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Abstract

Suppose a person, who has streamed rom-coms exclusively with their significant
other, suddenly breaks up. Consider an expecting mom, who has shopped for baby
clothes, miscarries. Their streaming and shopping recommendations, however, do
not necessarily update, serving as unhappy reminders of their loss. One approach
is to implement the Right To Be Forgotten for recommendation systems built from
user data, with the goal of updating downstream recommendations to reflect the
removal without incurring the cost of re-training. Inspired by solutions to the
original Netflix challenge [Koren, 2009], we develop Unlearn-ALS, which is more
aggressively forgetful of select data than fine-tuning. In theory, it is consistent with
retraining without model degradation. Empirically, it shows fast convergence, and
can be applied directly to any bi-linear models regardless of the training procedure.

1 Introduction

Break-ups, pregnancy losses, and bereavements are particularly painful in the age of ubiquitous
machine learning systems. Suppose a user watches a Korean drama with their significant other but
breaks up mid-season. They are subsequently bombarded with new episode alerts and recommended
shows with the same actors and art styles, potentially causing distress. To move on, the user may
reasonably demand some of their past records expunged from Netflix’s recommendation engines.

The platform should accommodate deletion, not only in user history but also in subsequent rec-
ommendations. Ideally, this deletion is both swift and seamless. An incomplete "under-deletion"
likely persists the underlying concepts learned from the deleted records, preventing the user from
cultivating a new path forward due to "echo-chamber" style feedback [Chaney et al., 2018, Jiang
et al., 2019, Mansoury et al., 2020]. Yet, a callous reset may needlessly degrade the model. Worse,
an "over-deletion" introduces new privacy risks when popular items are conspicuously missing.

Fortunately, most deployed recommendation systems rely on matrix completion, which assumes user
and movie features to be low-rank. Since recommender training performs dimensionality reduction,
the degrees of freedom for the model to memorize is limited. Further, bi-linear models predict linear
relationships between a user and a movie’s features, which is less expressive than non-linear models.

We thus develop Unlearn-ALS, which modifies the intermediate confidence matrix used in the
heuristic optimization of Alternating Least Squares (ALS) to achieve fast forgetting. Mathematically,
Unlearn-ALS is equivalent to minimizing the loss of the model on the remaining data by retraining
with ALS, making our method an instance of exact deletion. We further ask, is our work done?

∗Work done during internship at ByteDance.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



In theory, if linear models of few parameters fail to memorize individual samples, they may be
"robust" to user-requested deletions. In practice, however, industrial recommendations and systems
trained with differential privacy do leak training data with specific users [Calandrino et al., 2011,
Rahman et al., 2018]. The disparity underscores the importance of empirical evaluation.

Our contributions (1) We clarify that practical bi-linear recommendation models have privacy
risks from memorizing training data. (2) We propose Untrain-ALS, a crafty and fast heuristic that
unlearns a bi-linear model, and makes no compromise to recommendation accuracy. (3) In future
work, demonstrate the risks of evaluating unlearning exclusively with membership inference.

2 Problem Setup

We assume a base collaborative filtering model based on matrix factorization, learned through
a user-item matrix, structured similarly to MovieLens [Bennett et al., 2007]. The downstream
recommendation for each user is given based on the ranking of items [Koren et al., 2009].

Matrix Completion. The platform observes ratings matrix P where pij := P [i][j] denotes the
preference of user i with respect to item j; if the interaction is not observed, pij = 0. Because the
matrix of true preferences cannot be fully observed, entries of P are assumed sampled from ground
truth matrix M . In matrix factorization, M can be recovered through a low rank multiplication,

M = XY T. (1)

where X depicts user features over all users, and Y is the underlying item factors.

Algorithm 1 AlternatingLeastSquares
Require: P , α, λ, initialize X,Y randomly.
cui ← 1 + αpui . [Hu et al., 2008]
while model does not converge do

for all u do
xu ← (Y ᵀCuY + λI)−1CuPu

end for
for all i do

yi ← (XᵀCiX + λI)−1CiP i

end for
end while
return X,Y as X̂, Ŷ

Algorithm 2 Untrain-ALS

Require: P, α, λ, X̂, Ŷ , C0,Dremoval

X,Y ← X̂, Ŷ . from Algorithm 1
for all (u, i) ∈ Dremoval do

pui ← 0, cui ← 0 . delete and block
end for
while model does not converge do

for all u do
xu ← (Y ᵀCuY + λI)−1CuPu

end for
for all i do

yi ← (XᵀCiX + λI)−1CiP i

end for
end while
return X,Y as X̂, Ŷ

Alternating Least Squares (ALS). For given ratings matrix P and desirable rank k, we learn the
model parameters θ̂ = {X̂, Ŷ }. The loss function is the regularized matrix completion:

LALS(X,Y ) =
∑

(u,i)∈Dobs

cui(pui − xᵀuyi)2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) (2)

where we use Dobs = {(u, i)} to denote the coordinates of M that contain explicit observations.

Unless otherwise mentioned, we train (and re-train) with AlternatingLeastSquares (ALS), a widely
deployed heuristic by Hu et al. [2008], Takács et al. [2011] outlined in Algorithm 1. ALS is
exceedingly simple and parallelizable; despite having little theoretic guarantee it converges fast
empirically for recommendation data [Koren et al., 2009, Jain et al., 2013, Uschmajew, 2012].

The key insight lies in making a non-convex optimization convex at each of the alternating minimiza-
tions. To tackle implicit feedback, a confidence matrix C is constructed as a soft copy of the ratings,
where cui := 1 +αpui for α ∈ R+: if the ratings were high, the confidence is high, and if the ratings
are missing, the confidence is low. The better-behaving C is then used throughout the iterations.

Though we treat ALS as the baseline ground truth for training (and re-training), our unlearning
algorithm, Untrain-ALS, applies to any bi-linear model. See Appendix B for experiment parameters.
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Additional Assumptions. The removal set, Dremoval, is uniformly sampled from Dremoval without
replacement, and it cannot be known prior to training. Further, the coordinates inDobs are assumed to
be i.i.d., to ensure that models trained without access to the deleted data are statistically independent
from the removal set. Lastly, |Dobs| � |Dremoval| to simulate occasional deletion requests.

Re-training as Privacy Baseline. As our goal is to neither over- nor under-delete, the ideal removal
of P [m][n] is to train another model with new preference matrix P ′ where P ′[m][n] = 0;P ′[i][j] =
P [i][j] otherwise. The retrained model will thus treat the removed samples as simply missing data,
as Hu et al. [2008]’s implicit feedback, ensuring privacy requirements. Additionally, we are only
concerned with cases where Pmn 6= 0 so that the deletion is meaningful.

Machine Unlearning [Bourtoule et al., 2021]. The intuition behind unlearning is similar to that of
fine-tuning: the pre-trained model has learned useful concepts that we want to take advantage of;
however, the goal of unlearning is to re-fit the model, adjusting away from the deleted items.

Empirical Evaluations. In our setup, after unlearning procedure, the removed data should "look
like" data that was not observed. In Membership Inference (MI), the trained model’s outputs can be
exploited to judge whether a data sample was part of the training data. Typically, an MI classifier
σ(M) : (x)→ {0, 1} is a binary logistic regressor. Our MI training set is constructed with positive
data of actual training samples’ outputs, and negative data of removed training samples’ outputs.

Nonetheless, a robust unlearning does not require an associated low MI accuracy. Instead, we are
concerned with increased confidence in membership attack caused by the unlearning procedure.

Vulnerability. Fixing the training procedure, the re-trained model and the trained model can be seen
as a function of their observed ratings matrix. Let MI(·) : (θ,Dremoval,Dremain) → [0, 1], which
refers to the membership inference accuracy on a particular model given the removal set and the
remaining set. Because all the evaluations fix the datasets between retraining and untraining, we
simply write MI(untrain) to refer to membership inference accuracy with untraining.

Typically, MI is directly used as a vulnerability measure. As we compare against re-training from
scratch, the additional vulnerability caused by the choosing untraining over retraining is written as
MI(untrain)−MI(retrain). In Section D.3, we propose instead to use MI(unlearn)−MI(train)−
MI(undeleted) under fixed data splits, to denoise the effect of the base undeleted model.

3 Inherent Robustness of Matrix Completion (Compressed)

In theory, matrix completion model is robust to random deletions, but there is no guarantee in practice
for individual users. Nevertheless, the theoretic results imply that membership attacks against a
well-validated model may be especially challenging. We extend this section in Appendix E.

Theoretic results. We make a key observation: with implicit feedback, our setup selects removal and
test data in the same way; moreover, in preference matrix, their corresponding entries are zeroed. A
well-validated model is thus, on average, inherently robust to missing data. Rehashing the key claim
in Recht [2011] we also show that the exact solutions to matrix completion is inherently robust to
randomly sampled deletions under mild assumptions on the data; see Appendix E).

Practical limitations. Model training typically employs regularization (Equation 2), and early-
stopped at the best fit (Algorithm 1), not to completion. Plus, we cannot judge the matrix coherence
of real world data as required [Recht, 2011]. Lastly, the decompositions learned using ALS can
be non-unique (nor equivalent up to a rotation) [Jain et al., 2013], so the removal samples may be
especially vulnerable with respect to the currently deployed model, thus requiring manual deletion.

4 Unlearn-Alternating Least Squares (Unlearn-ALS)

Our unlearning strategy, Unlearn-ALS, takes advantage of the fast heuristic used in training implicit
feedback recommendations and makes slight modifications:

1. Pre-train. Use the resulting X0, Y0 in Algorithm 1 to initialize ALS.

2. Deleting preferences. Set pui = 0 for deleted item-user interaction i, u.
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3. Blocking confidence on removed data. Set cui ← 0 for deleted item-user interaction i, u
at all subsequent iterations. Crucially this prevents further influence of the deleted data, thus
allowing the model to refit to the remaining data fast. Optionally, use adjusted inverse.

4.1 Untrain Loss = Retrain Loss

Recall that the holy grail of unlearning is to approximate retraining. Under these modifications to pui
and cui, we find the loss function of Untrain-ALS is functionally equivalent to re-training, derived
in Appendix A . The extraneous terms relating to removal data is fully zero-ed. We thus claim that
optimizing Untrain-ALS can achieve the same loss as retraining without the removal data.

Remark 1 It may appear that with such strong results, our work is over. Yet again, two real-
world issues prevent us from claiming any untrained model is the same as any retrained model: 1.
empirically, the models are trained with early stopping: the number of epochs to train is determined
by minimal loss; and 2. matrix factorization solutions via ALS are not unique. For empirical privacy,
some of the potential solutions may be more private than others. It is therefore crucial that we
complement with empirical privacy measures.

4.2 Untrain Runtime ≤ Training Runtime, Per Pass

Algorithms 1 and 2 show that, per-iteration, Unlearn-ALS has the same runtime as a pass of ALS. Its
convergence analysis is therefore similar to that of ALS itself such as in Uschmajew [2012]. Because
the loss of the pre-trained model is minimal, it is easy to see that converging using Untrain-ALS
would be much faster than doing ALS from scratch.

Speedups. Every default pass of ALS requires inverting a large matrix. Though fast implementations
use conjugate gradient (CG) to approximate inverses [Takács et al., 2011], we note a faster alternative
for exactly computing the matrix inverse in Untrain-ALS, where the original inverse is already
available. Adjusting for cui ← 0 is equivalent to changing a single entry in the diagonal matrix Cu.
This subtraction of a one-entry matrix is the perturbation of concern. The resulting confidence matrix
under un-training, C̃u, is very close to the original confidence matrix, where

C̃u := Cu − (diag[0, · · · , cui, · · · , 0]). (3)

Consider a special case of Woodbury’s inverse [Woodbury, 1950] where only one element is sub-
tracted, by Sherman and Morrison [1950]’s subtraction case, for matrix A, there is (A− uvᵀ)−1 =
A−1 +A−1u(1− vᵀA−1u)−1vᵀA−1. Let A := Y ᵀCuY + λI . The adjusted inverse

(Ã)−1 = (Y ᵀCuY + λI)−1 +
cui

1− q
yi(Y

ᵀCuY + λI)−1yᵀi (Y ᵀCuY + λI)−1.

Overall Runtime. ALS and Untrain-ALS runtimes are both O(|Dobs|k2 + n3k). With the inverse
adjustment, recall in ALS, the inverse of A is computed in O(k3), and using CG speeds it up to
O(k2p) where p is the number of CG iterations. Assuming A−1 has been computed in the pretraining
step, the adjustment is a perturbation on A, which we project to its inverse. This allows for a runtime
of O(k2) per user or item per iteration, making every Untrain-ALS pass O(|Dobs|k2).

4.3 Numerical Results

We perform extensivenumerical simulations to show the exact deletion conclusions in our method,
and we empirically demonstrate the efficiency of Unlearn-ALS using MovieLens data [Bennett et al.,
2007]. Appendix D includes diagrams, and Appendix B states our parameters.

5 Conclusion

A matrix completion-based models cannot be inherently private. We develop Unlearn-ALS, whose
objective function aligns with re-training exactly, meaning there is no degradation in model perfor-
mance caused by choosing unlearning over re-training. We further tackle the scale problem with a
numerical speedup with Woodbury inverse adjustments [Woodbury, 1950], which makes it fast to
unlearn a few data points from a large matrix.
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6 Safety Impact

Preventing Trauma Fixation Through Real-time Forgetting. Humans can choose the memories
to discount while ML systems can not. As humans grow reliant on relentlessly un-forgetful systems,
these technologies easily violate the user’s privacy when they need it the most. We tackle an
alignment problem motivated by natural discontinuities in human preferences. Endowing The Right
To Be Forgotten is one of the reasonable solutions. We guarantee provably exact forgetting in
recommendation-style systems like Netflix, which have stood the test of time to be ubiquitous.

Exact Deletion Over Other Approximations. As theorized in the movie "Eternal Subshine on
The Spotless Mind", jerkish lobotomy to enforce forgetting is undesirable. We explicitly avoid
overdeletion and approximate deletion, and instead align our model directly with retraining without
removal data. Approximate deletion is 1. difficult to reason and 2. have questionable alignment
guarantee for sufficiently manipulative MLs. Overdeletion has the risk of exposing what is missing,
while powerful AIs with situational awareness often aim to complete what is ostensibly missing,
including recommendations, making it easy for the resulting model to figure out what was removed.
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A Proof: Untrain-ALS and Retraining Share The Same Minimal Loss,
Functionally.

Recall that in Alternating Least Squares (ALS), the loss function is the regularized matrix completion:

LALS(Dobs) =
∑

u,i∈Dobs

cui(pui − xᵀuyi)2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) (4)

For any set of preference matrix P , deterministic function fc, let the removed dataset be Drm. As
we only remove explicitly observed data points, it is assumed that Drm ⊂ Dobs. When we retrain, we
substitute Dremain = Dobs −Drm for Dobs, and write the loss under retraining as

LALS(Dremain) =
∑

u,i∈Dremain

cui(pui − xᵀuyi)2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) (5)

When we untrain with Untrain-ALS, we set the confidence values manually to 0 for the indices in the
removal set. We thus have

LUntrainALS(Dobs,Drm) =
∑

u,i∈Dobs

funtrainc (cui)(pui − xᵀuyi)2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) (6)

where funtrainc (·) transforms the confidence score. Using Kronecker delta δ for set membership, we
have

funtrainc (cui) = δ(u,i)∈(Dobs\Drm)cui = (1− δ(u,i)∈Drm
)cui = cui − δ(u,i)∈Drm

cui.

Assuming the same removal and observations, we hereby call the two loss quantities on
{Dremain,Dobs,Dremoval} in Equation 5 RETRAIN_LOSS and in Equation 6 UNTRAIN_LOSS.
We write Dremoval and Drm interchangeably.

Our manual zeroing results in

UNTRAIN_LOSS = λ(
∑

u∈Dobs

||xu||2 +
∑
i

||yi||2) +
∑

(u,i)∈Dobs\Drm

funtrainc (cui)(pui − xᵀuyi)2

+
∑

u,i∈Drm

funtrainc (cui)(pui − xᵀuyi)2

= λ(
∑

u∈Dobs

||xu||2 +
∑
i

||yi||2) +
∑

(u,i)∈Dremain

cui(pui − xᵀuyi)2

+
∑

u,i∈Drm

(0)(pui − xᵀuyi)2

= λ(
∑

u∈Dobs

||xu||2 +
∑
i

||yi||2) +
∑

(u,i)∈Dremain

cui(pui − xᵀuyi)2

= RETRAIN_LOSS.

Our objective thus makes our unlearning method exact rather than approximate.

Remark 2 Whether that minimal loss is achieved, and whether the solutions at minimal loss are
necessarily equivalent (or up to a rotation) are not guaranteed from this analysis.
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Figure 1: Re-training dynamics. Across different iterations of re-training from scratch, and 10
different fractions of removal, each final model’s area-under-curve on test set on MovieLens-1M.

B Experimental Parameters

Alternating least squares. P is a preference matrix, which could be binarized values of 1 (like)
or 0 (dislike). A confidence score cui = fc(pui), where fc is deterministic. In our experiments,
cui = 1 if pui = 1, and 0 or very small otherwise. In the paper it is assumed that fc(pui) = 1 +αpui
with a suggested α = 40. Each experiment starts with new seed, including train-test split and ALS
initializations, unless otherwise mentioned. Graphs are made with 5 runs.

The removal set Dremoval is assumed to be uniformly sampled from Dobs without replacement.

The number of ALS passes ("epoch" or "iter") is the only tunable parameter for fitting base models.
We assume a 99-1 split of train-test, and select epochs based on the best fit validated AUC.

Membership inference. The numbers of iterations for the base models are chosen for validated
best model fit, as to be expected for practical deployments.

We use the 50-50 split for test-train on removal and remaining datasets for each appropriate removal
fraction, meaning that 50% of the removal data is used in training while the rest is used to validate.
The best AUC is taken on the removal data for reporting each model’s membership attack accuracy.

C Base Model

Figure 1 shows that even with large removal fractions the base model can still perform well. The
dotted vertical lines mark the number of iterations that achieve the best fit for each model. As shown,
the less the remaining data, generally the earlier the convergence. 10 passes are sufficient only if
removal fraction is large (> 70%). For small fractions of removal, the best fit tends to be between
[40, 70] passes on MovieLens-1M. In comparison, Untrain-ALS only takes [10, 45] iterations.

D Empirical Results

To investigate the practical implication of using Unlearn-ALS we conduct experiments that aim to
answer two research questions:

1. The performance of Untrain-ALS in terms of accuracy, to prevent model degradation.
2. The runtime of retraining; in our case, that means having fewer iterations than retraining.
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Figure 2: Unlearning with Untrain-ALS.
Across different iterations of unlearning, and
20 different fractions of removal, each fi-
nal model’s area-under-curve on test set on
MovieLens-100K. Retraining is compared to
at 25 passes of ALS.
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Figure 3: Overfitting Untrain-ALS. Across
different iterations of unlearning, and 20 differ-
ent fractions of removal, each final model’s area-
under-curve on test set on MovieLens-100K.
Retraining is compared to at 25 passes of ALS.

3. Unlearn-ALS should reduce the privacy implications from undeleted model.

We note that the empirical privacy evaluation should reliably uncover vulnerabilities of undeleted
models, and should be able to differentiate between retrained model, which does not include the
offending data, and the undeleted model.

D.1 Experiment Setup

For datasets, we use MovieLens [Bennett et al., 2007, Harper and Konstan, 2015]. For membership
inference, the sensitivity issue is severe on larger models, therefore we illustrate with smaller datasets.
Unless otherwise specified, we use parallel implementations for Alternating Least Squares, with
conjugate gradient speedup but without our inverse adjustments [Hu et al., 2008, Takács et al., 2011];
therefore only compare the number of iterations between untraining and retraining. The python
implementation is provided at The removal dataset is held out as a fraction of total observations.
All datasets have a test-train split before data removal, so the heldout set is sampled first. The
removal fraction (%) refers to the fraction of explicitly observed entries. For training and evaluating
recommendation models themselves, we use area-under-curve (AUC), which is more accepted than
downstream recommendations for a specific configuration. We show training and untraining across
iterations around convergence, and evaluate random removal fractions at every 5%.

Two baselines for Untrain-ALS: 1. the undeleted model, which is trained to completion and used
to initialize unlearning, representing the upperbound of model performance. 2. the re-trained
from scratch model without the removal data, representing the upperbound of privacy. For model
performance, we use area under curve. For membership attacks, we use vulnerability measures
derived from membership inference accuracies [Shokri et al., 2017].

D.2 Untrain-ALS: No Degradation, Fast Convergence

As expected from theoretic analysis in Section 4.1, Untrain-ALS is consistent with re-training without
removal data in objective.

Over a wide range of removal fractions, Figure 2 shows that untraining is fast, and results in highly
performant models. In fact, because Unlearn-ALS clearly follows the well-tested ALS, if untraining
is left unchecked, as in Figure 3, there is no degradation to the model compared to training from
scratch. Unlearn-ALS breaks the usual expectation that fast unlearning necessarily degrades model.
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D.3 Sensitivity issue with membership inference

We investigate empirical attacks based on membership inference against the unlearned model. As
alluded to in Section 3, matrix completion-based models do not have a lot of privacy risks to begin
with; in implicit feedback datasets, the risks against random data deletion can also be mitigated
through extensive model validation. Meanwhile, membership inference attacks [Shokri et al., 2017]
are especially powerful when the input data has a lot of information; when in matrix completion,
without some advanced user fingerprinting, the model output itself is all the information. Concretely,
several challenges arise in this pursuit:

1. AUC of the base model is high. As we start with pre-trained recommenders, it is reasonable
to assume that the initial model performs well on a test set. Consider that uniformly removing
data is akin to sampling another held-out set, the initial model likely predicts the missing
items just as well.
To make matters worse, ALS performs well even after a large portion of data is deleted.

2. Using only the predicted value, untraining does not observe significant difference between
the training data and the removed data, so there is no significant membership inference
performance drop. (Only at certain ratios for certain epochs can we induce a 2% difference.)
This means the measurement is highly susceptible to small noise.

3. Depending on data splits, the base model (the "undeleted" model) has different membership
attack vulnerabilities built-in. This is due to ALS not having a fixed unique solution, so the
models from different training trajectories will find different decompositions as solutions to
the same matrix completion problem. Some of those models are inherently more defensible
than others. This adds noise to the already small numerical measurement.

Recall that our privacy model views re-training as ground truth. To study the vulnerability of
unlearning is to study the additional vulnerability compared with re-training.

Let IV denote the intrinsic vulnerability associated with the learning strategy. We are concerned with
whether Untrain-ALS presents more or less intrinsic risk compared with retraining. Assuming that
the training and un-training procedures have similar intrinsic vulnerability, IVALS ≈ IVre−train. An
estimator for IVUntrain−ALS is thus the difference between the empirical measure for membership
inference:

IVUntrain−ALS = MI(untrain)−MI(retrain) (7)

Remark 3 Because retraining is assumed to be statistically independent from removed data, being
able to infer properties of the removed data from the re-trained model e.g. due to data duplication
is not an essential vulnerability. If an empirical measurement shows that untrained model has
membership vulnerability, it is a tolerable amount of privacy risk under our setup.

However, this measurement on intrinsic untraining vulnerability shows that, at the best fit, untraining
and untraining are extremely close. This numerical difference is so small, that the measurement
appears dominated by noise, while having inconclusive results, as shown in Figure ??. When averaged
across runs, the overlap of untraining and retraining are further obscured.

D.4 Modified Membership Inference

Identifying model noise as a cause, let IV ′ be our modified intrinsic vulnerability measure, applied
not only to the same {M,Dobs,Drm}, but also under identical train-test split. The splits greatly
impact the model, as we see that intrinsic vulnerability to deletion is closely related to model AUC.
Using ALS and Untrain-ALS to retrain and unlearn after data removal, we make three accuracy
measurements: MI(untrain), MI(retrain), and MI(undeleted). Even though our privacy model
does not directly concern the base model, MI(undeleted) serves to denoise the influence of model
splits on our numerical accuracy differences. We have

IV ′Untrain−ALS = MI(untrain)−MI(retrain)−MI(undeleted) (8)

For the same model, Equation 8 appears off by a constant from Equation 7. However, as a measure-
ment, the subtraction for each run improves numerical stability, and reduces noise when averaged over
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Figure 4: Vulnerability IV ′ due
to data removal for different re-
training iterations and removal
fractions, compared against 25
passes of re-training.
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Figure 5: Vulnerability IV ′ due
to data removal for different re-
training iterations and removal
fractions, compared against 10
passes of untraining.
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Figure 6: Large-scale IV ′.
Modified vulnerability measure
on iterations and removal frac-
tions on MovieLens-1M, with
fixed 45 untraining passes.

multiple runs. In Figure 4 and 5, the vulnerability is measured as membership inference accuracy
subtracting membership inference accuracy associated with the undeleted model, for the same split
under MovieLens-100K. The removal fraction is set at every 5% of the data (even though we are
empirically only concerned with small fractions). The procedures for untraining involves training the
base model with the selected number of iterations.

Improvements. The sensitivity of the refined metric is much improved, as we now see a change
with respect to model training iterations. In Figure 4, as training iterations get larger, the inherent
vulnerability is greater. In Figure 5, as untraining continues, there is a decrease of vulnerability. Both
phenomena were previously not shown due to sensitivity.

Issues. Nonetheless, our efforts to denoise only has a clear effect on small scale on a specific removal
range. The range related to user-requested deletion is, however, still not very sensitive.

E Inherent Privacy (Extended)

Is there a scenario where the recommendation model is "robust" to random user deletion, thus requir-
ing no additional work to unlearn a small subset of training data? Intuitively, dimensionality reduction
should result in models with low capacity to memorize. Arguably, high empirical performance also
relates to inductive biases: if datasets are well-described by the learned low rank parameters (that
exhibit good generalization), it should imply that the model’s inductive bias is not to memorize. We
make concrete these intuitions in the context of matrix completion for user-movie preferences.

For the following proof sketches, we assume that data removals are independently selected i.e
Dremoval to be sampled from Dobs randomly without replacement.

Validation implies robustness to missing data. First, a key observation: in implicit feedback
datasets, each unobserved (and deleted) user-movie interaction is changed to 0. The empirical
validation of the model relies on a train-test split that follows the same zeroing convention.

As the mechanism for selecting missing feedback is equivalent to selecting a held-out set, any
argument for in-domain generalization from appropriate calibration by Kearns [1995] and Blum et al.
[1999] would imply low prediction losses on missing data for both retrained and undeleted models.

Recall that membership inference needs to succeed by discriminating the predictions from removal
data and the remaining data. Varying data splits, a well-calibrated model has similar expected
losses. Because optimizing area-under-curve (AUC) is used for both 1. thresholding membership
inference model on the removal data and 2. on remaining validation data on the base retrained
recommendation model, we have Pretrained(pui = 1|(u, i) ∼ Drm) ≈ Pretrained(pui = 1|(u, i) ∼
Dobs) = AUCretrain. For each model, the approximation is directly relatable to validation loss.

If the base model is highly accurate i.e. has high AUC, the nonnegative loss contribution from
removal data is further limited. Empirically, most recommendation data achieves high AUC even
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with large fractions of data removed. As membership inference needs to discriminate two sets of
small, non-negative numerical losses of similar means, the task is inherently hard.

Roughly speaking, a well-validated model indeed implies robustness to deletion of a small fraction of
data. Implicit feedback models are unique, where cross-validated performance implies an upperbound
on the expected removal data’s loss contribution, provided that the deletions are independent.

Remark 4 Though this property makes empirical evaluation for individual privacy harder, it does
also mean that the work towards validation and calibration applies directly towards model robustness
against deletion. Even though model noise is inevitable in real-world setting, this insight greatly
reduces the expectation that there is unknown privacy risk that result from deletion, as all training
data is already observed (and presumably pre-selectable for validation).

Uniqueness of matrix completion implies robustness to missing data. In light of that, we rehash
Recht [2011]’s work to recommendation data. We hereby ignore the coherence requirement on the
raw data, which is likely untestable in practice (despite fast approximations [Drineas et al., 2012,
Mohri and Talwalkar, 2011]); instead, assume the row and column spaces have coherences bounded
above by some positive µ0, as assumptions in Theorem 2 in Recht [2011]. The setup readily applies
to our problem. As we assuming that the observations are indeed low-rank, the recovery of the true
matrix is certainly robust to small fractions of random deletions.

For preference matrix P of dimension m× n where m < n, assume that underlying ground truth
matrix M records the true preferences. Because the preferences are low rank, there is rank r and a
singular value decomposition M = UΣV ∗. As any preference entry is bounded, we trivially obtain
the constant value µ1 := mn/r; in practice µ1 ≥ 1e5 or greater for very sparse datasets.

Assuming a threshold probability is chosen, so that the resulting matrix completion UV ∗ to the
problem

min
U,V

||X||nuclear

s.t. Pui = Mui (u, i) ∈ Dobs
(9)

is unique and equivalent to M with the given probability when the number of uniformly random
observations reaches µ2mn for µ2 ≤ 1. This re-hashes the original result without the explict writeout
of the bounds on µ2 that depends on {µ0, µ1, r,m, n} and the chosen probability threshold.

Let | · | denote set cardinality and let q be the fraction of missing data upon user-requested deletions,
so that |Dremoval| = q|Dobs|. Given µ2, missing data simply subtracts from the number of total
observations. When the size of the remaining data, (1− q)|Dobs|, is above µ2mn, the recovery is yet
unique. That means our missing data does not change the uniqueness condition, if q ≤ 1− µ2

|Dobs|mn.

Finally, we want show that for sufficient number of observations, matrix completion solutions are
inherently robust. Consdier the retrained and undeleted models. Our results show that they may have
the same decomposition under our assumptions, meaning that retraining would not alter the resulting
recommendation system in terms of recovered entries i.e. predictions downstream. Their empirical
privacy is thus equivalent, meaning the undeleted model is as private as the retrained model.

Remark 5 Unfortunately, the bound is often vacuous, as the real world data is far sparser than
what the theorectics posit i.e. µ2 ∝ µ2

1 while µ1 is too large. Additionally, the minization is often
performed using heuristic methods such as alternating least squares, where the uniqueness of the
solutions is not guaranteed, even if the underlying un-regularized minimization is unique.

For practical privacy, the independece assumptions of random independent romoval can not be
guaranteed; after all, many users will likely remove the most embarassing content from watch history.

F Membership Inference Metric

For our application context, the natural measure is whether an observer of model outputs can recover
or guess what a user once sought to remove.
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Divergence-based measures aim to see the downstream difference between untrained and retrained
models using a divergence measure D(Pretrain||Pretrain), such as KL-divergence [Golatkar et al.,
2020]. At evaluation it is hoped that ∀(u, i) ∈ Dremoval,

Pretrain(pui = 0) = Pretrain(pui = 0). (10)

However in collaborative filtering, this objective is under-constrained, as the adversary can observe
outputs outside of those in Dremoval which may be impacted through the removal process. Even if
those removed data points remain similar in output, an adversary may still see from the remaining
data some anomalies. Instead, suppose an eavesdropper who can observe all data that is observed,
except for a particular entry pu0i0 , we have ∀(u, i) ∈ Dobs,

Pretrain((u, i) ∼ Dremoval) = Pretrain((u, i) ∼ Dremoval). (11)

Thus we use membership attack to empirically calibrate both sides, maximizing the probability of
attack success for a given model, and then measure the difference between those optimal success
rates. For an appropriately forgotten model i.e. complete and not-deleting, the membership attack
rate should not increase for the "best guess" for any data removed from the preference matrix.

Two benefits ensue: 1. auto-calibration that is suitable for our threat model, when Equation 10 is
uncalibrated, and 2. usability when we only have two models per data split, instead of relying on
sampling from a distribution of models.

G Privacy Analysis (Extended Discussion)

G.1 Privacy Context, Threat Model, and the Legality of Data Removal

User privacy is a complex issue deserving of nuanced debate. We hereby outline related concepts.

Privacy in "Netflix and Forget". The data flow in our privacy model originates from the user,
while the adversary also includes the user. It deviates from common privacy notions such as preventing
information extraction [Diffie and Hellman, 1979], or the Right To Be Forgotten [Rosen, 2011].

However, our privacy motivation is a pragmatic user scenario. While being private from one’s own
recommendations is not considered "unauthorized", letting other users guess the original data with
high likelihood constitutes as unauthorized after the data source is withdrawn.

Even though the legal implements of the right to be forgotten are limited, forgetting past records
at user request is a natural form of privacy. While most cases discussed under the rightinvolve
public records, Powles and Chaparro [2015] argues that the system through which the information
is surfaced is crucial. Though people may prefer personal data removed purely out of emotional
reasons, computational systems often treat data with "decontextualized freshness":

They include prominent reminders that an individual was the victim of rape, assault
or other criminal acts; that they were once an incidental witness to tragedy; that
those close to them – a partner or child – were murdered. The original sources are
often many years or decades old. They are static, unrepresentative reminders of
lives past, lacking the dynamic of reality. Powles and Chaparro [2015]

We thus take the right to be forgotten in the spirit of decaying information while giving users the
autonomy over their data. When the data is forgotten, we expect the system to behave as though the
data was not supplied in the first place. On the other hand, to devise an attack, we use membership
attack under the model that an observer of the recommendation system should not be able to tell with
high probability whether some information was removed.

Threat Model The data owners request random deletion of training data, to which the model owner
respond by updating the model. An eavesdropper with access to the model outputs attempts to guess
whether a data point had been removed.

Does machine learning need to implement the Right To Be Forgotten? The ability to remove
personal digital records is grounded in normative ethics. In dealing with loss of loved ones, common
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bereavement guides suggest removing the audio retained from answering machines, as voices, unlike
photos, are often recorded incidentally rather than for the sake of remembranace [Massimi and
Baecker, 2010]. To move on from grief, a human user ought to have the ability to remove past records
that bring them horror and regret, including the records’ downstream summaries or re-caps.

However, the current paradigms of the legal system in the United States, where many major techonol-
ogy companies are based, do not support a comprehensive regulation on privacy specific to machine
learning systems.The California Consumer Privacy Act (CCPA) [Legislature, 2018] and the proposed
congressional bill Consumer Online Privacy Rights Act (S.3195) [U.S. House. 117th Congress,
2021] forbid businesses from expanding processing of personal data beyond the intended use. They
are, however, quite fresh and rarely enacted. Meanwhile, the more mature GDPR supports such
removal of past records used in "automated decisions" [EUd]. Nevertheless, Burt [2018] interprets
that even though users usually need to consent to their data being used for training, removing it does
not necessarily mean the models need to be retrained.

A case may hinge on whether the un-removed model will leak information about the data to re-
move [Burt, 2018]. While Papernot et al. [2016], Choquette-Choo et al. [2021] have shown that many
models being deployed such as large scale language models have concrete privacy risks, such tools of
empirical evaluation is not accessible to the general public, especially when they rely on accessing
the training process. At best they serve as self-checking tools for companies that decide to provide
such feature, but not as a tool that can be incorporated into regulation. The current state of online
privacy is thus in a state of disarray: a lot of private data is compromised, which are fed to machine
learning models. Meanwhile, few regulations are put in place to deal with the downstream effect, and
no publically accessible method to measure such privacy loss.

G.2 Why Aren’t Machine Unlearning Solutions Deployed In Machine Learning?

As Waldman [2020] observes, deploying privacy features that match the user’s cognitive model is
not a priority for technology developers. While many users would likely remove historical records
on YouTube or Netflix hoping for changed recommendations, few recommendation systems have
transparent guarantees on unlearning user preferences.

Legal recognition is the most ostensible obstacle: only a few privacy bills have been passed in
America, where many major technology companies are located. Lacking any aforementioned privacy
regulation specifically worded on artificial intelligence, there is little recourse for users who want
their data removed from machine learning pipelines.

Industrial-scale computation is one reason lobbists use against passing bills that compel real-time
removal of user data. Retraining is considered expensive, thus bad for business. While it may be
argued that user privacy holds priority over computation cost and model accuracy, there has yet been
a compelling demonstration that industrial-scale recommendation models can be efficiently unlearned
without hurting the bottom line. After all, large recommendation models are widely used in multiple
downstream products, and are expensive to train and re-train.

Flexible unlearning. Undoubtly, the holy grail of machine unlearning is to allow any model to
forget arbitrary training data, as if it were re-trained from scratch. Such a method, which does
not depend on a specific learning architecture, would have truly sweeping implications. Generic
unlearning applies to a wide range of models, without incurring costly training time modifications,
extensive check-pointing, or differential private training. Moreover, with the popularity of finetuning
pretrained models for applications, the downstream model servers may not have access to the training
procedure or original parameters to begin with. Unlearning without learning enables most trendy
services to fortify their systems after performing finetuning.

Additionally, our work uncovers a different dimension of the issue: evaluations. We need a way to
know when privacy is lost, and when privacy is perserved.

G.3 Auditable Evaluations

A mature unlearning system would need to have compelling and robust evaluations. We still lack a
realistic and auditable alternative to membershio inference [Thudi et al., 2021]. When un-learning
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simulates re-training, the ground truth to compare against is clear and reasonable. Platforms and
regulators would only need to communicate the following idea: data deletion from machine learning
model is analougous to forgetting, acting as if the platform never received such data.

Against privacy risks, a defended model needs to be evaluated against the identified risk. Membership
Inference aims to identify memorization of training data by a model, and has gained popularity
in succeeding in uncovering privacy risks [Shokri et al., 2017, Rahman et al., 2018, Truex et al.,
2019, Choquette-Choo et al., 2021]. Typical membership inference uses a collection of samples that
are not in the training data, feed them to the model, and take the outputs as the baseline negative
training set. The positive training set is the data that the model has seen in the training set. Other
membership inference methods have been developed, usually requiring access to the model or the
training procedure or a more focused clean dataset [Long et al., 2020, Rahimian et al., 2020, Ye
et al., 2021]. The central idea is to make the empirical attack prediction more salient more powerful
adversaries.

Recently, Carlini et al. [2018] took a different approach for large scale language models to test
if a data point had been deleted [Carlini et al., 2018, Izzo et al., 2021]. This negative dataset is
manufactured "poison" to the training procedure. The intuition is that if the model is prone to
memorization, it would be able to reproduce the exact random string that was injected in the training
set. The membership inference variant thus focuses on engineering a better dataset, thus making
it more effective at uncovering memorization. While powerful in engineering a clear metric, this
approach requires the model owner to audit from within.

Our scenario for recommendation privacy turns out especially revealing: common membership
inference classification is not able to uncover privacy risk, even though the devised method is not
information-theorectically private. Indeed Jayaraman et al. [2020] calls for revisiting membership
inference in real life, noting that it is not as powerful as an empirical measure. Chen et al. [2021]
points out that unlearning can, in fact, decrease privacy, highlighting the need for better evaluations.
We thus join calls with Thudi et al. [2021] in calling for auditable algorithms that evaluate machine
unlearning.

H Related Works

Machine unlearning is an emerging field motivated by performance and computation trade-offs to
implement the Right to Be Forgetten on machine learning models [Grau, 2006]. When a user seeks to
retract data used in training, the derived model ought to update with respect to the change. Unlearning
thus trades off computation, accuracy, and privacy, and is often compared with retraining [Neel et al.,
2021, Ginart et al., 2019, Bourtoule et al., 2021, Golatkar et al., 2020].

Unlearning recommendation systems is concurrently explored by Li et al. [2022] and Chen et al.
[2022], which target unlearning for industrial scale recommendations built through collaborative
filtering. Sharding and user clustering are key to their methods, which we do not consider. Instead,
our work complements the line of work through a much simpler unlearning algorithm that applies to
all bi-linear models with minimal architectural change.

Differentially-private recommendations McSherry and Mironov [2009], Liu et al. [2015] may
be naturally compliant towards the Right to Be Forgotten by reducing the risk related to the model
output revealing information about the inclusion of certain data. However these methods would need
to anticipate to a certain extent the likelihood of deletion, and build that into training.

Evaluations against privacy risks if no privacy risk is shown, it would mean that no computation
needs to be expended on unlearning. Membership Inference is a popular method that measures
training data memorization by a model. Typical membership inference uses a collection of samples
that are not in the training data, feed them to the model, and take the outputs as the baseline negative
training set. The positive training set is the data that the model has seen in the training set. Other
membership inference methods have been developed, usually requiring access to the model or the
training procedure more metrics [Chen et al., 2021]. The central idea is to make the empirical attack
model more powerful.
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Recently, Carlini et al. [2018] took a different approach. They developed a very effective empirical
evaluation would be applicable to any model after it has been trained. For large scale language
models, feature injection can test if a data point had been deleted [Izzo et al., 2021]. This negative
dataset is manufactured "poison" to the training procedure. The intuition is that if the model is prone
to memorization, it would be able to reproduce the exact random string that was injected in the
training set. The membership inference variant thus focuses on engineering a better dataset, thus
making it more effective at uncovering memorization. While powerful, it requires internal access to
model training.

Differential Privacy Similar to a well-behaving matrix completion solution’s inherent privacy
(Section 3), some models may be less prone to memorizing individual data points. As a result, they
are less at risk for membership attacks after deletion requests.

By definition, pure differentially private models are robust to deletion, as each individual data point’s
membership should not be inferrable [Dwork and Lei, 2009]. Yet, not all models trained with
differential privacy are robust. In practice, assumptions on the independences between data points
do not hold and the number of deletion requests may not be known ahead of training; additionally,
businesses often opt for approximations, since pure differential privacy poses degradation on model
utility. As a result, Rahman et al. [2018] finds that models trained to be differentially private are yet
vulnerable.

I Discussion

We propose using Untrain-ALS to perform machine unlearning in bi-linear recommendations based
on matrix completion, which is simutaneously widely deployed in the real world and under-studied in
machine unlearning. This method takes advantage of fast heuristic, and can unlearn exactly without
compromising model degradation. However, empirically, models learned with regularized matrix
completion are not unique, thus unlearning and re-training may exhibit small differences in privacy.
To find them, we employ empirical attacks of memership inference, and adapt the vanilla version
to denoise the impact of data splits, and successfully see trends in vulnerability that was previously
obscured. We see two trends emerging from empirical results: 1. Unlearn-ALS is clearly fast and
powerful, with no degradation in model performance, unlike most unlearning methods [Sekhari et al.,
2021]. 2. Unlearn-ALS is not the same as re-training, but it closely relates to re-training in most
privacy measures, provided that it is trained to the best fit. 2. Relying on membership inference
classifications alone to measure unlearning thus leads to potential outstanding privacy risks. We join
prior calls in urging the unlearning community to re-think empirical evaluations for unlearning to
meet practical privacy needs[Truex et al., 2019, Chen et al., 2021, Jayaraman et al., 2020].

Limitations Our work is primarily limited to the choice of models. Though we apply to all bi-linear
models, not all recommendation systems are implemented with dot products.

Societal impact We place pressure on platforms that train on user data to give users real-time
options to remove the influence of their training data. Despite research progress, however, real world
systems have yet caught on [Villaronga et al., 2018]. When users opt to remove their past records’
influence on recommendations, existing implementations tend to fall under two categories: complete
expunging of their recommendation, in which a user’s all historic interactions are zero-ed, such as
Netflix’s reset, or a vague removal of learnt concepts such as Facebook’s Ad preferences. While many
services offer granular control over which ones of their historic actions the platform collects, they do
not promise that the deletion necessarily impact downstream systems that learn from such data.

Ostensibly, two factors prevent machine unlearning to be deployed: 1. lacking legal recognition
for the associated privacy risks, as GDPR-style deletion hinges on whether automated systems leak
private data for the general public [Villaronga et al., 2018]. For that, our work adds to the rigor of
discovery: empirical evaluation needs revisiting. 2. industrial-scale computation expenditure on
pre-trained machine learning models is massive, and there has yet been a compelling demonstration
that industrial-scale recommendation models can be efficiently unlearned without hurting the bottom
line. For this factor, our work on Unlearn-ALS proposes unlearning. Upon sequential deletion
requests, the unlearned model will not perform worse than the retrained model. When no trade-off is
made, the hope is that both policy and industry can agree to facilitate user privacy.
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Malicious use Our selective forgetting techniques can be applied to sinister areas where forgetting
is a form of censorship. Even the right to be forgotten faces criticism outside of the legal realm; after
all, even the forgetting procedure in "Eternal Sunshine of the Spotless Mind" may be troublesome
because it lets the recipient "live a lie" Grau [2006].
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