Under review as a conference paper at ICLR 2025

PLUM: IMPROVING CODE LLMS WITH EXECUTION-
GUIDED ON-POLICY PREFERENCE LEARNING DRIVEN
BY SYNTHETIC TEST CASES

Anonymous authors
Paper under double-blind review

Abstract

Preference learning provides a promising solution to address the limitations of supervised
fine-tuning (SFT) for code language models, where the model is not explicitly trained
to differentiate between correct and incorrect code. Recent findings demonstrate that
on-policy data is the key to successful preference learning, where the preference data is
collected using the same policy LM being trained. Inspired by this, we propose PLUM,
an on-policy Preference Learning framework Augmented with test cases for code LMs.
The framework operates in three key stages: (1) automatic generation of test cases from
natural language instructions, (2) creation of a preference data by evaluating candidate code
solutions sampled from the policy, which can then be used to (3) train the policy LM. PLUM
levitates the need to train reward models, allowing for large scale on-policy and online
preference data collation. PLUM is evaluated on both standard benchmarks (HumanEval,
MBPP) and more challenging ones (LiveCodeBench), delivering substantial improvements
over original SFT’ed models and other execution-feedback-driven approaches. We show
PLUM'’s benefits are consistent across various widely-used code LMs even they have been
well-trained with SFT. For example, PLUM increases pass rates by up to 4.8% on average
on standard benchmarks and 11.8% on LiveCodeBench, demonstrating its effectiveness
and generalizability. We also demonstrate the benefits of on-policy and online preference
learning by comprehensive experimentation.

1 INTRODUCTION

Language models pre-trained on code corpora have excelled at code generation (Roziere et al.,
2024; |Li et al) [2023). Supervised Fine-Tuning (SFT) enhances their ability to follow natural
language prompts but focuses on reproducing patterns from training data rather than ensuring code
correctness (Wei et al.| 2023 |Zheng et al., 2024). This leads to models that generate syntactically
correct but functionally flawed code, unable to meet real-world requirements like edge cases or
algorithmic accuracy (Chen et al.| [2024)). Works like AlphaCode (Li et al.| 2022)) and LeTT (Wang
et al., 2024b)) have introduced test outcomes as a means to define functional correctness in code
generation. Building on the insights from these efforts, we propose leveraging preference learning for
refining model behavior. Preference learning trains models to prefer certain solutions (e.g., factual,
helpful, or harmless) over undesirable ones (e.g., inaccurate, unhelpful, or harmful). Despite its
success in aligning models with human values and improving reasoning in other domains (Dong et al.|
2023} |Guo et al.|, 20244} |Yuan et al.| 2024; Wang et al., [2024a} |Pang et al., | 2024)), the application of
preference learning as a principled and efficient approach in code generation remains under-explored,
largely due to the lack of high-quality training data.

Recent research shows that reducing the likelihood of incorrect outputs is more effective for improving
model performance than simply maximizing correct responses (Setlur et al., 2024; [Tajwar et al.|
2024). Mode-seeking objectives, which prioritize minimizing errors, have been found to outperform
maximum likelihood methods by more efficiently redistributing probability mass across potential
outputs. This underscores the importance of applying on-policy and online approaches to enhance
preference learning algorithms (Tajwar et al.,[2024;|Guo et al.| |2024b; |Setlur et al.l 2024} [Liu et al.|
2024). Unlike offline preference data, on-policy data remains in-distribution with the model, reducing
the risk of misalignment (Guo et al.| 2024b; [Zhang et al.} 2024} Tang et al.,[2024; |Fisch et al., 2024).
The main challenge now is how to efficiently obtain preference labels for on-policy data at scale (Yang
et al.| 2024b). In programming tasks, test cases present as a native and powerful candidate solution to

Under review as a conference paper at ICLR 2025

address this issue. Being able to automatically produce high-quality test cases unlocks the possibility
of collecting preference data over programming questions at any scale.

Prompt for Test Case Generation

You are a teaching assistant helping to write reference solutions and tests for programming questions.
Given a programming question, you need to first analyze the problem, then write a reference solution
(code), followed by assertions that test student solutions. The test code must be runnable when
concatenated at the end of student solutions to check the correctness.

Programming Question:
{Question}

Follow the format below:

[Analysis]

{{Natural language analysis of the problem.}}

[Solution]

{{Your solution to the problem}}

[Start Code]

{{Start code for students so that they can follow the I/O protocol.
E.g. Function signatures, class names etc.}}

[Test Code]

{{Test code that is immediately runnable if concatenated with
student code to check the correctness.}}

To this end, we propose preference learning framework augmented with test cases for training code
language models (PLUM), which integrates the process of deriving test cases from natural language
specifications into the training process to obtain preference labels for model’s on-policy candidate
solutions. PLUM utilizes natural language instructions from well-established datasets such as OSS-
Instruct (Wei et al., [2023)), Evol-Instruct-Code (Luo et al.,[2023), and ShareGPT (Clestonl 2023)). For
each instruction, high-quality test cases are constructed, and multiple solutions are sampled from the
model. These solutions are evaluated using the generated test cases, with preference labels assigned
based on the results: solutions passing the tests are preferred, while failures are dis-preferred. This
dataset then trains the policy using established preference learning algorithms (Rafailov et al., 2023
Ethayarajh et al., 2024} |Azar et al.,[2023). By relying solely on policy model’s self-generated solutions,
PLUM eliminates the need for external, synthetic off-policy data, reducing the risk of distributional
shifts and poor generalization commonly observed for synthetic off-policy data, enhancing the
model’s robustness and improving its ability to differentiate between correct and incorrect solutions.
In addition, by showcasing the effectiveness of our framework, we demonstrated the feasibility of
bypassing tedious (and potentially unstable) reward model training (Liu et al.||2023a; |[Le et al.| 2022)
and manual labeling, by automating the process of test case synthesis. These simplicity advantages
of PLUM makes online preference training of language models possible.

We evaluate PLUM on a diverse set of state-of-the-art code language models under different set-ups,
on commonly used benchmarks: HumanEval(+) and MBPP(+) (Chen et al., 2021} |Austin et al.,
2021; Liu et al.| |2023b) as well as more challenging code generation datasets like LiveCodeBench
and LeetCode (Jain et al.}|2024;|Guo et al.,[2024a). We demonstrate that our approach seamlessly
integrates with various models in a plug-and-play manner, relying solely on coding instructions to
enhance models’ code generation capabilities. Furthermore, we show that online training, facilitated
by automated test case generation, further boosts model performance particularly on difficult coding
benchmarks, echoing findings from other domains (Xiong et al.| 2024b).

2 PREFERENCE LEARNING AUGMENTED WITH TEST CASES FOR CODE LMS
(PLUM)

The core of PLUM lies in leveraging recent advancements in on-policy and online preference learning,
which have proven effective across various domains (Xiong et al., [2024bfa; Mitra et al., [2024). In
the context of code generation, PLUM simplifies and scales the preference data collection process

Under review as a conference paper at ICLR 2025

by using test cases. These test cases act as a lightweight yet robust mechanism to evaluate model
outputs.

Algorithm [I] outlines the core mechanism of PLUM, demonstrating how test case generation is
embedded into the preference learning loop. This process allows model-generated outputs to be
evaluated in real-time using automatically generated test cases, which serve as direct feedback
mechanisms for the learning process. By using test cases rather than complex reward models, PLUM
simplifies the collection of preference data, maintaining high feedback quality while reducing the
complexity associated with reward model training.

Algorithm 1 PLUM.
Input: Natural language instructions Z = {¢;}, policy model to be trained 7o, generator model G, update
frequency 7', chunk size M > Unified for both offline and online alignment

Output: Trained policy model 7
1: Initialize preference datasets D+ and D~
2: for each chunk Z; C Z, where Zy; contains M instructions do

3 for each ¢; € Zys do
4 Generate n pairs of reference code and test case {(7;,%:;)} ;=1 using G > Test collection
5 for each pair (r;5,t;;) do
6: if r;; passes ¢;; then
7: Add (gi, ti;) to D > Self-consistency filtering
8 end if
9 end for
10: S, ~ mg for k = 1 to K (sample K solutions for g;) > On-policy sampling
11: for each solution s, € S; do
12: for each test case t;; in D do
13: if s;) fails ¢;; then
14: Add (gi, sik) to D~ > Negative case
15: end if
16: end for
17: Add (g, six) to Dt > Positive case
18: end for
19: end for
20: Filter out instances with no correct solutions from D" and D~
21: if iteration count %7" = O then > Policy Update
22: Train the policy model 7g using DT and D~ with preference learning to get mj
23: Update policy model mp = mp
24: end if
25: end for

26: return 7,

2.1 THE PLUM

As illustrated in Algorithm[T]and Figure[T] our approach takes in a base policy model, a set of natural
language programming instructions, and a test case generator. For each iteration, it produces multiple
test cases for the batch of instructions. Then we sample solutions from policy 7y, and execute them
against the generated test suite to obtain preference labels. We then update the policy 7y := .

2.2 GENERATING TEST CASES

A crucial factor in making PLUM successful is the ability to synthesize high-quality test cases for
programming questions. In the following subsections, we provide a detailed explanation of the test
case generation process, outlining how it contributes to the overall effectiveness of PLUM.

The test cases in PLUM are generated with a test-case generator model over natural instructions
from established code generation datasetsE] In automated testing, ensuring the correctness and
completeness of test cases is a persistent challenge due to the lack of reliable oracles to validate
test outputs. We adopt two strategic principles: 1) employing self-consistency as an approximate

'We use GPT-4-1106 as the generator model.

Under review as a conference paper at ICLR 2025

oracle, and 2) generating diverse test suites to minimize overfitting to any particular test instance and
mitigate under-specification.

Collecting instructions from established datasets We collect natural language instructions from
established datasets including OSS-Instruct (Wei et al., [2023)), Evol-Instruct-Code (Luo et al.| [2023)),
and ShareGPT (Cleston, [2023)). E]These datasets provide a diverse range of programming tasks and
instructions. Although they come with gold/silver solutions in the training splits, these solutions are
never used in PLUM. Instead, they allow us to directly compare PLUM’s performance against SFT,
which relies on gold solutions, as we investigate in our experiments. Not requiring gold solutions for
training broadens the applicability of PLUM to a wide variety of real-world coding tasks and user
requirements.

Generating high-quality test cases Given a training instruction in natural language, we prompt
a generator model to produce a reference solution, a starter code snippet specifying the function
signature, and a suite of test cases using the prompt in Figure[I] The generated test cases are critical
for ensuring that the solutions meet the functional requirements specified in the instructions. The
correctness of the test cases is central to the success of preference learning. We adopt a consistency-
based approach inspired by [Chen et al.|(2023) and |[Roziere et al.|(2024) for quality control.

We check for consistency between the generated reference solution and the test cases. Pairs where the
test cases do not accurately reflect the solution, or the solution does not pass the test cases, are filtered
out. This process helps minimize potential noise and enhances the quality of the test cases used in the
following stages. The generated reference solutions serve only to control the quality of the test cases
and are never used in training. Similarly, the solutions provided with the instruction data are never
used in PLUM. On average, each instruction is paired with 3-5 test cases depending on the dataset.

2.3 SAMPLING SOLUTIONS FROM THE POLICY TO CREATE THE PREFERENCE DATA

Many preference learning algorithms assume that the preference data is in-distribution for the policy,
i.e., the solutions are sampled from the policy model to be trained Rafailov et al.|(2023); |[Ethayarajh
et al.| (2024)); |Azar et al.| (2023). In practice, however, preference data often contains solutions
sampled from different models than the policy, leaving the data out of distribution Bai et al.| (2022);
Yuan et al.| (2024). A common workaround is to first perform supervised fine-tuning (SFT) on the
same instructions before applying preference learning (Rafailov et al., [2023} [Yuan et al., |2024). This
ensures that the policy has a similar distribution to that from which the preference data are sampled.

One of the research questions we aim to answer through

PLUM is the standalone effect of preference learning on Dataset S?ﬁ;gg:::;?;y
LMs’ coding capability, with or without first performing OSS-INSTRUCT 6376
SFT. To this end, we sample solutions from the policy to EVOL-INSTRUCT 42.38
be trained and run them against the test cases to create SHAREGPT 45.69

the preference data. For each instruction, we sample K
solutions from the policy and evaluate them against the Table 1: Self-Consistency Pass Rate Us-
generated test cases. K is set to 20 based on the findings ing GPT-4-1106.

from our preliminary experiments. With static and execution checksﬂ we identify and filter out
solutions that contain syntactic errors and fail to execute, as our focus is on functional correctness.

Moreover, as a recent work points out, training with code snippets containing syntax errors may hurt
the model’s performance (Wang et al., 2024b). Solutions passing all test cases are used as the chosen
solutions, and those failing at least one the rejected solutions.

An instruction is filtered out if it has no chosen solution after this process.

This aims to ensure that the learned policy does not drift too far from the original one as drastic
changes might cause the model to forget previously learned information or to perform poorly on tasks
it was previously adept at Rafailov et al.| (2023).

*We focus on Python due to its wide use and the availability of well-established training and evaluation
resources.
SWe use mypy for the static check: https://mypy-lang.org/.

https://mypy-lang.org/

Under review as a conference paper at ICLR 2025

Model Item MBPP MBPP+ HE HE+ Avg.
Baseline 77.7 67.2 835 787 76.8
Cond.Token 71.9 57.1 683 579 638
RFT 81.2 67.9 84.1 81.1 78.6
CODEQWEN-1.5-CHAT (Bai et al.; 2023) Cond.ErrMsg 79.4 68.7 84.1 793 779
PLUM-DPO 81.2 70.2 86.0 81.1 79.6
PLUM-KTO 81.0 69.0 86.0 81.1 79.3
Rel. + 4.3 2.7 3.0 3.1 3.3
Baseline 74.9 65.6 754 713 71.8
Cond.Token 734 62.9 76.8 70.7 71.0
RFT 74.7 64.9 744 66.5 70.1
DS-CODER-INSTRUCT (Guo et al.}[2024a) Cond.ErrMsg 74.7 64.2 80.5 75.0 736
PLUM-DPO 76.4 65.9 80.5 76.8 774
PLUM-KTO 78.2 67.9 81.7 768 76.2
Rel. + 4.4 3.5 84 7.7 6.0
Baseline 75.4 61.9 66.5 604 66.1
Cond.Token 75.9 62.4 683 622 672
RFT 76.2 62.2 677 622 67.1
MAGICODER-DS (Wei et al.| [2023) Cond.ErrMsg 74.2 62.2 66.5 59.8 65.7
PLUM-DPO 75.9 63.7 677 616 672
PLUM-KTO 79.6 66.7 71.3 659 70.9
Rel. + 5.6 7.8 7.2 9.1 74
Baseline 75.7 64.4 76.8 70.7 71.9
Cond.Token 73.9 63.7 750 713 710
RFT 754 64.4 732 69.5 70.6
MAGICODER-S-DS (Wei et al., [2023) Cond.ErrMsg 752 65.4 75.6 707 71.7
PLUM-DPO 76.2 64.7 78.7 738 734
PLUM-KTO 804 69.3 80.5 738 76.0
Rel. + 4.4 7.4 4.4 4.5 5.2
Baseline 73.9 63.7 774 720 71.8
Cond.Token 73.9 62.9 756 713 709
RFT 74.2 63.7 76.8 720 71.7
OCI-DS (Zheng et al.} 2024) Cond.ErrMsg 75.0 70.7 744 647 712
PLUM-DPO 76.4 66.4 80.5 762 749
PLUM-KTO 78.2 66.4 80.5 76.2 753
Rel. + 5.8 4.2 4.0 5.8 5.0
Baseline 66.4 55.4 726 652 649
Cond.Token 59.6 48.4 232 213 38.1
RFT 63.2 52.6 604 567 582
OCI-CL (Zheng et al.}2024) Cond.ErrMsg 67.9 55.9 689 652 645
PLUM-DPO 66.4 55.9 713 652 647
PLUM-KTO 66.7 554 73.8 67.7 659
Rel. + 0.5 0.0 1.7 3.8 1.5

Table 2: %Pass@1 on HumanEval (HE) and MBPP, and their enhanced versions (HE+ and MBPP+) when
PLUM is applied to OSS-Instruct. The Rel. + is computed as the relative percentage increase of PLUM-KTO
over baseline. PLUM brings consistent improvements over SFT-ed baseline and outperforms other methods that
leverage execution feedback when applied to the same SFT-ed models.

2.4 PREFERENCE LEARNING

We then proceed to train the model on the on-policy sampled candidate solutions using preference
learning algorithm. In this process, we do not need golden solutions paired in the original dataset
or GPT-4 during test-generation process. We mainly consider two popular preference learning
algorithms - Direct Preference Optimization Rafailov et al.|(2023) and Kahneman-Tversky Optimiza-
tion (Ethayarajh et al., [2024) that have been shown to bring improvements for reasoning tasks (Mitra
et al.,|2024; Yuan et al.,|2024; Dubey et al.,|2024). For DPO, we subsample redundant classes and
randomly pair positive and negative responses for each programming question. In contrast, we use all
available responses when training with KTO.

Under review as a conference paper at ICLR 2025

Step 1: Generating Test Cases

Programming Questions Dataset
L
NL-Prompt] l—»@ Reference Solution >
Test
Generator

No A e POlicy Update
-ﬂ:ﬁ <«---Consistent? |

l Yes —]
-

Consistency-based
quality control

Step 3: (Iterative) Preference Learning Using
Self-Generated Responses

= [—]
/61 Unit v/ Pos - .
NL-Prompt H Tests On-Policy
Step 2: Sample Solutions - IR X Neg - Preference
From Model Policy & ‘\‘ Dataset

\
\
\
“» Discard un-runnable code

RunTost Suite

Figure 1: Overview of PLUM. It involves three steps: (1) Generating the test cases; (2) Sampling solutions from
the policy and evaluating them against the test cases to collect the preference data for (3) preference learning.

3 EXPERIMENTS

To demonstrate the effectiveness of PLUM, we evaluate it on established benchmarks: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.| [2021)), and EvalPlus (a widely-adopted augmented
version (Liu et al.,|2023b) of them). We also use the more challenging LiveCodeBench (Jain et al.,
2024).

Datasets To demonstrate the generality of our approach across different datasets, we evaluated it
on three distinct collections of open datasets: OSS-Instruct (GPT-3.5 generated), Evollnstruct, and a
Python code generation subset of ShareGPT. We showed that PLUM can significantly enhance model
performance in various settings with high data efficiency, even when using only a small, randomly
selected subset of SFT datasets.

Preference Data Collection We use powerful language models to generate test cases for each
programming question. The results reported in the main text use test cases generated by GPT-
4 |OpenAI et al| (2024). An ablation of test case generators is in Appendix [A.3] For the OSS-
Instruct dataset and ShareGPT dataset, we query GPT-4 for 3 responses for a randomly cho-
sen subset of 1500 questions, and due to the comparatively more complex nature of the natural
language instruction, we generate 6 for each of the Evollnstruct instances for a subset of 1000.
We then sample 20 outputs from the policy us-
ing temperature 7' = 1 for the former two and

50 outputs for the latter. This yields around Model]Igtem M];;)/Igé("') I;l;://;*l')
~ 60,000 examples for ShareGPT and OSS- DS-CODER Reﬂzifi:on 34/ 43/
Instruct, and around ~ 120, 000 for Evolln- -INSTRUCT PLUM 78/68 82/77
struct before any filtering. We present the statis- Base 7R/G7]4/79
tics on the pass ratio of sampled solutions over ~ COPEQWEN o 00 e 74/- 83/-
OSS-Instruct in Figure[3] We included the self- -7B-CHAT PLUM 81/69 86/81
consistency pass rate of the test-generation pro-

cess with GPT-4-1106 in Table[Il Table 3: Comparison with Reflexion (Shinn et al.,[2023))

Models We consider a diverse set of strong

open language models: MagiCoder (Wei et al., |2023)), OpenCodelntepreter (Zheng et al., [2024),
CodeQwen (Bai et al.| 2023)), DeepSeek Coder (Guo et al.,[2024a) and StarCoder2 (Li et al., [2023).
MagiCoder and OpenCodelntepreter contain instruction-tuned checkpoints from DeepSeek Coder
and CodeLlama (Roziere et al., |2024) base models. In the main text, we focus on instruction-tuned
language models, while differing results from directly training base models to Appendix[A.4]

Baselines We evaluate our approach against a variety of baselines, including both prompting-based
and fine-tuning techniques. To compare methods that incorporate program correctness through
execution feedback, we benchmark our approach against Reflexion (Shinn et al., 2023)), using

Under review as a conference paper at ICLR 2025

Model Families Data Item MBPP MBPP+ HE HE+ Avg.
Baseline 48.2 40.9 56.6 47.1 48.2

Xéﬁ‘szlcggg‘) PLUM-KTO 543 488 659 529 555
EVOLINSTRUCT Rel. + 16.4 12.3 12.7 19.3 15.2

Baseline 74.9 65.6 754 713 718

DS-CODER-INSTRUCT PLUM-KTO 77.7 67.7 81.7 768 76.0
Rel. + 3.7 3.2 8.4 7.7 5.8

Baseline 74.9 65.6 754 713 71.8

DS-CODER-INSTRUCT PLUM-KTO 79.2 67.9 774 738 74.6
Rel. + 5.7 3.5 2.8 3.5 3.9

Baseline 73.9 63.7 774 720 718

OCI-DS SHPAYRTEH%I;T PLUM-KTO 777 644 799 756 744

) Rel. + 5.1 1.1 3.2 5.0 3.6

Baseline 77.7 67.2 83.5 787 76.8

CODEQWEN-1.5-CHAT PLUM-KTO 81.2 69.7 854 793 789
Rel. + 4.5 3.7 2.3 0.8 2.8

Table 4: PLUM on other datasets.

instruction-tuned (SFT) models and value-conditioning techniques (L1 et al.l 2022; |Wang et al.|
2024b)). Additionally, to contrast preference-learning techniques with the SFT approach, we perform
experiments using rejection-sampling-based SFT, utilizing the same set of positive examples as used
in KTO. In these experiments, the solutions are also generated on-policy.

3.1 TRAINING

In order to demonstrate the generality of the approach when applied to various models and code
instruction tuning data distributions, we experimented with different data-model pairs. We followed
the procedure described earlier in the paper, and used all positive and negative responses when
training with KTO objective.

3.2 RESULTS

HumanEval(+) and MBPP(+) Table 2] presents the results of PLUM when applied to a subset of
1K instances of the OSS-Instruct-75K dataset.

MagiCoder models (-DS, -S-CL, and -S-DS) and OpenCodelntepreter models (-CL and -DS) have
already seen these instructions during supervised fine-tuning, while DeepSeekCoder-Instruct has
not, as it was released earlier than the dataset. CodeQwen chat model uses proprietary data. PLUM-
ShareGPT data for preference learning is generated with the same setting. Similarly, Table []
corresponds to the results when we apply PLUM to Evollnstruct (Luo et al.,|2023) dataset. Since
the instructions are comparatively less clear than the OSS-Instruct dataset, we control the number of
initial samples to be the same by generating 50 samples for each problem and use about 400 instances
in total.

PLUM consistently improves the performance of a wide range of code language models across all
three settings, regardless of the base models’ performance. Remarkably, PLUM can even improve
the state-of-the-art 7B model, CodeQwen-7B-Chat, relatively by 3% on average, using either OSS-
Instruct or ShareGPT data. These results demonstrate that PLUM is broadly applicable in different
datasets and settings.

We noticed that PLUM-KTO consistently out-performs the baseline, and that PLUM-DPO some-
times under-perform PLUM-KTO. Prior works (Mitra et al.| 2024} Yuan et al., 2024) noticed the
phenomenon where DPO can exhibit instability due to reducing reward for the positive class.

LiveCodeBench We further evaluate PLUM using strong instruction-tuned models on the more
challenging LiveCodeBench dataset. As shown in Table 5] the models demonstrate overall per-
formance improvements over their respective baselines across the board. Despite the increased
difficulty and reasoning required, we show that PLUM can enhance the base models’ overall coding
performance on interview-level coding problems from LiveCodeBench.

Under review as a conference paper at ICLR 2025

Dataset Type

0.80 [MBPP
= EEE MBPP+
0.75 g % ,:E:j @@ HE
= & 2 HE+
_, o065 IN=""20 B K
AN NN cEmm 55
©® %&:« %Io}} %:0:0 %o{oﬁ ol [Baseline
@ 060 m%::::: /I:::: /:::: /‘::: o5 [Execution
K EN EM AR 5 ——
s LR ORI ER A
0.50 “HN AN Al
: LR R o
b 7z G £ K53
o] 7% 7 oo X
0.45 oo %wﬁ /:o:« oo 1o
% 7@
K e s K <
0.40 SHN - cEE ¢ o 5
035 S P | bR R 4
’ v S S v
W WP e oo¢
Models

Figure 2: Ablation studies on preference training signals show that merely using un-runnable code as negative
instances does not consistently enhance performance. In contrast, PLUM effectively improves the model by
introducing functional correctness signals. Baseline results refer to the SFT model without PLUM.

Model Item Easy Medium Hard Overall
Baseline 29.9 1.0 0 114
MAGICODER-S-CL PLUM-KTO 38.1 1.8 0 14.3
Rel. + 274 80 0 254
Baseline 352 3.6 0.0 14.0
MAGICODER-DS PLUM-KTO 55.6 13.1 2.2 25.8
Rel. + 58.0 266.7 - 83.9
Baseline 48.6 12.1 0.1 22.6
MAGICODER-S-DS PLUM-KTO 52.1 15.5 0.1 25.0
Rel. + 7.2 28.1 0.1 10.6
Baseline 49.6 9.9 0.4 21.9
OCI-DS PLUM-KTO 45.8 13.7 1.2 22.3
Rel. + -7.7 38.4 200 1.8
Baseline 42.7 18.8 0.9 232
CODEQWEN-1.5-CHAT PLUM-KTO 43 23.2 3 25.8
Rel. + 0.7 20 230 11.2

Table 5: %Pass@1 on LiveCodeBench.

PLUM proves particularly beneficial for medium-level interview questions, which are often quite
challenging for models, especially those with around 7B parameters. This demonstrates that PLUM
does more than simply fitting to commonly tested benchmarks; it enhances the models’ general
coding capabilities in more complex and diverse coding scenarios.

Comparison Against Baselines As shown in Table[3] verbal reinforcement learning like Reflex-
ion (Shinn et all,[2023)), does not perform well on code language models fine-tuned for code at the
scale relevant to our work. This is partly due to the limitations of smaller LLMs in handling various
types of instructions effectively.

Approaches like LeTI (Wang et al}, [2024b) implicitly optimizes the model for generating correct
programs solely through input prompt, without directly enforcing such distinction with its training
objective. Unlike preference learning algorithms ,approaches like LeTI|Wang et al.| (2024b) optimize
models to generate correct programs based solely on the input prompt, without explicitly enforcing
correctness through the training objective. As a result, we observe inconsistent outcomes when
applying these methods to our tested SFT models, as shown in Table2} Additionally, our results show
that using value-token-conditioned approaches often lead to reduced performance, likely due to the
token addition to tokenizer and the absence of clear labels distinguishing good from bad outputs.

Under review as a conference paper at ICLR 2025

On-Policy Off-Policy
DS-Coder Qwen2.5- DeepSeek
PLUM -13B Coder-1.5B C"‘;‘;S];ral -Coder-33B % n

-Instruct -Instruct) Instruct &
CODEQWEN1.5-CHAT 79.3 78.4 78.1 717.3 79.0 73.9
DS-CODER-INSTRUCT 76.2 76.0 75.2 74.6 74.0 69.4
MAGICODER-DS 70.9 68.4 68.6 68.3 67.0 61.2
MAGICODER-S-DS 76.0 75.8 75.3 74.1 73.8 71.6

Table 6: Comparison between on-/off-policy preference learning using KTO on CODEQWEN-1.5-CHAT.

Easy Medium Hard Average Rel. Gain
CODEQWEN1.5-CHAT 66.7 27.5 13.6 339 -
+PLUM-DPO 66.7 31.9 15.9 36.7 8.3
+PLUM-DPO-Iter 66.7 319 18.2 37.2 9.7
+PLUM-KTO 68.9 30.8 11.4 35.6 5.0
+PLUM-KTO-Iter 66.7 319 18.2 37.2 9.7
MAGICODER-DS 333 17.6 9.1 19.4 -
+PLUM-DPO 444 154 13.6 22.2 14.4
+PLUM-DPO-Iter 46.7 17.6 114 23.3 20.1
+PLUM-KTO 48.9 16.5 9.1 22.8 17.5
+PLUM-KTO-Iter 44.4 17.6 114 22.8 17.5

Table 7: Results on iterative PLUM following Algorithm

On-Policy vs Off-Policy We now address whether "on-policy" training makes a significant differ-
ence. To test this, we apply the same method but use preference data sampled from other models (i.e.,
off-policy). We selected models of varying sizes, including DeepSeek-Coder-1.3B-Instruct, Qwen-
2.5-Coder-1.5B-Instruct, CodeStral-22B (MistralAlL [2024), and DeepSeek-Coder-33B-Instruct. We
followed the exact same data collection and training processes. Our results show that while off-policy
training still improves model performance, it generally underperforms compared to on-policy training.
These findings are consistent with prior research (Xiong et al., [2024aj |Dong et al.| 2024; Tajwar
et al.| [2024; Xu et al., [2024]).

Further, we investigate the effect of synthetic negatives. To this effect, we use a mutation-based
approach for synthetically introducing errors into Python code while maintaining its syntactic
correctness, as detailed in Appendix[A.8] This method uses Abstract Syntax Tree (AST) manipulation
to apply mutations like argument swapping, operator replacement, control flow changes, off-by-one
errors, and return value modification. By injecting these errors, it generates valid but behaviorally
altered code. We apply this to on-policy positive examples, creating off-policy negatives for model
training under the same setup. Observing that the synthetic negatives could even potentially harm
the performance, we confirmed the importance of preference training with more natural, and ideally
on-policy negative samples.

This highlights our contribution in demonstrating a method empowered by automated test cases and
efficient on-policy preference learning. This approach can be easily adopted to scale the collection of
test cases, providing a robust supervision signal for model training.

Importance of Test Case-Based Preference Learning We experiment with including only non-
executable samples as rejected solutions, while using the same set of chosen solutions. As shown
in Figure[2] we observe that this is worse than PLUM in most cases. More importantly, it does not
always improve the model’s performance and may even hurt. This has also been noted in previous
studies (Wang et al.,|2024b)). Although the positive examples used are the same as our oracle-based
preference learning, lower-quality negative examples do not necessarily help the model improve due
to the additional noise in the preference signal.

Test Cases Allow By-passing Reward Model Training For Iterative Alignment We demonstrate
in Table [/|that PLUM enables iterative on-policy alignment while providing accurate preference
signals without requiring reward model training. Notably, iterative preference learning, facilitated by
the online feedback loops generated through the test case collection procedure, outperforms offline

Under review as a conference paper at ICLR 2025

methods on the challenging LeetCode benchmark, using the same data. This finding aligns with
results from other domains (Xiong et al., [2024aZb), further confirming the advantages of online
learning. This demonstrates the further potential of PLUM in advancing code language models
especially in more challenging problems by its support for efficient online policy improvement.

4 RELATED WORKS

Reinforcement Learning and Preference Learning For Reasoning-Related Tasks Preference
learning algorithms like Direct Preference Optimization (DPO) (Rafailov et al.,|2023)) and Kahneman
& Tversky’s Optimization(KTO) (Ethayarajh et al.,[2024)) are popular for their cost efficiency and
training stability. Beyond controlling model-user interactions, these methods are now applied to more
complex reasoning tasks. Ocra-Math (Mitra et al.,2024) uses iterative preference learning to improve
math reasoning in SFT-ed language models, while Eurus (Yuan et al.l [2024) leverages preference
trees for solving complex problems through multi-step interactions with external feedback.

Code Generation with Large Language Models Code generation has become a key application
of generative language models. Pre-training on code corpora has led to strong performance in models
like StarCoder (Li et al.| [2023)), StarCoder2 (Lozhkov et al.l [2024), and DeepSeek-Coder (Guo et al.,
2024al)), while others like CodeQwen (Bai et al., [2023) and CodelLlama (Roziere et al., 2024} benefit
from continued pre-training on additional code data. To enhance these models, supervised fine-tuning
on instruction-response pairs has been employed (Luo et al., 2023} |Wei et al., 2023} |[Zheng et al.,
2024). Reinforcement learning techniques, like those in CodeRL (Le et al., [2022; [Shojaee et al.,
2023} ?), and reward models used in DeepSeek-Coder-V2 (DeepSeek-Al et al.,[2024) also improve
performance using test feedback.

Test Case Generation with Language Models Automated test case generation (Pacheco et al.,
2007; |[Fraser & Arcuril, [2011} [Panichella et al., [2015)) is crucial for ensuring software quality and
safety and has long been a key topic in software engineering. The advent of LLMs has inspired
works using transformer models for test generation, either by training models (Tufano et al.| 2021} |L1
et al.| 2022) or prompting them (Chen et al.,[2023). Test cases also help clarify user intent, aligning
model-generated programs with user requirements (Fakhoury et al.,[2024; [Endres et al., 2024).

The synergy between test cases and code generation Programming-by-examples (Gulwani,[2016)
and test-driven programming (Perelman et al.,2014)) focus on using test cases to automatically refine
programs to meet specifications. This concept has been adapted to enhance deep learning approaches
to code synthesis (Kulal et al., [2019; |Chen et al., [2023} [Zelikman et al.,[2023). Recent methods, like
CodeT (Chen et al.,2023)) and Parsel (Zelikman et al., [2023)), use test cases to reduce the search
space during inference, while ALGO (Zhang et al.,|2023)) employs brute-force solutions as oracles to
generate test outputs for competitive programming. Our approach, similar to|Haluptzok et al.| (2023),
leverages test cases during training to improve models’ inherent programming capabilities.

5 CONCLUSION

In this paper, we introduced PLUM, a novel preference learning framework designed to improve
the ability of code language models (LMs) to distinguish between correct and incorrect code by
leveraging test cases. Our framework tackles the limitations of traditional supervised fine-tuning
approaches by embedding on-policy learning directly into the training process. Through the automatic
generation and evaluation of test cases, PLUM enables models to learn from their own outputs without
requiring separate reward models or manual labeling, offering a scalable and flexible solution.

The results from our experiments demonstrate the effectiveness and generalizability of PLUM.
Furthermore, we performed careful experiments and showed that on-policy preference learning
outperforms various off-policy methods, highlighting the crucial role played by on-policy training.
Further, we demonstrated PLUM allows for effective online preference learning that further pushes
the performance on challenging coding benchmarks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URLhttps://openreview.net/pdf?id=ktrw68Cmu9cl

Jie Chen, Xintian Han, Yu Ma, Xun Zhou, and Liang Xiang. Unlock the correlation between
supervised fine-tuning and reinforcement learning in training code large language models, 2024.
URL https://arxiv.org/abs/2406.10305.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Dome Cleston. Sharegpt. https://github.com/domeccleston/sharegpt, 2023.

DeepSeek-Al, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931,

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf,
2024. URL https://arxiv.org/abs/2405.07863.

11

https://openreview.net/pdf?id=ktrw68Cmu9c
https://arxiv.org/abs/2406.10305
https://github.com/domeccleston/sharegpt
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2405.07863

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoycheyv, Niladri Chatterji, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzman, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,

12

Under review as a conference paper at ICLR 2025

Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqgian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shugiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri. Can large language
models transform natural language intent into formal method postconditions?, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization, 2024.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K Lahiri. LIm-
based test-driven interactive code generation: User study and empirical evaluation. arXiv preprint
arXiv:2404.10100, 2024.

Adam Fisch, Jacob Eisenstein, Vicky Zayats, Alekh Agarwal, Ahmad Beirami, Chirag Nagpal, Pete
Shaw, and Jonathan Berant. Robust preference optimization through reward model distillation.
arXiv preprint arXiv:2405.19316, 2024.

Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pp. 416-419, 2011.

Sumit Gulwani. Programming by examples - and its applications in data wrangling. In Depend-
able Software Systems Engineering, 2016. URL |https://api.semanticscholar.org/
CorpusID:7866845.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024a.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language
model alignment from online ai feedback, 2024b. URL https://arxiv.org/abs/2402,
04792,

13

https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:7866845
https://api.semanticscholar.org/CorpusID:7866845
https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2402.04792

Under review as a conference paper at ICLR 2025

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=SaRj2kalXZ3.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https:
//arxiv.org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken,
and Percy S Liang. Spoc: Search-based pseudocode to code. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
f11le/7298332f04ac004a0caddccb9ecfofob—Paper.pdfl

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learn-
ing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 21314-21328. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/8636419dealaa9fbd25fc4248e702dad4-Paper—-Conference.pdfl

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-
Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor
Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. Starcoder: may
the source be with you! Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=KoFOg41lhaE. Reproducibility Certification.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abql1158. URL |http://dx.doi.org/10.1126/science.abgll58,

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng Ye. RLTF:
Reinforcement learning from unit test feedback. Transactions on Machine Learning Research,
2023a. ISSN 2835-8856. URL https://openreview.net/forum?id=hjYmsV6nXZ.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023b.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet,
and Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an
adversarial regularizer, 2024. URL https://arxiv.org/abs/2405.16436/

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,

14

https://openreview.net/forum?id=SaRj2ka1XZ3
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://openreview.net/forum?id=KoFOg41haE
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2405.16436

Under review as a conference paper at ICLR 2025

Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauf3, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Mufioz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

MistralAI. Codestral-22b-v0.1, 2024. URL hhttps://huggingface.co/mistralai/
Codestral-22B-v0.1. Accessed: 2024-09-28.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math, 2024.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston

15

https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1

Under review as a conference paper at ICLR 2025

Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Carlos Pacheco, Shuvendu K Labhiri, Michael D Ernst, and Thomas Ball. Feedback-directed random
test generation. In 29th International Conference on Software Engineering (ICSE’07), pp. 75-84.
1IEEE, 2007.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024. URL https://arxiv.org/abs/
2404.19733.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating branch coverage
as a many-objective optimization problem. In 2015 IEEE 8th international conference on software
testing, verification and validation (ICST), pp. 1-10. IEEE, 2015.

Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-driven synthesis. In
PLDI 14, June 09-11, 2014, Edinburgh, United Kingdom, June 2014. URL https://www.
microsoft.com/en—-us/research/publication/test-driven—-synthesis/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. R1
on incorrect synthetic data scales the efficiency of 1lm math reasoning by eight-fold, 2024. URL
https://arxiv.org/abs/2406.14532.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code
generation using deep reinforcement learning. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=0XBuaxgEcG.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of 1lms should leverage suboptimal,
on-policy data. arXiv preprint arXiv:2404.14367, 2024.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Avila Pires, Michal Valko, Yong Cheng, and Will Dabney. Understanding
the performance gap between online and offline alignment algorithms, 2024. URL https:
//arxiv.org/abs/2405.08448.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test
case generation with transformers and focal context, 2021.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. Leti: Learning to generate from
textual interactions, 2024b.

16

https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://www.microsoft.com/en-us/research/publication/test-driven-synthesis/
https://www.microsoft.com/en-us/research/publication/test-driven-synthesis/
https://arxiv.org/abs/2406.14532
https://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=0XBuaxqEcG
https://arxiv.org/abs/2405.08448
https://arxiv.org/abs/2405.08448

Under review as a conference paper at ICLR 2025

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need, 2023.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for RLHF
under KL-constraint. In Forty-first International Conference on Machine Learning, 2024a. URL
https://openreview.net/forum?id=clAKcAb6ryl.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, and Tianqi Liu.
Building math agents with multi-turn iterative preference learning, 2024b. URL https://
arxiv.org/abs/2409.02392.

Wenda Xu, Jiachen Li, William Yang Wang, and Lei Li. Bpo: Supercharging online preference
learning by adhering to the proximity of behavior llm. arXiv preprint arXiv:2406.12168, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024a. URL
https://arxiv.orqg/abs/2407.10671.

Sen Yang, Leyang Cui, Deng Cai, Xinting Huang, Shuming Shi, and Wai Lam. Not all preference
pairs are created equal: A recipe for annotation-efficient iterative preference learning, 2024b. URL
https://arxiv.orqg/abs/2406.17312.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees, 2024.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions, 2023.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with llm-generated oracle verifiers, 2023.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhaoran
Wang. Self-exploring language models: Active preference elicitation for online alignment. arXiv
preprint arXiv:2405.19332, 2024.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement, 2024.

17

https://openreview.net/forum?id=c1AKcA6ry1
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2406.17312

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TEST CASE GENERATION

To produce test cases for each programming instruction, we queried OpenAl GPT-4 with temperature
0 and max response token 4096.

A.2 TRAINING DETAILS

We trained the model using the KTO objective, with a learning rate 5 x 10~7, linear scheduler,
B = 0.1, and maintained the desirable-to-undesirable ratio to be 1. We train each model using 8-bit
quantized LoRA for 3 epochs on a Nvidia A-100 GPU with 40 GB memory.

A.3 ADDITIONAL RESULTS: WHAT IF DIRECTLY USING COMPETITIVE CODING DATASETS?

There are existing competitive coding datasets like CODE CONTESTS [Li et al.| (2022) which are
equipped with test cases. Using more general datasets like OSS-INSTRUCT (Wei et al., [2023)),
paired with synthetic test cases, is more advantageous for preference learning in code language
models than using competitive coding datasets like Code Contests. Competitive coding datasets
present complex problems with intricate edge cases, which can overwhelm the model and obscure
fundamental instruction-following and preference-learning goals. In contrast, OSS-Instruct provides
more accessible, more uniform instructions that allow for cleaner and more straightforward alignment.
This helps models learn functional correctness more effectively without being distracted by the
nuances of competitive coding. Additionally, OSS-Instruct, sourced from real-world open-source
projects, avoids domain-specific biases that can arise from competitive coding, making it more
generalizable and applicable across diverse programming environments.

We also conducted experiments to repeat the same process using CODECONTESTS dataset. Due
to the challenging nature of this dataset, we sampled more to get the same number of positive and
negative cases as in OSS-INSTRUCT and SHAREGPT etc. As shown in Table[8] training on this
dataset seems ineffective.

Item MBPP MBPP+ HE HE+ Avg.
Baseline 75.7 64.4 76.8 70.7 71.9

MAGICODER-S-DS KTO 74.9 64.7 754 72,6 719
DPO 74.9 64.9 76.8 71.3 720
Baseline 75.4 61.9 66.5 604 66.1
MAGICODER-DS KTO 75.7 63.2 652 59.8 66.0
DPO 75.7 63.2 65.2 59.8 66.0

Table 8: Training on Code Contests

A.4 RESULTS ON BASE MODELS

Below we present the results of directly applying PLUM on base models without performing super-
vised fine-tuning and the comparison with training using SFT in Tables 9] and [T0]

18

Under review as a conference paper at ICLR 2025

Model Type MBPP MBPP+ HE HE+ (I;A;Sgé) ‘X%’ 611%
Baseline 54.4 456 354 299 449 378 413
STARCODER2-BASE SFT 62.2 494 415 354 519 506 47.1
PLUM-KTO 60.4 49.1 463 39.6 534 512 622
Baseline 72.2 60.2 51.8 457 62.0 53.0 575
CODEQWEN-BASE SFT 73.4 624 677 59.1 70.6 66.5 65.7
PLUM-KTO 754 629 70.1 622 72.8 678 67.7
Baseline 70.2 56.6 47.6 39.6 589 57.8 535
DS-CODER-BASE ~ SFT 71.7 571 56.1 488 639 605 584
PLUM-KTO 72.9 589 56.7 48.8 648 619 593
Table 10: PLUM vs. SFT for base models.

Model Families Item MBPP MBPP+ HE HE+

Base 72.2 60.2 51.8 457

OSS-Instruct 75.4 62.9 70.1 622

CODEQWEN-BASE Rel. + 4.4 4.5 353 36.1

ShareGPT-Python 76.4 64.9 73.2 67.1

Rel. + 5.8 7.8 41.3 46.8

Base 70.2 56.6 47.6 39.6

OSS-Instruct 72.9 58.9 56.7 48.8

DS-CODER-BASE Rel. + 3.9 4.1 19.1 232

ShareGPT-Python 75.4 60.7 64 537

Rel. + 6.4 7.2 345 356

Base 54.4 45.6 354 299

OSS-Instruct 60.4 49.1 46.3 39.6

STARCODER2-BASE Rel. + 11 7.7 30.8 324

ShareGPT-Python 63.9 51.9 50 421

Rel. + 17.5 13.8 412 40.8

Table 9: Results on base model training.

A.5 DISTRIBUTION OF POLICY MODEL CORRECTNESS

Figure 3| shows the pass ratio on OSS-Instruct dataset of models we consider in this study.

1.0

Pass Ratio

F

Model

LT T T]
>

= == L
>—<
S voS v B
R S MR <
~ @ N Q) Q NI
@’béo @ @'}é" Iy /CQ

K e s
o, X R
Lobzq),b&) (JOSZI (’)(9/
Q‘o

Figure 3: Distribution of policy model correctness ratio on OSS-Instruct dataset.

19

Under review as a conference paper at ICLR 2025

Test Generator Algorithm MBPP MBPP+ HE HE+ Avg. LeetCode LCB

- Baseine 71.7 67.2 83.5 787 76.8 339 23.2

GPT-4 KTO 81.0 69.0 86.0 81.1 793 35.2 25.8

DPO 81.2 70.2 86.0 81.1 79.6 36.7 25.8
LLAMA3-70B DPO 104 o62 el 3 773 361 243
Lamad405B Deo g9 669 554 s0s 780 366 253
GPT35-Turso [oo 307 §7 Say 109 180 o1 o8
GPT40-M1NI DPO 305 676 834 s11 187 o7 %
CLwped-Haku 0 o0 @7 N G7 Jay 3% s

Table 11: Ablation of test case generator models. We used CODEQWEN-1.5-CHAT as the policy
model. LCB stands for LiveCodeBench.

Model Item LeetCode LiveCodeBench

QWEN-2.5-INSTRUCT-14B Baseline 55.0 46.0
PLUM-DPO 58.3 47.0

QWEN-2.5-CODER-14B Baseline 58.3 32.2
PLUM-DPO 61.7 35.0

Table 12: PLUM on more powerful policy models.

A.6 ABLATION ON TEST CASE GENERATOR

To demonstrate the robustness of PLUM across different models as test case generators, and more
specifically, to showcase its ability to boost the policy model’s performance with more efficient
options for test case generator thus proving its scalability, we conduct extensive experiments with
multiple other test case generator models. We considered proprietary models with much more
affordable API access and presumably less powerful than GPT-4 (GPT-3.5-Turbo, GPT40-mini,
Claude-3-Haiku), and Open-weight models (Llama 3.1-70B and 405B).

Table[[T]displays the results of the ablation study. Consistent performance gains are observed across
the experiments.

Importantly, the use of more cost-efficient test case generators does not compromise PLUM’s
effectiveness. This demonstrates the scalability of our approach, enabling its practical application
across a wide range of test generators and resource constraints.

A.7 IMPROVING STRONGER LANGUAGE MODELS

To validate the generalizability of the approach to more powerful post-trained models with larger pa-
rameter size and more sophisticated training, we conducted experiments with QWEN-2.5-INSTRUCT-
14B (Yang et al.,[2024a) and QWEN-2.5-CODER-14B (Hui et al.| [2024) models. These models
are fine-tuned from larger and stronger pre-trained models have undergone more sophisticated
post-training including reinforcement learning and preference alignment.

We maintain the same setting as OSS-Instruct experiments in Section[3.2] As presented in Table[T2]
PLUM can further improve these models’ performance. This not only validates the effectiveness of
our approach, but highlights the potential of PLUM to be applied to complement other post-training
techniques.

A.8 GENERATION OF SYNTHETIC NEGATIVES

We present the algorithm we used to generate synthetic negatives below in Algorithm [AZ§]

20

Under review as a conference paper at ICLR 2025

Algorithm 2 MutateCode Algorithm

Require: source_code as a string, mutation probability P
Ensure: mutated_code as a string
1: Parse the source code into an AST: tree < Parse AST(source_code)
2: Initialize mutation rules:
3: Swap function arguments
Change arithmetic/logical operators
Modify control flow (negate conditions, swap if-else blocks)
Introduce off-by-one errors in loops
Remove exception handling blocks
: Alter return values
9: Define Mutator class:
10: Function visit_FunctionDef(node):

A A

11: Store function signatures, recursively traverse AST

12: Function visit_Assign(node):

13: Track variable types, recursively traverse AST

14: Function visit_Call(node):

15: With probability P, swap arguments if types match

16: With probability P, replace function call with another compatible one
17: Function visit_If(node):

18: With probability P, negate the condition or swap if-else blocks
19: Function visit_For(node):

20: With probability P, introduce off-by-one error in loop range
21: Function visit_Try(node):

22: With probability P, remove exception handling block

23: Function visit_Return(node):

24: With probability P, alter the return value

25: Apply the Mutator to the AST: mutated_tree <— Mutator().visit(tree)

26: Perform syntactic validation: is_valid <— SyntaxCheck(mutated_tree)

27: if is_valid = False then

28: return original source code or error

29: end if

30: Convert the mutated AST back to code: mutated_code < ASTtoSource(mutated_tree)
31: return mutated_code

21

	Introduction
	Preference Learning Augmented with Test Cases for Code LMs (PLUM)
	The PLUM
	Generating Test Cases
	Sampling Solutions from the Policy to Create the Preference Data
	Preference Learning

	Experiments
	Training
	Results

	Related Works
	Conclusion
	Appendix
	Test case generation
	Training Details
	Additional Results: What if directly using competitive coding datasets?
	Results On Base Models
	Distribution of policy model correctness
	Ablation On Test Case Generator
	Improving Stronger Language Models
	Generation of Synthetic Negatives

