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Abstract

We present a new angle on the expressive power of graph neural networks (GNNs)
by studying how the predictions of real-valued GNN classifiers, such as those
classifying graphs probabilistically, evolve as we apply them on larger graphs
drawn from some random graph model. We show that the output converges to
a constant function, which upper-bounds what these classifiers can uniformly
express. This strong convergence phenomenon applies to a very wide class of
GNNs, including state of the art models, with aggregates including mean and the
attention-based mechanism of graph transformers. Our results apply to a broad class
of random graph models, including sparse and dense variants of the Erdős–Rényi
model, the stochastic block model, and the Barabási-Albert model. We empirically
validate these findings, observing that the convergence phenomenon appears not
only on random graphs but also on some real-world graphs.

1 Introduction

Figure 1: The output of the considered GNNs even-
tually become constant as the graph sizes increase.

Graph neural networks (GNNs) [44, 21] have
become prominent for graph machine learn-
ing with applications in domains such as life
sciences [47, 11, 25, 55]. Their empirical suc-
cess motivated work investigating their theoret-
ical properties, pertaining to their expressive
power [52, 39, 4, 8, 1, 43, 23, 19, 54], gener-
alization capabilities [18, 33, 38, 45, 40], and
convergence properties [28, 27, 38, 32, 2].

We consider GNNs outputting real-valued vec-
tors, such as those which classify graphs prob-
abilistically, and ask: how do the outputs of
these GNNs evolve as we apply them on larger
graphs drawn from a random graph model?

Our study provides a surprising answer to this
question: the output of many GNNs eventually
become independent of their inputs – each model eventually outputs the same values on all graphs
– as graph sizes increase (Figure 1). This “almost sure convergence” to a constant distribution is
much stronger than convergence to some limit object [28, 27, 32]. The immediate consequence of
this strong convergence phenomenon is to upper bound the uniform expressiveness of the considered
model architectures: these architectures can uniformly express only the classifiers that are almost
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surely asymptotically constant. In other words, our results provide impossibility results for what tasks
are in principle learnable by GNNs. While our top-level results are for graph classification, in the
process we provide strong limitations on what node- and edge-classification can be performed by
GNNs on random graphs: see, for example Theorem 5.3.

Scope of the result. The core approach in graph machine learning is based on iteratively updating
node representations of an input graph by an aggregate of messages flowing from the node’s neigh-
bours [20]. This approach can be extended to global aggregates [5]. Our main result holds for all
architectures that use weighted mean as an aggregation function and it is extremely robust in the
following two dimensions:

1. Model architectures: Our result is very general and abstracts away from low-level architectural
design choices. To achieve this, we introduce an aggregate term language using weighted mean
aggregation and provide an “almost sure optimization” result for this language: our result states
that every term in the language can be simplified to Lipschitz functions for most inputs. Thus,
any architecture that can be expressed in this language follows the same convergence law. This
includes graph attention networks (GATs) [49], as well as popular (graph) transformers, such as
the General, Powerful, Scalable Graph Transformer (GPS) with random walk encodings [41].
The term language can seamlessly capture common design choices, such as skip and jumping
knowledge connections [51], or global aggregation schemes [5].

2. Random graph models: All results apply to a wide class of random graph models, including
Erdős-Rényi models of various sparsity levels, the Barabási-Albert preferential attachment model,
and the stochastic block model. The sparse models are more realistic than their dense counterparts
which makes it typically harder to obtain results for them. This is also reflected in our study, as
the results for sparse and dense models require very different proofs.

Contributions. The key contributions of this paper are as follows:

• We introduce a flexible aggregate term language with attractive closure properties (Section 4) and
prove an “almost sure convergence” result for this language relative to a wide class of random
graph models (Section 5). This result is of independent interest since it pushes the envelope for
convergence results from classical logical languages [15, 36] to include aggregation.

• We show that a diverse class of architectures acting as real-valued graph classifiers can be
expressed in the term language (Section 4). In Section 5 we present “almost sure convergence”
results for our term language, from which we derive results about GNNs (Corollary 5.2). The
results are robust to many practical architectural design choices and even hold for architectures
using mixtures of layers from different architectures. We also show strong convergence results
for real-valued node classifiers in many graph models.

• We validate these results empirically, showing the convergence of these graph classifiers in
practice (Section 6) on graphs drawn from the random models studied. In addition, we probe the
real-world significance of our results by testing for convergence on a dataset with varying size
dataset splits. Across all experiments we observe rapid convergence to a constant distribution.
Interestingly, we note some distinctions between the convergence of the sparse and non-sparse
Erdős-Rényi model, which we can relate to the proof strategies for our convergence laws.

2 Related work

Uniform expressiveness. The expressive power of MPNNs is studied from different angles, including
their power in terms of graph distinguishability [52, 39]. The seminal results of Xu et al. [52], Morris
et al. [39] show that MPNNs are upper bounded by the 1-dimensional Weisfeiler Leman graph
isomorphism test (1-WL) in terms of graph distinguishability. WL-style expressiveness results are
inherently non-uniform, i.e., the model construction is dependent on the graph size. There are also
recent studies that focus on uniform expressiveness [4, 42, 2]. In particular, Adam-Day et al. [2]
investigate the uniform expressive power of GNNs with randomized node features, which are known
to be more expressive in the non-uniform setting [1, 43]. They show that for classical Erdős-Rényi
graphs, GNN binary classifiers display a zero-one law, assuming certain restrictions on GNN weights
and the random graph model. We focus on real-valued classifiers, where their results do not apply,
while dealing with a wider class of random graph models, subsuming popular architectures such as
graph transformers.
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Convergence laws for languages. Our work situates GNNs within a rich term language built up from
graph and node primitives via real-valued functions and aggregates. Thus it relates to convergence
laws for logic-based languages on random structures, dating back to the zero-one law of Fagin [15],
including [35, 46, 31]. We are not aware of any prior convergence laws for languages with aggregates;
the only work on numerical term languages is by Grädel et al. [22], which deals with a variant of
first-order logic in general semi-rings.

Other notions of convergence on random graphs. The works of Cordonnier et al. [9], Keriven et al.
[28, 27], Maskey et al. [38], Levie [32] consider convergence to continuous analogues of GNNs, often
working within metrics on a function space. The results often focus on dense random graph models,
such as graphons [34]. Our approach is fundamentally different in that we can use the standard
notion of asymptotic convergence in Euclidean space, comparable to traditional language-based
convergence results outlined above, such as those by Fagin [15] and Lynch [36]. The key point is that
a.a.s. constancy is a very strong notion of convergence and it does not follow from convergence in the
senses above. In fact, obtaining such a strong convergence result depends heavily on the details of
the term language, as well as the parameters that control the random graph: see Section 7 for further
discussion of the line between a.a.s. convergence and divergence. Our study gives particular emphasis
to sparse random graph models, like Barabási-Albert, which are closer to graphs arising in practice.

3 Preliminaries

3.1 Featured random graphs and convergence

Random graphs. We consider simple, undirected graphs G = (VG, EG, HG) where each node is
associated with a vector of node features given by HG : VG → Rd. We refer to this as a featured
graph. We are interested in random graph models, specifying for each number n a distribution µn

on graphs with n nodes, along with random graph feature models, where we have a distribution µn

on featured graphs with n nodes. Given a random graph model and a distribution ν over Rd, we get
a random graph feature model by letting the node features be chosen independently of the graph
structure via ν.

Erdős-Rényi and the stochastic block model. The most basic random graph model we deal
with is the Erdős-Rényi distribution ER(n, p(n)), where an edge is included in the graph with
n nodes with probability p(n) [14]. The classical case is when p(n) is independent of the graph
size n, which we refer as the dense ER distribution. We also consider the stochastic block model
SBM(n1, . . . , nM , P ), which contains m communities of sizes n1, . . . , nM and an edge probability
matrix between communities P ∈ RM×M . A community i is sampled from the Erdős-Rényi
distribution ER(n, p(n) = Pi,i) and an edge to a node in another community j is included with
probability Pi,j .

The Barabási-Albert preferential attachment model. Many graphs encountered in the real world
obey a power law, in which a few vertices are far more connected than the rest [7]. The Barabási-
Albert distribution was developed to model this phenomenon [3]. It is parametrised by a single integer
m, and the n-vertex graph BA(n,m) is generated sequentially, beginning with a fully connected
m-vertex graph. Nodes are added one at a time and get connected via m new edges to previous nodes,
where the probability of attaching to a node is proportional to its degree.

Almost sure convergence. Given any function F from featured graphs to real vectors and a random
featured graph model (µn)n∈N, we say F converges asymptotically almost surely (converges a.a.s.)
to a vector z with respect to µ̄ if for all ϵ, θ > 0 there is N ∈ N such that for all n ≥ N , with
probability at least 1− θ when drawing featured graphs G from µn, we have that ∥F (G)− z∥ < ϵ.

3.2 Graph neural networks and graph transformers

We first briefly introduce message passing neural networks (MPNNs) [20], which include the vast
majority of graph neural networks, as well as (graph) transformers.

Message passing neural networks. Given a featured graph G = (VG, EG, HG), an MPNN sets
the initial features h

(0)
v = HG(v) and iteratively updates the feature h

(ℓ)
v of each node v, for

3



0 ≤ ℓ ≤ L− 1, based on the node’s state and the state of its neighbors N (v) by defining h
(ℓ+1)
v as:

UPD(ℓ)
(
h(ℓ)
v ,AGG(ℓ)

(
h(ℓ)
v , {{h(ℓ)

u | u ∈ N (v)}}
))

,

where {{·}} denotes a multiset and UPD(ℓ) and AGG(ℓ) are differentiable update and aggregation
functions, respectively. The final node embeddings are pooled to form a graph embedding vector
z
(L)
G to predict properties of entire graphs. A MEANGNN is an MPNN where the aggregate is mean.

GATs. One class of MPNNs are graph attention networks (GATs) [49], where each node is updated
with a weighted average of its neighbours’ representations, letting h

(ℓ+1)
v be:

∑
u∈N (v)

exp
(
score

(
h
(ℓ)
v ,h

(ℓ)
u

))
∑

w∈N (v)

exp
(
score

(
h
(ℓ)
v ,h

(ℓ)
w

))W (ℓ)h(ℓ)
u ,

where score is a certain learnable Lipschitz function.

Graph transformers. Beyond traditional MPNNs, graph transformers extend the well-known
transformer architecture to the graph domain. The key ingredient in transformers is the self-attention
mechanism. Given a featured graph, a single attention head computes a new representation for every
(query) node v, in every layer ℓ > 0 as follows:

ATT(v) =
∑
u∈VG

exp
(
scale

(
h
(ℓ)
v ,h

(ℓ)
u

))
∑

w∈VG

exp
(
scale

(
h
(ℓ)
v ,h

(ℓ)
w

))W (ℓ)h(ℓ)
u

where scale is another learnable Lipschitz function (the scaled dot-product).

The vanilla transformer architecture ignores the graph structure. Graph transformer architectures [53,
41, 37] address this by explicitly encoding graph inductive biases, most typically in the form of
positional encodings (PEs). In their simplest form, these encodings are additional features pv for
every node v that encode a node property (e.g., node degree) which are concatenated to the node
features hv . The random walk positional encoding (RW) [12] of each node v is given by:

rwv = [rwv,1, rwv,2, . . . rwv,k],

where rwv,i is the probability of an i-length random walk that starts at v to end at v.

The GPS architecture [41] is a representative graph transformer, which applies a parallel computation
in every layer: a transformer layer (with or without PEs) and an MPNN layer are applied in parallel
and their outputs are summed to yield the node representations. By including a standard MPNN in
this way, a GPS layer can take advantage of the graph topology even when there is no positional
encoding. In the context of this paper, we write GPS to refer to a GPS architecture that uses an
MPNN with mean aggregation, and GPS+RW if the architecture additionally uses a random-walk PE.

Probabilistic classifiers. We are looking at models that produce a vector of reals on each graph. All
of these models can be used as probabilistic graph classifiers. We only need to ensure that the final
layer is a softmax or sigmoid applied to pooled representations.

4 Model architectures via term languages

We demonstrate the robustness and generality of the convergence phenomenon by defining a term
language consisting of compositions of operators on graphs. Terms are formal sequences of symbols
which when interpreted in a given graph yield a real-valued function on the graph nodes.

Definition 4.1 (Term language). AGG[WMEAN] is a term language which contains node variables
x, y, z, . . . and terms defined inductively:2

• The basic terms are of the form H(x), representing the features of the node x, and constants c.

2In the body we reserve x, y, z for free variables and u, v, w for concrete nodes in a graph.
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• Let h : Rd → (0,∞)d be a function which is Lipschitz continuous on every compact domain.
Given terms τ and π, the local h-weighted mean for node variable x is:∑

y∈N (x)

τ(y) ⋆ h(π(y))

The interpretation of ⋆ will be defined below. The global h-weighted mean is the term:∑
y

τ(y) ⋆ h(π(y))

• Terms are closed under applying a function symbol for each Lipschitz continuous F : Rd×k → Rd

for any k ∈ N+.

The weighted mean operator takes a weighted average of the values returned by τ . It uses π to
perform a weighting, normalizing the values of π using h to ensure that we are not dividing by zero
(see below for the precise definition).

To avoid notational clutter, we keep the dimension of each term fixed at d. It is possible to simulate
terms with different dimensions by letting d be the maximum dimension and padding the vectors
with zeros, noting that the padding operation is Lipschitz continuous.

We make the interpretation of the terms precise as follows. See Figure 2 for a graphical example of
evaluating a term on a graph.
Definition 4.2. Let G = (VG, EG, HG) be a featured graph. Let τ be a term with free variables
x1, . . . , xk and ū = (u1, . . . , uk) a tuple of nodes. The interpretation Jτ(ū)KG of term τ graph G for
tuple ū is defined recursively:

• Jc(ū)KG = c for any constant c.

• JH(xi)(ū)KG = HG(ui) for the ith node’s features.

• JF (τ1, . . . , τk)(ū)KG = F (Jτ1(ū)KG, . . . , Jτk(ū)KG) for any function symbol F .

• For any term composed using ⋆:
u

v
∑

y∈N (xi)

τ ⋆ h(π)(ū)

}

~

G

=


∑

v∈N(ui)

Jτ(ū,v)KGh(Jπ(ū,v)KG)∑
v∈N(ui)

h(Jπ(ū,v)KG) if N (ui) ̸= ∅;

0 if N (ui) = ∅.

The semantics of global weighted mean is defined analogously and omitted for brevity.

4.0

2.0

0.0 -3.0

1.0

1.0

1.0 1.0

10.0

6.0

2.0 -4.0

4.0

6.0

4.0 2.0

Input graph

Figure 2: Evaluation of the term
∑

x∈N (y)(2H(x) + 2) ⋆ 1.0 on a small graph with scalar features.
The term computes the mean of z 7→ 2z + 2 on each of a node’s neighbours. As each sub-term has
one free variable, we can represent the intermediate results as scalar values for each node.

A closed term has all node variables bound by a weighted mean operator: so the implicit input is just
a featured graph.
Definition 4.3. We augment the term language to AGG[WMEAN, RW] by adding the random walk
operator rw(x). The interpretation of rw(xi) given a graph G and a tuple of nodes ū, is:

Jrw(xi)(ū)KG = [rwui,1, . . . , rwui,d]
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4.1 How powerful is the term language?

Various architectures can be described using this term language. The core idea is always the same:
we show that all basic building blocks of the architecture can be captured in the term language and
applying this inductively yields the desired result. Let us first note that all linear functions and all
commonly used activation functions are Lipschitz continuous, and therefore included in the language.

MPNNs with mean aggregation. Consider an L-layer MPNN with mean aggregation, update
functions UPD(ℓ) consisting of an activation function applied to a linear transformation, with mean
pooling at the end. First, note that mean aggregation can be expressed as:

MEANyπ(y) :=
∑
y

π(y) ⋆ 1.

For each layer 0 ≤ ℓ < L, we define a term τ (ℓ)(x) which will compute the representation of a node
at layer ℓ of the MPNN:

• Initialization. Let τ (0)(x) := H(x). Then the value Jτ (0)(x)(u)KG at a node u is the initial node
representation H(u).

• Layers. For 1 ≤ ℓ < L, define τ (ℓ+1)(x) := UPD(ℓ)
(
x,MEANy∈N (x)τ

(ℓ)(y)
)
. Then the value at

node u is the following, which conforms with the inductive construction of the MPNN:

Jτ (ℓ+1)(x)(u)KG = UPD(ℓ)

Jτ (ℓ)(x)(u)KG,
1

|N (u)|
∑

v∈N (u)

Jτ (ℓ)(x)(v)KG


• Final mean pooling. The final graph representation is computed as τ := MEANxτ

(L)(x).

The idea is similar for the other architectures, where the difference lies in the aggregation functions.
Thus below we only present how the term language captures their respective aggregation functions.

Graph transformers. We can express the self-attention mechanism of transformers using the
following aggregator:

ATTyπ(y) :=
∑
y

π(y) ⋆ exp(scale(π(x), π(y)))

The function scale(π(x), π(y)) is a term in the language, since scaled dot product attention is a
Lipschitz function. To see how graph transformer architectures such as GPS can be expressed, it
suffices to note that we can express both self-attention layers and MPNN layers with mean aggregation,
since the term language is closed under addition. The random walk positional encoding can also be
expressed using the rw operator.

Graph attention networks. The attention mechanism of GAT is local to a node’s neighbours and
can be expressed in our term language using similar ideas, except using the local aggregate terms.

Additional architectural features. Because the term language allows the arbitrary combination of
graph operations, it can robustly capture many common architectural choices used in graph learning
architectures. For example, a skip connection or residual connection from layer ℓ1 to layer ℓ2 can
be expressed by including a copy of the term for layer ℓ1 in the term for the layer ℓ2 [51]. Global
readout can be captured using a global mean aggregation [5]. Attention conditioned on computed
node or node-pair representations can be captured by including the term which computes these
representations in the mean weight [37].

Capturing probabilistic classification. Our term language defines bounded vector-valued functions
over graphs. Standard normalization functions, like softmax and sigmoid, are easily expressible in
our term language, so probabilistic classifiers are subsumed.

Graph convolutional networks. In Appendix A we show how to extend the term language to
incorporate graph convolutional networks (GCNs) [29] by adding a new aggregator.

5 Convergence theorems

We start by presenting the convergence theorem.
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Theorem 5.1. Consider (µn)n∈N sampling a graph G from any of the following models and node
features independently from i.i.d. bounded distributions on d features.

1. The Erdős-Rényi distribution ER(n, p(n)) where p satisfies any of the following properties.

• Density. p converges to p̃ > 0.
• Root growth. For some K > 0 and 0 < β < 1 we have: p(n) = Kn−β .
• Logarithmic growth. For some K > 0 we have: p(n) = K log(n)

n .
• Sparsity. For some K > 0 we have: p(n) = Kn−1.

2. The Barabási-Albert model BA(n,m) for any m ≥ 1.

3. The stochastic block model SBM(n1(n), . . . , nm(n),P ) where n1, . . . , nm : N → N are such
that n1(n) + · · · + nm(n) = n and each ni

n converges, and P is any symmetric m ×m edge
probability matrix.

Then every AGG[WMEAN, RW] term converges a.a.s. to a constant with respect to (µn)n∈N.3

Concretely, this result shows that for any probabilistic classifier, or other real-valued classifier, which
can be expressed within the term language, when drawing graphs from any of these distributions,
eventually the output of the classifier will be the same regardless of the input graph, asymptotically
almost surely. Thus, the only probabilistic classifiers which can be expressed by such models are
those which are asymptotically constant.
Corollary 5.2. For any of the random graph featured models above, for any MeanGNN, GAT, or GPS
+ RW, there is a distribution p̄ on the classes such that the class probabilities converge asymptotically
almost surely to p̄.

We now discuss briefly how the results are proven. The cases divide into two groups: the denser cases
(the first three ER distributions and the SBM) and the sparser cases (the fourth ER distribution and
the BA model). Each is proved with a different strategy.

5.1 Overview of the technical constructions for the denser cases

While the theorem is about closed terms, naturally we need to prove it inductively on the term
language, which requires consideration of terms with free variables. We show that each open term
in some sense degenerates to a Lipschitz function almost surely. The only caveat is that we may
need to distinguish based on the “type” of the node – for example, nodes u1, u2, u3 that form a
triangle may require a different function from nodes that do not. Formally, for node variables x̄, an x̄
graph type is a conjunction of expressions E(xi, xj) and their negations. The graph type of tuple ū
in a graph, denoted GrTp(ū) is the set of all edge relations and their negations that hold between
elements of ū. A (x̄, d) feature-type controller is a Lipschitz function taking as input pairs consisting
of d-dimensional real vector and an x̄ graph type.

The key theorem below shows that to each term π we can associate a feature-type controller eπ which
captures the asymptotic behaviour of π, in the sense that with high probability, for most of the tuples
ū the value of eπ(HG(ū),GrTp(ū)) is close to Jπ(ū)K.
Theorem 5.3 (Aggregate Elimination for Non-Sparse Graphs). For all terms π(x̄) over featured
graphs with d features, there is a (x̄, d) feature-type controller eπ such that for every ϵ, δ, θ > 0,
there is N ∈ N such that for all n ≥ N , with probability at least 1− θ in the space of graphs of size
n, out of all the tuples ū at least 1− δ satisfy that ∥eπ(HG(ū),GrTp(ū))− Jπ(ū)K∥ < ϵ.

This can be seen as a kind of “almost sure quantifier elimination” (thinking of aggregates as quanti-
fiers), in the spirit of Kaila [24], Keisler and Lotfallah [26]. It is proven by induction on term depth,
with the log neighbourhood bound playing a critical role in the induction step for weighted mean.

Theorem 5.3 highlights an advantage of working with a term language having nice closure properties,
rather than directly with GNNs: it allows us to use induction on term construction, which may be
more natural and more powerful than induction on layers. Theorem 5.3 also gives strong limitations
on node and link classification using GNNs: on most nodes in (non-sparse) random graphs, GNNs
can only classify based on the features of a node, they cannot make use of any graph structure.

3The appendix includes additional results for the GCN aggregator.
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5.2 Overview of the technical constructions for the sparser cases

In the sparser cases, the analysis is a bit more involved. Instead of graph types over ū, which only
specify graph relations among the ū, we require descriptions of local neighbourhoods of ū.
Definition 5.4. Let G be a graph, ū a tuple of nodes in G and ℓ ∈ N. The ℓ-neighbourhood of ū in G,
denoted N ℓ(ū) is the subgraph of G induced by the nodes of distance at most ℓ from some node in ū.

The “types” are now graphs T with k distinguished elements w̄, which we call k-rooted graphs. Two
k-rooted graphs (T, w̄) and (U, z̄) are isomorphic is there is a structure-preserving bijection T → U
which maps w̄ to z̄. The combinatorial tool here is a fact known in the literature as ‘weak local
convergence’: the percentage of local neighbourhoods of any given type converges.
Lemma 5.5 (Weak local convergence). Consider sampling a graph G from either the sparse ER or
BA distributions. Let (T, w̄) be a k-rooted graph and take ℓ ∈ N. There is qT ∈ [0, 1] such that for
all ϵ, θ > 0 there is N ∈ N such that for all n ≥ N with probability at least 1− θ we have that:∣∣∣∣ |{ū | N ℓ(ū) ∼= (T, w̄)}|

n
− qT

∣∣∣∣ < ϵ

Our “aggregate elimination”, analogous to Theorem 5.3, states that every term can be approximated
by a Lipschitz function of the features and the neighbourhood type.
Theorem 5.6 (Aggregate Elimination for Sparser Graphs). For every π(x̄), letting ℓ be the max-
imum aggregator nesting depth in π, for all k-rooted graphs (T, w̄) there is a Lipschitz function
eTπ : R|T |·d → Rd such that for each ϵ, θ > 0, there isN ∈ N such that for all n ≥ N with probability
at least 1 − θ in the space of graphs of size n, for every k-tuple of nodes ū in the graph such that
N ℓ(ū) ∼= (T, w̄) we have that

∥∥eTπ (HG(N ℓ(ū)))− Jπ(ū)K
∥∥ < ϵ.

Compared to Theorem 5.3 the result is much less limiting in what node-classifying GNNs can express.
Although combining the sparse and non-sparse conditions covers many possible growth rates, it is
not true that one gets convergence for Erdős-Rényi with arbitrary growth functions:
Theorem 5.7. There are functions p(n) converging to zero and a term τ in our language such that τ
does not converge even in distribution (and hence does not converge a.a.s.) over ER random graphs
with growth rate p.

Proof. Let p alternate between 1
2 on even n and 1

n on odd n. Consider τ1(x) that returns 0 if x has a
neighbour and 1 otherwise, and let τ be the global average of τ1. So τ is the percentage of isolated
nodes in the graph. Then τ clearly goes to zero in the non-sparse case. However the probability that a
particular node is not isolated in a random sparse graph of size n is (1− 1

n )
n−1, which goes to 1

e < 1.
Thus JτK diverges on ER(n, p(n)).

6 Experimental evaluation

We first empirically verify our findings on random graphs and then on a real-world graph to answer
the following questions: Q1. Do we empirically observe convergence? Q2. What is the impact of
the different weighted mean aggregations on the convergence? Q3. What is the impact of the graph
distribution on the convergence? Q4. Can these phenomena arise within large real-world graphs?

All our experiments were run on a single NVidia GTX V100 GPU. We made our codebase available
online at https://github.com/benfinkelshtein/GNN-Asymptotically-Constant.

Setup. We report experiments for the architectures MeanGNN, GAT [49], and GPS+RW [41] with
random walks of length up to 5. Our setup is carefully designed to eliminate confounding factors:

• We consider five models with the same architecture, each having randomly initialized weights,
utilizing a ReLU non-linearity, and applying a softmax function to their outputs. Each model
uses a hidden dimension of 128, 3 layers and an output dimension of 5.

• We experiment with distributions ER(n, p(n) = 0.1), ER(n, p(n) = logn
n ), ER(n, p(n) = 1

50n ),
BA(n,m = 5). We also experiment with an SBM of 10 communities with equal size, where an
edge between nodes within the same community is included with probability 0.7 and an edge
between nodes of different communities is included with probability 0.1.
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• We draw graphs of sizes up to 10,000, where we take 100 samples of each graph size. Node
features are independently drawn from U [0, 1] and the initial feature dimension is 128.

To understand the behaviour of the respective models, we will draw larger and larger graphs from
the graph distributions. We use five different models to ensure this is not a model-specific behaviour.
Further experimental results are reported in Appendix F.

6.1 Empirical results on random graph models

In Figure 3, a single model initialization of the MeanGNN, GAT and GPS+RW architectures is used
with ER(n, p(n) = 0.1), ER(n, p(n) = logn

n ) and ER(n, p(n) = 1
50n ). Each curve in the plots

corresponds to a different class probability, depicting the average of 100 samples for each graph size
along with the standard deviation shown in lower opacity.

The convergence of class probabilities is apparent across all models and graph distributions, as
illustrated in Figure 3, in accordance with our main theorems (Q1). The key differences between the
plots are the convergence time, the standard deviation and the converged values.

One striking feature of Figure 3 is that the eventual constant output of each model is the same for the
dense and logarithmic growth distributions, but not for the sparse distribution (Q3). We can relate this
to the distinct proof strategy employed in the sparse case, which uses convergence of the proportions
of local isomorphism types. There are many local isomorphism types, and the experiments show that
what we converge to depends the proportion of these. In all other cases the neighbourhood sizes are
unbounded, so there is asymptotically almost surely one ‘local graph type’.

We observe that attention-based models such as GAT and GPS+RW exhibit delayed convergence
and greater standard deviation in comparison to MeanGNN (Q2). A possible explanation is that
because some nodes are weighted more than others, the attention aggregation has a higher variance
than regular mean aggregation. For instance, if half of the nodes have weights close to 0, then the

(a) Dense ER (b) Logarithmic growth ER (c) Sparse ER

Figure 3: Each plot shows the five mean class probabilities (in different colours) with standard
deviations of a single model initialization over ER(n, p(n) = 0.1), ER(n, p(n) = logn

n ), and
ER(n, p(n) = 1

50n ), as we draw graphs of increasing size.
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Figure 4: Each plot depicts the standard deviation of Euclidean distances between class probabilities
and their respective means across various samples of each graph size for GPS+RW.

attention aggregation effectively takes a mean over half of the available nodes. Eventually, however,
the attention weights themselves converge, and thus convergence cannot be postponed indefinitely.

Figure 4 depicts the outcomes of the GPS+RW architecture for various graph distributions. The
analysis involves calculating the Euclidean distance between the class probabilities of the GPS+RW
architecture and the mean class probabilities over the different graph samples. The standard deviation
across the different graph samples is then derived for each of the 5 different model initializations and
presented in Figure 4. The decrease of standard deviation across the different model initializations
in Figure 4 indicates that all class probabilities converge across the different model initializations,
empirically verifying the phenomenon for varying model initializations (Q1 and Q3).

6.2 Empirical results on large real-world graphs

Figure 5: Standard deviation of distances be-
tween class probabilities and their means across
TIGER-Alaska graph sizes for MeanGNN.

Towards Q4, we investigated a large real-world
dataset. Many commonly studied graph datasets
(e.g. ZINC [13], QM9 [6]) do not exhibit sufficient
graph size variance and provide no obvious means
to add scaling. We used the TIGER-Alaska dataset
[16] of geographic faces. The original dataset has
93366 nodes, while Dimitrov et al. [10] extracted
smaller datasets with graphs having 1K, 5K, 10K,
25K and 90K nodes. We chose the modified dataset
as it is split by graph size, and consists of graphs
differing from our random models (in particular all
graphs are planar). Figure 5 shows the results of
applying the same five MeanGNNs to graphs of
increasing sizes. Strikingly, we again observe a
convergence phenomenon, but at a slower pace.

7 Discussion and limitations

We have demonstrated a wide convergence phenomenon for real-valued classifiers expressed even in
very advanced GNN architectures, and it applies to a great variety of random graph models. Rather
than having separate proof techniques per GNN model, our paper introduces a broad language where
such models can be situated, and provides techniques at the level of term languages. Although our
top-level theorems deal with graph-level tasks, along the way we provide strong limitative results on
what can be achieved on random graphs for node- or edge-level real-valued tasks: see Theorem 5.3.

The principal limitations of our work come our assumptions. In particular, we assume that the initial
node embeddings are i.i.d. This assumption is used in the application concentration inequalities
throughout the proofs, so loosening it would require careful consideration.

Our main results show that many GNN architectures cannot distinguish large graphs. To overcome
this limitation, one could consider moving beyond our term language. For example, if we add sum
aggregation, the term values clearly diverge, and similarly if we allow non-smooth functions, such
as linear inequalities. Further we emphasize that a.a.s. convergence is not universal for our term
language, and it does not hold even for ER with arbitrary p(n) going to 0: see Theorem 5.7.
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A Graph Convolutional Networks

In the body of the paper, we mentioned that our results can be extended to graph convolutional
networks (GCNs) [29]. In this section we show how to extend our term language to capture them.
Later in the appendix when providing proof details for our convergence laws, we will utilize the
extended language, thus showing the applicability to GCNs.

GCNs are instances of the message passing neural network in which the update function is defined as
follows.

h(ℓ+1)
v =

∑
u∈N (v)

1√
|N (v)||N (u)|

W (ℓ)h(ℓ)
u

To allow our term language to capture GCNs, we add the new aggregator:

GCNy∈N (x)τ(y)

The language AGG[WMEAN,GCN, RW] is the result of closing AGG[WMEAN, RW] under this operator.
The semantics are extended as follows.

q
GCNy∈N (xi)τ(ū)

y
G
=

∑
v∈N (ui)

1√
|N (ui)||N (v)|

Jτ(ū, v)KG

With this operator it is possible to capture GCNs in the same way as MeanGNNs are captured
(Section 4). Moreover, the extended term language permits arbitrary combinations of the GCN
aggregator with other language features.

B Concentration Inequalities

Throughout the appendix, we make use of a few basic inequalities.

Theorem B.1 (Markov’s Inequality). Let X be a positive random variable with finite mean. Then for
any λ > 0 we have:

P(X ≥ λ) ≤ E[X]

λ

Proof. See Proposition 1.2.4, p. 8 of [50].

Theorem B.2 (Chebyshev’s Inequality). Let X be a random variable with finite mean µ and finite
variance σ2. Then for any λ > 0 we have:

P (|X − µ| ≥ λ) ≤ σ2

λ2

Proof. See Corollary 1.2.5, p. 8 of [50].

Theorem B.3 (Chernoff’s Inequality). Let Xi for i ≤ n be i.i.d. Bernoulli random variables with
parameter p.

(1) For any λ > p we have:

P

(
n∑

i=1

Xi ≥ λ

)
≤ e−np

(enp
λ

)λ
(2) For any λ < p we have:

P

(
n∑

i=1

Xi ≤ λ

)
≤ e−np

(enp
λ

)λ
Proof. See Theorem 2.3.1, p. 17 of [50] and Exercise 2.3.2, p. 18 of [50].
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Theorem B.4 (Hoeffding’s Inequality for bounded random variables). Let Xi for i ≤ n be i.i.d.
bounded random variables taking values in [a, b] with common mean µ. Then for any λ > 0 we have:

P

(∣∣∣∣∣
n∑

i=1

Xi − nµ

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− 2λ2

n(b− a)2

)

Proof. See Theorem 2.2.6, p. 16 of [50].

Corollary B.5 (Hoeffding’s Inequality for Bernoulli random variables). Let Xi for i ≤ n be i.i.d.
Bernoulli random variables with parameter p. Then for any λ > 0 we have:

P

(∣∣∣∣∣
n∑

i=1

Xi − np

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
−2λ2

n

)

C Proof for Erdős-Rényi distributions, the non-sparse cases

We new begin with the proof of convergence for the first three cases of the Erdős-Rényi distribution
in Theorem 5.1, which we restate here for convenience:
Theorem C.1. Consider (µn)n∈N sampling a graphG from the Erdős-Rényi distribution ER(n, p(n))
and node features independently from i.i.d. bounded distributions on d features, where p satisfies any
of the following properties.

• Density. p converges to p̃ > 0.
• Root growth. For some K > 0 and 0 < β < 1 we have: p(n) = Kn−β .
• Logarithmic growth. For some K > 0 we have: p(n) = K log(n)

n .

Then for every AGG[WMEAN, RW] term converges a.a.s. with respect to (µn)n∈N.

Note that throughout the following we use u and v to denote both nodes and node variables.

C.1 Combinatorial and growth lemmas

Remark C.2. At various points in the following we will make statements concerning particular nodes
of an Erdős-Rényi graph without fixing a graph. For example, we state that for any u we have that
its degree d(u) is the sum of n− 1 Bernoulli random variables. To make sense of such statements
we can fix a canonical enumeration of the nodes of every graph and view our node meta-variables
as ranging over indices. So we would translate the previous statement as “for any node index u the
degree of the uth node in ER(n, p(n)) is the sum of n− 1 Bernoulli random variables.”

Both the combinatorial and growth lemmas, and the main inductive results themselves require saying
that certain events hold with high probability. Inductively, we will need strengthenings of these
compared with the statements given in the body. We will need to consider conditional probabilities,
where the conditioning is on a conjunction of atomic statements about the nodes.
Definition C.3. A ∧-description ϕ(ū) is a conjunction of statements about the variables ū of
the form uiEuj , which expresses that there exists an edge between ui and uj . A ∧-description
ui1Euj1 ∧ · · · ∧ uimEujm holds if and only if there is an edge between uiℓ and ujℓ for each ℓ.

The reason for strengthening the results in this way will become clearer when we are proving the
local weighted mean induction step

∑
v∈N (ui)

ρ(ū, v) ⋆ h(η(ū, v)). There we will need our auxiliary
results to hold conditioned on vEui, along with any additional requirements coming from previous
induction steps.

We will first need a few auxiliary lemmas about the behaviour of random graphs in the different ER
models.

We will need to know that in the non-sparse case, neighborhoods are fairly big:
Lemma C.4 (Log neighbourhood bound). Let p : N → [0, 1] satisfy density, root growth or logarith-
mic growth. There is R > 0 such that for all δ, θ > 0 there is N ∈ N such that for all n ≥ N , with
probability at least 1− θ when drawing graphs from ER(n, p(n)), we have that the proportion of all
nodes u such that |N (u)| ≥ R log(n) is at least 1− δ.
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We prove a stronger result, which allows us finer control over the growth in each of the non-sparse
cases. The strengthening will involve the ∧-descriptions of Definition C.3.
Lemma C.5. Take any ∧-description ϕ on k variables, and choose i ≤ k. We consider k-tuples of
nodes ū satisfying ϕ and the degrees of the ith node ui.

(1) Let p satisfy the density condition, converging to p̃. Then for every ϵ, θ > 0 there is N ∈ N such
that for all n ≥ N , with probability at least 1− θ when drawing graphs from ER(n, p(n)), for
all tuples ū which satisfy ϕ we have that:

n(p̃− ϵ) < d(ui) < n(p̃+ ϵ)

(2) Let p satisfy the root growth condition, with p = Kn−β . Then for every R1 ∈ (0, 1) and R2 > 1
and for every θ > 0 there is N ∈ N such that for all n ≥ N , with probability at least 1− θ when
drawing graphs from ER(n, p(n)), for all tuples ū which satisfy ϕ we have that:

R1Kn
1−β < d(ui) < R2Kn

1−β

(3) Let p satisfy the log growth condition, with p = K log(n)
n . Then for every R1 ∈ (0, 1) and R2 > 1

and for every δ, θ > 0 there is N ∈ N such that for all n ≥ N , with probability at least 1 − θ
when drawing graphs from ER(n, p(n)), for at least 1− δ of the tuples ū which satisfy ϕ we have
that:

R1K log(n) < d(ui) < R2K log(n)

Moreover, there is R3 > 0 such that for every θ > 0 there is N ∈ N such that for all n ≥ N , with
probability at least 1− θ when drawing graphs from ER(n, p(n)), for all tuples ū which satisfy
ϕ we have that:

d(ui) < R3K log(n)

Note that in the first two cases, we only have claims about all tuples, while in the third case we make
an assertion about most tuples, while also asserting an upper bound on all tuples. The upper bound
on all tuples does not subsume the upper bound on most tuples, since the former states the existence
of an R3, while the latter gives a bound for an arbitrary R2.

We now give the proof of the lemma:

Proof.

(1) Take ϵ, θ > 0. First, there is N1 such that for all n ≥ N1:

|p(n)− p̃| < ϵ

Now, any d(u) is the sum of n − 1 i.i.d. Bernoulli random variables with parameter p(n): see
Remark C.2 for the formalization. Hence by Hoeffding’s Inequality (Theorem B.4) and a union
bound, there is N2 such that for all n ≥ N2, with probability at least 1− θ, for every node u we
have: ∣∣∣∣d(u)n − p̃

∣∣∣∣ < ϵ

Letting N = max(N1, N2), the result follows.

(2) Take R1 ∈ (0, 1) and R2 > 1 and fix θ > 0. Again, any d(u) is the sum of n− 1 i.i.d. Bernoulli
random variables with parameter p(n). By Chernoff’s Inequality (Theorem B.3), for any node u
we have that:

P
(
d(u) ≤ R1Kn

1−β
)
≤ exp

(
Kn1−β (R1 − 1−R1 log(R1))

)
Since R1 − 1 − R1 log(R1) < 0, by a union bound there is N1 such that for all n ≥ N1, with
probability at least 1− θ, for every node u we have:

d(u) > R1Kn
1−β

Similarly there is N2 such that for all n ≥ N2, with probability at least 1− θ, for every node u
we have:

d(u) < R2Kn
1−β

Letting N = max(N1, N2), the result follows.
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(3) Take R1 ∈ (0, 1) and R2 > 1 and fix δ, θ > 0. By Chernoff’s Inequality (Theorem B.3), for any
node u we have that:

P
(
d(u) ≤ R1Kn

1−β
)
≤ nK(R1−1−R1 log(R1))

Since R1 − 1−R1 log(R1) < 0 this probability tends to 0 as n tends to infinity. Hence there is
N1 such that for all n ≥ N1, for all nodes u:

P (d(u) ≤ R1 log(n)) < θδ

Let Bn be the proportion, our of tuples ū which satisfy ϕ, such that:

d(ui) ≤ R log(n)

(the ‘bad’ tuples). Then for n ≥ N1, by linearity of expectation E[Bn] ≤ θδ.

By Markov’s Inequality (Theorem B.1) we have that:

P (Bn ≥ δ) ≤ θδ

δ
= θ

That is, with probability at least 1− θ we have that the proportionout of tuples ū which satisfy ϕ
such that:

d(ui) > R1 log(n)

is at least 1− δ.

Similarly, there is N2 such that for all n ≥ N2, with probability at least 1− θ we have that the
proportion out of tuples ū which satisfy ϕ such that:

d(ui) < R2 log(n)

is at least 1− δ. Letting N = max(N1, N2) the first statement follows.

To show the ‘moreover’ part, note that by Chernoff’s Inequality (Theorem B.3), for any R3 > 0
and for any node u we have that:

P
(
d(u) ≥ R3Kn

1−β
)
≤ nK(R3−1−R3 log(R3))

For R3 large enough we have that K(R3 − 1−R3 log(R3)) ≤ −2. Hence taking a union bound
for every θ > 0 there is N ∈ N such that for all n ≥ N , with probability at least 1 − θ when
drawing graphs from ER(n, p(n)), for all tuples ū which satisfy ϕ we have that:

d(ui) < R3K log(n)

The basic form of the following “regularity lemma” states that for every k ∈ N+ and i ≤ k, whenever
we have a large subset S of the (k + 1)-tuples (ū, v) with each ui adjacent to v, there is a large
subset of the k-tuples ū such that each ui is adjacent to a large set of v’s such that (ū, v) ∈ S.
The full regularity lemma states that this is the case also when we restrict the tuples ū to a certain
∧-description.
Lemma C.6 (Regularity Lemma). Let p : N → [0, 1] satisfy one of the conditions other than sparsity.
Take a ∧-description ϕ on k variables and fix i ≤ k. Then for every γ, θ > 0 there is N ∈ N and
δ′ > 0 such that for all n ≥ N and δ < δ′, with probability at least 1− θ we have that, whenever
S ⊆ {(ū, v) | ϕ(ū) ∧ uiEv} is such that:

|S|
|{(ū, v) | ϕ(ū) ∧ uiEv}|

≥ 1− δ

then there is S′ ⊆ {ū | ϕ(ū) and d(ui) > 0} such that:

|S′|
|{ū | ϕ(ū) and d(ui) > 0}|

≥ 1− γ

and for every ū ∈ S′ we have:

|{v | (ū, v) ∈ S}|
d(ui)

≥ 1− (δ + δ2)
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For this we make use of the following purely combinatorial lemma.

Lemma C.7. Take δ, σ > 0. Let (B1, . . . , Bm) be a sequence of disjoint finite sets of minimum size
a and maximum size b. Take S ⊆

⋃m
i=1Bi such that:

|S|∑m
i=1|Bi|

≥ 1− δ

Let:

S′ :=

{
i

∣∣∣∣ |S ∩Bi|
|Bi|

≥ 1− σ

}
Then:

|S′|
m

≥ 1− (σ − δ)a

(σ − δ)a+ δb

Proof. Let B̄ := (B1, . . . , Bm). We look for an upper bound on:

γB̄,S := 1− |S′|
m

To do this, take any (B̄, S) with proportion at least 1− δ which minimises γB̄,S . By performing a
series of transformations, we show that we can assume that (B̄, S) is of a particular form.

• First, ensuring that S ∩Bi = Bi for each i ∈ S′ does not increase γB̄,S and does not decrease
the proportion |S|∑m

i=1|Bi| .

• We can also make sure that |Bi| = b for each i ∈ S′.

• Similarly, we can ensure that:
|S ∩Bi|
|Bi|

= ⌊1− σ⌋

for each i /∈ S′.

• Finally, we can make sure that |Bi| = a for each i /∈ S′.

Now, using this nice form for (B̄, S), we can compute:

1− δ ≤ |S|∑m
i=1|Bi|

≤
γB̄,Sb+ (1− γB̄,S)(1− σ)a

γB̄,Sb+ (1− γB̄,S)a

Rearranging we get:
|S′|
m

= 1− γB̄,S ≥ 1− (σ − δ)a

(σ − δ)a+ δb

as required.

Proof of Lemma C.6. We proceed differently depending on which of the non-sparse conditions are
satisfied.

We begin with the Density condition. Say p converges to some p̃ > 0. Fix γ, θ > 0. Now choose
ϵ, δ′ > 0 small enough. We will decide how small later, but we need at least ϵ < p̃.

By Lemma C.5 (1) there is N such that for all n ≥ N , with probability at least 1− θ, for all tuples ū
which satisfy ϕ(ū) we have that:

n(p̃− ϵ) < d(ui) < n(p̃+ ϵ)

Condition on the event that this holds.

Take any δ < δ′ and S ⊆ {(ū, v) | ϕ(ū) ∧ uiEv} such that:

|S|
|{(ū, v) | ϕ(ū) ∧ uiEv}|

≥ 1− δ

18



Let:

S′ :=

{
ū

∣∣∣∣ ϕ(ū) and
|{v | (ū, v) ∈ S}|

d(ui)
≥ 1− (δ + δ2)

}
Applying Lemma C.7 with σ = δ + δ2, a = n(p̃− ϵ) and n = n(p̃+ ϵ), we get that:

|S′|
|{ū | ϕ(ū) and d(ui) > 0}|

≥ 1− (δ + δ2 − δ)n(p̃− ϵ)

(δ + δ2 − δ)n(p̃− ϵ) + δn(p̃+ ϵ)

= 1− δ(p̃− ϵ)

δ(p̃− ϵ) + (p̃+ ϵ)

By making ϵ and δ′ small enough, we can make this greater than 1− γ. This completes the proof for
the dense case.

We now give the proof for the case of Root growth. Let p(n) = Kn−β . Fix γ, θ > 0. Choose δ′ > 0
small enough. Also choose R1 ∈ (0, 1) and R2 > 1.

By Lemma C.5 (2) there is N ∈ N such that for all n ≥ N , with probability at least 1 − θ, for all
tuples ū which satisfy ϕ(ū) we have that:

R1Kn
1−β < d(ui) < R2Kn

1−β

Proceeding analogously to the dense case, we have that for all δ < δ′:

|S′|
|{ū | ϕ(ū) and d(ui) > 0}|

≥ 1− δR1Kn
1−β

δnR1Kn1−β +R2Kn1−β

= 1− δR1

δR1 +R2

By making δ′ and R2 −R1 small enough, we can make this greater than 1− γ. This completes the
proof for the root growth case.

Finally, we give the argument for the case of Logarithmic growth. Let p(n) = K log(n)
n . Fix

γ, θ > 0. Choose ζ, δ′ > 0 small enough. Also choose R1 ∈ (0, 1) and R2 > 1.

By Lemma C.5 (3), there is R3 > 0 and N ∈ N such that for all n ≥ N , with probability at least
1− θ when drawing graphs from ER(n, p(n)), for at least 1− δ of the tuples ū which satisfy ϕ(ū)
we have that:

R1K log(n) < d(ui) < R2K log(n)

and moreover for all tuples ū which satisfy ϕ(ū) we have that:
d(ui) < R3K log(n)

Now, let:
Q := {ū | R1K log(n) < d(ui) < R2K log(n)}

For n large enough we have both:
|Q|

|{ū | ϕ(ū) and d(ui) > 0}|
≥ 1− ζ

and (using the fact that outside of Q all nodes ui have degree at most R3K log(n)):
|{(ū, v) | ϕ(ū) ∧ uiEv and ū ∈ Q}|

|{(ū, v) | ϕ(ū) ∧ uiEv}|
≥ 1− ζ

Since we have control over ζ, it suffices to restrict attention to:
S ⊆ {(ū, v) | ϕ(ū) ∧ uiEv and ū ∈ Q}

Then, analogously to the dense case, we have that for the worst case, for every δ < δ′:
|S′|

|{ū | ϕ(ū) and d(ui) > 0}|
≥ 1− δR1

δR1 +R2

By making δ′ and R2 −R1 small enough, we can make this greater than 1− γ.

This completes the proof of Lemma C.6 for the logarithmic growth case.
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The following lemma will be needed only in the analysis of random walk embeddings. It gives
the asymptotic behaviour of the random walk embeddings in the non-sparse cases. We see that the
embeddings are almost surely zero.
Lemma C.8. Let p : N → N satisfy density, root growth or logarithmic growth. Then for every
k ∈ N and every ϵ, δ, θ > 0 there is N ∈ N such that for all n ≥ N with probability at least 1− θ,
the proportion of nodes v such that:

∥rwk(v)∥ < ϵ

is at least 1− δ.

Proof. We start with the Dense case. Let p converge to p̃ > 0. Take ϵ, δ, θ > 0. By Hoeffding’s
Inequality (Theorem B.4) and taking a union bound, there is N such that for all n ≥ N with
probability at least 1− θ we have that:

|d(v)− p̃n| < ϵn

Condition on this event.

For any node v the number of length-k walks from v is at least:

((p̃− ϵ)n)
k

By removing the last node of the walk, the number of length-k walks from v to itself is at most the
number of length-(k − 1) walks from v.

The number of length-(k − 1) walks from v is at most:

((p̃+ ϵ)n)
k−1

Thus the proportion of length-k walks from v which return to v is at most:

((p̃+ ϵ)n)
k−1

((p̃− ϵ)n)
k

=
(p̃+ ϵ)k−1

(p̃− ϵ)k
n−1

This tends to 0 an n tends to infinity.

We now argue this for the Root growth case. Let p = Kn−β .

As in the proof of Lemma C.6, by Chernoff’s Inequality (Theorem B.3) and taking a union bound,
there are 0 < R1 < 1 < R2 and N such that for all n ≥ N with probability at least 1− θ we have
that for all v:

R1Kn
1−β < d(v) < R2Kn

1−β

Then, as in the dense case, the proportion of length-k walks from v which return to v is at most:(
R2Kn

1−β
)k−1

(R1Kn1−β)
k

=
Rk−1

2

Rk
1K

nβ−1

which tends to 0 as n tends to infinity.

Finally, we argue this for the Logarithmic growth case. Let p = K log(n). Take ϵ, δ, θ > 0.

As in the proof of Lemma C.6, by Chernoff’s Inequality (Theorem B.3), there are 0 < R1 < 1 < R2

andN such that for all n ≥ N1 with probability at least 1−θ we have that for at least 1−δ proportion
of nodes v:

R1K log(n) < d(v) < R2K log(n) (⋆)

Moreover, by Chernoff’s Inequality and a union bound, there is R3 > 0 such that for all n ≥ N2 with
probability at least 1− θ we have that for all v:

d(v) < R3K log(n)

Let N := max(N1, N2). Take n ≥ N . We will condition on the event that the above inequalities
hold.
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Take any node v such that equation (⋆) holds. Then, the number of length-k walks from v is at least:

R1K log(n)((1− δ)(R1K log(n)))k−1

The number of length-k walks from v to itself is at most:

(R3K log(n))k−1

Thus the proportion of length-k walks from v which return to v is at most:

(R3K log(n))k−1

R1K log(n)((1− δ)(R1K log(n)))k−1
=

Rk−1
3

Rk
1(1− δ)k−1

· 1

log(n)

This tends to 0 as n tends to infinity.

Finally, we need a simple lemma about division, which has a straightforward proof:

Lemma C.9. Let x, y, z, w ∈ R and ζ, ξ, ν,Ω > 0 with ν > ξ be such that |x − y| < ζ and
|z − w| < ξ while |x|, |z| < Ω and z > ν. Then:∣∣∣x

z
− y

w

∣∣∣ < Ω(ζ + ξ)

ν(ν − ξ)

C.2 Proving the inductive invariant for the non-sparse cases, and proving the convergence
theorem for these cases

With the growth lemmas for the non-sparse cases in hand, we return to presenting the main proof of
Theorem C.1, the convergence theorem for non-sparse ER distributions.

Throughout the following subsection, for notational convenience we allow empty tuples.

For a tuple ū in a graph let GrTp(ū) be the graph type of ū. For k ∈ N let GrTpk be the set of such
types with k free variables. For any t ∈ GrTpk let:

Ext(t) := {t′(ū, v) ∈ GrTpk+1 | t′(ū, v) ⊨ t(ū)}

For any ui free in t let:

Extui
(t) := {t′(ū, v) ∈ GrTpk+1 | t′(ū, v) ⊨ t(ū) ∧ uiEv}

We now are ready to begin the proof of Theorem 5.1 for the non-sparse cases. This will involve
defining controllers and proving that they satisfy the inductive invariant.

Let F be the probability distribution of the node features, which, for the sake of convenience, we
assume to have domain [0, 1]d. The domain [0, 1]d can be replaced by the more general domain [a, b]d

in the results and proofs without further modification. But we note that the domain [0, 1]d is already
sufficient for the results to hold in the general case. Indeed, suppose τ(x̄) is a term which we apply to
a graph distribution D with features in [a, b]d. Modify this distribution to D′ by applying the function
z̄ 7→ (z̄ − a)/(b− a) to the features. This is now a distribution with features in [0, 1]d. Modify τ to
τ ′ by replacing each H(x) by F (H(x)), where F is the function z̄ 7→ (b− a)z̄ + a. Then evaluating
τ ′ on D′ is equivalent to evaluating τ on D.

Note that in each case the probability function p(n) converges to some p̃ (which is 0 in the root
growth and logarithmic growth cases).

Recall from the body of the paper that a (ū, d) feature-type controller is a Lipschitz function taking
as input pairs consisting of a d-dimensional real vector and a ū graph type. Recall from Theorem
5.3 that for each term π, we need to define a controller eπ that approximates it. We first give the
construction of eπ and then recall and verify what it means for eπ to approximate π.

Take ā ∈ ([0, 1]d)k and t ∈ GrTpk, where k is the number of free variables in π.

When π = H(u) define:
eπ(ā, t) := ā
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When π = c, a constant, define:
eπ(ā, t) := c

When π = rw(u) define:
eπ(ā, t) := 0

When π = f(ρ1, . . . , ρr) define:
eπ(ā, t) := f(eρ1

(ā, t), . . . , eρr
(ā, t))

We start with the construction for the global weighted mean. For any t(ū) ∈ GrTpk and t′(ū, v) ∈
Ext(t), define α(t, t′) as follows. As an extension type, t′ specifies some number, say r, of edges
between the nodes ū and the new node v. Define:

α(t, t′) := p̃r(1− p̃)k−r

Note that in both the root growth and logarithmic growth cases, α(t, t′) is non-zero precisely when t′
specifies no edges between ū and v. These relative atomic type weights will play a key role in the
construction.

Now consider a term π =
∑

v ρ(ū, v) ⋆ h(η(ū, v)).

Recall that the semantics are: ∑
v∈G

Jρ(ū, v)KGh(Jη(ū, v)KG)∑
v∈G

h(Jη(ū, v)KG)

Define:

eπ(ā, t) :=
fπ(ā, t)

gπ(ā, t)
where:

fπ(ā, t) :=
∑

t′∈Ext(t)

α(t, t′) E
b∼F

[eρ(ā, b, t
′)h(eη(ā, b, t

′))]

and:
gπ(ā, t) :=

∑
t′∈Ext(t)

α(t, t′) E
b∼F

[h(eη(ā, b, t
′))]

Note that when p̃ = 0 (as in the root growth and logarithmic growth cases), we have that:

α(t, t′) =

{
1 if t′ specifies no edges between ū and v
0 otherwise

Therefore the controller becomes, letting t∅ be the type with no edges between ū and v:

eπ(ā, t) =
Eb∼F [eρ(ā, b, t

∅)h(eη(ā, b, t
∅))]

Eb∼F [h(eη(ā, b, t∅))]

For the local weighted mean case, given t(ū) ∈ GrTpk and t′(ū, v) ∈ Extui
(t), we define αui

(t, t′)
as follows. Let r be the number of edges specified by t′ between ū \ ui and v. Define:

αui
(t, t′) := p̃r(1− p̃)k−r−1

Consider π =
∑

v∈N(ui)
ρ(ū, v) ⋆ h(η(ū, v)). Define:

eπ(ā, t) :=
fπ(ā, t)

gπ(ā, t)

where:
fπ(ā, t) :=

∑
t′∈Extui

(t)

αui
(t, t′) E

b∼F
[eρ(ā, b, t

′)h(eη(ā, b, t
′))]

and:
gπ(ā, t) :=

∑
t′∈Extui

(t)

αui
(t, t′) E

b∼F
[h(eη(ā, b, t

′))]

With the controllers eπ defined, we now prove that they satisfy Theorem (Theorem 5.3). We state the
strengthened version of this result here using the notation of ∧-decriptions from Definition C.3:
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Lemma C.10. For every ϵ, δ, θ > 0 and ∧-description ψ(ū), there is N ∈ N such that for all n ≥ N ,
with probability at least 1− θ in the space of graphs of size n, out of all the tuples ū such that ψ(ū),
at least 1− δ satisfy:

∥eπ(H(ū),GrTp(ū))− Jπ(ū)K∥ < ϵ

Proof. Naturally, we prove the lemma by induction.

• Base cases H(v) and constant c. These are immediate from the definition.

• Base case rw(v). This follows by Lemma C.8.

• Induction step for Lipschitz functions f(ρ1, . . . , ρr).

Take ϵ, δ, θ > 0 and ∧-description ψ(ū). By the induction hypothesis there is N ∈ N such that
for all n ≥ N and for every i ≤ r, with probability at least 1 − θ, we have that out of all the
tuples ū such that ψ(ū), at least 1− δ satisfy:

∥eρi
(H(ū),GrTp(ū))− Jρi(ū)K∥ < ϵ

Hence, with probability at least 1 − rθ, out of all the tuples ū such that ψ(ū), at least 1 − rδ
satisfy this for every i ≤ r. Condition on this event.

Take any such tuple ū. Then by Lipschitzness of f we have that the normed distance between:

eπ(H(ū),GrTp(ū)) = f(eρ1
(H(ū),GrTp(ū)), . . . , eρr

(H(ū),GrTp(ū)))

and:
Jπ(ū)K = f(Jρ1(ū)K, . . . , Jρr(ū)K)

is at most Lf ϵ, where Lf is the Lipschitz constant of f . Since Lf is a constant, this case follows.

• Inductive step for
∑

v ρ(ū, v) ⋆ h(η(ū, v)).

Take ϵ, δ, θ > 0. Take a ∧-description ψ(ū).

By the induction hypothesis, there is N1 such that for all n ≥ N1, with probability at least 1− θ,
out of all the tuples (ū, v) which satisfy ψ(ū), at least 1− δ satisfy:

∥eρ(H(ū, v),GrTp(ū, v))− Jρ(ū, v)K∥ < ϵ (†ρ)

and:
∥eη(H(ū, v),GrTp(ū, v))− Jη(ū, v)K∥ < ϵ (†η)

Take γ > 0. We will choose how small γ is later.

By Lemma C.6 there is Nγ > N1 such that for all n ≥ Nγ , with probability at least 1− θ, out of
all the tuples ū such that ψ(ū), at least 1− γ, at least 1− (δ + δ2) of the v’s satisfy equation (†ρ)
and equation (†η).

Now consider t(ū) ∈ GrTpk and take any t′(ū, v) ∈ Ext(t). For any tuple ū of nodes such that
GrTp(ū) = t, define:

Jt′(ū)K := {v | t′(ū, v)}
Since p(n) converges to p̃ and Ext(t) is finite, there isN3 such that for all n ≥ N3 with probability
at least 1− θ we have that for every pair (t, t′) and tuple ū of nodes such that t(ū):∣∣∣∣ |Jt′(ū)K|n

− α(t, t′)

∣∣∣∣ < 1

2k+1
ϵ (∗)

Next, for any tuple ū consider the function:

f◦π(ū, v) := eρ(HG(ū, v),GrTp(ū, v))h(eη(HG(ū, v),GrTp(ū, v)))

Note that the function:
(ā, b, t′) 7→ eρ(ā, b, t

′)h(eη(ā, b, t
′))

is bounded. Let Λ be the diameter of its range. This also bounds f◦π .
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We will now apply Hoeffding’s Inequality to
∑

v|t′(ū,v) f
◦
π(ū, v). Note that the number of

summands is |Jt′(ū)K| and the summands are bounded by Λ. Furthermore, the summands are
independent and have expected value:

E
b∼F

[eρ(HG(ū, b), t
′)h(eη(HG(ū, b), t

′))]

Hence, by Hoeffding’s Inequality (Theorem B.4) for any ū the probability that:∥∥∥∥∥∥ 1n
∑

v|t′(ū,v)

f◦π(ū, v)−
|Jt′(ū)K|

n
E

b∼F
[eρ(HG(ū, b), t

′)h(eη(HG(ū, b), t
′))]

∥∥∥∥∥∥ ≥ 1

2k+1
ϵ (♡)

is at most:

2d exp

(
−ϵ

2|Jt′(ū)K|
2Λ2

)
By equation (∗) there is N4 such that for all n ≥ N4, with probability at least 1− θ for all t′ such
that α(t, t′) > 0 we have that for every tuple ū:

2d exp

(
−ϵ

2|Jt′(ū)K|
2Λ2

)
< θδ (♣)

Let Bn be the proportion, out of all tuples ū for which ψ(ū) holds4, such that:∥∥∥∥∥∥ 1n
∑

v|t′(ū,v)

f◦π(ū, v)−
|Jt′(ū)K|

n
E

b∼F
[eρ(HG(ū, b), t

′)h(eη(HG(ū, b), t
′))]

∥∥∥∥∥∥ ≥ 1

2k+1
ϵ

Note that the property above is exactly the event whose probability is bounded in equation (♡).
We can express Bn as the mean of a set of indicator variables, one for each tuple ū such that ψ(ū)
holds. Each indicator variable has expected value at most θδ by equation (♡) and equation (♣).

Then by linearity of expectation, E[Bn] ≤ θδ for all n ≥ N4, and hence by Markov’s Inequality
(Theorem B.1):

P (Bn ≥ δ) ≤ θδ

δ
= θ

Therefore, for all n ≥ max(N3, N4), with probability at least 1− θ for at least 1− δ of the tuples
ū for which ψ(ū) holds we have that:∥∥∥∥∥∥ 1n

∑
v|t′(ū,v)

f◦π(ū, v)−
|Jt′(ū)K|

n
E

b∼F
[eρ(HG(ū, b), t

′)h(eη(HG(ū, b), t
′))]

∥∥∥∥∥∥ < 1

2k+1
ϵ

and therefore, by equation (∗) and the definition of fπ:∥∥∥∥∥ 1n∑
v

f◦π(ū, v)− fπ(HG(ū),GrTp(ū))

∥∥∥∥∥ < ϵ (△f )

Similarly, for any tuple ū consider the function:

g◦π(ū, v) := h(eη(HG(ū, v),GrTp(ū, v)))

As above there is N5 ≥ N3 such that for all n ≥ N5 with probability at least 1− θ we have that
the proportion out of tuples ū for which ψ(ū) holds such that:∥∥∥∥∥ 1n∑

v

g◦π(ū, v)− gπ(HG(ū),GrTp(ū))

∥∥∥∥∥ < ϵ (△g)

is at least 1− δ.
4Recall that ψ is the ∧-description on which we condition the tuples ū in the inductive invariant.
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Take n ≥ max(N1, Nγ , N3, N4, N5). For such an n, these events above hold with probability at
least 1− 5θ. So from now on we will condition on the event that they hold.

Take any such tuple ū. Let t := GrTp(ū). It suffices to show, using the definition of the
interpretation of the weighted mean operator, that:∥∥∥∥∑vJρ(ū, v)Kh(Jη(ū, v)K)∑

v h(Jη(ū, v)K)
− fπ(HG(ū), t)

gπ(HG(ū), t)

∥∥∥∥ < ι(ϵ, δ, γ)

for ι which we can make arbitrarily small by choosing ϵ, δ, γ small enough.

By Lemma C.9 it suffices to find ζ(ϵ, δ, γ), ξ(ϵ, δ, γ) > 0 which we can make arbitrarily small
and constants ν,Ω > 0 such that:∥∥∥∥∥ 1n∑

v

Jρ(ū, v)Kh(Jη(ū, v)K)− fπ(HG(ū), t)

∥∥∥∥∥ < ζ(ϵ, δ, γ) (1)∥∥∥∥∥ 1n∑
v

h(Jη(ū, v)K)− gπ(HG(ū), t)

∥∥∥∥∥ < ξ(ϵ, δ, γ) (2)∥∥∥∥∥∑
v

Jρ(ū, v)Kh(Jη(ū, v)K)

∥∥∥∥∥ < Ωn (3)∥∥∥∥∥∑
v

h(Jη(ū, v)K)

∥∥∥∥∥ < Ωn (4)

∀i ≤ d :

[∑
v

h(Jη(ū, v)K)

]
i

> νn (5)

For equation (3) and equation (4) we can use the fact that Jρ(ū, v)K and Jη(ū, v)K are bounded
and that h is Lipschitz on bounded domains. For equation (5) we use the fact that Jη(ū, v)K is
bounded and that the codomain of h is (0,∞)d.

The proofs of equation (1) and equation (2) are very similar. We prove equation (2) since it is
slightly notationally lighter. Let:

g∗π(ū) :=
1

n

∑
v

h(eη(HG(ū, v), t))

Let κ be a bound on the norms of h(eη(ā, b, t′)) and h(Jη(ū, v)K). By equation (†η) we have
that: ∥∥∥∥∥ 1n∑

v

h(Jη(ū, v)K)− g∗π(ū)

∥∥∥∥∥ < (1− (δ + δ2)
)
ϵ+ (δ + δ2)2κ2

We can make the right-hand-side as small as we like by taking ϵ and δ sufficiently small.

Now note that:
g∗π(ū) =

1

n

∑
v

g◦π(ū, v)

Hence by equation (△g) we have that:

∥g∗π(ū)− gπ(HG(ū), t)∥ < ϵ

Therefore:∥∥∥∥∥gπ(HG(ū), t)−
1

n

∑
v

h(Jη(ū, v)K)

∥∥∥∥∥ < (1− (δ + δ2)
)
ϵ+ (δ + δ2)2κ2 + ϵ

which we can make as small as we like by taking ϵ and δ small enough.
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• Inductive step for
∑

v∈N (ui)
ρ(ū, v) ⋆ h(η(ū, v)).

We proceed similarly to the global weighted mean case, this time making use of the conditioning
∧-description in the inductive invariant. Indeed, notice that when we apply the inductive invariant
below, we add uiEv to our condition.

Take ϵ, δ, θ > 0. Take a ∧-description ψ(ū).

By the induction hypothesis, there is N1 such that for all n ≥ N1, with probability at least 1− θ,
out of all the tuples (ū, v) which satisfy ψ(ū) ∧ uiEv, at least 1− δ satisfy:

∥eρ(HG(ū, v),GrTp(ū, v))− Jρ(ū, v)K∥ < ϵ (†loc
ρ )

and:
∥eη(HG(ū, v),GrTp(ū, v))− Jη(ū, v)K∥ < ϵ (†loc

η )

Take γ > 0. We will choose how small γ is later.

By Lemma C.6 there is Nγ > N1 such that for all n ≥ Nγ , with probability at least 1 − θ the
following event happens. Out of all the tuples ū such that ψ(ū) ∧ ∃v : uiEv, a proportion of
at least 1 − γ of them satisfy the following. At least 1 − (δ + δ2) of the nodes v for which
ψ(ū) ∧ uiEv holds also satisfy equation (†loc

ρ ) and equation (†loc
η ).

Now consider t(ū) ∈ GrTpk and take any t′(ū, v) ∈ Extui
(t). For any tuple ū of nodes such that

GrTp(ū) = t, define:
Jt′(ū)K := {v ∈ N (ui) | t′(ū, v)}

By Lemma C.5 we have that in all the non-sparse cases there is R > 0 and N3 such that for all
n ≥ N3 with probability at least 1− θ, the proportion of all tuples ū for which ψ(ū) holds such
that:

d(ui) ≥ R log(n)

is at least 1− δ. Then, as before, there is N4 ≥ N3 such that for all n ≥ N4, with probability at
least 1− θ, for all pairs (t, t′) the proportion of all tuples ū for which ψ(ū) and t(ū) hold such
that: ∣∣∣∣ |Jt′(ū)K|d(ui)

− α(t, t′)

∣∣∣∣ < 1

2k+1
ϵ

For any tuple ū define the function:
f◦π(ū, v) := eρ(HG(ū, v),GrTp(ū, v))h(eη(HG(ū, v),GrTp(ū, v)))

Taking Λ as before, by Hoeffding’s Inequality for any ū the probability that:∥∥∥∥∥∥ 1

d(ui)

∑
v∈N (ui)|t′(ū,v)

f◦π(ū, v)−
|Jt′(ū)K|
d(ui)

E
b∼F

[eρ(HG(ū, b), t
′)h(eη(HG(ū, b), t

′))]

∥∥∥∥∥∥
≥ 1

2k+1
ϵ

is at most:

2d exp

(
−ϵ

2|Jt′(ū)K|
2Λ2

)
Using a similar argument to the global weighted mean case, there is N5 such that for all n ≥ N5,
with probability at least 1− θ for all t′ such that α(t, t′) > 0 we have that for at least 1− δ of the
tuples ū such that ψ(ū) and t(ū) hold:

2d exp

(
−ϵ

2|Jt′(ū)K|
2Λ2

)
< θδ

We now proceed as in the global weighted mean case, creating a random variable similar to Bn

and making using of linearity of expectation. We get that for all n ≥ max(N3, N4, N5), with
probability at least 1− θ for at least 1− δ of the tuples ū for which ψ(ū) holds we have that:∥∥∥∥∥ 1n∑

v

f◦π(ū, v)− fπ(HG(ū),GrTp(ū))

∥∥∥∥∥ < ϵ (△loc
f )
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Similarly, with g◦π defined as above, there is N6 such that for all n ≥ N6, with probability at least
1− θ for at least 1− δ of the tuples ū for which ψ(ū) holds we have that:∥∥∥∥∥ 1n∑

v

g◦π(ū, v)− gπ(HG(ū),GrTp(ū))

∥∥∥∥∥ < ϵ (△loc
g )

With equations (†loc
ρ ), (†loc

η ), (△loc
f ) and (△loc

g ) established, we can now proceed as before, making
use of Lemma C.9.

This completes the proof of Theorem 5.3.

Applying the lemma to prove the theorem. To prove Theorem C.1, note that eτ is only a function
of the GrTp0 (since τ is a closed term), while GrTp0 consists of a single type, ⊤, which is satisfied
by all graphs. So eτ is a constant.

D Sparse Erdős-Rényi and Barabási-Albert

We now give the proof for the sparse Erdős-Rényi and Barabási-Albert cases of Theorem 5.1. In
addition, we extend the result to the language AGG[WMEAN,GCN, RW] defined in Appendix A. We
state the full result here.
Theorem D.1. Consider (µn)n∈N sampling a graph G from either of the following models and node
features independently from i.i.d. bounded distributions on d features.

1. The Erdős-Rényi distribution ER(n, p(n)) where p satisfies Sparsity: for some K > 0 we have:
p(n) = Kn−1.

2. The Barabási-Albert model BA(n,m) for any m ≥ 1.

Then for every AGG[WMEAN,GCN, RW] term converges a.a.s. with respect to (µn)n∈N.

As discussed in the body, this requires us to analyze neighbourhood isomorphism types, which
implicitly quantify over local neighbourhoods, rather than atomic types as in the non-sparse cases.
Remark D.2. Formally, a k-rooted graph is a tuple (T, ū). At various points below to lighten the
notation we drop the ‘ū’ and refer simply to a k-rooted graph T .

D.1 Combinatorial tools for the sparse case

As in the dense case, before we turn to analysis of our term language, we prove some results about
the underlying random graph model that we can use as tools.

The key combinatorial tool we will use is the following, which states that for any tuple of nodes ū,
the proportion of nodes v such that (ū, v) has any particular neighbourhood type converges.
Definition D.3. Let (T, w̄) be a k-rooted graph and let (T ′, w̄, y) be a (k + 1)-rooted graph. Then
T ′ extends T if T is a subgraph of T ′. Let Ext(T ) be the set of all (k + 1)-rooted graphs extending
(T, w̄).
Theorem D.4. Consider sampling a graph G from either the sparse Erdős-Rényi or Barabási-Albert
distributions. Let (T, w̄) be a k-rooted graph and take ℓ ∈ N. Then for every (k + 1)-rooted graph
(T ′, w̄, y) which extends (T, w̄) there is qT ′|T ∈ [0, 1] such that for all ϵ, θ > 0 there is N ∈ N such
that for all n ≥ N with probability at least 1− θ we have that for all k-tuples of nodes ū such that
NG

ℓ (ū)
∼= (T, w̄): ∣∣∣∣∣ |{v | NG

ℓ (ū, v)
∼= (T ′, w̄, y)}|
n

− qT

∣∣∣∣∣ < ϵ

Moreover, we have that: ∑
T ′∈Ext(T )

qT ′|T = 1

We refer to the qT ′|T as relative neighborhood weights. They will play a role in defining the
controllers, analogous to that of the relative atomic type weights α(t, t′) in the non-sparse case.
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Theorem D.4 follows from what is known as “weak local convergence” in the literature. It is
essentially a non-parametrised version of Theorem D.4.
Definition D.5. A sequence (µn)n∈N of graph distributions has weak local convergence if for every
k-rooted graph (T, w̄) and ℓ ∈ N there is qT ∈ [0, 1] such that for all ϵ, θ > 0 there is N ∈ N such
that for all n ≥ N with probability at least 1− θ we have that:∣∣∣∣∣ |{ū | NG

ℓ (ū)
∼= (T, w̄)}|

n
− qT

∣∣∣∣∣ < ϵ

and moreover: ∑
T

qT = 1

Theorem D.6. The sparse Erdős-Rényi and Barabási-Albert distributions have weak local conver-
gence.

Proof. See [48, Theorem 2.18] for the sparse Erdős-Rényi distribution and [17, Theorem 4.2.1] for
the Barabási-Albert distribution.

Proof of Theorem D.4. Take T ′ ∈ Ext(T ). There are two cases.

Case 1. There is a path from y to some node wi of w̄ in T ′.

Set qT ′|T = 0. Note that in this case, for all tuples ū such that NG
ℓ (ū)

∼= T we have that:

{v | NG
ℓ (ū, v)

∼= (T ′, w̄, y)} ⊆ NG
ℓ (ui)}

Since NG
ℓ (ui) is determined by T and is thus of fixed size, the proportion:∣∣∣∣∣ |{v | NG

ℓ (ū, v)
∼= (T ′, w̄, y)}|
n

∣∣∣∣∣
tends to 0 as n grows. This completes the proof for Case 1.

Case 2. There is no path from y to any node of w̄ in T ′. Then for all tuples ū such that NG
ℓ (ū)

∼= T
we have that:

{v | NG
ℓ (ū, v)

∼= (T ′, w̄, y)} = {v | NG
ℓ (v)

∼= N T ′

ℓ (y)} \ NG
ℓ (ū)

Hence:
|{v | NG

ℓ (v)
∼= N T ′

ℓ (y)}|
n

− |NG
ℓ (ū)|
n

≤ |{v | NG
ℓ (ū, v)

∼= (T ′, w̄, y)}|
n

Also:
|{v | NG

ℓ (ū, v)
∼= (T ′, w̄, y)}|
n

≤ |{v | NG
ℓ (v)

∼= N T ′

ℓ (y)}|
n

By Lemma 5.5 (with k = 1) we have that:

|{v | NG
ℓ (v)

∼= N T ′

ℓ (y)}|
n

converges to some limit qT |T ′ := qNT ′
ℓ (y) asymptotically almost surely, while:

|NG
ℓ (ū)|
n

=
|T |
n

converges to 0. This completes the proof for Case 1.

Finally, to show that
∑

T ′∈Ext(T ) qT ′|T = 1, note the set:

{N T ′

ℓ (y) | (T ′, w̄, y) ∈ Ext(T ′)}
contains all 1-rooted graphs up to isomorphism which can be the ℓ-neighbourhood of a node. There-
fore, by the “moreover” part of Definition D.5 we have that:∑

T ′∈Ext(T )

qT ′|T =
∑

T ′∈Ext(T )

qNT ′
ℓ (y) = 1
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D.2 Proving the inductive invariant for the sparse cases, and proving the convergence
theorem for these cases

We now begin the proof of Theorem D.1. Recall from the body that we will do this via Theorem 5.6,
which requires us to define some Lipschitz controllers on neighbourhood types that approximate a
given term π relative to a neighbourhood type.

Throughout the following, it will be convenient to assume for every k-rooted graph isomorphism type
(T, ū) a canonical ordering nodes T = {s1, . . . , s|T |} such that:

• the first k nodes in the ordering are ū and
• for any graph G, tuple of nodes ū and ℓ, ℓ′ ∈ N with ℓ′ < ℓ the canonical ordering of N ℓ′(ū) is

an initial segment of the canonical ordering of N ℓ(ū).

Again we will use F for the probability distribution of the node features. For each subterm π of τ , its
reach, denoted Reach(π) is a natural number defined as follows:

Reach(H(u)) = 0

Reach(c) = 0

Reach(rw(v)) = d

Reach(f(ρ1, . . . , ρr)) = max
i≤r

Reach(ρi)

Reach

 ∑
v∈N (u)

ρ ⋆ h(η)

 = max(Reach(ρ),Reach(η)) + 1

Reach

(∑
v

ρ ⋆ h(η)

)
= 0

Take a subterm π of τ . Let k be the number of free variables in π. We now define the controller at π
for every k-rooted graph (T, w̄). The controller will be of the form:

eTπ : ([0, 1]d)|T | → Rd

Note that when |T | = 0 this is a constant.

Recall from Theorem 5.6 that our goal is to ensure the following correctness property for our
controllers eTπ .
Property D.7. Let π be any subterm of τ and let ℓ = Reach(π). Consider sampling a graph G from
either the sparse Erdős-Rényi or Barabási-Albert distributions. For every k-rooted graph (T, w̄)
and ϵ, θ > 0, there is N ∈ N such that for all n ≥ N with probability at least 1 − θ we have that
for every k-tuple of nodes ū in the graph such that N ℓ(ū) ∼= (T, w̄), taking the canonical ordering
N ℓ(ū) = {s1, . . . , s|T |}: ∥∥eTπ (HG(s1), . . . ,HG(s|T |))− Jπ(ū)K

∥∥ < ϵ

For notational convenience, we allow each eTπ to take additional arguments as input, which it will
ignore.

Proof of Theorem 5.6. We give the construction of the controllers in parallel with the proof of
correctness.

• Base case π = H(ui).

Here ℓ = Reach(π) = 0. Let eTπ (ā) := ai, the feature value of the ith node in the tuple. Note
that for any k-tuple of nodes ū in the graph we have:

eTπ (HG(s1), . . . ,HG(s|T |)) = HG(si)

= Jπ(ū)K

• Base case π = c.

Let eTπ (ā) := c.
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• Base case π = rw(ui).

Then ℓ = Reach(π) = d. Note that the random walk embeddings up to length d are entirely
determined by the d-neighbourhood. Therefore, given rooted graph (T, w̄), there is rT such that:

Jrw(ui)K = rT

for all tuples ū such that N ℓ(ū) = T . So set:

eTπ (ā) = rT

for any ā.

• Inductive step for Lipschitz functions π = F (ρ1, . . . , ρr).

Note that ℓ = maxj≤r Reach(ρi). Take a k-rooted graph (T, w̄). For each i ≤ r let Tj :=

N T
Reach(ρj)(w̄). Define:

eTπ (ā) := F (eT1
ρ1
(ā), . . . , eTr

ρr
(ā))

Now take ϵ, θ > 0. By the induction hypothesis, there is N such that for all n ≥ N with
probability at least 1−θ we have that for every k-tuple of nodes ū in the graph, letting T = N ℓ(ū),
for every j ≤ r: ∥∥∥eTj

ρj
(HG(s1), . . . ,HG(s|Tj |))− Jρj(ū)K

∥∥∥ < ϵ

Hence, by the Lipschitzness of F we have:∥∥eTπ (HG(s1), . . . ,HG(s|T |))− Jπ(ū)K
∥∥ < LF ϵ

where LF is the Lipschitz constant of F .

• Inductive step for local weighted mean π =
∑

v∈N (ui)
ρ ⋆ h(η).

In this step we use that the value of a local aggregator is determined by the values of the terms it
is aggregating in the local neighbourhood.

Take a k-rooted graph (T, w̄), where k is the number of free variables in π. Note that ℓ =
max(Reach(ρ),Reach(η)) + 1.

When wi has no neighbours in T , define:

eTπ (ā) := 0

and note that for any k-tuple of nodes ū in the graph such that N ℓ(ū) = T we have:

Jπ(ū)K = 0 = eTπ (HG(s1), . . . ,HG(s|T |))

So suppose that wi has some neighbours in T . Enumerate the neighbours as:

N T (wi) = {y1, . . . , yr}

Define the Lipschitz function:

WMeanT (a1, . . . ,ar, b1, . . . , br) :=

∑r
j=0 ajh(bj)∑r
j=0 h(bj)

Note that whenever NG
ℓ (ū)

∼= (T, w̄), letting NG(ui) = {v1, . . . , vr} be the enumeration of the
neighbourhood of ui given by the isomorphism, we have that:

Jπ(ū)K = WMeanT (Jρ(ū, v1)K, . . . , Jρ(ū, vr)K, Jη(ū, v1)K, . . . , Jη(ū, vr)K) (□)

For any yj ∈ N (wi), let:

Tj := N T
ℓ−1(w̄, yj)

T ρ
j := N T

Reach(ρ)(w̄, yj)

T η
j := N T

Reach(η)(w̄, yj)
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Further, for any ā ∈ ([0, 1]d)|T | let āρ
j and āη

j be the tuple of elements of ā corresponding to the
nodes of T ρ

j and T η
j respectively.

Let:
eTπ (ā) := WMeanT

(
e
Tρ
1

ρ (āρ
1), . . . , e

Tρ
r

ρ (āρ
r), e

Tη
1

η (āη
1), . . . , e

Tη
r

η (āη
r),
)

Take ϵ, θ > 0. Applying the induction hypothesis to the term ρ(ū, v) and to η(ū, v), which have
Reach at most ℓ− 1, and using the fact that N T (wi) is finite, there is N such that for all n ≥ N

with probability at least 1− θ, for every yj ∈ N T (wi) and every (k + 1)-tuple of nodes (ū, v)
such that NG

ℓ−1(ū, v)
∼= (Tj , w̄, yj) we have that both:∥∥∥eTρ

j
ρ (HG(s1), . . . ,HG(s|Tρ

j |))− Jρ(ū, v)K
∥∥∥ < ϵ

and: ∥∥∥eTη
j

η (HG(s1), . . . ,HG(s|Tη
j |))− Jη(ū, v)K

∥∥∥ < ϵ

Under this event, by equation (□) and the Lipschitzness of WMeanT we have:∥∥eTπ (HG(s1), . . . ,HG(s|T |))− Jπ(ū)K
∥∥ < LT ϵ

where LT is the Lipschitz constant of WMeanT .

• Inductive step for the GCN aggregator π = GCNv∈N (ui)ρ.

This step is very similar to the previous, where we again use the fact that the value of a local
aggregator is determined by the values of the terms it is aggregating in the local neighbourhood.
The only difference is that we now have a different Lipschitz function:

GCNT (a1, . . . ,ar) :=

r∑
j=1

1∣∣N T (ui)
∣∣∣∣N T (yj)

∣∣aj

The rest of the proof is as before.

• Inductive step for global weighted mean π =
∑

v ρ ⋆ h(η).

Note that ℓ = 0. Let ℓ′ = max(Reach(ρ),Reach(η)). Take a k-rooted graph (T, w̄). For any
tuple ū and (k + 1)-rooted graph (T ′, w̄, y) extending (T, w̄) let:

JT ′(ū)K := |{v | NG
ℓ′ (ū, v)

∼= (T ′, w̄, y)}|

By the parameterized Weak Local Convergence result, Theorem D.4, for every such T ′ extending
there is a relative neighborhood weight qT |T ′ ∈ [0, 1] such that for all ϵ, θ > 0 there is N ∈ N
such that for all n ≥ N with probability at least 1− θ, for every k-tuple ū such that N ℓ(ū) = T
we have that: ∣∣∣∣JT ′(ū)K

n
− qT |T ′

∣∣∣∣ < ϵ

and moreover the relative neighborhood weights sum to one:∑
T ′∈Ext(T )

qT |T ′ = 1

Consider any (T ′, w̄, y) ∈ Ext(T ). In order to define the controller, we need to identify the nodes
in the canonical enumeration corresponding to N T

ℓ′−1(ū). Let:

rT :=
∣∣N T

ℓ′−1(ū)
∣∣

Given tuples of Rd-vectors ā = (a1, . . . ,arT ) and b̄ = (brT+1, . . . , b|T ′|), let ArrangeT ′(ā, b̄)

be the |T ′|-tuple of vectors obtained by assigning the ai’s to the nodes in N T
ℓ′−1(ū) and the bi’s

to the remaining nodes in T ′, according to the canonical enumeration of T ′.

Define the controller:

eTπ (ā) :=
fTπ (ā)

gTπ (ā)
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where:

fTπ (ā) :=
∑

T ′∈Ext(T )

E
b̄∼F

[
eT

′

ρ (ArrangeT ′(ā, b̄)) · h(eT
′

η (ArrangeT ′(ā, b̄)))
]
· qT |T ′

and:

gTπ (a1, . . . ,ak) :=
∑

T ′∈Ext(T )

E
b̄∼F

[
h(eT

′

η (ArrangeT ′(ā, b̄)))
]
· qT |T ′

where in both cases the expectation is taken over bi’s sampled independently from node feature
distribution F.

Since:
eT

′

ρ (a1, . . . ,a|T ′|)h(e
T ′

η (a1, . . . ,a|T ′|))

and:
h(eT

′

η (a1, . . . ,a|T ′|))

are bounded, and
∑

T ′∈Ext(T ) qT |T ′ converges, these sums converges absolutely, and hence the
controller is well-defined.

This completes the definition of the controller. We now present the proof that it is correct.

Take ϵ, θ > 0. Take a finite S ⊆ Ext(T ) such that:∑
T ′∈S

qT |T ′ > 1− ϵ (⃝)

and each qT |T ′ > 0 for T ′ ∈ S.

The guarantee given when we applied the parameterized version of Weak Local Convergence,
Theorem D.4, is that there is N1 such that for all n ≥ N1 with probability at least 1− θ, for all
T ′ ∈ S and every k-tuple ū such that N ℓ(ū) = T we have that:∣∣∣∣JT ′(ū)K

n
− qT |T ′

∣∣∣∣ < ϵ (‡)

Define the function:

f◦π(ā, b̄) := eT
′

ρ (ArrangeT ′(ā, b̄)) · h(eT
′

η (ArrangeT ′(ā, b̄)))

and similarly:
g◦π(ā, b̄) := h(eT

′

η (ArrangeT ′(ā, b̄)))

Note that these are just the integrands used in fTπ (ā) and gTπ (ā).

Now, for any (k + 1)-tuple of nodes (ū, v) let āū be the tuple of node features of NG
ℓ′−1(ū)

and b̄(ū,v) be the tuple of node features of the remaining nodes in NG
ℓ′ (ū, v), ordered as in the

canonical enumeration of NG
ℓ′ (ū, v).

Note that f◦π is bounded, say by Λ. Then for every γ > 0, by Hoeffding’s Inequality (Theorem B.4)
for any tuple ū such that N ℓ(ū) = T and T ′ ∈ S we have that:

P


∥∥∥∥∥∥∥∥

∑
v

NG
ℓ′ (ū,v)

∼=T ′

f◦π(ā
ū, b̄(ū,v))− |JT ′(ū)K| · E

b̄∼F

[
f◦π(ā

ū, b̄)
]∥∥∥∥∥∥∥∥ ≥ |JT ′(ū)K|γ


≤ 2 exp

(
−2JT ′(ū)Kγ2

Λ2

)
≤ 2 exp

(
−2n(q′T − ϵ)γ2

Λ2

)
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where in the last inequality we use equation (‡). Hence, taking a union bound, there is N2 such
that for all n ≥ N2 with probability at least 1−θ, for all ū such that N ℓ(ū) = T and T ′ ∈ Ext(T )
we have: ∥∥∥∥∥∥∥∥

∑
v

NG
ℓ′ (ū,v)

∼=T ′

f◦π(ā
ū, b̄(ū,v))− |JT ′(ū)K| · E

b̄∼F

[
f◦π(ā

ū, b̄)
]∥∥∥∥∥∥∥∥ < |JT ′(ū)K|γ

If we divide both sides of the inequality through by n, take a γ below 1, and apply equation (‡)
again, we conclude that there is N4 such that for all n ≥ N4 with probability at least 1− θ, for
all ū such that N ℓ(ū) = T and T ′ ∈ Ext(T ) we have:∥∥∥∥∥∥∥∥

1

n

∑
v

NG
ℓ′ (ū,v)

∼=T ′

f◦π(ā
ū, b̄(ū,v))− qT |T ′ E

b̄∼F

[
f◦π(ā

ū, b̄)
]∥∥∥∥∥∥∥∥ < ϵ (△f )

Similarly, there is N5 such that for all n ≥ N5 with probability at least 1− θ, for all ū such that
N ℓ(ū) = T and T ′ ∈ Ext(T ) we have:∥∥∥∥∥∥∥∥

1

n

∑
v

NG
ℓ′ (ū,v)

∼=T ′

g◦π(ā
ū, b̄(ū,v))− qT |T ′ E

b̄∼F

[
g◦π(ā

ū, b̄)
]∥∥∥∥∥∥∥∥ < ϵ (△g)

By the induction hypothesis, there is N6 such that for all n ≥ N6 with probability at least 1− θ,
for every T ′ ∈ S and every (k + 1)-tuple of nodes (ū, v) such that NG

ℓ′ (ū, v)
∼= T ′ we have that

both: ∥∥∥eT ′

ρ (HG(s1), . . . ,HG(s|T ′|))− Jρ(ū, v)K
∥∥∥ < ϵ (†ρ)

and: ∥∥∥eT ′

η (HG(s1), . . . ,HG(s|T ′|))− Jη(ū, v)K
∥∥∥ < ϵ (†η)

Let N := max(N1, N2, N3, N4, N5, N6) and take n ≥ N . Then for such n the probability that
these six events happen is at least 1− 6θ. We will condition on this.

Take any k-tuple of nodes ū such that N ℓ(ū) = T . It suffices to show, using the definition of the
interpretation of the weighted mean operator, that:∥∥∥∥∑vJρ(ū, v)Kh(Jη(ū, v)K)∑

v h(Jη(ū, v)K)
− fTπ (HG(u1), . . . ,HG(uk))

gTπ (HG(u1), . . . ,HG(uk))

∥∥∥∥ < ι

for some ι which we can make arbitrarily small by choosing ϵ small enough.

As above it suffices to find ζ, ξ > 0 which we can make arbitrarily small and constants ν,Ω > 0
such that: ∥∥∥∥∥ 1n∑

v

Jρ(ū, v)Kh(Jη(ū, v)K)− fTπ (HG(s1), . . . ,HG(s|T |))

∥∥∥∥∥ < ζ (6)∥∥∥∥∥ 1n∑
v

h(Jη(ū, v)K)− gTπ (HG(s1), . . . ,HG(s|T |))

∥∥∥∥∥ < ξ (7)∥∥∥∥∥∑
v

Jρ(ū, v)Kh(Jη(ū, v)K)

∥∥∥∥∥ < Ωn (8)∥∥∥∥∥∑
v

h(Jη(ū, v)K)

∥∥∥∥∥ < Ωn (9)

∀i ≤ d :

[∑
v

h(Jη(ū, v)K)

]
i

> νn (10)
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Equation (8), equation (9) and equation (10) follow as before. We show equation (7), the proof of
equation (6) being similar.

By equation (†η) we have that for every v:∥∥∥h(Jη(ū, v)K)− g◦π(ā
ū, b̄(ū,v))

∥∥∥ < ϵ

Hence: ∥∥∥∥∥ 1n∑
v

h(Jη(ū, v)K)− 1

n

∑
v

g◦π(ā
ū, b̄(ū,v))

∥∥∥∥∥ < ϵ

Now:
1

n

∑
v

g◦π(ā
ū, b̄(ū,v)) =

1

n

∑
T ′∈Ext(T )

∑
v

NG
ℓ′ (ū,v)

∼=T ′

g◦π(ā
ū, b̄(ū,v))

Letting Λ be a bound on the norm of g◦π(ā
ū, b̄(ū,v)), by equation (⃝) we have that:∥∥∥∥∥∥∥∥

1

n

∑
v

g◦π(ā
ū, b̄(ū,v))− 1

n

∑
T ′∈S

∑
v

NG
ℓ′ (ū,v)

∼=T ′

g◦π(ā
ū, b̄(ū,v))

∥∥∥∥∥∥∥∥ < ϵΛ

By equation (△g) we have that:∥∥∥∥∥∥∥∥
1

n

∑
T ′∈S

∑
v

NG
ℓ′ (ū,v)

∼=T ′

g◦π(ā
ū, b̄(ū,v))− 1

n

∑
T ′∈S

qT |T ′ E
b̄∼F

[
g◦π(ā

ū, b̄)
]∥∥∥∥∥∥∥∥ ≤ ϵ

Finally, by equation (⃝) again we have that:∥∥∥∥∥ 1n ∑
T ′∈S

qT |T ′ E
b̄∼F

[
g◦π(ā

ū, b̄)
]
− gTπ (ā

ū)

∥∥∥∥∥ < ϵΛ

This completes the proof of the inductive construction of the controllers, thus proving Theorem
5.6.

Application to prove the final theorem, Theorem 5.1 for the sparse Erdős-Rényi and Barabási-
Albert cases. To complete the proof, we note that the term τ has no free variables, and as a subterm
of itself has reach 0. The controller e∅τ of is a constant z, and hence by the induction hypothesis
applied to it, for every ϵ, θ > 0 there is N ∈ N such that for all n ≥ N with probability at least 1− θ
we have that:

∥JτK − z∥ < ϵ

E Proof for the stochastic block model

We now prove the convergence result for the stochastic block model. The proof follows the same
structure as the density case in Theorem 5.1, except that the notion of graph type is augmented
slightly. We therefore only indicate the differences in the proof.

For this is it helpful to be able to remember the community to which each node belongs. Given
any graph G generated by the stochastic block model and node v, let C(v) ∈ {1, . . . ,m} be the
community to which v belongs.

To prove the result, we first need that the random work positional encodings converge, as in
Lemma C.8. In fact they converge to 0.
Lemma E.1. Let n1, . . . , nm : N → N and P be as in Theorem 5.1. Then for every k ∈ N and
ϵ, θ > 0 there is N ∈ N such that for all n ≥ N with probability at least 1− θ, for all nodes v we
have that:

∥rwk(v)∥ < ϵ
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Proof. For each j ∈ {1, . . . ,m}, let nj

n converge to qj . Let:

rj := q1P1,j + · · ·+ qmPm,j

Note that nrj is the expected degree of a node in community j. By Hoeffding’s Inequality (Theo-
rem B.4) and a union bound, there is N such that for all n ≥ N with probability at least 1− θ, for all
v we have that: ∣∣∣∣d(v)n − rC(v)

∣∣∣∣ < ϵ

Take n ≥ N and condition on this event. Take any node v. When rC(v) = 0, the node v has no
neighbours, and so rwk(v) = 0.

So assume rC(v) > 0. Let j = C(v). Then as in the proof of Lemma C.8 we can show that the
proportion of random walks of length k starting at v is at most:

(p̃+ ϵ)k−1

(p̃− ϵ)k
n−1

which converges to 0 as n→ ∞.

We now follow the structure of the proof for the Erdős-Rényi dense cases. This time we augment our
vocabulary for atomic types with a predicate Pj for each community j, so that Pj(v) holds if and
only if v belongs to community j.

With this we define the community atomic type of a tuple of nodes ū in graph, notation ComTp(ū)
to be the atomic formulas satisfied by ū in the language augmented with the Pj predicates. For k ∈ N
let ComTpk be the set of all complete community atomic types with k free variables.

For each j ∈ {1, . . . ,m}, let nj

n converge to qj . For any type t(ū) and t′(ū, v) ∈ Ext(t), let:

α(t, t′) := qC(v)

Further, for any type t(ū), free variable ui in t and t′(ū, v) ∈ Extui
(t), let:

αui(t, t
′) := PC(ui),C(v)qC(v)

For any term π with k free variables, the feature-type controller:

eπ : ([0, 1]
d)k × ComTpk → [0, 1]d

is defined exactly as as in the proof of the density case of Theorem 5.1, using the extension proportions
α(t, t′) and αui

(t, t′) just defined.

We show by induction that every ϵ, δ, θ > 0 and ∧-desc ψ(ū), there is N ∈ N such that for all n ≥ N ,
with probability at least 1− θ in the space of graphs of size n, out of all the tuples ū such that ψ(ū),
at least 1− δ satisfy:

∥eπ(HG(ū),GrTp(ū))− Jπ(ū)K∥ < ϵ

We then proceed as in the proof of the non-sparse Erdős-Rényi cases of Theorem 5.1. The only
difference is that when showing equation (△f ) and equation (△g) we use the fact that the expected
proportion of type extensions t′(ū, v) of a type t(ū) at a node uj is α(t, t′).

F Additional experiments

In this section we provide additional experiments using MeanGNN, GCN [30], GAT [49], and
GPS+RW with random walks of length up to 5, over the distributions ER(n, p(n) = 0.1),
ER(n, p(n) = logn

n ), ER(n, p(n) = 1
50n ) and BA(n,m = 5). We also experiment with an

SBM of 10 communities with equal size, where an edge between nodes within the same community
is included with probability 0.7 and an edge between nodes of different communities is included with
probability 0.1.

Setup. Our setup is carefully designed to eliminate confounding factors:
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Figure 6: The 5 class probabilities (in different colours) of a MEANGNN, GCN, GAT and GPS+RW
model initialization over the ER(n, p(n) = 0.1) graph distributions, as we draw increasingly larger
graphs.

• We consider 5 models with the same architecture, each having randomly initialized weights,
utilizing a ReLU non-linearity, and applying a softmax function to their outputs. Each model
uses a hidden dimension of 128, 3 layers and an output dimension of 5.

• We draw graphs of sizes up to 10,000, where we take 100 samples of each graph size. Node
features are independently drawn from U [0, 1] and the initial feature dimension is 128.

Further details are available in the experiments repository at https://github.com/
benfinkelshtein/GNN-Asymptotically-Constant.

Much like in Section 6, the convergence of class probabilities is apparent across all models and graph
distributions, in accordance with our main theorems (Q1). We again observe that attention-based
models such as GAT and GPS+RW exhibit delayed convergence and greater standard deviation in
comparison to MeanGNN and GCN, which further strengthening our previous conclusions.
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Figure 7: The 5 class probabilities (in different colours) of a MEANGNN, GCN, GAT and GPS+RW
model initialization over the ER(n, p(n) = logn

n ) graph distributions, as we draw increasingly larger
graphs.

Figure 8: The 5 class probabilities (in different colours) of a MEANGNN, GCN, GAT and GPS+RW
model initialization over the ER(n, p(n) = 1

50n ) graph distributions, as we draw increasingly larger
graphs.
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Figure 9: The 5 class probabilities (in different colours) of a MEANGNN, GCN, GAT and GPS+RW
model initialization over the SBM graph distributions, as we draw increasingly larger graphs.

Figure 10: The 5 class probabilities (in different colours) of a MEANGNN, GCN, GAT and GPS+RW
model initialization over the BA(n,m = 5) graph distributions, as we draw increasingly larger
graphs.
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ER(n, p(n) = 0.1) for increasing sizes n, and the mean output probabilities are recorded, along with
standard deviation
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