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Abstract

Recent works have demonstrated that reinforce-
ment learning (RL) can substantially improve
large language models (LLMs) for mathemati-
cal reasoning. However, most RL fine-tuning
strategies optimize for single-sample accuracy
(Pass@1), despite many practical applications re-
lying on multi-sample inference (Pass @K). In this
paper, we derive a principled RL objective that
directly maximizes the expected Pass@K metric.
Our approach formulates Pass @K maximization
as a policy gradient objective, where harder ex-
amples (i.e., those with lower probability of suc-
cess) are emphasized more during training. We
connect our objective to Focal Loss from super-
vised learning and demonstrate its effectiveness
across both Rejection-Fine-Tuning and GRPO al-
gorithms. Experiments on mathematical bench-
marks and synthetic arithmetic benchmarks show
improvements in Pass@K over standard RL base-
lines. Our method provides a simple yet effective
way to better align RL fine-tuning with the practi-
cal usage of LLMs.

1. Introduction

Reinforcement Learning (RL) has been shown to be ef-
fective for improving the performance of large language
models (LLMs) on various tasks, including mathematical
reasoning (Guo et al., 2025). However, most existing RL
methods focus on maximizing the accuracy of the model on
the training set, which may not necessarily lead to improved
performance on harder problems.

In this work, we focus on the Pass@K metric (Chen et al.,
2021), quantifying the ability of a model to generate correct
answers for a given input by sampling K times from the
model, and checking for a correct answer among those
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Figure 1. Overview of our proposed reweighting method. We add
a reweighting factor to the reward function of the RL algorithm,
which is based on the model’s estimated probability of generating
the correct answer. The larger the -y is, the more the model is
encouraged to focus on higher K values for Pass @K maximization.
We show that this reweighting works well with both RFT and
GRPO algorithms.

samples. This metric is particularly relevant for reasoning
tasks, where several attempts may be needed to arrive at
the correct answer, or where we have access to a reward
model (Lightman et al., 2023; Cobbe et al., 2021; Wang
et al., 2024) that can provide feedback on the correctness of
the generated answer.

Despite the success of standard RL objectives in improving
single-sample accuracy (Pass@1), they do not explicitly ac-
count for the multi-sample nature of Pass @K, and thus may
underperform on harder instances where diversity across
samples is crucial. In particular, when py(y | ) (the prob-
ability that a single draw yields the correct answer) is low,
maximizing expected reward under common RL reward
functions does not sufficiently encourage exploration of
diverse solution paths. To address this gap, we derive a
closed-form expression for the Pass @K objective and show
that its gradient corresponds to reweighting each correct
sample by a factor proportional to K (1 — py(y | 2))% 1.
Building on this insight, we introduce Pass @K-Reweighting
(PKR), a simple yet theoretically grounded method that aug-
ments existing RL algorithms (RFT (Yuan et al., 2023),
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GRPO (Shao et al., 2024)) with a tunable reweighting co-
efficient . This reweighting shifts emphasis toward harder
examples (those with low py(y | z)) thereby directly op-
timizing for improved Pass@K performance and sample
diversity.

Contributions

* Theoretical Derivation of Pass@K Gradient. We
derive a closed-form expression for the Pass@K ob-
jective (Eq. (6)) and show that its policy gradient can
be written as a reweighted version of the standard RL
gradient, with weight K (1 — pg(y | 2))%~! on each
correct sample.

* Pass@K-Reweighting (PKR) Framework. We pro-
pose PKR, which introduces a reweighting coefficient
v into existing RL reward functions (RFT, GRPO).
Setting v = 1 recovers the original algorithm, while
~ > 1 focuses on harder examples to directly improve
Pass@K.

L]

Empirical Validation. Through experiments on syn-
thetic arithmetic and real math benchmarks, we demon-
strate that PKR with v > 1 yields consistent gains in
Pass@K for K > 1, increases sample diversity, and
imposes only a modest cost to Pass@1. We also study
the effect of varying v and show diminishing returns
at very large values.

2. Related Work

Reinforcement Learning for Mathematical Reasoning.
Earlier works explored the usage of model-generated so-
lutions as training data as a bootstrapping mechanism to
improve math reasoning capabilities of LLMs. These works
generate solutions using a pre-trained model, then filter the
solutions based on the correctness of their final answers, and
use the filtered solutions to train a new model (Zelikman
et al., 2022; Yuan et al., 2023; Singh et al., 2023; Anthony
et al., 2017). Following the success of RLHF (Stiennon
et al., 2020), several works have explored the use of RL
for improving the performance of LLMs on mathematical
reasoning tasks (Shao et al., 2024; Yang et al., 2024a). The
main advantage of RL is that the algorithm is online (mean-
ing that it uses the latest model’s weights to generate the
solutions), and it has been shown to be effective for improv-
ing the performance of LLMs on various tasks, including
mathematical reasoning (Guo et al., 2025). Furthermore,
RL takes into account the incorrect samples the model has
generated, and it has been shown to be beneficial for mathe-
matical reasoning tasks (Seed et al., 2025; Shao et al., 2024).
In this work, we focus on online learning methods, which
cover both the RFT (Yuan et al., 2023) and GRPO (Shao
et al., 2024) algorithms.

Multi-Sample Inference. A recent body of works have
focused on improving multi-sample inference (such as
Pass@K and Majority @K) metrics (Beirami et al., 2024).
Amini et al. (2024) derive a variational method to fine-tune
an LLM to align it to a best-of-K distribution under a re-
ward model. Their goal is to fine-tune the LLM to act as
closely as possible to a scenario where K samples are taken
from the LLM and the best sample is taken according to a
reward model. Du et al. (2025) proposes a method to effi-
ciently tune the temperature parameter of a language model
to optimize the Majority @K metric.

Hardness-Aware Training. Recent works have found that
upweighting harder examples during training can lead to
improved performance on harder tasks. Toshniwal et al.
(2024) and Tong et al. (2024) use synthetic data generation
to fine-tune LLMs, and find out that harder examples (i.e.,
examples that the model has a low solve-rate on) should
be upweighted during the synthetic sampling process. The
Focal Loss Lin et al. (2017) proposes a class-reweighting
mechanism in the context of supervised learning in computer
vision to reweight the cross-entropy for each sample by
(1 —p)" (where the p is the probability the model assigns to
a class). Kimi-1.5 (Team et al., 2025) resamples RL training
datapoints by 1 — p where p is an estimate of the model’s
probability of generating the correct answer. In all the above
works, the reweighting mechanism is applied in an empirical
way, without a theoretical justification. Here, we provide a
theoretical justification for the reweighting mechanism, and
show that it can be used to improve the Pass @K metric in
RL training of LLMs.

While writing our manuscript, we became aware of con-
temporaneous work by Chow et al. (2025), which also pro-
poses a reweighting method for inference-aware training of
LLMs. Their method takes samples from a best-of-n dis-
tribution, while we take our samples from the distribution
of the language model itself (see Appendix C for a detailed
comparison). This allows us to use gradient signals from
more sampled answers, and not just the best one, as well as
a simpler implementation. Furthermore, our method allows
for a more flexible reweighting parameter -y, which can be
chosen to be any real-valued number greater than 1.

3. Notation and Background

Notation. We consider a dataset D of size n with D :=
(@D, yD), (@@, y@),..., (@, )} with 20 being
inputs (e.g., math questions), and y(*) being answers (e.g.,
final answer to the question). Let 7y be a language model
parameterized by model weights 6. Concretely, let mg(-|x)
be the conditional probability distribution of the model’s
output sequence of tokens when prompted with x.

In a multi-sample inference setting, for each input-answer
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pair (x,y), we sample K € N sequences from 7y (-|x). Let
us call the final answers of these samples 91, 9o, ..., Jx-
Then, we define the Pass@K metric for question-answer
pair (x,y) as:

Passi (mg;z,y) =1 [3k € [K] : g = 9] -

Similarly, we define Pass@XK for the dataset D:
1 & ) )
P ;D) = — E P FACKTION
ass g (mg; D) "2 ass g (mg; ', y')

Throughout, we denote the full chain-of-thought response
from an LLM by z. The final answer § := g(z) can be
read-off from the chain-of-thought response z. An example
of each variable is shown in Figure 1. In that example, we
have {(z1) = 555, which in this case, equals y.

Reinforcement Learning and Policy Gradient Methods.
In the context of reinforcement learning, policy gradient
methods are used to optimize the expected reward of a
policy given a reward function 7(z, y, z) (Sutton & Barto,
2018). In our case, the policy is the LLM parameterized by
6. Furthermore, the reward function r(z, y, z) is the reward
given to the LLM for generating a response z conditioned
on input z with correct answer y. Thus, the objective is to
maximize the expected reward (Sutton & Barto, 2018):

J(0) = E(zy)~D 2o (-|2) [1(@, 4, 2)] - 1)

To optimize Eq (1), the REINFORCE (Williams, 1992)
trick is often used to compute the gradient of the objective
function with respect to the parameters 6:

VoJ(0) = E(z,y)~D zemo(-|2) [T(7,Y, 2) Vo log mo(2|z)] .
(2)
Different reward functions correspond to different policy
gradient methods (Lambert, 2024; Shao et al., 2024). Here,
we focus on the following reward functions:

1[g(z) = vl,
sign [§(2) = 9],

1) =y~ po.

TRFT(mayv Z) =

TREINFORCE (33 Y, 2 ) :

TGRPo(m,yaZ) =

Using rrpr gives an online version of the Rejection FineTun-
ing (RFT) algorithm (Yuan et al., 2023). Using rreNFORCE
gives a variant of REINFORCE where correct samples re-
ceive positive reward and negative samples receive negative
reward (Williams, 1992), and rgrpo gives a simplified ver-
sion of the Group Relative Policy Optimization (GRPO)
reward function (Shao et al., 2024)!. The RFT reward func-
tion is a binary reward function that gives a reward of 1 if

Concretely, this formulation is equivalent to the original
GRPO with the KL-penalty set to zero, and the number of gradi-
ent iterations (u in (Shao et al., 2024)) set to one. We adopt this
practical formulation since it has been shown that the KL penalty
is not necessary in RL with verifiable rewards (Yu et al., 2025) and
Shao et al. (2024) already uses a single gradient iteration.

the answer is correct and 0 otherwise. The REINFORCE re-
ward function is also similar to the RFT reward function, but
it gives a positive reward for correct answers and a negative
reward for incorrect answers (without any normalization).
The GRPO reward function is similar, but is normalized
by the mean p, and standard deviation o, of the rewards
for the input x in the dataset D. Specifically, u, and o,
are computed by taking multiple samples from the LLM
my for each input = and computing the Monte-Carlo mean
and standard deviation of the rewards for each input z. The
main difference between RFT and GRPO is that RFT only
considers the correct samples, while GRPO considers all
samples and consists of both positive and negative gradients.

4. Method

Our goal is to derive an objective function whose maximiza-
tion leads to an improvement in the Pass@K metric. We
approach this by framing the problem within a reinforce-
ment learning context, aiming to maximize the expected
reward associated with generating correct answers.

4.1. Pass@1 Maximization as RFT

First, let us consider the standard accuracy metric, which
corresponds to Pass@1. Recall the RFT reward function
rrer(2, Y, z) := L1[g(z) = y], that yields a reward of 1 if
the generated response z produces the correct final answer
y for input z, and O otherwise. The Pass@]1 objective is the
same as maximizing the expected RFT reward:

J1(0) = Eu ) [Eenmo oy [LH(2) = ¥]]] . )

Using the REINFORCE trick (similar to Eq (2)), the gra-
dient Vy.J1(0) of this objective with respect to the model
parameters 6 is:

E(z,y)ND [EZNTFQ(‘lﬁ) []]'[yA(Z) = y]VG log Uy (Z“T)H . (4)

Note this corresponds exactly to the gradient used in super-
vised fine-tuning (SFT) on correctly generated responses or
the online RFT objective rrpy: it encourages the model to
increase the probability of generating correct sequences z.

4.2. Pass@K Maximization as Weighted RFT

Now, we extend this to the Pass@K metric. The Pass@K
metric is 1 if at least one out of K samples 21, . .., z2x drawn
independently from 7y (-|z) yields the correct answer y, and
0 otherwise. Our objective function Jg () is the expected
Pass@K score over the dataset D:

JK(0) := E(z y)~p [Passk (mo; 2, y)] (5)
= E(I’Q)ND [E’Zl,uszNﬂ'(;(-\z) []1 [Elk € [K] : g(zk) = y]]] :

The inner expectation represents the probability that at least
one of the K independent samples 21, . .., zx drawn from
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mo(+|x) yields the correct answer y. Let F, be the event that
the k-th sample zy, is correct, i.e., §(zx) = y. Clearly,

K
P (U Ek> =E..  xemo( o)L Bk € [K] 2 9(zx) = y].
k=1

It is easier to compute the probability of the complement
event, where none of the samples are correct (i.e., all sam-
ples yield incorrect answers):

K
P (m Ez) = PZ1,...7ZK~71'9(»|$) [Vk S [K] : Q(Zk) 7& y} .

k=1

Let pg(y|x) denote the probability that a single sample z
drawn from 7y (-|2) yields the correct answer y:

Po(Y|T) == Poiry (12 [9(2) = 9]
= ]:EZN‘ITQ(*|I) ]l[g}(z) = y” :

~—

Since the K samples 21, ..., 2k are drawn independently,
the probability that all K samples are incorrect is the product
of their individual probabilities of being incorrect:

K K
P <ﬂ E,§> = [T B(ED = (1 = polyla)™.
k=1 k=1

Using the complement rule, the probability that at least one
sample is correct is:

K K
P(U E> :1—1@((} E) —1— (1 - pulyla)”.
k=1 k=1

Substituting this back into the definition of J (6) (Eq (5)),
we arrive at the closed-form expression for the objective
function in terms of the probability py(y|z) that a single
sample z yields the correct answer y:

Ji(0) = Eeypom [1= (L= po(wle) "] . ©

To optimize this objective, we compute its gradient with
respect to the model parameters 6. Using the linearity of
expectation and the chain rule for differentiation:

Vodic(8) = VoB(e e [1 = (1= po(yle) "]

= Ege gy~ | Vo (1= (1= poyl)")]

= By |[~K (L= po(yle) - Vol = polyle)|
= By [~ (1= po(y2) " - (~Vopo(yla))]

= E(uy)on [K(1 = poyle) ' Vopa(yla)]. D)

Recalling that Vopo (y|z) = VoE.r,(|2) [L[J(2) = y]] =
E.no(lo) [1[H(2) = y] Vg log me(2|z)] from the Pass@]1

derivation (Eq (4)), and substituting into Eq (7), the gra-
dient Vg Jg (0) evaluates to:

E (¢~ [115(2) = ylK (1 — po(yl2)) ' Vo log mo(2])]

zrome (-|z)

This final expression gives the policy gradient for max-
imizing the Pass@K objective. Comparing this to the
Pass@1 gradient (Eq (4)), we see that each correct sam-
ple z (where 1[g(z) = y] = 1) is reweighted by a factor of
K (1 —py(ylz)) . This weight depends on the current
model’s probability py(y|x) of getting the answer correct
for the specific input z. Intuitively, problems = where the
model is less likely to succeed (small py(y|z)) receive a
higher weight, encouraging the model to improve on harder
instances.

In practice, pg(y|z) is unknown and needs to be estimated.
We use Monte Carlo estimate based on M samples drawn
from 7q (+|):

1 M
po(yle) == 77 D Ui(m) = y). ®)
1

m=

4.3. Final Objective

We now define our final objective function for maximizing
Pass@K. For clarity, we use «y to denote the reward weight
in our objective function, distinguishing it from K which
represents the number of samples in the Pass@K metric.
With this, we define our final policy gradient objective func-
tion for maximizing Pass@K as follows:

Definition 4.1. PKR(y) Objective. @ The Pass@K-
Reweighting (PKR) gradient objective with reweighting
coefficient v is defined as:

vJPKR.y (9) = IE(J:.,y)ND7 zrom (<) [’I‘(i& Y, Z)

Xy (1— pg(y|x))771 Vo logﬂg(z\m)].
)

where r(z,y, z) is the specific reward function used in the
RL algorithm (e.g., RFT, GRPO).

Connection to Focal Loss. The Focal Loss in supervised
learning (Lin et al., 2017) is designed to address class im-
balance by down-weighting easy examples and focusing on
hard examples. Specifically, it reweights the loss for each
example as (1 — pg(y|z))”, where ~ is a focusing param-
eter and py(y|x) is the model’s estimated probability for
the true label y given input . The common point between
Focal Loss and our proposed PKR objective is that both
methods base their reweighting on the hardness of the ex-
ample using a similar polynomial term. However, a key
difference is that in supervised learning with Focal Loss,
po(ylx) = me(y|x) directly gives the model’s probability
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of the correct label, while in our reinforcement learning

setting, po(y|z) = E,un, [1[§(2) = y]] requires taking an
expectation over sampled sequences.

5. Experiments
5.1. Models and Training

We use Qwen models (Yang et al., 2024b) as they are state-
of-the-art open-weight models for math reasoning tasks. To
isolate the effect of reinforcement learning, we take the base
models, and do a light round of supervised fine-tuning (SFT)
on 1000 datapoints from OpenMath-Instruct2 (Toshniwal
et al., 2025). We then apply reinforcement learning with
both RFT and GRPO reward functions with and without
our proposed reweighting. In all settings, v = 1.0 gives the
original (GRPO or RFT) objective, and 7 > 1.0 gives our
proposed PKR objective.

5.2. RL Datasets

Synthetic Arithmetic Dataset. We create a synthetic
dataset of 5000 arithmetic problems, where each problem
consists of a simple arithmetic expression of the form What
is a X b+ ¢ x d?, where a, b, ¢, d are positive integers
uniformly chosen from a pre-determined range, depending
on the capability of the LLM. We sample 500 problems for
validation and 500 for testing.

Math Dataset. We use the AoPS-Instruct dataset (Mah-
davi et al., 2025) for our experiments with the math rea-
soning task. We take the problems that have parsable
Sympy (Meurer et al., 2017) solutions and for each model,
we filter out the problems that the model has a solve-rate of
between 10% and 80% (inclusive) on the training set (Yang
et al., 2024a). This filtering prunes the examples that are too
easy or too hard (both of which hinder RL training). We use
MATH dataset (Hendrycks et al., 2021) for evaluation. The
MATH test dataset consists of 5,000 problems, of which
500 are designated as the MATH-500 test set (Lightman
et al., 2023). We randomly sample 500 datapoints from
the remaining 4,500 problems to use as a validation set for
our experiments to pick the best checkpoint during the RL
phase.

5.3. Results

Figure 2 reports results of our experiments on the arithmetic
task with the Qwen 0.5B model. We observe several interest-
ing trends in these results. For K = 1, the vanilla algorithm
(v = 1) performs best, which aligns with our theoretical un-
derstanding since higher ~y values optimize for higher K’s.
With v = 2, we see improvements already at K = 2 that
continue to increase for larger K values. Similarly, v = 4
shows even larger gains for higher K values despite worse
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Figure 2. Comparison of Pass@K metrics for different RL algo-
rithms and temperatures for Qwen 0.5B on arithmetic task. Our
proposed reweighting is v > 1.

performance at K = 1. The curves for increasing ~y val-
ues appear to saturate at progressively higher levels, though
the performance gap between v = 3 and v = 4 narrows,
suggesting diminishing returns for very large ~ values.

Furthermore, we test our method on real math problems
using the AoPS dataset with Qwen 3B model, where the
trends are more nuanced but still show benefits from our
reweighting approach. Figure 3 shows the results of our
experiments on the AoPS dataset with Qwen 3B model. This
confirms that our proposed PKR method slightly improves
the Pass @K metric for K > 1 in GRPO algorithm across
all temperatures.

5.4. Analysis

We observe that the pass@K metric improves with higher ~y
values. To understand this, we analyze the generated sam-
ples and count for each K generated samples, how many
of their generated final answers are unique. Figure 4 shows
the results of our analysis on the arithmetic task with Qwen
0.5B model. As shown in the figure, higher values of v lead
to more unique final answers generated at inference time.
This is in-line with the intuition that higher v values encour-
age the model to optimize pass@K metric by generating
more diverse samples, which in turn leads to higher pass@K



Beyond Accuracy: A Policy Gradient Reweighting Approach for Pass@K Maximization in LLMs

GRPO

—— y=1.0 - y=2.0
Temperature = 0.8

95 - 95 T

- o=t

o o=

90 - P E ==

Temperature = 1.0

©
o

®
a

T

@ o
S o
T T

\

\.

\

Pass@K (%)
& 3 &
T T T
Pass@K (%)
o N~
& 3 &
T T T

o
S
Y
o

Figure 3. Comparison of Pass@K metrics for GRPO and tempera-
tures for Qwen 3B on Math-500 Benchmark. Our proposed PKR
isy>1.

SCOres.

6. Conclusion and Future Work

In this work, we introduced Pass @ K-Reweighting (PKR),
a theoretically grounded method to directly optimize the
Pass @K metric in reinforcement learning for large language
models. By deriving a closed-form expression for Pass@K
and computing its gradient, we showed that maximizing
Pass@K corresponds to reweighting each correct sample
by K (1 — pg(y|x)) ~L. Our PKR objective, with the tun-
able parameter -y, recovers standard RL algorithms (RFT
and GRPO) when v = 1 and prioritizes harder instances
when v > 1. Empirically, we demonstrated on synthetic
arithmetic and AoPS math datasets that v > 1 yields im-
provements in Pass@K for K > 1, at a modest cost to
Pass@1, and that higher ~ also promotes greater sample
diversity.

Future work includes testing and scaling up PKR on larger
and more diverse reasoning benchmarks to assess its robust-
ness and generality. Scheduling strategies, such as focusing
on Pass@K optimization early in training before shifting
emphasis to Pass@1, could help balance multi-sample per-
formance with single-sample accuracy. In addition, explor-
ing adaptive v schedules and integration with richer reward
functions may further improve model performance and sam-
ple diversity.
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A. Experiment Details
A.1. Synthetic Data Generation

The dataset is generated by sampling a, b, ¢, d uniformly from the range [1, M axzN], where MaxN is a hyperparameter
that controls the maximum number in the arithmetic expression. We choose Maxz N to be a power of 10,, depending
on the capability of the LLM. For the 0.5B model, we choose M AzN = 1000, and for 1.5B math model, we choose
MaxN = 10000.

B. Extending the reweighting to negative gradients

In Section 4, we derived the reweighting factor K (1 — py(y|x))® ~! by maximizing the Pass@K success probability
Jr(0) = E[1 — (1 — pa(y|z))¥]. This objective leads to a gradient update that only involves correct samples (positive
gradients). Here, we show that the same reweighting factor applies when considering an objective based on minimizing the
probability of failure, which involves incorrect samples (negative gradients).

Let us define the objective function for minimizing the probability that all K samples are incorrect:
Ti(0) = B g)np [(1 = polyla) "] (10)

This represents the probability of failing the Pass@K check. Our goal is to minimize this objective. We compute the gradient
with respect to 6:

VoJg () = E(z,y)~D [K(l — po(ylz)) K1V (1 — pg(y|:1c))} . (11)

We know that
1= po(yl@) =Py (1) [0(2) # Y] = Esrory (1) [1[9(2) # y]] -
Using the policy gradient theorem, the gradient of this term is:

Vo(1 —po(ylz)) = VoE.rmy (o) [L[3(2) # ]

12
By o) [L[5(2) # 91V0 log mo(21a)]. (12

Substituting Eq (12) into Eq (11):

Vo (0) = K E(zy)np, znmo(lo) [L[5(2) # y)(1 = po(yl2))* ™1 x Vo log me(z]z)]. (13)

Minimizing .Jx () involves taking gradient descent steps, i.e., moving in the direction of —Vg.Jx (#). This gradient applies
updates based on the incorrect samples z (where 1[3(2) # y] = 1).

Crucially, comparing Eq (13) with the gradient for maximizing Pass @K success (Eq (7) in the main text), we observe that
the reweighting factor K (1 — pg(y|z)) ! is identical for both positive gradients (from correct samples) and negative
gradients (from incorrect samples).

C. Comparison to Chow et al. (2025)

In this section, we compare our method to the approach proposed by Chow et al. (2025). In Corollary 4 of their paper, their
method involves a reweighting factor of the form (in our notation):

K(1 = po(ylz)™ 'po(ylz)

’ (14)
1—(1—py(ylz))X
where each response z is sampled from a distribution o, (2|2) defined as follows:
ron(ela) = { TG L= oyl i) £, (15)
i ol (1= (1= po(yl2))) if§(z) = y.

This distribution is the distribution given by taking K samples z1, 29, . . ., zx from 7y(z|x), and then taking the first correct
sample z; as the output. If no correct sample is found, the output is the last sample zx . Chow et al. (2025) propose to sample
from this distribution o, (2]2), and then apply the reweighting factor in Eq (14) to the sampled response z.
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In our derivation, we perform reweighting of K (1 — pg(y|x))® ~! on the distribution 7 (z|z). The gradient we optimize is:

Vo i (0) = E(z ), zrmo (o) [L1(2) = Y] K (1 — po(y|x)) ™~ Vg log ma(2|z)]. (16)

In contrast, Chow et al. (2025) optimize:

K (1 = po(ylz)™ 'po(ylz)
L= (1—=po(ylz))K

VoI (0) = Ezy)mD, cmmpn(-|2) [L[3(2) = 9] Vo log mo(z]2)]. (17)

Theoretically, the two distributions and reweightings are equivalent:

K (1= po(yle)) "po(ylz) B o .
1— (91 —pe(yla:))eK F(z2)| = Boromy (a1 [1[0(2) = y]K (1 = po(ylz))™ f(zw()]]g;

for any function f(z, z). However, practically, the method of Chow et al. (2025) only uses gradient signal from a single
sample z from the K sampled responses, while our method uses the gradient signal from all K samples that have correct
answer. Furthermore, our method allows for a simpler implementation, as well as allowing for any real-valued reweighting
factor ~.

E2~mwu(ZIx) 1g(2) = y]

D. Additional Experiments

We present additional experimental results across different model sizes and datasets to illustrate the performance of our
reweighting approach under various settings. Figure 5 shows results for Qwen 0.5B on the arithmetic task, comparing GRPO
and RFT methods across different sampling temperatures. Figure 6 provides analogous comparisons for the larger Qwen
1.5B model. Finally, Figure 7 presents GRPO results for Qwen 3B trained on the AoPS-Instruct dataset and evaluated on
MATH-500, demonstrating how our method generalizes to larger models and more complex datasets.
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Figure 5. Comparison of Pass @K metrics for different RL algorithms and temperatures for Qwen 0.5B on arithmetic task. Our proposed
reweighting is v = 2.0. The SFT Model is the model before RL training.
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Figure 6. Comparison of Pass@K metrics for different RL algorithms and temperatures for Qwen 1.5B on arithmetic task. Our proposed
reweighting is v = 2.0.
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Figure 7. Comparison of Pass @K metrics for GRPO on various temperatures for Qwen 3B, trained on AoPS-Instruct dataset and evaluated
on MATH-500.
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