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Abstract

Constrained Bayesian optimization (CBO) methods have seen significant success
in black-box optimization with constraints. One of the most commonly used
CBO methods is the constrained expected improvement (CEI) algorithm. CEI is a
natural extension of expected improvement (EI) when constraints are incorporated.
However, the theoretical convergence rate of CEI has not been established. In this
work, we study the convergence rate of CEI by analyzing its simple regret upper
bound. First, we show that when the objective function f and constraint function c
are assumed to each lie in a reproducing kernel Hilbert space (RKHS), CEI achieves
the convergence rates of O

(
t−

1
2 log

d+1
2 (t)

)
and O

(
t

−ν
2ν+d log

ν
2ν+d (t)

)
for the

commonly used squared exponential and Matérn kernels (ν > 1
2 ), respectively.

Second, we show that when f is assumed to be sampled from Gaussian processes
(GPs), CEI achieves similar convergence rates with a high probability. Numerical
experiments are performed to validate the theoretical analysis.

1 Introduction

Bayesian optimization (BO) is an efficient method for optimizing expensive black-box functions
without derivatives. It leverages probabilistic surrogate models, most commonly Gaussian processes
(GPs), to balance exploration and exploitation in the search for optimal solutions [Frazier, 2018].
BO has found widespread success in diverse fields such as structural design [Mathern et al., 2021],
machine learning hyperparameter tuning [Wu et al., 2019], robotics [Calandra et al., 2016], fusion
design [Wang et al., 2024], etc.

While traditional BO is typically applied to unconstrained settings, many real-world problems involve
black-box constraints that must be satisfied. This has motivated growing interest in constrained
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Bayesian optimization (CBO), where surrogate models are also constructed for constraint func-
tions [Bernardo et al., 2011] that are complex and expensive to evaluate, making CBO especially
valuable in applications like engineering design [Song et al., 2024] and automated machine learning
[Ungredda and Branke, 2024]. One of the very key difference between unconstrained and constrained
optimization is that the feasible region for constrained optimization problem consists of the search
space where all constraints must be satisfied. A general form of the constrained BO problem is:

minimize
x∈C

f(x), subject to c(x) ≤ 0, (1)

where f : Rd → R is the objective function, and c : Rd → Rm are the constraint functions. Both
are defined on a compact input space C ⊂ Rd. The objective and the constraint functions are both
expensive black-box functions, that can only be evaluated through expensive physical or computer
experiments. Throughout this paper, we consider the noise-free setting for both the objective and
the constraints, i.e., the function evaluations are deterministic and the true function values can be
observed (see Remark 3.14 for discussion on the noisy case). In addition, a single constraint is
considered, i.e., m = 1, for simplicity of presentation. We note that our analysis can be easily
extended to multiple constraints (see Remark 3.13 for details).

Broadly, CBO methods can be categorized into implicit and explicit approaches [Amini et al., 2025].
Implicit methods modify standard acquisition functions to incorporate constraints via merit functions
or feasibility weights. Explicit methods estimate the feasible region directly and restrict search
to this region. Among these, the constrained expected improvement (CEI) [Schonlau et al., 1998,
Gelbart et al., 2014, Gardner et al., 2014] stands out as one of the most basic and widely adopted
methods. CEI is a natural extension of the well-known expected improvement (EI) function [Jones
et al., 1998], where the acquisition function is computed as the product of EI and the probability of
feasibility. Thanks to this simple and interpretable formulation, CEI has been successfully applied
across domains, and it remains one of the default choices in many constrained BO software packages
[Balandat et al., 2020].

Despite its empirical popularity, the theoretical understanding of CEI lags behind. In contrast,
unconstrained EI has been more extensively studied. Under a frequentist assumption where the
objective f lies in a reproducing kernel Hilbert space (RKHS), Bull [2011] established the convergence
rate of EI by deriving the simple regret upper bound. Other works explored the density of sampled
sequences [Vazquez and Bect, 2010] or connections between EI and optimal computing budget
allocation [Ryzhov, 2016]. However, convergence rates (i.e., simple regret upper bound) for CEI
have not been rigorously established—neither under frequentist nor under Bayesian settings. Here,
Bayesian setting means the objective f is a function sampled from a GP.

Introducing constraints into EI significantly complicates the theoretical analysis. Unlike in the
unconstrained case, the algorithm may need to explore infeasible regions to gain information on the
constraint boundary. Furthermore, CEI’s acquisition function is inherently more complex and non-
convex, posing challenges for analysis. On the other hand, the presence of constraints in CEI leads to
changes in the sampling procedure. As a result, the key challenge to study the convergence rate of
CEI lies in analyzing the exploration (searching for feasible regions) and exploitation (optimizing
within feasible areas) since the feasibility threshold is unknown in the input space.

In this paper, we provide the first theoretical convergence rates for CEI, focusing on simple regret
upper bounds under both the frequentist and Bayesian settings. Our convergence rates provide
practitioners theoretical assurance for the practical deployment of CEI. We explain the technical
challenges and how we address them in Section 3. Our contributions are summarized as follows:

• Under the frequentist setting, we derive simple regret upper bounds of O
(
t−

1
2 log

d+1
2 (t)

)
for the squared exponential (SE) kernel and O

(
t

−ν
2ν+d log

ν
2ν+d (t)

)
for Matérn kernels

(ν > 1
2 ). These bounds are improved upon the direct extension of Bull [2011] to the

constrained case for SE kernel with d ≥ 3 and Matérn kernels with d ≥ 3, ν ≥ d
d−2 . (see

Theorem 3.7).
• Under the Bayesian setting for the objective, we achieve similar simple regret upper bounds

with high probabilities. These bounds are established based on the newly derived bounds (see
Theorem 3.11) on the difference between the improvement function and its corresponding
EI in the Bayesian setting.
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This paper is organized as follows. In Section 2, we describe the basics and preliminaries of BO,
including the CEI algorithm. In Section 3, the simple regret upper bounds of CEI are established
in both settings. Numerical experiments to validate the theoretical results are given in Section 4.
Conclusions are made in Section 5. All proof details are presented in the appendix.

2 Background

CBO mainly consists of two components: the GP surrogates for the black-box objective function f
and constraint function c, and the constrained acquisition function as the sequential sampling rule
guiding for the global optimum.

2.1 Gaussian process models for f and c

Without losing generality, let the mean function for the objective GP model prior be 0 and the
covariance function (kernel) be kf (x,x

′) : Rn × Rn → R. At sample point xt ∈ C, we denote
the objective function value as f(xt) and the observed constraint function value is c(xt). Given
t sample points, denote x1:t = [x1, . . . ,xt] and f1:t = [f(x1), . . . , f(xt)]. Moreover, denote the
t × t covariance matrix Kf

t = [kf (x1,x1), . . . , kf (x1,xt); . . . ; kf (xt,x1), . . . , kf (xt,xt)]. The
posterior distribution of f(x)|x1:t,f1:t ∼ N (µf

t (x), (σ
f
t (x))

2) can then be inferred using Bayes’
rule as follows

µf
t (x) = (kf

t (x))
T (Kf

t )
−1f1:t,

(σf
t )

2(x) = kf (x,x)− (kf
t (x))

T (Kf
t )

−1kf
t (x) ,

(2)

where kf
t (x) = [kf (x1,x), . . . , kf (xt,x)]

T . Similarly, denote the kernel for c as kc : Rn×Rn → R
and the covariance matrix Kc

t = [kc(x1,x1), . . . , kc(x1,xt); . . . ; kc(xt,x1), . . . , kc(xt,xt)]. The
posterior distribution for c is

µc
t(x) = (kc

t (x))
T (Kc

t )
−1c1:t,

(σc
t )

2(x) = kc(x,x)− (kc
t (x))

T (Kc
t )

−1kc
t (x) ,

where kc
t (x) = [kc(x1,x), . . . , kc(xt,x)]

T , and µc
t(x) and (σc

t )
2(x) are the posterior mean and

variance for c, respectively. Here we use the subscripts f , c and superscripts f , c to distinguish
between GPs for f and c. Choices of the kernels kf and kc include the SE and Matérn kernels, which
are among the most popular kernels for GP and BO. Their definitions are as follows.

kSE(x,x
′) = exp

(
− r2

2l2

)
, kMatérn(x,x

′) =
1

Γ(ν)2ν−1

(√
2νr

l

)ν

Bν

(√
2νr

l

)
,

where l > 0 is the length hyper-parameters, r = ∥x− x′∥2, ν > 0 is the smoothness parameter of
the Matérn kernel, and Bν is the modified Bessel function of the second kind.

2.2 Constrained Expected Improvement

Acquisition functions are critical to the performances of BO algorithms. In the unconstrained setting,
one of the most widely adopted acquisition functions is EI [Jones et al., 1998]. Given t samples, the
improvement function of f used in EI is defined as

Ift (x) = max{f+
t − f(x), 0}, (3)

where f+
t = min

i=1,...,t
f(xi). The expectation of (3) conditioned on existing samples is EI, which has

a closed form Brochu et al. [2010]:

EIft (x) = (f+
t − µf

t (x))Φ(z
f
t (x)) + σf

t (x)ϕ(z
f
t (x)), (4)

where zft (x) =
f+
t −µf

t (x)

σf
t (x)

. The functions ϕ and Φ are the probability density function (PDF) and the
cumulative distribution function (CDF) of the standard normal distribution, respectively. The t+ 1th
sample using EI is chosen by

xt+1 = argmax
x∈C

EIft (x). (5)
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Taking into account the constraint, the constrained improvement function in CEI [Gardner et al.,
2014] is defined as

ICt = ∆c
t(x)max{f+

t − f(x), 0}, (6)

where ∆c
t ∈ {0, 1} is the feasibility indicator function where ∆c

t(x) = 1 if c(x) ≤ 0 and ∆c
t(x) = 0

otherwise. The incumbent f+
t in CEI is augmented to be the best feasible observation. CEI assumes

that f and c are conditionally independent [Gardner et al., 2014]. Taking the conditional expectation
of (6), the CEI function is

EICt (x) = Pt(x)EIft (x) = Φ

(
−µc

t(x)

σc
t (x)

)
EIft (x), (7)

where Pt(·) is the probability of feasibility (POF) function for c(x) ≤ 0. CEI chooses the next
sample via

xt+1 = argmax
x∈C

Pt(x)EIft (x). (8)

The CEI algorithm is given in Algorithm 1.

Algorithm 1 CEI algorithm
1: Choose kf (·, ·), kc(·, ·), and T0 initial samples xi, i = 1, . . . , T0. Observe f1:T0

and c1:T0
.

2: Train the GP surrogate models for f and c respectively conditioned on the initial observations.
3: for t = T0 + 1, T0 + 2, . . . do
4: Find xt+1 based on (8) (CEI).
5: Observe f(xt+1) and c(xt+1).
6: Update the GP models with the addition of xt+1, f(xt+1), and c(xt+1).
7: if Evaluation budget exhausted then
8: Exit

CEI can be extended to multiple constraints assuming conditional independence among the con-
straints [Gardner et al., 2014]. Our derived convergence rates can also be readily extended to multiple
constraints, as we explain in Remark 3.13.

3 Convergence rates of CEI

We present our main results of convergence rates for CEI by establishing the simple regret upper
bounds. Denote the optimal solution to the constrained optimization problem (1) as x∗. In the
unconstrained case, the simple regret of EI is defined as f+

t − f(x∗) [Bull, 2011]. In the constrained
case, we use the current best feasible observation and compare it to the optimal solution f(x∗), since
one could have an infeasible sample point with smaller objective than f(x∗). Given that f+

t is already
defined as the best feasible observation till iteration t in CEI, we continue to use

rt = f+
t − f(x∗), (9)

as the simple regret for CEI. In our analysis, we make the same underlying assumption as CEI that f+
t

exists. In the following, we first establish the convergence rate under the frequentist assumptions in
Section 3.1, including an improved version of the rate under frequentist assumptions in Section 3.1.1.
Then, we establish the convergence rate under Bayesian objective assumptions in Section 3.2.

3.1 Simple regret upper bound under frequentist assumptions

In this section, we present the simple regret upper bound for CEI under the frequentist setting. More-
over, by adopting the information theory-based bounds and techniques in the noise-free cumulative
regret bound of upper confidence bound (UCB) [Lyu et al., 2019], we can derive an improved upper
bound in some cases compared to Bull [2011]. The definition of RKHS is given below.
Definition 3.1. Let k be a positive definite kernel k : X × X → R with respect to a finite Borel
measure supported on X . A Hilbert space Hk of functions on X with an inner product ⟨·, ·⟩Hk

is
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called a RKHS with kernel k if k(·,x) ∈ Hk for all x ∈ X , and ⟨f, k(·,x)⟩Hk
= f(x) for all

x ∈ X , f ∈ Hk. The induced RKHS norm ∥f∥Hk
=
√
⟨f, f⟩Hk

measures the smoothness of f with
respect to k.

In this section, we assume the following assumptions on the functions f and c.

Assumption 3.2. The functions f and c lie in the RKHS, denoted as Hf
k(C) and Hc

k(C) associated
with their respective bounded kernel kf and kc, with the norm ∥·∥Hf

k
and ∥·∥Hc

k
. The kernels satisfy

kf (x,x
′) ≤ 1, kc(x,x′) ≤ 1, kf (x,x) = 1, and kc(x,x) = 1, for ∀x,x′ ∈ C. The RKHS norms

are bounded above by constants Bf and Bc, respectively, i.e., ∥f∥Hf
k
≤ Bf , ∥c∥Hc

k
≤ Bc. Moreover,

the bound constraints set C is compact.

Technical Challenges under Frequentist Assumptions. The main challenge in establishing a
simple regret upper bound for CEI is how to incorporate the constraint c(x) ≤ 0 and the probability
of feasibility function Pt(x) into the analysis. Existing regret bounds analysis on CBO methods often
focus on UCB-type methods [Lu and Paulson, 2022, Zhou and Ji, 2022], for which the acquisition
functions do not have the multiplicative structure between the objective and the constraint.

Under Assumption 3.2, both f and c are bounded on C by their RKHS norm bounds, as stated in
Lemma B.1. The simple regret upper bound is given in the following theorem.
Theorem 3.3. Under Assumption 3.2, the CEI algorithm leads to the simple regret upper bound of

rt ≤
cτB

Φ(−Bc)

[
Bf

4

t− 2
+ (0.4 +Bf )σ

f
tk
(xtk+1)

]
, (10)

for some tk ∈ [ t2 − 1, t], and cτB =
τ(Bf )
τ(−Bf )

.

Sketch of Proof for Theorem 3.3. We start by noticing that the sum of the difference between
consecutive best feasible observations is bounded, i.e.,

∑T
t=1 f

+
t−1 − f+

t ≤ 2Bf . Then, we adopt
a technique in Bull [2011] to find tk such that f+

tk
− f+

tk+1 ≤ 2Bf

k , where k ≤ tk ≤ 2k and
2k ≤ t ≤ 2(k + 1). Next, using the monotonicity of f+

t , rt is bounded by rtk . Using the inequality
between Ift and EIft in Lemma B.4, we can bound rtk by the EI on objective: EIftk(x

∗). Then,
we transform EIftk(x

∗) into EIftk(xtk+1) by inserting the term Ptk(x
∗), taking advantage of the

multiplicative structure of CEI. The upper bound of rt then consists of the term 1
Ptk

(x∗)EIftk(xtk+1).

From the confidence interval |f(x)− µf
t (x)| (Lemma B.2) and the fact that f+

tk
− f+

tk+1 ≤ 2Bf

k , we
can bound EIftk(xtk+1). The constraint term 1

Ptk
(x∗) remains to be bounded. We use the confidence

interval on |c(x)− µc
t(x)| in Lemma B.2 at x∗ and the fact that x∗ is a feasible solution to obtain a

lower bound for Ptk(x
∗). This concludes the proof.

Remark 3.4 (Constraint in the simple regret upper bound). The terms derived from the constraint
function in (10) is 1

Φ(−Bc)
, which emerges from the probability of feasibility function and µc

t(x) and
σc
t (x) of the GP model of c(x). Thanks to the multiplicative structure between the objective and

constraint in ICt (6) and EIct (7), the simple regret upper bound maintains a similar form.

It is clear from (10) that the convergence of rt relies on the posterior standard deviation σf
t (xt+1).

Since tk increases with t, as σf
t (xt+1) → 0, so does σf

tk
(xtk+1). In the noise-free setting, the

posterior variance can be bounded via the maximum distance between sample points and a given
point. To obtain the rate of simple regret bound, we use Assumptions (1)-(4) in Bull [2011] and focus
on squared exponential (SE) and Matérn kernels. Recall that the smoothness parameter of the Matérn
kernel is ν > 0. Both the SE and Matérn kernels satisfy Assumptions (1)-(4) in Bull [2011], with SE
kernel obtained as ν → ∞. Further, define

η =

{
α, ν ≤ 1

0, ν > 1,
(11)

where α = 1
2 if ν ∈ N, and α = 0 otherwise. Then, for SE and Matérn kernels, σf

tk
(xtk+1) can be

bounded with the following lemma.
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Lemma 3.5 (Bull [2011]). For the SE kernel, there exists constant C ′ > 0 so that given ∀t ∈ N,

σf
i (xi+1) ≥ C ′k−

1
d (12)

holds for at most k times, for ∀k ∈ N, k ≤ t and i = 1, . . . , t− 1. For Matérn kernels,

σf
i (xi+1) ≥ C ′k−

min{ν,1}
d logη(k) (13)

holds at most k times.

In the constrained setting, we are able to obtain the same rates as those in the unconstrained case [Bull,
2011] using Lemma 3.5.
Corollary 3.6. Under Assumption 3.2, the CEI algorithm leads to the convergence rates of

O
(
t−

1
d

)
and O

(
t−

min{ν,1}
d logη(t)

)
, (14)

for SE and Matérn kernels, respectively, where η is from (11).

Corollary 3.6 shows that the CEI algorithm is guaranteed to find the best feasible point asymptotically
with the rates elaborated in (14). Also, we point out that the choice of kernels and their parameters
affect the convergence rates. Since the SE kernel can be viewed as a Matérn kernel with ν → ∞,
its convergence rate is better than Matérn kernels with ν ≤ 1. However, due to the limitations of
the kernel analysis in Bull [2011] (see Remark 3.8), for ν ≥ 1, SE and Matérn kernels have similar
convergence rates in Corollary 3.6. As we present in the following section, improved rates for both
kernels can be obtained in some cases.

3.1.1 Improved simple regret upper bound under frequentist assumptions

Next, we apply maximum information gain and the corresponding information theory to obtain
improved simple regret upper bounds.
Theorem 3.7. Under Assumption 3.2, the CEI algorithm leads to the improved convergence rates of

O
(
t−

1
2 log

d+1
2 (t)

)
and O

(
t

−ν
2ν+d log

ν
2ν+d (t)

)
, (15)

for SE and Matérn kernels, respectively.

Sketch of Proof for Theorem 3.7. The proof follows similar steps to that of Theorem 3.3
but further bounds σf

tk
(xtk+1) using γf

t . To do so, we first recognize that the bound using γf
t

(Lemma A.3) is established in the noisy case where the posterior standard deviation has a different
form as in (18). Using Lemma A.4, we can establish that the noise-free posterior standard deviation

also satisfies
∑t−1

i=0 σ
f
i (xi+1) ≤

√
Cγtγ

f
t . Then, from Lemma A.5, we can find a small enough

σf
i (xi+1). Specifically, choose k = [t/3], where [x] denotes the largest integer smaller than x. Thus,

we have 3k ≤ t ≤ 3(k + 1). Then, there exists k ≤ tk ≤ 3k such that f+
tk

− f+
tk+1 ≤ 2Bf

k and

σf
tk
(xtk+1) ≤

√
tγf

t

k . The rest of the proof follows from that of Theorem 3.7.

Remark 3.8 (Improved rate of convergence). As mentioned above, the rates in Corollary 3.6 are the
same as the known convergence rates for EI in Bull [2011]. Meanwhile, the rates in Theorem 3.7
is an improvement over those of Bull [2011] for SE kernel with d ≥ 3 and Matérn kernels with
d ≥ 3, ν ≥ d

d−2 . To achieve this, we applied techniques from regret bound analysis on noise-free
UCB [Lyu et al., 2019] that allows us to use maximum information gain to bound the sum of σf

t (xt+1).
Then, we use our techniques in the proof of Theorem 3.3 to bound an individual σf

tk
(xtk+1). In Bull

[2011], the σf
tk
(xtk+1) is bounded by the Taylor expansion of the kernel functions. Therefore, the

rates of decrease are limited to quadratic terms for both SE and Matérn kernels, since their Taylor
expansions around 0 for ∥x− x′∥2 are quadratic at best. On the other hand, maximum information
gain can lead to tight bounds on γf

t that take advantages of the spectral properties of the kernels [Vakili
et al., 2021, Iwazaki, 2025]. Hence, using γf

t to bound σf
tk
(xtk+1) can produce a faster rate. As the

open question raised in Vakili [2022] gets answered, further improvement of the convergence rates is
possible, e.g., using techniques from Iwazaki [2025].
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3.2 Simple regret upper bound under Bayesian objective assumption

In this section, we present the simple regret upper bound for CEI under the Bayesian objective
assumptions. We again use the maximum information gain to derive the simple regret upper bound.
Assumption 3.9. The bound constraint set C ⊂ [0, r]d is compact and convex. The objective function
f is sampled from GP (0, kf (x,x

′)). Further, the objective function f is assumed to be Lipschitz
continuous (of 1-norm) with Lipschitz constant Lf with probability ≥ 1 − dafe

L2
f/b

2
f for some

constants af > 0 and bf > 0. The kernels satisfy kf (x,x
′) ≤ 1 and kf (x,x) = 1. The constraint

function c remains in the RKHS of kc, similarly to the frequentist setting.

In the remaining of this section we will work under Assumption 3.9.

Technical Challenges under Bayesian Assumptions. In addition to the challenges in the fre-
quentist setting, the bounds on EI in the Bayesian setting are not available in current literature, to
the best of our knowledge. Starting from the confidence interval on |f(x)− µf

t (x)|, we derive the
bounds on |Ift (x) − EIft (x)| with high probability, an important step towards the bound on rt .
Noticeably, under the Bayesian setting, the bounds are satisfied with a given probability, e.g., 1− δ,
where δ ∈ (0, 1).

The simple regret upper bound is given in the following theorem.

Theorem 3.10. Let β = 2 log(6cα/δ) and βt = 2 log(3πt/δ), where cα = 1+2π
2π and πt =

π2t2

6 .
Under Assumption 3.9, the CEI algorithm leads to the simple regret upper bound

rt ≤cτ (β)
1

Φ(−Bc)

[
4Mf

t− 2
+

2β
1/2
t

t− 2

√
Cγtγ

f
t + (0.4 + β1/2)σf

tk
(xtk+1)

]
, (16)

for some tk ∈ [ t2 − 1, t], cτ (β) =
τ(β1/2)
τ(−β1/2)

, and constant Mf > 0 with probability ≥ 1− δ.

The constant Mf is from Lemma C.1. The convergence rate is given in the next theorem.

Theorem 3.11. Let β = 2 log(6cα/δ) and βt = 2 log(3πt/δ), where cα = 1+2π
2π and πt =

π2t2

6 .
Under Assumption 3.9, the CEI algorithm leads to the convergence rates of

O
(
t−

1
2 log

d+2
2 (t)

)
and O

(
t

−ν
2ν+d log

2ν+0.5d
2ν+d (t)

)
, (17)

for SE and Matérn kernels, respectively, with probability ≥ 1− δ.

Sketch of Proof for Theorem 3.10. Recall that f and c are assumed conditionally independent in
CEI. We start from the bound on the confidence interval for f : |f(x)− µf

t (x)| ≤ β1/2σf
t (x), with

probability ≥ 1− δ, where β = 2 log(1/δ), as in Lemma C.2. The confidence interval of c remains
the same as in the frequentist setting. These are well-known results [Srinivas et al., 2009]. Then, we
derive the subsequent bounds |Ift (x)− EIft (x)| ≤

√
βσf

t (x), where β = max{1.44, 2 log(cα/δ)}
and cα = 1+2π

2π with probability ≥ 1−δ (Lemma C.5). Then, we prove the relationship in Lemma C.6

that Ift (x) ≤
τ(

√
β)

τ(−
√
β)
EIft (x) with probability ≥ 1 − δ. We can now follow the general analysis

framework in Section 3.1 and Theorem 3.3 to obtain the simple regret upper bound under Bayesian
objective assumptions, while choosing tk with a more defined criterion.
Remark 3.12 (Comparison to the frequentist setting). Comparing Theorem 3.7 to Theorem 3.11, the
convergence rates in the frequentist and Bayesian settings are the same except for a log1/2(t) term.
This is partially because simple regret focuses on the best feasible solution f+

t and thus many of the
parameters in Theorem 3.3 and 3.10 do not depend on t.
Remark 3.13 (Multiple constraints). As mentioned in Section 1, our results can be readily applied
to CEI with multiple constraints for both frequentist and Bayesian settings. Consider m constraints
ci(x) ≤ 0, i = 1, . . . ,m. Assuming conditional independence of the constraints, the CEI function
is EICt (x) = Πm

i=1P
i
t (x)EIft (x) = Πm

i=1Φ
(

−µ
ci
t (x)

σ
ci
t (x)

)
EIft (x), where P i

t is the probability of
feasibility function of constraint ci(x) ≤ 0, and µci

t (x) and σci
t (x) are the posterior mean and

standard deviation for ci, respectively. By making the assumption that each constraint function lies
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in its corresponding RKHS of the kernel kci , we have |ci(x)− µci
t (x)| ≤ Bciσ

ci
t (x), where Bci is

the upper bound of RKHS norm associated with kernel kci and function ci. We can then apply the
analysis framework in this paper to obtain an upper bound similar to that of Theorem 3.3, where
the term 1

Φ(−Bc)
is replaced with Πm

i=1
1

Φ(−Bci
) . We note that in the Bayesian objective setting, to

ensure probability 1− δ, the parameter β needs to increase with the number of constraints as well,
e.g., β = 2 log((m+ 5)cα/δ).
Remark 3.14 (Extension to the noisy setting). Extending our analysis to the noisy setting is non-trivial,
and we discuss the associated challenges for noisy objective and constraint functions separately. A
noisy constraint function introduces additional complications in defining feasibility. If only noisy
observations of the constraint values are available, the notion of a feasible sample and the definition
of f+

t becomes ambiguous. As a result, major modifications to the CEI algorithm are required to
appropriately handle the uncertainty introduced by noise.

For the noisy objective function, CEI can be adapted similarly to the noisy EI formulation by
treating the best feasible noisy observation as the incumbent. However, to the best of our knowledge,
a theoretical guarantee on the simple regret bound for the noisy unconstrained setting remains
unavailable. Recent work by Wang et al. [2025] provides a framework for deriving noisy simple
regret bounds based on the best observed value, rst = y+t − f(xt), which can be extended to CEI.
Specifically, by defining rst as the simple regret for CEI with y+t denoting the best feasible noisy
observation, a similar proof strategy as in Theorem 3.10 yields an analogous upper bound. In the
Bayesian setting with i.i.d. Gaussian noise on the objective and noise-free constraint observations,
the convergence rate of the upper bound on rst can be obtained. However, we note that given the
noise, rst is possibly negative.
Remark 3.15 (Infeasible initial sample). It is well known that CEI requires initial feasible sam-
ple [Gardner et al., 2014]. That is, f+

t exists from the initial samples so that the CEI calculation can
proceed. Methods proposed to address this issue typically employ separate strategies when no feasible
samples are available and revert to the standard CEI formulation once feasibility is established [Lin
et al., 2024, Letham et al., 2019]. In addition, introducing a tolerance parameter in the constraint can
further mitigate this problem by allowing near-feasible points when the degree of violation is small.
Remark 3.16 (Tolerance in constraints). In gradient-based optimization methods, a tolerance for
constraint violation is often used to improve the performance and flexibility of algorithms Wächter and
Biegler [2006], Nocedal and Wright [2006]. Motivated by this, we introduce a tolerance parameter
λ ≥ 0, where a point x is considered feasible if c(x) ≤ λ and infeasible otherwise. The corresponding
CEI with tolerance is defined as EICt (x, λ) = Pt(x, λ)EIft (x) = Φ

(
λ−µc

t(x)
σc
t (x)

)
EIft (x). Clearly,

the standard CEI formulation is recovered when λ = 0.

The simple regret bound is affected by λ and should lead to 1
Φ(λ−Bc)

in place of 1
Φ(−Bc)

. In fact, we

can replace 1
Φ(λ−Bc)

with 1/Φ
(

λ
σc
tk

(x∗) −Bc

)
, which is time-varying. One can follow the proof

of Theorem 3.3 to obtain this term, which emerges from the confidence interval of c at tk, x∗ and
c(x∗) ≤ 0.

As the sample iteration increases, the inclusion of σc
tk
(x∗) is important in balancing −Bc that can

lead to a large simple regret upper bound. We explain the intuition below. As t → ∞, tk → ∞
and k → ∞. We know σf

t (xt+1) → 0, and hence σf
tk
(xtk+1) → 0 and rt → 0. That is, the

simple regret upper bound of CEI with λ > 0 converges. Thus, xt approaches at least one of the
optimal solutions. Suppose without losing generality, xt → x∗. Then, by definition σc

tk
(x∗) → 0.

Consequently, we should have λ
σc
tk

(x∗) → ∞ for λ > 0. Then, we have Φ
(

λ
σc
tk

(x∗)

)
→ 1. Therefore,

1/Φ( λ
σc
tk

(x∗) −Bc) → 1 and Bc does not affect the simple regret upper bound asymptotically. We
note that the convergence rate of CEI with tolerance remains similar since it is dominated by the
maximum information gain of f .

4 Numerical experiments

Although this paper is primarily theoretical, we conduct numerical experiments to support the
theoretical results. We apply the CEI algorithm to eight synthetic problems that are randomly
generated from RKHS of kernels and GP priors, and five benchmark problems commonly used in the
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CBO literature. These numerical experiments are not intended to demonstrate superior performance
over the state-of-the-art CBO algorithms. Instead, they serve as empirical evidence for the theoretical
analysis presented in this work. All experiments are conducted on M1 (16GB memory)1.

4.1 Synthetic problems

In this section, we study objective and constraint functions drawn from reproducing kernel Hilbert
spaces (RKHSs) as well as from Gaussian process priors with Matérn (ν = 2.5) and squared
exponential (SE) kernels, across input dimensions d ∈ 2, 4. The domain is the hypercube [0, 1]d.
For RKHS cases (the frequentist setting), the functions are generated with a similar approach
to Chowdhury and Gopalan [2017]. Specifically, both objective f(x) and constraint functions c(x)
are generated by sampling from the RKHS associated with a chosen kernel (Matérn/SE kernels with
a length scale of 0.2). Each function is constructed as a weighted sum of kernel evaluations at 100
randomly selected basis points, with weights drawn from a standard normal distribution. Formally,
the function takes the form f(x) =

∑n
i=1 αik(x,Xi) , where k is the kernel, Xi are basis points,

and αi are random coefficients; c(x) is generated similarly. For the GP cases (the Bayesian setting),
the functions are generated with an approach similar to Srinivas et al. [2009]. Specifically, we
uniformly choose 1000 points in the design space and sample randomly from a multivariate Gaussian
distribution defined by the GP prior with the chosen kernel.

For each synthetic problem, we conducted 100 independent trials. The number of initial design is
set to 10d, and 50 optimization iterations were performed for all cases. We plotted the log-log curve
of simple regret against the number of iterations in Figure 1. In all cases, we consistently observed
sublinear convergence patterns, which align well with our theoretical guarantees.

(a) RKHS, Matérn, d = 2 (b) RKHS, Matérn, d = 4 (c) RKHS, SE, d = 2 (d) RKHS, SE, d = 4

(e) GP, Matérn, d = 2 (f) GP, Matérn, d = 4 (g) GP, SE, d = 2 (h) GP, SE, d = 4

Figure 1: The log-log plots for simple regret vs optimization iterations of CEI for the synthetic
problems.

4.2 Test problems

Next, we evaluate simple regret of CEI on five commonly used test problems in the literature of CBO.
Specifically, Problem 1 tests performance in a small feasible region, which was previously studied
in Gardner et al. [2014], Ariafar et al. [2019]. Problem 2 includes multiple constraints and local
minimums, which has been used in Gramacy et al. [2016], Hernández-Lobato et al. [2015]. Problem
3 is a four-dimensional problem, previously studied in Picheny et al. [2016], Ariafar et al. [2019].

1Codes are available in https://github.com/Haowei-Wang/Convergence-Rates-of-Constrained-Expected-
Improvement.
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Problem 4 is the six-dimensional Hartmann problem, previously tested in Letham et al. [2019].
Problem 5 is the Rosenbrock function, where the global minimum lies in a narrow region. The
mathematical formulations of the five functions are presented in Appendix D. For two-dimensional
problems, we also include the contour plots of the objective and constraint functions in Appendix D.
The SE kernel is used for the GP modeling (similar performance is observed for the Matérn kernel)
and the hyper-parameters are estimated by a standard maximum likelihood method.

For each test problem, we conducted 100 independent trials with different random initial designs.
When CEI fails to identify a feasible sample, we adopt the same heuristic strategy as in Letham et al.
[2019]. The numerical results are summarized in Figure 2. The solid line represents the median
of the simple regret, and the dotted lines represent the 25th percentile and 75th percentile of the
simple regret, respectively. From the figures, we observe that CEI consistently reduces simple regret,
aligning with the asymptotic convergence theories established in this paper. Accross all problems,
the simple regret converges to 0 quickly. The 25th percentile and 75th percentile results demonstrate
the good statistical properties of CEI.

(a) Problem 1: a small feasible region problem (b) Problem 2: a multiple-constraints problem

(c) Problem 3: a four-dimensional problem (d) Problem 4: Hartmann6 function

(e) Problem 5: Rosenbrock function (in log scale due
to large range of objective values.)

Figure 2: Simple regret of CEI for five test problems.

5 Conclusions

In this paper, we studied the simple regret upper bounds of the CEI algorithm, one of the most widely
adopted CBO methods. Under both frequentist setting and Bayesian objective assumptions, we
establish for the first time the convergence rates for CEI. Our results provide theoretical support and
validation for the empirical success of CEI.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: NA

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The assumptions for our theorectical analysis are clearly stated.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: NA
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details and supplemental codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper focused on existing algorithms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not have such data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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A Background information and preliminary results

A.1 Information gain

To obtain state-of-the-art simple regret upper bound, we utilize the information theory results that are
well-established in previous literature [27, 8, 30]. Using f as the example, let A ⊂ C denote a set of
sampling points. Assume that the observations are noisy at sample points with yA = f(xA) + ϵA at
x ∈ A, where ϵA ∼ N (0, σ2) denotes the independent and identically distributed Gaussian noises.
The maximum information gain is defined as follows.
Definition A.1. Given xA and yA, the mutual information between f and yA is I(yA; fA) =

H(yA) − H(yA|fA), where H denotes the entropy. The maximum information gain γf
T after T

samples is γf
T = maxA⊂C,|A|=T I(yA;fA).

The rate of increase for γf
t depends on the property of the kernel. For common kernels such as the

SE kernel and the Matérn kernel, γf
t has been studied in literature and the state-of-the-art rates of γf

t
are summarized in Lemma A.2 [30, 15].
Lemma A.2. For GP with t samples, the SE kernel has γt = O(logd+1(t)), and the Matérn kernel
with smoothness parameter ν > 0.5 has γt = O(t

d
2ν+d (log

2ν
2ν+d (t))).

The maximum information gain γc
t for the constraint function can be defined similarly.

While γf
t is defined in the noisy case, we can readily apply it to the noise-free case and bound

σf
t (xt+1) using techniques similar to that in [20]. To do so, we note that given the Gaussian

observation noise ϵt ∼ N (0, σ2) in the GP model, the posterior prediction for f becomes

µ̃f
t (x) = kf

t (x)(K
f
t + σ2I)−1f1:t,

(σ̃f
t )

2(x) = kf (x,x)− (kf
t )

T (x)(Kf
t + σ2I)−1kf

t (x) ,
(18)

Similarly, we can define the posterior predictions for c with noise in the GP model as µ̃f
t (x) and

σ̃f
t (x). The sum of posterior variance for GP generated by (2) satisfy the next lemma, based on

information theory [27] .
Lemma A.3. The sum of GP posterior variances given t samples satisfy

T∑
t=1

σ̃c
t−1(xt) ≤

√
CγTγc

T ,

T∑
t=1

σ̃f
t−1(xt) ≤

√
CγTγ

f
T , (19)

where Cγ = 2
log(1+σ−2) and γf

t and γc
t are the maximum information gains for f and c, respectively.

We have the following lemma for σ̃f
t (x) and σf

t (x).

Lemma A.4. The noise-free (GP) posterior standard deviation satisfies σf
t (x) < σ̃f

t (x) for ∀σ > 0.

Proof. We first note that all the eigenvalues of Kf
t is smaller than those of Kf

t + σ2I , since Kf
t is

symmetric and positive definite. Thus,

(kf
t )

T (x)(Kf
t + σ2I)−1kf

t (x) < (kf
t )

T (x)(Kf
t )

−1kf
t (x), (20)

for ∀σ > 0 and kf
t (x). Therefore, by their definitions (2) and (18), the proof is complete.

The posterior standard deviation under assumptions (1)-(4) in [6] in the frequentist and noise-free
setting is given in Lemma 3.5, whose proof is given below.

Proof. By Lemma 7 in [6], there exists C ′ > 0 so that

σf
i (xi+1) ≥ C ′k−

min{ν,1}
d logη(k), (21)

at most k times, for ∀k ∈ N, k ≤ t, and i = 1, . . . , t− 1. Therefore, for the SE kernel,

σf
i (xi+1) ≥ C ′k−

1
d , (22)

at most k times. For Matérn kernels, we have (21) at most k times.
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Using maximum information gain, a tighter bound on the posterior standard deviation can be obtained
in the next lemma.
Lemma A.5. Given ∀t ∈ N and i = 1, 2, . . . , t− 1, for SE kernel, there exists constant C ′ > 0 so
that

σf
i (xi+1) ≥ C ′ t

1
2 log

d+1
2 (t)

k
, (23)

holds for at most k times, for ∀k ≤ t. Similarly, for Matérn kernels with ν > 0.5,

σf
i (xi+1) ≥ C ′ t

ν+d
2ν+d log

ν
2ν+d (t)

k
, (24)

holds at most k times.

Proof. From Lemma A.4 and Lemma A.3, we can write that
t∑

i=1

σf
i−1(xi) ≤

√
tγf

t , (25)

where we use without losing generality Cγ ≤ 1. Therefore, for any k ∈ N and k ≤ t,

σf
i (xi+1) ≥

√
tγf

t

k
,

(26)

at most k times. Therefore, for SE kernel, by Lemma A.2, there exists C ′ > 0 such that

σf
i (xi+1) ≥ C ′ t

1
2 log

d+1
2 (t)

k
, (27)

at most k times. For Matérn kernels with ν > 0.5,

σf
i (xi+1) ≥ C ′ t

ν+d
2ν+d log

ν
2ν+d (t)

k
, (28)

at most k times.

Next, we state some basic properties of ϕ, Φ and τ as a lemma.
Lemma A.6. The PDF and CDF of standard normal distribution satisfy 0 < ϕ(x) ≤ ϕ(0) <
0.4,Φ(x) ∈ (0, 1), for any x ∈ R. Given a random variable ξ sampled from the standard normal
distribution: ξ ∼ N (0, 1), we have P{ξ > c|c > 0} ≤ 1

2e
−c2/2. Similarly, for c < 0, P{ξ < c|c <

0} ≤ 1
2e

−c2/2. The function τ(·) is monotonically increasing.

The last statement in Lemma A.6 is a well-known result (e.g., see proof of Lemma 5.1 in [27]).

The next lemma proves basic properties for EIft .

Lemma A.7. For ∀x ∈ C, EIft (x) ≥ 0 and EIft (x) ≥ f+
t − µf

t (x). Moreover,

zft (x) ≤
EIft (x)

σf
t (x)

<

{
ϕ(zft (x)), zft (x) < 0,

zft (x) + ϕ(zft (x)), zft (x) ≥ 0.
(29)

Proof. From the definition of Ift and EIft , EIft (x) ≥ 0 and EIft (x) ≥ y+t − µf
t (x) follow

immediately. By (4),
EIft (x)

σf
t (x)

= zft (x)Φ(z
f
t (x)) + ϕ(zft (x)). (30)

If zft (x) < 0, or equivalently f+
t − µf

t (x) < 0, (30) leads to EIf
t (x)

σf
t (x)

< ϕ(zft (x)). If zft (x) ≥ 0,

we can write EIf
t (x)

σf
t (x)

< zft (x) + ϕ(zft (x)). The left inequality in (29) is an immediate result of

EIft (x) ≥ f+
t − µf

t (x).

21



B Proofs for simple regret upper bound under frequentist assumptions

We state the boundedness result as a Lemma for easy reference.

Lemma B.1. Under Assumption 3.2, |f(x)| ≤ Bf and |c(x)| ≤ Bc for all x ∈ C.

Proof. By Assumption 3.2, we can write

|f(x)| ≤ ∥f∥Hf
k
kf (x,x) ≤ Bf . (31)

Similarly,
|c(x)| ≤ ∥c∥Hc

k
kc(x,x) ≤ Bc. (32)

The following Lemma is a well-established result [8].

Lemma B.2. At any given x ∈ C and t ∈ N, the confidence intervals satisfy

|f(x)− µf
t (x)| ≤ Bfσ

f
t (x), |c(x)− µc

t(x)| ≤ Bcσ
c
t (x). (33)

Next, we present a lemma on the relationship between Ift and EIft , previously seen in [6].

Lemma B.3. At x ∈ C, t ∈ N,

Ift (x)− EIft (x) ≤ Bfσ
f
t (x). (34)

Lemma B.4. The improvement function Ift (x) and EIft (x) satisfy

Ift (x) ≤
τ(Bf )

τ(−Bf )
EIft (x), (35)

for ∀x ∈ C and t ≥ 1.

Proof. If f+
t − f(x) ≤ 0, then Ift (x) = 0. Since EIft (x) ≥ 0, (35) is trivial. If f+

t − f(x) > 0, by
Lemma B.2,

f+
t − µf

t (x) = f+
t − f(x) + f(x)− µf

t (x) > f(x)− µf
t (x) > −Bfσ

f
t (x). (36)

From the monotonicity of τ , we have

τ

(
f+
t − µf

t (x)

σf
t (x)

)
> τ(−Bf ), (37)

and therefore,

EIft (x) = σf
t (x)τ

(
f+
t − µf

t (x)

σf
t (x)

)
> τ(−Bf )σ

f
t (x). (38)

From Lemma B.3,
Ift (x)− EIft (x) ≤ Bfσ

f
t (x). (39)

Applying (39) to (38) leads to

EIft (x) >
τ(−Bf )

Bf + τ(−Bf )
Ift (x) =

τ(−Bf )

τ(Bf )
Ift (x). (40)

Proof of Theorem 3.3 is given next.
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Proof. From Lemma B.1,
t−1∑
i=0

f+
i − f+

i+1 = f+
0 − f+

t ≤ 2Bf . (41)

Since f+
i − f+

i+1 ≥ 0, f+
i − f+

i+1 ≥ 2Bf

k at most k times for any k ∈ N. Further, f(xt) ≥ f+
t for

∀t ∈ N. Choose k = [t/2], where [x] is the largest integer smaller than x so that 2k ≤ t ≤ 2(k + 1).
Then, there exists k ≤ tk ≤ 2k so that f+

tk
− f+

tk+1 <
2Bf

k and f+
tk+1 − f(xtk+1) ≤ 0.

From Lemma B.4,
rt =f+

t − f(x∗) ≤ f+
tk

− f(x∗) ≤ Iftk(x
∗)

≤ τ(Bf )

τ(−Bf )
EIftk(x

∗) = cτB
Ptk(x

∗)

Ptk(x
∗)
EIftk(x

∗)

≤cτB
Ptk(xtk+1)

Ptk(x
∗)

EIftk(xtk+1),

(42)

where cτB =
τ(Bf )
τ(−Bf )

. Using Pt(x) ≤ 1, (42) implies

rt ≤
cτB

Ptk(x
∗)

[
(f+

tk
− µf

tk
(xtk+1))Φ(z

f
tk
(xtk+1)) + σf

tk
(xtk+1)ϕ(z

f
tk
(xtk+1))

]
≤ cτB
Ptk(x

∗)

[
(f+

tk
− µf

tk
(xtk+1))Φ(z

f
tk
(xtk+1)) + 0.4σf

tk
(xtk+1)

]
,

(43)

where the last inequality uses ϕ(·) < 0.4. From Lemma B.2,

f+
tk

− µf
tk
(xtk+1) =f+

tk
− f+

tk+1 + f+
tk+1 − f(xtk+1) + f(xtk+1)− µf

tk
(xtk+1)

≤f+
tk

− f+
tk+1 +Bfσ

f
tk
(xtk+1) ≤

2Bf

k
+Bfσ

f
tk
(xtk+1).

(44)

Using (44) in (43), we have

rt ≤
cτB

Ptk(x
∗)

[
2Bf

k
+ (Bf + 0.4)σf

tk
(xtk+1)

]
. (45)

Next, we consider the function Ptk at x∗. Using the fact that c(x∗) ≤ 0, we have by Lemma B.2,
µc
tk
(x∗) ≤ Bcσ

c
tk
(x∗) + c(x∗) ≤ Bcσ

c
tk
(x∗). (46)

Thus,
−µc

tk
(x∗)

σc
tk
(x∗)

≥ −Bc. (47)

From the monotonicity of Φ, we have

Ptk(x
∗) = Φ

(−µc
tk
(x∗)

σc
tk
(x∗)

)
≥ Φ (−Bc) . (48)

Applying (48) to (43), we have

rt ≤
cτB

Φ(−Bc)

[
2Bf

k
+ (Bf + 0.4)σf

tk
(xtk+1)

]
. (49)

As t → ∞, tk → ∞ and k → ∞. Further, if σf
t (xt+1) → 0, σf

tk
(xtk+1) → 0 and rt → 0.

Proof of Corollary 3.6 is presented next.

Proof. We consider the convergence rate for rt under additional assumptions for the kernel. From
Lemma 3.5, for both SE and Matérn kernels, σf

i (xi+1) ≥ C ′k−
min{ν,1}

d logη(k) at most k times for
any k ∈ N and i = 1, . . . , t.

Choose k = [t/3] so that 3k ≤ t ≤ 3(k + 1). Following the proof of Theorem 3.3, there exists k ≤
tk ≤ 3k where f+

tk
− f+

tk+1 <
2Bf

k , f(xtk+1) ≥ f+
tk+1, and σf

tk
(xtk+1) < C ′k−

min{ν,1}
d logη(k).

Similar to (49), we can obtain

rt ≤
cBf

Φ(−Bc)

[
2Bf

k
+ (Bf + 0.4)C ′k−

min{ν,1}
d logη(k)

]
. (50)

The convergence rates follow.
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B.1 Proofs for improved simple regret upper bound under frequentist assumptions

Proof of Theorem 3.7 is given below.

Proof. From the proof of Lemma A.5, we know σf
i (xi+1) ≥

√
tγf

t

k at most k times for any k ≤ t
and i = 1, . . . , t.

Choose k = [t/3] so that 3k ≤ t ≤ 3(k + 1). Following the proof of Theorem 3.3, there exists

k ≤ tk ≤ 3k where f+
tk

− f+
tk+1 <

2Bf

k , f(xtk+1) ≥ f+
tk+1, and σf

tk
(xtk+1) < 3

√
tγf

t

t−3 . Similar
to (50), we can obtain

rt ≤
cBf

Φ(−Bc)

3 2Bf

t− 3
+ 3(Bf + 0.4)

√
tγf

t

t− 3

 . (51)

The convergence rates of the simple regret upper bound follow from Lemma A.5.

We provide the sample complexity of Theorem 3.7 below.
Corollary B.5. Under Assumption 3.2, the CEI algorithm achieves a ϵ sample complexity of

O
(

1

ϵ2
[log(1/ϵ)]d+1

)
and O

(
ϵ−

2ν+d
ν log(1/ϵ)

)
, (52)

for SE and Matérn kernels, respectively.

Proof. Using Theorem 3.7, to achieve simple regret of most ϵ for SE kernel, set

t−
1
2 log

d+1
2 (t) = ϵ.

Solving asymptotically for t gives the sample complexity

t(ϵ) = O
(

1

ϵ2
[log(1/ϵ)]d+1

)
.

Similarly, for Matérn kernels, we have

ϵ = t
−ν

2ν+d log
ν

2ν+d (t), (53)

which completes the proof.

C Proofs for simple regret upper bound under Bayesian objective assumption

We state the boundedness of f and c as a Lemma for easy reference.
Lemma C.1. Under Assumption 3.9, there exists Mf > 0 such that |f(x)| ≤ Mf with probability
≥ 1− δ/3. The constraint function is bounded by its RKHS norm bound |c(x)| ≤ Bc.

We recall a well-known result on confidence interval of |f(x)− µf
t (x)| under Assumption 3.9 [27].

Lemma C.2. Given δ ∈ (0, 1), let β = 2 log(1/δ). For any given x ∈ C and t ∈ N,

|f(x)− µf
t (x)| ≤

√
βσf

t (x), (54)

holds with probability ≥ 1− δ.

Proof. We prove the inequalities for f . Under Assumption 3.9, f(x) ∼ N (µt(x), σ
2
t (x)). By

Lemma A.6,

P
{
f(x)− µf

t (x) >
√
βσf

t (x)
}
= 1− Φ

(√
β
)
≤ 1

2
e−

β
2 . (55)

Similarly,

P
{
f(x)− µf

t (x) < −
√

βσf
t (x)

}
≤ 1

2
e−

β
2 . (56)

Thus,
P
{
|f(x)− µf

t (x)| <
√
βσf

t (x)
}
≥ 1− e−

β
2 . (57)

Let e−
β
2 = δ and (54) is proven.
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Lemma C.3. Given δ ∈ (0, 1), let β = 2 log(πt/δ), where πt =
π2t2

6 . Then, for all t ∈ N,

|f(x)− µf
t (x)| ≤

√
βtσ

f
t (x), (58)

holds with probability ≥ 1− δ.

The next lemma address Ift under the Bayesian assumption.

Lemma C.4. Under Assumption 3.9, the probability distribution of Ift satisfies

P{Ift (x) ≤ a} =

{
0, a < 0,

Φ
(

a

σf
t (x)

− zft (x)
)
, a ≥ 0.

(59)

Proof. Under Assumption 3.9, at a given t, f(x) ∼ N (µf
t (x), σ

f
t (x)). Since Ift (x) ≥ 0 for all

x, (59) follows immediately if a < 0. For a ≥ 0,

P{Ift (x) ≤ a} = P{f+
t − f(x) ≤ a} = 1− P{f(x) ≤ f+

t − a}.
Using basic properties of the standard normal CDF,

1− P{f(x) ≤ f+
t − a} = 1− Φ

(
f+
t − a− µf

t (x)

σf
t (x)

)
= Φ

(
a− f+

t + µf
t (x)

σf
t (x)

)
.

Next, we present the relationship between Ift (x) and EIft (x).
Lemma C.5. Given δ ∈ (0, 1), let β = max{1.44, 2 log(cα/δ)}, where constant cα = 1+2π

2π . Under
Assumption 3.9, at given x ∈ C and t ∈ N,

P
{
|Ift (x)− EIft (x)| ≤

√
βσf

t (x)
}
≥ 1− δ. (60)

Proof. Given a scalar w > 1, we consider the probabilities

P
{
Ift (x) > σf

t (x)w + EIft (x)
}

and P
{
It(x) < −σf

t (x)w + EIft (x)
}
. (61)

Consider the first probability in (61). From Lemma A.7, EIt(x) ≥ 0 for ∀x and t. Therefore,
σt(x)w + EIt(x) > 0. From Lemma A.7, Lemma C.4, and the monotonicity of Φ, we have

P
{
Ift (x) > σf

t (x)w + EIft (x)
}
=1− Φ

(
σf
t (x)w + EIft (x)− f+

t + µf
t (x)

σf
t (x)

)

≤1− Φ(w) ≤ 1

2
e−

w2

2 ,

(62)

where the last inequality is from Lemma A.6.

For the second probability in (61), we further distinguish between two cases. First, consider
−σf

t (x)w + EIft (x) < 0. From Lemma C.4,

P
{
Ift (x) < −σf

t (x)w + EIt(x)
}
= 0. (63)

Second, consider the premise −σf
t (x)w + EIft (x) ≥ 0. By Lemma C.4, we have

P
{
Ift (x) < −σf

t (x)w + EIft (x)
}
= Φ

(
−w +

EIft (x)− f+
t + µf

t (x)

σf
t (x)

)
. (64)

To proceed, we show that f+
t − µf

t (x) ≥ 0. Suppose on the contrary, f+
t − µf

t (x) < 0 and thus
zft (x) < 0. From Lemma A.7,

EIft (x)

σf
t (x)

< ϕ(zft (x)) ≤ ϕ(0) < 1 ≤ w, (65)
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which contradicts the premise of this case. Thus, we have f+
t − µf

t (x) ≥ 0 (and zft (x) ≥ 0). From
the definition (4), since Φ ∈ (0, 1),

EIft (x)− f+
t + µf

t (x)

σf
t (x)

=
[
zft (x)

(
Φ(zft (x))− 1

)
+ ϕ(zft (x))

]
< ϕ(zft (x)). (66)

In addition, by the premise of this case and Lemma A.7,

w ≤ EIft (x)

σf
t (x)

≤ zft (x) + ϕ(zft (x)). (67)

Given that w > 1 and ϕ(0) ≥ ϕ(zft (x)), we have

zft (x) + ϕ(0) > zft (x) + ϕ(zft (x)) > w, zft (x) > w − ϕ(0) > 0. (68)

As zt(x) ≥ 0 increases, ϕ(zt(x)) > 0 decreases. Thus, we have

zft (x)

ϕ(zft (x))
>

w − ϕ(0)

ϕ(w − ϕ(0))
, ϕ(zft (x)) <

ϕ(w − ϕ(0))

w − ϕ(0)
zft (x). (69)

Denote c1(w) =
w−ϕ(0)

w−ϕ(0)+ϕ(w−ϕ(0)) . Applying (69) to (67), we obtain

c1(w)w < zft (x), ϕ(zft (x)) < ϕ(c1(w)w). (70)

Applying (70) and (66) to (64), we obtain

P
{
Ift (x) < −wσf

t (x) + EIft (x)
}
<Φ

(
−w + ϕ(zft (x))

)
<Φ (−w + ϕ(c1(w)w)) .

(71)

Notice that ϕ(c1(w)w) < ϕ(c1(w)) < ϕ(c1(w))w due to w > 1. By the definition of Φ and mean
value theorem,

Φ
(
−w + ϕ(c1(w)w)

)
= Φ(−w) +

∫ −w+ϕ(c1(w)w)

−w

1√
2π

e−
1
2x

2

dx ≤ Φ(−w)+

1√
2π

e−
1
2 (w−ϕ(c1(w)w))2ϕ(c1(w)w) ≤ Φ(−w) +

1

2π
e−

1
2 ((1−ϕ(c1(w)))w)2e−

1
2 (c1(w)w)2

≤ Φ(−w) +
1

2π
e−

1
2 c2(w)w2

≤ 1

2
e−

1
2w

2

+
1

2π
e−

1
2 c2(w)w2

,

(72)

where c2(w) = [1 − ϕ(c1(w))]
2 + [c1(w)]

2. The last inequality in (72) again uses Lemma A.6.
Notice that c2(w) increases with w and for w ≥ 1.2, c2(w) > 1. Thus, e−

1
2w

2

> e−
1
2 c2(w)w2

for
w ≥ 1.2, which simplifies (72) to

Φ
(
−w+ϕ(c1(w)w)

)
< cπ1e

− 1
2w

2

. (73)

where cπ1 = 1+π
2π . Therefore, by (71) and (73), if w ≥ 1.2,

P {It(x) < −σt(x)w + EIt(x)} < cπ1e
− 1

2w
2

. (74)

Combining (74) with (62) and (63), we have

P
{∣∣∣Ift (x)− EIft (x)

∣∣∣ > wσf
t (x)

}
< cαe

− 1
2w

2

, (75)

where cα = 1+2π
2π for w ≥ 1.2. The probability in (75) monotonically decreases with w. Let

δ = cαe
− 1

2w
2

. Then, taking the logarithm of δ leads to log( 1+2π
2πδ ) = 1

2w
2. Let β = max{w2, 1.22},

and the proof is complete.

The relationship between Ift (x) and EIft (x) under the GP prior assumption is given in the following
lemma.
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Lemma C.6. Given δ ∈ (0, 1), let β = 2 log(2cα/δ), where cα = 1+2π
2π . At given x ∈ C and t ∈ N,

τ(−
√
β)

τ(
√
β)

Ift (x) ≤ EIft (x), (76)

holds with probability ≥ 1− δ

Proof. From Lemma C.2, with probability ≥ 1− δ, (54) stands. If f+
t − f(x) ≤ 0, then It(x) = 0.

Since EIt(x) ≥ 0, (76) is trivial. If f+
t − f(x) > 0, by Lemma C.2,

f+
t − µf

t (x) = f+
t − f(x) + f(x)− µf

t (x) > f(x)− µf
t (x)

> −
√
βσf

t (x),
(77)

with probability greater than ≥ 1− δ/2. From the monotonicity of τ , we have

τ

(
f+
t − µf

t (x)

σf
t (x)

)
> τ(−

√
β), (78)

and therefore,

EIft (x) = σf
t (x)τ

(
f+
t − µf

t (x)

σf
t (x)

)
> τ(−

√
β)σf

t (x), (79)

with probability greater than 1− δ/2. Using δ/2 in Lemma C.5,

Ift (x)− EIft (x) ≤
√
βσf

t (x), (80)

with probability ≥ 1− δ/2. Applying (80) to (79) with union bound leads to

EIft (x) >
τ(−

√
β)√

β + τ(−
√
β)

Ift (x) =
τ(−

√
β)

τ(
√
β)

Ift (x), (81)

with probability greater than 1− δ.

We can now prove Theorem 3.10.

Proof. From Lemma C.1,
t−1∑
i=0

f+
i − f+

i+1 = f+
0 − f+

t ≤ 2Mf , (82)

with probability ≥ 1− δ/3. Next, consider f+
i − µf

i (xi+1). Recall that βt = 2 log(3πt/δ). From
Lemma C.3 Lemma A.4 and Lemma A.3, we have

t−1∑
i=0

max{f+
i − µf

i (xi+1), 0} =

t−1∑
i=0

max{f+
i − f(xi+1) + f(xi+1)− µf

i (xi+1), 0}

≤
t−1∑
i=0

f+
i − f+

i+1 + β
1/2
t σf

i (xi+1) ≤ 2Mf + β
1/2
t

√
Cγtγ

f
t ,

(83)

with probability ≥ 1− 2δ/3 via union bound. Given that max{f+
i − µf

i (xi+1), 0} ≥ 0, max{f+
i −

µf
i (xi+1), 0} ≥ 2Mf

k +
β
1/2
t

k

√
Cγtγ

f
t at most k times for any k ∈ N with probability ≥ 1− 2δ/3.

Choose k = [t/2], where [x] is the largest integer smaller than x so that 2k ≤ t ≤ 2(k + 1).
Then, choose the first index tk where k ≤ tk ≤ 2k so that max{f+

tk
− µf

tk
(xtk+1), 0} <

2Mf

k +

β
1/2
t

k

√
Cγtγ

f
t . As discussed above, such a tk exists with probability ≥ 1 − 2δ/3. We note that

maximum information gain and its upper bound does not depend on the optimization path. Importantly,
the choice of tk does not depend on random information after iteration tk.
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From Lemma C.6 and β = 2 log(6cα/δ), with probability ≥ 1− δ/3,

rt =f+
t − f(x∗) ≤ f+

tk
− f(x∗) ≤ Iftk(x

∗)

≤ τ(β1/2)

τ(−β1/2)
EIftk(x

∗) = cτ (β)
Ptk(x

∗)

Ptk(x
∗)
EIftk(x

∗) ≤ cτ (β)
Ptk(xtk+1)

Ptk(x
∗)

EIftk(xtk+1)

=cτ (β)
Ptk(xtk+1)

Ptk(x
∗)

[
(f+

tk
− µf

tk
(xtk+1))Φ(z

f
tk
(xtk+1)) + σf

tk
(xtk+1)ϕ(z

f
tk
(xtk+1))

]
≤cτ (β)

Ptk(xtk+1)

Ptk(x
∗)

[
(f+

tk
− µf

tk
(xtk+1))Φ(z

f
tk
(xtk+1)) + 0.4σf

tk
(xtk+1)

]
,

(84)

where the last inequality uses ϕ(·) < 0.4. From the choice of tk, (84) leads to

rt ≤cτ (β)
Ptk(xtk+1)

Ptk(x
∗)

[
2Mf

k
+

β
1/2
t

k

√
Cγtγ

f
t + (0.4 + β1/2)σf

tk
(xtk+1)

]
, (85)

with probability ≥ 1− δ. Next, we consider the probability function Ptk at x∗ and xtk+1. Using the
fact that c(x∗) ≤ 0, we have by Lemma C.2 at x∗ and tk,

µc
tk
(x∗) ≤ Bcσ

c
tk
(x∗) + c(x∗) ≤ Bcσ

c
tk
(x∗). (86)

Thus, we can write
−µc

tk
(x∗)

σc
tk
(x∗)

≥ −Bc. (87)

From the monotonicity of Φ, we have

Φ

(−µc
tk
(x∗)

σc
tk
(x∗)

)
≥ Φ (−Bc) , (88)

Using (88), the Ptk functions have

Ptk(xtk+1)

Ptk(x
∗)

≤ 1

Φ(−Bc)
. (89)

Applying (89) to (85), we have

rt ≤cτ (β)
1

Φ(−Bc)

[
2Mf

k
+

β
1/2
t

k

√
Cγtγ

f
t + (0.4 + β1/2)σf

tk
(xtk+1)

]
, (90)

with probability ≥ 1− δ.

The proof of Theorem 3.11 is next.

Proof. From Lemma A.5, σf
i (xi+1) ≥

√
γf
t t

k , where i = 0, . . . , t− 1, at most k times for any k ∈ N
and k ≤ t. Choose k = [t/3] which leads to 3k ≤ t ≤ 3(k + 1). Let tk be the first index in [k, 3k]

so that σf
tk
(xtk+1) ≤

√
tγf

t

k and max{f+
tk

− µf
tk
(xtk+1), 0} <

2Mf

k +
β
1/2
t

k

√
Cγtγ

f
t , which exists

with probablity ≥ 1− 2δ/3. Notice that β1/2
t = O(log1/2(t)). Following the proof for (90), we have

rt ≤cτ (β)
1

Φ(−Bc)

2Mf

k
+

β
1/2
t

k

√
Cγtγ

f
t + (0.4 + β1/2)

√
tγf

t

k

 , (91)

with probability ≥ 1− δ. Using Lemma A.2, the proof is complete.
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D Test problems

The mathematical formulations of the testing problems in Section 4.2 are given in this section. The
objective, constraint functions and the optimal f of Problem 1 is given below.

f(x) = sin(x1) + x2,

c(x) = sin(x1) sin(x2) + 0.95 ≤ 0,

xi ∈ [0, 6], i = 1, 2,

f∗ = 0.25.

(92)

The objective, constraint functions and the optimal f of Problem 2 is given below.
f(x) = x1 + x2

c1(x) = −0.5 sin(2π(x2
1 − 2x2))− x1 − 2x2 + 1.5 ≤ 0

c2(x) = x2
1 + x2

2 − 1.5 ≤ 0

xi ∈ [0, 1], i = 1, 2

f∗ = 0.6.

(93)

The objective, constraint functions and the optimal f of Problem 3 is given below.
f(x) = x1 + x2 + x3 + x4

c1 = 1.1−
4∑

i=1

Ei exp

 4∑
j=1

−Aj,i(xj − Pj,i)
2


xi ∈ [0, 1], i = 1, . . . , 4

E = [1, 1.2, 3, 3.2]⊤

P =

0.131 0.232 0.234 0.404
0.169 0.413 0.145 0.882
0.556 0.830 0.352 0.873
0.012 0.373 0.288 0.574



A =

10 0.05 3 17
3 10 3.5 8
17 17 1.7 0.05
3.5 0.1 10 10


f∗ = 0.

(94)

The objective, constraint functions and the optimal f of Problem 4 is given below.

f(x) = −
4∑

i=1

αi exp

−
6∑

j=1

Aij(xj − Pij)
2


c(x) =

4∑
j=1

xj − 3

xi ∈ [0, 1], i = 1, . . . , 6

α = [1.0, 1.2, 3.0, 3.2]⊤

A =

 10 3.0 17 3.5 1.7 8.0
0.05 10 17 0.1 8.0 14
3.0 3.5 1.7 10 17 8.0
17 8.0 0.05 10 0.1 14



P =

0.131 0.170 0.557 0.012 0.828 0.587
0.233 0.414 0.831 0.374 0.100 0.999
0.235 0.145 0.352 0.288 0.305 0.665
0.405 0.883 0.873 0.574 0.109 0.038


f∗ = −3.32.

(95)
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Figure 3: Contour plots for the objective function (left) and constraint function (right) for Problem 1.
The infeasible region is marked on the plots. The global optimum is marked with a star sign.

Figure 4: Contour plots for the objective function (left) and the two constraint functions (middle and
right) for Problem 2. The infeasible region is marked with black line on the objective contour. The
global optimum is marked with a star sign.

Figure 5: Contour plots for the objective function (left) and constraint function (right) for Problem 5.
The infeasible region is marked on the plots. The global optimum is marked with a star sign.
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The objective, constraint functions and the optimal f of Problem 5 is given below.

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2

c1(x) =
√
x2
1 + x2

1 − 4

c2(x) = x2
1 + x2

2 − 1.5,

x1 ∈ [−5, 10], x2 ∈ [0, 15]

f∗ = 0.

(96)

The contour plots of Problem 1, 2, and 5 are given in Figure 3, 4, and 5.
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