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Abstract

Despite their recent successes, Transformer-based large language models show1

surprising failure modes. A well-known example of such failure modes is their2

inability to length-generalize: solving problem instances at inference time that3

are longer than those seen during training. In this work, we further explore the4

root cause of this failure by performing a detailed analysis of model behaviors on5

the simple parity task. Our analysis suggests that length generalization failures6

are intricately related to a model’s inability to perform random memory accesses7

within its context window. We present supporting evidence for this hypothesis8

by demonstrating the effectiveness of methodologies that circumvent the need for9

indexing or that enable random token access indirectly, through content-based10

addressing. We further show where and how the failure to perform random memory11

access manifests through attention map visualizations.12

1 Introduction13

The evolution of Transformer-based large language models (LLMs) has marked a new era in how14

machines understand and interact with human language. Their capabilities extend far beyond natural15

language tasks, encompassing instruction following (Ouyang et al., 2022), code generation (Zhang16

et al., 2023), theorem proving (Wu et al., 2022), and common sense and multi-step reasoning (Yu17

et al., 2023). This has made LLMs play a pivotal role as the backbone of AI agents (Xi et al., 2023),18

and even has sparked discussions around their ability to exhibit glimpses of general intelligence19

(Bubeck et al., 2023).20

Despite these remarkable capabilities, surprisingly, the same models struggle with seemingly simple21

arithmetic tasks, such as multi-digit addition and multiplication (Dziri et al., 2024). Specifically,22

the models fail to learn simple algorithms to perform these arithmetic operations. This becomes23

apparent when models are applied to problems of greater length than those encountered during24

training (Hupkes et al., 2020), a problem setting generally referred to as length generalization.25

Arithmetic tasks fundamentally differ from natural language tasks in two key aspects. First, unlike26

natural language, responses to arithmetic tasks are objective and unambiguous, corresponding to the27

exact execution of a sequence of algorithmic steps. The second difference, and the focus of our work,28

is their reliance on formatting: arithmetic expressions are represented using a limited vocabulary,29

such as digits, with each token holding equal significance.30

Crucially, in the representation of arithmetic tasks, a token’s position is as important as its value.31

This stands in stark contrast to natural language expressions, in which the coupling between token or32

word positions on the one hand and the meaning of the expression on the other is much weaker and33

much more flexible. In the context of language modeling this has been demonstrated, for example,34
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by Sinha et al. (2021), who show that permuting word orders has a surprisingly small effect on the35

performance of BERT models in natural language processing tasks.36

In other words, the meaning of natural language utterances depends largely on the meaning of37

their constituents (e.g., words) and only partially on their positions. This well-known influence of38

meaning (semantics) over pure syntax is exemplified in expressions, such as “He saw the cat with39

the binoculars”, in which the phrase “with the binoculars” is more likely subordinate to “He”, even40

though syntactically it could equally be subordinate to “the cat”. The precise position of individual41

words becomes even less informative when references stretch over larger distances, such as across42

sentences.43

As illustrated in Figure 1, when predicting the next token in a natural language task, token references44

which are “content-based” in this way are well represented by the common attention mechanism45

prevalent in the Transformer, and they are further reinforced through pre-training on natural language.46

This is in contrast to arithmetic tasks, which rely exclusively on “index-based addressing” (random47

access memory) into the context window to retrieve the information necessary for generating the next48

algorithmic step.49
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Figure 1: Top: Prediction in natural language tasks. To predict the pronoun him, the model needs to
access previously used pronouns in the context, among other tokens, regardless of the exact position
of the token He in the context (content-based addressing). Bottom: Prediction in an arithmetic task.
The model returns the running parity of the binary sequence after ===. For the third output, the model
must precisely attend to the token in position 3 of the context window (index-based addressing).

In this work, we provide an in-depth study of this addressing dichotomy and present evidence for50

its role in the failure of Transformer language models in algorithmic tasks. We focus on the binary51

parity task as it is, arguably, the simplest sequential arithmetic task, making it well-suited to study the52

underlying computational requirements of Transformers applied to it. When properly formatted, the53

state needed to carry over at each step is only one bit, and the key operation required to learn is XOR.54

Yet, Transformer models struggle to learn a length generalizable algorithm for this task (Anil et al.,55

2022).56

Our detailed empirical study of the parity task across models with various positional embedding57

methods strongly supports the hypothesis that Transformers pre-trained on natural language learn to58

retrieve tokens using content-based addressing, leading them to fail on algorithmic tasks which, as59

discussed, depend on random memory access.60

In Section 3 and Appendix Section C, we further demonstrate how the addition of “mnemonics” to61

leverage content-based addressing as a workaround for index-based addressing allows models to62

learn length generalizable algorithms for the parity and addition tasks, both of which were previously63

shown to be hard for Transformer language models. While the introduction of mnemonics is not64

proposed as a practical fix, it highlights the underlying issue and reinforces our hypothesis. Our work65

suggests that equipping models with effective index-based addressing mechanisms could be a key to66

learning algorithms that can length-generalize.67

2 Related work68

Length generalization is a well-known problem in the context of Transformer-based sequence models69

(Qian et al., 2022; Newman et al., 2020; Zhang et al., 2022b; Zhou et al., 2024; Xiao & Liu, 2023).70

Notably, Anil et al. (2022) conducted careful empirical studies exploring the length generalization71
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capabilities of Transformer-based LLMs with a focus on the boolean variable assignment and binary72

parity task. They demonstrated that models, even when fine-tuned on these tasks using a scratchpad73

format, struggle significantly with generalization, regardless of a model’s scale.74

The study by Dziri et al. (2024) examines the ability of Transformers to length-generalize in compo-75

sitional tasks, such as multi-digit multiplication, and highlights their generalization failures across76

zero/few-shot and fine-tuning regimes, both with and without the use of a scratchpad. It suggests that77

Transformers may approach compositional tasks by simplifying multi-step reasoning into a form of78

linearized subgraph matching, rather than developing systematic problem-solving skills.79

The work by Zhou et al. (2022) examines the extent of in-context learning for algorithmic tasks80

through the strategic use of meticulously designed prompting techniques, called algorithmic prompt-81

ing. As we shall show, our work suggests an alternative interpretation for the results of that work82

based on indexing. Similarly, Zhou et al. (2023) build on the RASP computational model proposed83

by Weiss et al. (2021), and focuses on identifying algorithmic tasks learnable by transformers. It84

conjectures that Transformers demonstrate strong length generalization for tasks that can be solved85

by a concise RASP program across various input lengths.86

The work presented in Kazemnejad et al. (2024) involves a systematic comparison of length general-87

ization performance across Transformers with various positional encoding schemes. It reveals that88

none of the commonly used positional embedding methods effectively solve the length generalization89

problem in downstream tasks. Surprisingly, having no positional embedding outperforms these90

methods, echoing a finding previously identified by Shen et al. (2023). This observation further91

indicates that current positional embedding approaches fail to equip the model with the capability for92

proper index-based addressing. Moreover, Shen et al. (2023) propose a modification to the positional93

embedding itself, by marking tokens with random tags. This allows the model to distinguish identical94

tokens appearing in different positions, offering a slight improvement in generalization.95

A study similar in spirit to our work is Dubois et al. (2019), albeit using recurrent sequence-to-96

sequence models instead of Transformers. That work hypothesizes that models equipped with97

separate content and location-based attention mechanisms are more likely to be able to extrapolate.98

It evaluates this hypothesis through variants of the Lookup Table task, designed to directly assess a99

model’s performance in index-based addressing. Finally, the work by Mohtashami & Jaggi (2024)100

proposes a method for handling long contexts by using sparse learnable “landmark tokens” to retrieve101

relevant token blocks. These landmark tokens bear some similarity with our use of “mnemonics” we102

shall discuss below.103

3 Random accessing in LLMs – a case study104

In this section, we focus on the binary parity task as a case study on learning algorithmic tasks with105

Transformers. We chose the parity task for its simplicity as one of the most basic sequential arithmetic106

tasks. With the correct scratchpad format, it requires carrying over just one bit of state at each step,107

and the primary operation to learn is XOR. However, it is known that Transformer-based models108

struggle to learn the correct algorithm as their solution fails for sequences longer or shorter than those109

seen during training (Anil et al., 2022).110

We begin with a brief note on the usage of scratchpads. When the model is asked to directly output the111

final answer, such as the parity of a sequence, we encounter a potential complication: Transformers112

execute a fixed amount of computation for each token generated, yet the problem size can vary.113

In other words, the model must simulate a for-loop over the entire sequence in a single forward114

pass. Note that this represents a distinct contaminating issue that falls outside the scope of this115

work. This challenge can be addressed by incorporating a “scratchpad” (which is also referred to as116

chain-of-thought) (Nye et al., 2021; Wei et al., 2022). The scratchpad enables the effective use of the117

context window to explicitly simulate a for-loop and output intermediate results.118

Adopting the format used in Anil et al. (2022) for the parity task, we begin with a start-of-sequence119

symbol >>>, followed by a binary sequence, an end-of-sequence symbol ===, and the sequence’s120

running parity. For instance:121

No Scratchpad
Standard Scratchpad

>>> 1 0 1 0 0 1 1 === 0
>>> 1 0 1 0 0 1 1 === 1 1 0 0 0 1 0

122
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Throughout the paper, blue bold tokens are used to indicate tokens over which the loss is calculated123

during training, and thus also the tokens that the model predicts during inference. Meanwhile, other124

tokens are added externally into the model’s context during generation (via “environment forcing”125

(Recchia, 2021)). Also, we ensure that the start-/end-of-sequence symbols are converted to single126

tokens and bits within the sequence are represented by single fixed tokens, preventing any merging127

due to tokenization.128

3.1 Interleaved scratchpad129

In essence, a length generalizable solution to generate the running parity in the specified format130

involves three steps: 1) Reading the current active bit; 2) Reading the current running parity, and;131

3) Performing XOR between the active bit and the current parity. We hypothesize that the failure of132

Transformers can be attributed to the first step, since the subsequent two steps are straightforward:133

the current running parity is the last token generated, and the XOR operation is trivial to learn.134

To support this claim with empirical evidence, we implement an interleaved scratchpad format where135

sequence bits and running parities are alternated, ensuring that at each step, the current active bit is136

the last token, and the current running parity appears immediately before the last token in the context.137

This arrangement dramatically simplifies the first step (reading the current active bit), which, as we138

will see shortly, lets the model learn a length generalizable solution.139

Interleaved Scratchpad >>> 1 1 0 1 1 0 0 0 0 0 1 1 1 0
140

We fine-tuned several small Transformer models with different positional embedding methods:141

BLOOMZ-560M with AliBi (Muennighoff et al., 2022; Le Scao et al., 2023; Press et al., 2021),142

Pythia-410M with RoPe (Biderman et al., 2023; Su et al., 2024), and OPT-350M with learned143

positional embedding (Zhang et al., 2022a). All models were initialized with their pre-trained weights144

and fine-tuned on task sequences of length 10 to 20 bits. They were tested on sequences of up to 60145

bits. Refer to Section A for experiment setup information.146

0 5 10 15 20 25 30 35 40 45 50 55 60
Test Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

No Scratchpad
Standard Scratchpad
Interleaved Scratchpad
Training Sequence Length

Figure 2: Length generalization performance of fine-tuned BLOOMZ-560M models on sequences
of length 10 to 20 bits, using standard and interleaved scratchpad formats, as well as without a
scratchpad.

Figure 2 illustrates the length generalization performance of fine-tuned BLOOMZ models using147

both standard and interleaved scratchpad formats, using training sequence lengths indicated by the148

shaded region. While the standard scratchpad method exhibits minimal improvement over not using149

a scratchpad, the interleaved version demonstrates perfect generalization. Notably, the sole difference150

between the two formats lies in the placement of the tokens in the context. The standard scratchpad151

format requires the model to perform index-based addressing to fetch the value of the current active152

bit, while the interleaved format eliminates this requirement. Section B.1 shows similar results for153

other models.154

The observation above supports the hypothesis that the models’ inability to learn arithmetic tasks155

stems from their failure to accurately perform index-based addressing of the input bits. In contrast,156

4



content-based addressing is inherently natural for Transformers through the attention mechanism and157

natural language pre-training. Next, we will further reinforce this hypothesis by introducing another158

modification to the standard scratchpad.159

3.2 Mnemonics160

We can leverage content-based addressing in Transformers to indirectly perform index-based address-161

ing, by adding matching “anchor” tokens before every pair of corresponding tokens in the standard162

scratchpad format. As they allow a model to revisit earlier information in the context window, we163

shall refer to these as mnemonics. Similar approaches are discussed in Bueno et al. (2022), Qian et al.164

(2022) and Zhou et al. (2023).165

During training and inference, for each example of length n, we first randomly sample n tokens from166

a pool of mnemonic tokens1, then add the mnemonics before each bit in the input sequence and the167

running parity bits:168

Mnemonics
>>> M1 1 M2 0 M3 1 M4 0 M5 0 M6 1 === M1 1 M2 1 M3 0 M4 0 M5 0 M6 1

Mnemonics (Environment Forced)
>>> M1 1 M2 0 M3 1 M4 0 M5 0 M6 1 === M1 1 M2 1 M3 0 M4 0 M5 0 M6 1

Note: Mnemonic tokens M1, M2, · · · are randomly sampled without replacement from the
mnemonics pool, for every problem instance.

169

Note that in the non-environment-forced version, the model is trained to first place the matching170

mnemonics from the input sequence, and then use them to address the active bit at each step.171

Conversely, in the environment-forced version, at each step, we first append the matching mnemonic172

from the input sequence to the context, after which the model predicts the running parity.173
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Figure 3: Length generalization performance of fine-tuned BLOOMZ-560M models with and
without using mnemonics in the scratchpad.

Figure 3 compares the length generalization performance of fine-tuned BLOOMZ models with and174

without using mnemonics in the scratchpad. The results illustrate that adding mnemonics enables175

the model to learn the correct algorithm for solving the task, leading to perfect length generalization176

for sequences of up to 60 bits, while being trained on sequences of only 10 to 20 bits. Additionally,177

Appendix Section B.3 investigates the in-context learning performance of the parity task using178

mnemonics.179

These results suggest that equipping a model with effective index-based addressing could be a key to180

enabling it to learn correct arithmetic algorithms. Interestingly, the performance of the model using181

non-environment-forced mnemonics is nearly identical to that of the environment-forced version,182

1We used all space-preceded tokens containing only English characters for the mnemonics pool.
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indicating the model’s capability to both place and utilize mnemonics for indexing effectively. Similar183

results are reported in Appendix Section B.1 for other models. Additionally, we explore the effects of184

varying the interval between mnemonic tokens in Section B.2.185

Using these scratchpad strategies, we also trained the same model initialized randomly instead of186

pre-trained on natural language. The results are shown in Figure 4. Notably, when training from187

random initialization, mnemonic scratchpads are ineffective. This could be attributed to the fact that188

successful utilization of mnemonics requires the model to perform both, global addressing of the189

relevant mnemonic, followed by local addressing of adjacent tokens. The latter may be an ability that190

persists in the length generalization setting only due to pre-training on natural language.191
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Figure 4: BLOOMZ-560M models trained from random initialization on the parity task using twice
the number of epochs.

3.3 Analysis of attention patterns192

To further analyze how the model’s attention changes with and without mnemonics, we present input193

attribution visualizations in Figure 5, using the gradient×input method (Shrikumar et al., 2016).194

These visualizations show aggregate attention maps, with columns representing output tokens (after195

===) and rows showing all tokens in the context window. Since the model’s task is to produce the196

running parity of the input sequence, at step i, it only needs to attend to the current bit (bit i of197

the input) and the previous running parity (the last bit generated). Thus, the ideal attention map198

would show two diagonal lines, corresponding to these two relevant tokens. The attention maps are199

calculated on a sequence of length 40 for a model trained on sequences of length 10 to 20 bits.200

As shown in Figure 5 on the left, immediately following the 20th bit (in-distribution length), the201

model fails to attend to the current bit when calculating the parity. In other words, the model has not202

learned a length generalizable method for indexing the correct bit at each step, thus failing at indexing203

outside of its training regime. In contrast, as seen in the right plot of Figure 5, when mnemonic bits204

are added, a near-perfect attention map is observed beyond the training regime.205

3.4 Mnemonics variations206

Finally, we study several variations of the introduced mnemonic tokens, which further support our207

hypothesis, as discussed below:208

Numeric >>> 1 b 2 a 3 b 4 a 5 a 6 b === 1 b 2 b 3 a 4 a 5 a 6 b

Constant >>> # 1 # 0 # 1 # 0 # 0 # 1 === # 1 # 1 # 0 # 0 # 0 # 1

Non-aligned >>> M1 1 M2 0 M3 1 M4 0 M5 0 M6 1 === M7 1 M8 1 M9 0 M10 0 M11 0 M12 1

Cyclic >>> red 1 green 0 yellow 1 red 0 green 0 yellow 1
=== red 1 green 1 yellow 0 red 0 green 0 yellow 1

209
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Figure 5: Input attribution visualized through the gradient×input method during performing the
parity task. Models were trained on sequences of 10 to 20 bits while predicting the parity of a 40-bit
sequence, shown with (right) and without (left) mnemonics. Columns represent output tokens (after
===) and rows represent all tokens in the context window. Observe the scrambled attention pattern in
the left figure, after the 20th output.

Numeric Mnemonics: We use consecutive numeric indices (1, 2, 3, · · ·) as mnemonic tokens for210

all samples. To avoid confusion between mnemonics and binary values in the sequence, we use a,211

b instead of 0, 1 to represent the bits. Note that this form of mnemonics corresponds to absolute212

positional encoding.213

Constant Mnemonics: A single fixed character (#) is used as the mnemonic token for all samples,214

during training and testing. This approach allows us to test whether the effectiveness of mnemonics215

is related to the attention sink phenomenon (Xiao et al., 2023), or if the model uses the mnemonic216

tokens as “placeholders” allowing it to store intermediate calculations in their activations.217

Non-aligned Mnemonics: This variant is similar to the original mnemonics, except the random218

tokens used in the input and output do not match. Specifically, for a sequence of size n bits, we219

sample 2n tokens to serve as mnemonics. We use this variant to test whether the impact of mnemonics220

results from making each digit unique for the model, rather than acting as positional anchors.221

Cyclic Mnemonics: We cycle through a predetermined array of mnemonic tokens, fixed across all222

samples in training and testing. We used 10 color names as mnemonics in our experiment.223
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Figure 6: Length generalization performance of fine-tuned BLOOMZ-560M models on the parity
task, trained on sequences of length 10 to 20 bits, using different variants of mnemonics.

Figure 6 shows the failure of the aforementioned mnemonic variants at length generalization. Note224

that in the environment-forced versions, all mnemonic tokens are placed in the context window of the225

model externally. Compared to the original randomly sampled aligned mnemonics, each variation226

corrupts the mnemonics’ utility as positional anchors.227

In the numeric mnemonics variant, the model is exposed to mnemonic tokens 1, 2, · · · , 20 during228

training, while at test time, it encounters unseen mnemonics 21, 22, · · ·. We further explore the impact229

of unseen mnemonics at test time in Appendix Section B.4. Additionally, the fixed nature of numeric230

mnemonics across training examples may hinder length generalization: in contrast to the original231

mnemonic scheme, which randomly selects mnemonics from a large pool of tokens for each training232

instance, the numeric variant uses the same mnemonics for all training samples.233

In the constant and non-aligned variant, anchor-based alignment between the sequence and scratchpad234

is eliminated entirely. Finally, cyclic mnemonics are repeating and thereby create ambiguities235

regarding the correct next bit to read.236

Overall, these results further support our hypothesis that Transformers struggle with performing237

random token accesses, and demonstrate how random mnemonics can mitigate this by facilitating238

random access through content-based addressing of the relevant mnemonic.239

4 Conclusions240

We argue that, while the attention mechanism of Transformers is well-suited to perform content-based241

addressing into the context window, it struggles with random token accesses—a crucial capability242

in virtually all algorithmic reasoning tasks. We present supporting evidence for this hypothesis243

by demonstrating the effectiveness of methodologies that either circumvent the need for indexing,244

such as the interleaved scratchpad, or enable indirect random token access through content-based245

addressing via mnemonics. Additionally, we illustrate where and how failures in index-based retrieval246

manifest using attention map visualizations.247

Our work demonstrates that Transformers can in fact learn to length-generalize in algorithmic tasks,248

such as parity and addition, as long as they are able to perform random memory access. This suggests249

that equipping these models with the ability to perform such index-based addressing—either into their250

own context window, or into an external memory—may be key to enabling them to learn algorithmic251

tasks more generally.252
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Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-280
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A Details of experiments350

We initialized with the pre-trained weights for training, except when specified otherwise. We used a351

learning rate of 1e− 6 for parity and 2e− 6 for addition, with a 1000-step warm-up. The training352

consists of 4 epochs, each containing 8000 training steps, with batch sizes of 64 for parity and 32 for353

addition tasks. We ensured an equal number of training examples for each problem length, reserving354

200 samples for parity and 32 for addition from each length for evaluation. When training from355

random initialization, we used 8 epochs, twice the number of epochs used in our fine-tuning settings.356

During training, the loss is calculated only for the target tokens (indicated by bold blue tokens in the357

main text). During inference, when the next token is a target, we perform greedy decoding from the358

model; otherwise, we place the correct token into the context window.359

B Additional experiment results on the parity task360

B.1 Additional models361

Here, we present results similar to those shown as in Figure 3 for Pythia-410M with RoPe, and362

OPT-350M with learned positional embeddings.363
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Figure 7: Length generalization performance of the OPT-350M model on the parity task using
different scratchpad strategies. Left: fine-tuning; Right: training from scratch.
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Figure 8: Length generalization performance of the Pythia-410M model on the parity task using
different scratchpad strategies. Left: fine-tuning; Right: training from scratch.

B.2 Exploring mnemonic intervals364

Here, we investigate the effectiveness of reducing the number of mnemonics within the parity365

scratchpad. At a mnemonic interval of i, mnemonic tokens are inserted before every i-th bit in the366
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input and output sequences. Therefore, a mnemonic interval of 1 token corresponds to the original367

mnemonic format described in the main text. For instance, with a mnemonic interval of 2, the format368

would be as follows:369

Mnemonics with interval of 2
>>> M1 1 0 M2 1 0 M3 0 1 M4 0 0 === M1 1 1 M2 0 0 M3 0 1 M4 1 1

370

As shown in Figure 9, length generalization performance remains largely unaffected with mnemonic371

intervals of up to 3 tokens. However, when the interval exceeds 5 tokens, the impact of mnemonics372

begins to diminish.373
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Figure 9: Length generalization performance of fine-tuned BLOOMZ-560M models with non-
environment-forced mnemonics of different intervals in the scratchpad.

B.3 In-context learning with mnemonics374
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Figure 10: Length generalization performance of a Llama2-7B model on the parity task, with
in-context examples (3 examples per length) with and without mnemonics.

We investigate the in-context learning capabilities, without fine-tuning, of a larger Transformer model,375

Llama2-7B (Touvron et al., 2023), in performing the parity task with and without mnemonics. We376

use examples of lengths 10 to 20, with three examples for each length. Additionally, we preface377

the examples with the problem statement prompt: “Calculate the running parity of the378

sequence after ===”. Figure 10 illustrates the model’s performance with and without the use379
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of mnemonics (refer to Section 3.2). Similar results were also observed with Llama2-7B-chat and380

BLOOMZ-7.1B models.381

B.4 Unseen (OOD) mnemonics at test time382

In this section, we investigate whether the model treats mnemonics merely as positional anchors,383

disregarding their values, or if it learns to memorize the mnemonic tokens for indexing. Following384

the methodology described in Section 3.2, we fine-tune a model using single-token English words as385

mnemonics. In contrast, at test time, we use single-token integers as mnemonics.386

Figure 11 presents the results of length generalization performance for models evaluated on in-387

distribution and out-of-distribution mnemonics. It shows that performance degrades when a model388

is evaluated on unseen, semantically novel mnemonics. This suggests that the learned approach to389

using mnemonics still relies on token values.390
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Figure 11: Length generalization performance of fine-tuned BLOOMZ-560M models, tested using
in-distribution (ID) and out-of-distribution (OOD) mnemonics. Note that the y-axis is truncated, with
values ranging from 0.7 to 1.

C Solving the multi-digit addition task391

This section extends our results to another arithmetic task: multi-digit addition. This task has been392

explored extensively in the literature with different scratchpad formats (Qian et al., 2022; Nye et al.,393

2021; Kazemnejad et al., 2024; Zhou et al., 2024; Xiao & Liu, 2023; Zhou et al., 2022), among others.394

We focus on the length generalization performance of the addition task with mnemonics in three395

different formats.396

In our format, the addition result is initially presented in reverse order, from the least to the most397

significant digits. Following the symbols ###, the model then reverses this to produce the final398

addition result. It is important to mention that every single digit is converted to an individual token.399

We fine-tuned the BLOOMZ-560M model on the addition task using the specified format, training on400

operands with 5 to 10 digits and testing on operands with up to 14 digits. We use the same mnemonics401

for corresponding digits in both operands, as demonstrated below:402

Digit-aligned Mnemonics

No Mnemonics >>> 1 2 + 9 === 1 2 0 ### 0 2 1
Mnemonics >>> M1 1 M2 2 M3 + M2 9 M3 === M2 1 M1 2 M3 0 ### M3 0 M1 2 M2 1
Env. Forced >>> M1 1 M2 2 M3 + M2 9 M3 === M2 1 M1 2 M3 0 ### M3 0 M1 2 M2 1

403

In another format, we first zero-pad the operands to ensure they have the same number of digits, then404

insert digit-aligned mnemonics:405
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Digit-aligned Mnemonics + Zero Padding

No Mnemonics >>> 1 2 + 0 9 === 1 2 0 ### 0 2 1
Mnemonics >>> M1 1 M2 2 M3 + M1 0 M2 9 M3 === M2 1 M1 2 M3 0 ### M3 0 M1 2 M2 1
Env. Forced >>> M1 1 M2 2 M3 + M1 0 M2 9 M3 === M2 1 M1 2 M3 0 ### M3 0 M1 2 M2 1

406

Lastly, we explore a format in which the mnemonics for corresponding digits of the two operands are407

not identical, as depicted below:408

Non-aligned Mnemonics

No Mnemonics >>> 1 2 + 9 === 1 2 0 ### 0 2 1
Mnemonics >>> M1 1 M2 2 + M3 9 === M3 M2 1 M1 2 0 ### 0 M1 2 M3 M2 1
Env. Forced >>> M1 1 M2 2 + M3 9 === M3 M2 1 M1 2 0 ### 0 M1 2 M3 M2 1

409

D
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N
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D
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Figure 12: Accuracy of the addition task tested on operands with up to 14 digits, with models trained
and evaluated with and without digit-aligned, zero-padded, and non-aligned mnemonic formats. The
red box indicates the number of digits used during training.

The length generalization performance of the addition task, both with and without the specified410

mnemonic formats, is shown in Figure 12. As expected, aligned mnemonics guide the model in411

selecting the correct digits for addition at each step. Furthermore, zero-padding simplifies the task’s412

format by ensuring an equal number of mnemonics and digits in both operands. Overall, our findings413

show that similar to the simpler case of binary parity, by utilizing content-based addressing to414
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enable index-based addressing via mnemonics, Transformer models can successfully learn the correct415

algorithm for the addition task.416
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