and
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Figure 1: Masking weights and hidden activations in BERT. We show a linear layer with weights
W , inputs h, and outputs h′. We learn a mask for each disentangled factor, which is either applied
to the weights W or to intermediate representations h.

orientation, which have physical grounding and can be formalized in terms of actions of symmetry
subgroups (Higgins et al., 2018). A challenge in learning disentangled representations of text is
that it is more ambiguous what factors of variation should admit invariance. Still, we may hope to
disentangle particular properties for certain applications (e.g., sentiment, or perhaps protected demo-
graphic information (Elazar & Goldberg, 2018)), and there are also general properties of language
that we might hope to disentangle, e.g., syntax and semantics (Chen et al., 2019).

In this paper we ask whether complementary factors of variation might already be captured by
pretrained models, and whether it is possible to uncover these by identifying appropriate “sub-
networks”. The intuition for this hypothesis is that generalization across a sufficiently large and
diverse training set may implicitly necessitate representations that admit some notion of invariance,
as the many factors of variation in the training data give rise to a combinatorial explosion of possible
inputs. Intriguing prior work (Radford et al., 2017) examining the correlation between sentiment
and individual nodes within pretrained networks offers some additional support for this intuition.

To test this hypothesis, we propose to use masking as a mechanism to isolate representations of
individual factors. Recent work on lottery tickets (Frankle & Carbin, 2018) suggest that overpa-
rameterized networks are redundant, in that a network reduced to a small subset of weights set to
“winning” initial values can achieve predictive performance similar to the full network. Building
on this intuition, we hypothesize that it might be possible to uncover a representation for a factor of
interest by starting with a pretrained representation and simply masking out weights or hidden units
that correlate with other factors of variation.

We use BERT (Devlin et al., 2018) as an archetypal pretrained transformer to test two variants of
this basic idea. In the first variant we learn binary masks for all weight matrices in the model; in
the second we derive masks for all hidden units (intermediate representations). To learn these masks
we minimize a triplet loss that encourages the resultant representations for instances that are similar
with respect to an aspect of interest to be relatively near to one another, independent of other factors.
Our approach of uncovering existing subnetworks within pretrained models that yield disentangled
representations differs substantially from prior work on disentangling representations in NLP, which
have either relied on adversarial debiasing approaches (Elazar & Goldberg, 2018; Barrett et al.,
2019) or variational auto-encoders (Chen et al., 2019; Esmaeili et al., 2019).

We evaluate masking in the context of two tasks. The first is a setting in which we aim to disen-
tangle a representation of features for a target task from that of information encoding a secondary,
non-target attribute (e.g., this might be sensitive information, or simply an unrelated factor). In
the second we follow prior work in attempting to induce representations of semantics and syntax,
respectively. In both settings, our surprising finding is that masking alone often outperforms pre-
viously proposed approaches (which learn or finetune networks in their entirety). While a small
amount of masking generally suffices to achieve disentanglement, we can further increase sparsity
by combining masking with weight pruning.

The main contributions of this paper are as follows. (1) We propose a novel method of disentan-
gling representations in NLP: Masking weights or hidden units within pretrained transformers (here,
BERT). (2) We empirically demonstrate that we are indeed able to identify sub-networks within
pretrained transformers that yield disentangled representations that outperform existing approaches
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(which finetune all model weights). (3) We show that masking can be combined with weight-pruning
techniques to learn sparse subnetworks for each factor of interest.

2 METHODS

We are interested in learning a disentangled representation that maps inputs x (text) onto vectors
z(a) and z(b) that encode two distinct factors of variation. To do so, we will learn two sets of masks
M (a) and M (b) that can be applied to either the weights or the intermediate representations in a
pretrained model (in our case, BERT). We estimate only the mask parameters and do not finetune
the weights of the pretrained model.

To learn the masks M (a) and M (b), we assume access to triplets (x0, x1, x2) in which x0 and x1
are similar with respect to aspect a but dissimilar with respect to aspect b, whereas x0 and x2 are
similar with respect to aspect b but dissimilar with respect to aspect a. In some of our experiments
(i.e., when disentangling the sentiment from the genre in movie reviews) we further assume that we
have access to class labels y(a) ∈ {0, 1} and y(b) ∈ {0, 1} for the aspects of interest.

2.1 MASKING WEIGHTS AND HIDDEN ACTIVATIONS

Figure 1 illustrates the two forms of masking that we consider in our approach. We depict a single
linear layer of the model, h = (h(a), h(b)) are the input activations, W are the weights in the
pretrained model,1 and h′ = (h′(a), h′(b)) are the output activations. We augment each layer of the
original network with two masks M = (M (a),M (b)), applied in two ways:

1. Masking Weights When training BERT with masked weights, masks M (a) and M (b) have the
same shape as weights W , and output activations are computed using the masked tensor of weights

h′ = h · (W ◦M). (1)

2. Masking Hidden Activations When training BERT with masked hidden units, the masksM (a)

and M (b) have the same shape as the intermediate (hidden) activations h(a) and h(b). Output activa-
tions are computed by applying the original weights W to masked inputs

h′ = (h ◦M) ·W. (2)

In both methods, we follow Zhao et al. (2020) and only mask the last several layers of BERT, leaving
the bottom layers (including the embedding layer) unchanged. In practice we find masking the last
9 layers to work the best.

2.2 TRIPLET LOSS

To learn the masks, we assume that we have access to supervision in the form of triplets, as intro-
duced above. Passing (x0, x1, x2) through our model yields two representations of each instance:
(z
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0 , z

(b)
0 ), (z
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1 , z

(b)
1 ), (z
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2 , z

(b)
2 ), for which we define the loss

L
(a)
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(a)
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)
, (3)

L
(b)
triplet = max

(
‖z(b)0 − z
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1 ‖+ ε, 0

)
, (4)

Ltriplet =
1

2

(
L
(a)
triplet + L

(b)
triplet

)
. (5)

Here ε is a hyperparameter specifying a margin for the loss, which we set to ε = 2 in all experiments.

2.3 SUPERVISED LOSS

In some settings we may have access to more direct forms of supervision. For example, when
learning representations for the genre and sentiment in a movie review, we have access to class

1We omit the bias term in the linear layer, for which no masking is performed.
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labels y(a) and y(b) for each aspect. To make full use of such supervision when available, we add
two linear classification layers C(a) and C(b) to our model and compute the classification losses

L
(a)
cls = CrossEntropy

(
C(a)(z(a)), y(a)

)
, L

(b)
cls = CrossEntropy

(
C(b)(z(b)), y(b)

)
, (6)

Lcls =
1

2

(
L
(a)
cls + L

(b)
cls

)
. (7)

2.4 DISENTANGLEMET LOSS

To ensure that each of the two aspect representations are distinct, we encourage the masks to be
mutually exclusive. That is, masks of different layers should overlap as little as possible. We include
an additional term in the loss for each layer L to achieve this

Loverlap =
1

L

L∑
l=1

∑
i,j

1
(M

(a)
i,j +M

(b)
i,j >1)

. (8)

2.5 BINARIZATION AND GRADIENT ESTIMATION

The final loss of our model is a weighted sum of all the losses
L = λtriplet · Ltriplet + λoverlap · Loverlap(+λcls · Lcls). (9)

Where we parenthetically denote the cls loss, which we will only sometimes have. We minimize
this loss with respect to M (and the classifier parameters), whilst keeping pretrained BERT weights
fixed. Because the loss is not differentiable with respect to a binary mask, we learn continuous
masks M that are binarized during the forward pass by applying a threshold τ , which is a global
hyperparameter,

M∗ij =

{
1 if Mij ≥ τ
0 if Mij < τ

(10)

We then use a straight-through estimator (Hinton et al., 2012; Bengio et al., 2013) to approximate the
derivative, which is to say that we evaluate the derivative of the loss with respect to the continuous
mask M at the binarized values M =M∗,

M =M − η ∂L

∂M

∣∣∣∣
M=M∗

. (11)

3 EXPERIMENTS

3.1 DISENTANGLING SENTIMENT FROM GENRE IN MOVIE REVIEWS

Experimental Setup In this experiment we assume a setting in which each data point x has both
a ‘main’ label y and a secondary (possibly sensitive) attribute z. We are interested in evaluating the
degree to which explicitly disentangling representations corresponding to these may afford robust-
ness to shifts in the conditional distribution of y given z. As a convenient, illustrative dataset with
which to investigate this, we use a set of movie reviews from IMDB (Maas et al., 2011) in which
each review has both a binary sentiment label and a genre label.

Here we consider just two genres: Drama and Horror. We exclude reviews corresponding to other
genres, as well as the (small) set of instances that belongs to both genres. To investigate robustness
to shifts in correlations between z and y we sampled two subsets of the training set such that in
the first sentiment and genre are highly correlated, while in the second they are uncorrelated. We
report the correlations between these variables in the two subsets in Table 1. We train models on the
correlated subset, and then evaluate them on the uncorrelated set.

We compare the proposed masking approaches to several baselines. Untuned corresponds to a dense
classification layer on top of representations from BERT (without finetuning). In the finetuned vari-
ant we omit masks and instead minimize the loss with respect to BERT weights. In the adversarial
model we adopt adversarial ‘debiasing’: In addition to minimizing loss on the main task, here we
also train an adversarial classifier to predict the secondary (non-targeted) attribute, and the encoder
is trained to mitigate the adversaries ability to do so. We implement this via the gradient-reversal
method described by Ganin & Lempitsky (2015). We also compare with two variational autoencoder
baselines, VAE is a VAE model with multi-task loss and adversarial loss, introduced in John et al.
(2019), and VAE+BERT is the same model but using BERT as the embedding module.
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Table 1: Conditional prevalences of the respective classes in the correlated (left) and uncorrelated
(right) datasets. We control for the total number of positive and negative samples to be equal in both
datasets, so both datasets are balanced with regard to sentiment and with regard to genre. We use the
correlated dataset for training, but evaluate on the uncorrelated dataset, to ensure that the prediction
of the model reflects the aspect of interest, rather than correlations between aspects.

Training: Correlated

Sentiment / Genre Drama Horror

Positive 0.85 0.15
Negative 0.15 0.85

Test: Uncorrelated

Sentiment / Genre Drama Horror

Positive 0.5 0.5
Negative 0.5 0.5

Avg. (Sent) Worst (Sent) Avg. (Genre) Worst (Genre)
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Figure 2: Average and worst main task performance across sentiment/genre combinations. Masked
variants (proposed in this paper) are cross-hatched. Larger gaps between the average performance
and the worst group performance indicate that the corresponding model is using the non-targeted
attribute when making predictions for the main task.

Leakage of the non-targeted attribute. We evaluate the degree to which representations “leak”
non-targeted information. Following Elazar & Goldberg (2018), we first train the model to predict
the main task label on the correlated dataset. Then we fix the encoder and train an attacker (a single
layer MLP) on the uncorrelated dataset to probe the learned representations for the non-targeted
attribute. Because the attacker is both trained and tested on the uncorrelated dataset, it cannot simply
learn the main task and exploit the correlation. We show the performance of our proposed masking
models and baselines in Table 2. Masking variants perform comparably to baselines with respect to
predicting the main task label, but do so with notably less leakage than these methods.

Performance on worst groups. In addition to leakage of the non-targeted attribute, we are inter-
ested in how models perform on the main tasks for each subgroup: (Positive, Drama), (Positive,
Horror), (Negative, Drama), and (Negative, Horror). Because the distribution of the four groups is
not uniform in the training set, we expect that models will perform better on combinations that are
over-represented in this set, and worse on under-represented attribute combinations. This decline
would indicate that a model is implicitly exploiting the correlation between these attributes.

Table 2: Performance on sentiment and genre prediction. We report accuracy on the main task
(↑ higher is better) as well as leakage to the non-targeted task (↓ lower is better).

Factor: Sentiment Factor: Genre
Main task ↑ Leakage ↓ Main task ↑ Leakage ↓

VAE 62.1 59.0 65.6 61.13
VAE + BERT 67.5 66.3 71.4 70.3

Untuned 82.3 81.5 81.5 82.3
Finetuned 87.5 85.5 87.3 86.0
Adversarial 86.8 80.3 85.0 75.5

Masked Weights 88.0 72.0 87.0 73.0
Masked Hidden 88.0 79.0 85.0 79.0
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Figure 3: t-SNE projection of sentiment representations and genre representations of different mod-
els. Marker colors denote sentiment (blue for positive and yellow for negative); marker shapes
denote genre (× for drama and • for horror).

Figure 4: Differences between the performances achieved via BERT embeddings and the disen-
tangled model variants considered on semantics-oriented (WC, STS) and syntax-oriented (Depth,
TopCon) tasks compared with BERT embeddings. We plot this difference with respect to the se-
mantics and syntax embeddings induced by the models in the left and right subplots, respectively.

We report both the average performance on the four groups, and the worst performance observed,
which is a proxy for lower bound for a model when applied to a dataset where group composition
differs from the training dataset. Figure 2 plots the results. Again we observe that the masking
variants realize similar average performance as the baselines, but consistently outperform these other
models in terms of worst performance. This indicates that the proposed variants rely less on the
correlation between the two attributes when predicting the main label, as we would hope.

Qualitative Evaluation. In Figure 3 we plot t-SNE visualizations (Maaten & Hinton, 2008) of
the representations induced by different models. If the representations are indeed disentangled as
desired, instances with different sentiment will be well separated, while those belonging to different
genres within each sentiment will not be separated. Similarly, for genre representations, we hope
to see that instances of the same genre co-locate, but that there is no clustering of examples that
reflects sentiment. While no method perfectly realizes these criteria, we observe that the masking
approaches we have proposed achieve better results here than do the two baselines. In both Adversar-
ial (Sentiment) and Finetune (Sentiment), instances that have negative sentiment but different genres
are still separated, indicating that these sentiment representations still carry genre information.

3.2 DISENTANGLING SEMANTICS FROM SYNTAX

Experimental Setup. For the second experiment, we follow prior work in attempting to disentan-
gle semantic from syntactic information encoded in learned (BERT) representations of text. Because
we have proposed exploiting triplet-loss, we first construct triplets (x0, x1, x2) such that x0 and x1
are similar semantically but differ in syntax, while x0 and x2 are syntactically similar but encode dif-
ferent semantic information. We follow the methods described in prior work on this task (Chen et al.,
2019; Ravfogel et al., 2019) to derive triplets. Specifically, we obtain x0, x1 from the by ParaNMT-
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50M (Wieting & Gimpel, 2018) dataset. Here x1 is obtained by applying back-translation to x0, i.e.,
by translating x0 from English to a different language and then back into English. To derive x2 we
keep all function words in x0, and replace all content words by masking each in turn, running the
resultant input forward through BERT, and selecting one of the top predictions (that differs from the
original word) as replacement tokens.

We compare our disentanglement-via-masking strategies against models that represent state-of-the-
art approaches to disentangling syntax and semantics. In particular, we compare against VGVAE
(Chen et al., 2019), trained on top of BERT-base to ensure fair comparison. Following prior work
that has used triplet loss for disentanglement, we also compare against a model in which we finetune
BERT using the same triplet loss that we use to train our model, but in which we update all model
parameters (as opposed to only estimating mask parameters).

To evaluate learned representations with respect to the semantic and syntactic information that they
encode, we evaluate them on four tasks. Two of these depend predominantly on semantic informa-
tion, while the other two depend more heavily on syntax.2 For the semantics tasks we use: (i) A
word content (WC) (Conneau et al., 2018) task in which we probe sentence representations to assess
whether the corresponding sentence contains a particular word; and (ii) A semantic textual simi-
larity (STS) benchmark (Rosenthal et al., 2017), which includes human provided similarity scores
between pairs of sentences. The former we evaluate in terms of accuracy; for the latter (a ranking
task) we use Spearman correlation. To evaluate whether representations encode syntax, we use: (i)
A task in which the aim is to predict the longest path in a sentence’s parse tree from its embedding
(Depth) (Conneau et al., 2018); and (ii) A task in which we probe sentence representations for the
type of their top constituents immediately below the S node (TopConst).3

In Figure 4 we report the signed difference between the performance achieved by BERT embeddings
(we mean-pool over token embeddings) and the two representation types induced by the respective
(disentangled) models considered. Ideally, the semantics sentence embeddings would do well on
the semantic tasks (WC and STS) and poorly on the syntax-oriented tasks (Depth and TopCon);
likewise, syntax embeddings should do well on Depth and TopCon, but poorly on WC and STS.
We observe that the proposed masking strategy achieves performance at least equivalent to — and
sometimes (as in the case of the syntax embeddings), superior to — alternative approaches. We em-
phasize that this is achieved only via masking, and without modifying the underlying model weights.

3.3 INCREASING THE SPARSITY OF THE SUB-NETWORKS

Here we set out to determine if we are able to identify sparse subnetworks by combining the pro-
posed masking approaches with magnitude pruning (Han et al., 2015a). Specifically, we use the loss
function defined in Equation 9 to finetune BERT for k iterations, and prune weights associated with
the m smallest magnitudes after training. We then initialize masks to the sparse sub-networks iden-
tified in this way, and continue refining these masks via the training procedure proposed above. We
compare the resultant sparse network to networks similarly pruned (but not masked). Specifically,
for the latter we consider: Standard magnitude tuning applied to BERT, without additional tuning
(Pruned + Untuned), and a method in which after magnitude pruning we resume finetuning of the
subnetwork until convergence, using the aforementioned loss function (Pruned + Finetuned).

We compare the performance achieved on the semantic and syntactic tasks by the subnetworks iden-
tified using the above strategies at varying levels of sparsity, namely after pruning: {0, 20%, 40%,
60%, 80%, 85%, 90%, 95%} of weights.4 We report results in Figure 5. We observe that proposed
masking strategy (in concert with magnitude pruning) consistently yields representations of seman-
tics (top row) that perform comparatively strongly on the semantics-oriented tasks (STS, WC), even
at very high levels of sparsity; these semantics representations also perform comparatively poorly
on the syntax-oriented tasks (Depth, TopCon), as we might hope. Similarly, syntax representations
(bottom) perform poorly on the semantics-oriented tasks (and seem to leak less of this information
than other methods), and outperform alternatives on the syntax-oriented tasks.

2We acknowledge that this is a very simplified view of ‘semantics’ and ‘syntax’.
3See Conneau et al. (2018) for more details regarding WC, Depth and TopConst.
4Technically, in the Pruned + Masked Weights method, refining the masks may change subnetwork sparsity,

but empirically we find this to change the sparsity only slightly (∼1% in all of our experiments).

7



Under review as a conference paper at ICLR 2021

Representation: 
Semantic

Representation: 
Syntax

Figure 5: Model performance as a function of the level of pruning. The x-axis corresponds to the
subnetwork sparsities (percent of weights dropped), while the y axes are performance measures
— accuracy for all tasks except for STS, where we report Pearson’s correlation. We compare the
performance of models trained on the semantic (top) and syntax representations (bottom) learned by
the disentangling strategies considered, after pruning to varying levels of sparsity.

4 RELATED WORK

Disentangled and structured representations of images. The term Disentangled representations
has been used to refer to a range of methods with differing aims. Much of the initial focus in
this space was on learning representations of images, in which certain dimensions correspond to
interpretable factors of variation (Kulkarni et al., 2015; Higgins et al., 2016; Chen et al., 2016).
In the context of variational autoencoders (Kingma & Welling, 2013; Rezende et al., 2014) this
motivated work that evaluates to what extent such representations can recover a set of ground-truth
factors of variation when learned without supervision (Eastwood & Williams, 2018; Kim & Mnih,
2018; Chen et al., 2018). Other work has investigated representations with the explicit motivation of
fairness (Locatello et al., 2019a; Creager et al., 2019), which disentanglement may help to facilitate.

Disentangling representations in NLP. Compared to vision, there has been relatively little work
on methods for learning disentangled representations of for natural language data. Much of the
prior work on disentanglement for NLP that does exist has focused on using such factored repre-
sentations to facilitate controlled generation, e.g., manipulating sentiment (Larsson et al., 2017). A
related notion is that of style transfer, for example, separating style from content in language mod-
els Shen et al. (2017); Mir et al. (2019). There has also been prior work on learning representations
of particular aspects to facilitate domain adaptation (Zhang et al., 2017), and aspect-specific infor-
mation retrieval (Jain et al., 2018). Esmaeili et al. (2019) focused on disentangling user and item
representations for product reviews. Moradshahi et al. (2019) combines BERT with Tensor-Product
Representations to improve its transferability across different tasks. Recent work on which we build
has proposed learning distinct vectors coding for semantic and syntactic properties of text (Chen
et al., 2019; Ravfogel et al., 2019). These serve as baseline models in our experiments.

Finally, while not explicitly framed in terms of disentanglement, efforts to ‘de-bias‘ representations
of text are related to our aims. Some of this work has adopted adversarial training to attempt to
remove sensitive information (Elazar & Goldberg, 2018; Barrett et al., 2019).

Network pruning. A final thread of relevant work concerns selective pruning of neural networks.
This has often been done in the interest of model compression Han et al. (2015a;b). Recent intriguing
work has considered pruning from a different perspective: Identifying small subnetworks — winning
‘lottery tickets‘ (Frankle & Carbin, 2018) — that, trained in isolation with the right initialization,
can match the performance of the original networks from which they were extracted. Very recent
work has demonstrated that winning tickets exist within BERT (Chen et al., 2020).

5 DISCUSSION

We have presented a novel perspective on learning disentangled representations for natural language
processing in which we attempt to uncover existing subnetworks within pretrained transformers
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(e.g., BERT) that yield disentangled representations of text. We operationalized this intuition via
a masking approach, in which we estimate only binary masks over weights or hidden states within
BERT, leaving all other parameters unchanged. We demonstrated that — somewhat surprisingly
— we are able to achieve a level of disentanglement that often exceeds existing approaches (e.g., a
varational auto-encoder on top of BERT), which have the benefit of finetuning all model parameters.

Our experiments demonstrate the potential benefits of this approach. In Section 3.1 we showed
that disentanglement via masking can yield representations that are comparatively robust to shifts
in correlations between (potentially sensitive) attributes and target labels. Aside from increasing
robustness, finding sparse subnetworks that induce disentangled representations constitutes a new
direction to pursue in service of providing at least one type of model interpretability for NLP. Finally,
we note that sparse masking (which does not mutate the underlying transformer parameters) may
offer efficiency advantages over alternative approaches.
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