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ABSTRACT

Recent studies have shown that as training progresses, neural networks gradually
lose their capacity to learn new information, a phenomenon known as plastic-
ity loss. An unbounded weight growth is one of the main causes of plasticity
loss. Furthermore, it harms generalization capability and disrupts optimization
dynamics. Re-initializing the network can be a solution, but it results in the loss
of learned information, leading to performance drops. In this paper, we propose
Soft Weight Rescaling (SWR), a novel approach that prevents unbounded weight
growth without losing information. SWR recovers the plasticity of the network
by simply scaling down the weight at each step of the learning process. We the-
oretically prove that SWR bounds weight magnitude and balances weight magni-
tude between layers. Our experiment shows that SWR improves performance on
warm-start learning, continual learning, and single-task learning setups on stan-
dard image classification benchmarks.

1 INTRODUCTION

Recent works have revealed that a neural network loses its ability to learn new data as training
progresses, a phenomenon known as plasticity loss. A pre-trained neural network shows inferior
performance compared to a newly initialized model when trained on the same data (Ash & Adams,
2020; Berariu et al., 2021). Lyle et al. (2024b) demonstrated that unbounded weight growth is one of
the main causes of plasticity loss and suggested weight decay and layer normalization as solutions.
Several recent studies on plasticity loss have proposed weight regularization methods to address
this issue (Kumar et al., 2023; Lewandowski et al., 2023; Elsayed et al., 2024). Unbounded weight
growth is a consistent problem in the field of deep learning; it is problematic not only for plasticity
loss but also undermines the generalization ability of neural networks (Golowich et al., 2018; Zhang
et al., 2021) and their robustness to distribution shifts. Increasing model sensitivity, where a small
change in the model input leads to a large change in the model output, is also closely related to
the magnitude of the weights. Therefore, weight regularization methods are widely used in various
areas of deep learning and have been consistently studied.

Weight regularization methods have been proposed in various forms, including additional loss terms
(Krogh & Hertz, 1991; Kumar et al., 2023) and re-initialization strategies (Ash & Adams, 2020; Li
et al., 2020b; Taha et al., 2021). The former approach adds an extra loss term to the objective func-
tion, which regularizes the weights of the model. These approaches are used not only to penalize
large weights but also for other purposes, such as knowledge distillation (Shen et al., 2024). How-
ever, they can cause optimization difficulties or conflict with the main learning objective, making
it harder for the model to converge effectively (Ghiasi et al., 2024). Liu et al. (2021) also proved
that the norm penalty of a family of weight regularizations weakens as the network depth increases.
Moreover, such methods require additional gradient computations, resulting in slower training. In
addition, several studies argued that regularization methods could be problematic with normaliza-
tion layers. For instance, weight decay destabilizes optimization in weight normalization (Li et al.,
2020a), and interferes learning with batch normalization (Lyle et al., 2024b), both of which can hin-
der convergence. On the other hand, re-initialization methods are aimed at resetting certain param-
eters of the model during training to escape poor local minima and encourage better exploration of
the loss landscape. Zaidi et al. (2023) demonstrated that re-initialization methods improve general-
ization even with modern training protocols. While re-initialization methods improve generalization
ability, they raise the problem of losing knowledge from previously learned data (Zaidi et al., 2023;
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Ramkumar et al., 2023; Lee et al., 2024; Shin et al., 2024). It leads to a notable performance drop,
especially problematic when access to the previous data is unavailable.

In this paper, we propose a novel weight regularization method that has advantages of both of those
two approaches. Our method, Soft Weight Rescaling (SWR), directly reduces the weight magnitudes
close to the initial values by scaling down weights. With a minimal computational overhead, it
effectively prevents unbounded weight growth. Unlike previous methods, SWR recovers plasticity
without losing information. In addition, our theoretical analysis proves that SWR bounds weight
magnitude and balances weight magnitude between layers. We evaluate the effectiveness of SWR on
standard image classification benchmarks across various scenarios—including warm-start learning,
continual learning, and single-task learning—comparing it with other regularization methods and
highlighting its advantages, particularly in the case of VGG-16.

The contributions of this work are summarized as follows. First, We introduce a novel method
that effectively prevents unbounded weight growth while preserving previously learned information
and maintaining network plasticity. Second, we provide a theoretical analysis demonstrating that
SWR bounds the magnitude of the weights and balances the weight magnitude across layers without
degrading model performance. Finally, we empirically show that SWR improves generalization
performance across various learning scenarios.

The rest of this paper is organized as follows. Section 2 reviews studies on weight magnitude and
regularization methods. In Section 3, we explain weight rescaling and propose a novel regularization
method, Soft Weight Rescaling. Then, in Section 4, we evaluate the effectiveness of Soft Weight
Rescaling by comparing it with other regularization methods across various experimental settings.

2 RELATED WORKS

Unbounded Weight Growth. There have been studies associated with the weight magnitude.
Krogh & Hertz (1991); Bartlett (1996) indicated that the magnitude of weights is related to general-
ization performance. Besides, as the magnitude of the weights increases, the Lipschitz constant also
tends to grow (Couellan, 2021). This leads to higher sensitivity of the network, potentially affecting
its stability and generalization. Ghiasi et al. (2024) demonstrated that weight decay plays a role in
reducing sensitivity for noise. Moreover, Lyle et al. (2024b) claimed that unbounded weight growth
is one of the factors of plasticity loss in training with non-stationary distribution. These studies in-
dicate that enormous weight magnitudes disturb effective learning. Unfortunately, weight growth is
inevitable in deep learning. Neyshabur et al. (2017) showed that when the training error converges
to 0, the weight magnitude gets unbounded. Merrill et al. (2020) observed that weight magnitude
increases with O(

√
t), where t is the update step during transformer training. These explanations

highlight the ongoing need for weight regularization in modern deep learning.

Weight Regularization. Various methods have been proposed to regularize the weight magnitude.
L2 regularization, which is also termed as weight decay, is a method to apply an additional loss term
that penalizes the L2 norm of weight. Although it is a method widely used, several studies pointed
out its problems (Ishii & Sato, 2018; Liu et al., 2021). Yoshida & Miyato (2017) suggested regu-
larizing the spectral norm of the weight matrix and showed improved generalization performance in
various experiments. Kumar et al. (2020) regularized the weights to maintain the effective rank of
the features. On the other hand, several studies have explored how to utilize the initialized weights.
Kumar et al. (2023) imposed a penalty on L2 distance from initial weight and Lewandowski et al.
(2023) proposed using the empirical Wasserstein distance to prevent deviating from initial distribu-
tion. However, these methods require additional gradient computations.

Re-initialization methods. Ash & Adams (2020) demonstrated that a pre-trained neural network
achieves reduced generalization performance compared to a newly initialized model. The naive
solution is to initialize models and train again from scratch whenever new data is added, which is
very inefficient. Based on the idea that higher layers learn task-specific knowledge, methods that
re-initialize the model layer by layer, such as resetting the fully-connected layers only (Li et al.,
2020b), have been proposed. To explore a more efficient approach, several attempts have been made
to re-initialize the subnetwork of the model (Han et al., 2016; Taha et al., 2021; Ramkumar et al.,
2023; Sokar et al., 2023). In particular, Ramkumar et al. (2023) calculated the weight importance
and re-initialized the task-irrelevant parameters. Sokar et al. (2023) proposed to reset dormant nodes
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which do not influence the model. However, these methods pose a new drawback in additional com-
putational cost. On the other hand, there have been presented weight rescaling methods that leverage
initial weight. Alabdulmohsin et al. (2021) proposed the Layerwise method which rescales the first
t blocks to have their initial norms and re-initializes all layers after t-th layer, for the training stage
t. More recently, Niehaus et al. (2024) introduced the Weight Rescaling method, which rescales
weight to enforce the standard deviation of weight to initialization. The limitation of these two
weight rescaling methods is that they depend on the model architecture and require to find a proper
rescaling interval.

3 METHOD

In this section, we introduce the proportionality of neural networks to explain a weight regularizing
method that preserves the behavior of the model. Next, we demonstrate that our method, SWR,
regularizes learnable parameters while satisfying the property. Finally, we will discuss the reason
for the importance of the proportionality and advantage of SWR that improves model balancedness.

3.1 NOTATIONS

Let fθ be a neural network with L layers and activation function ϕ, where the input x ∈ Rm and
the output z ∈ Rn. The set of learnable parameters is denoted by θ, comprising the weight matrices
Wl and bias vectors bl of the l-th layer. Let al represent the vector of activation outputs of the l-th
layer, and zl the pre-activation outputs before applying the activation function. The final output of
the network z = fθ(x) is obtained recursively as follows:

a0
.
= x

zi = Wiai−1 + bi, i ∈ {1, ..., L− 1}
ai = ϕ(zi), i ∈ {1, ..., L− 1}
z = WLaL−1 + bL,

where zL = z.

For convenience, the norm expression of a matrix will be considered an element-wise L2 norm,
which is known as the Frobenius norm: ∥W∥ .

= ∥W∥F =
√∑

i

∑
j |wij |2, where wij represents

an element of the matrix W . Additionally, we consider multiplying a constant by a matrix or vector
as element-wise multiplication.

3.2 WEIGHT RESCALING

Previous studies have suggested regularizing the magnitude or spectral norm by multiplying the
parameters by a specific constant (Huang et al., 2017; Ash & Adams, 2020; Gogianu et al., 2021;
Gouk et al., 2021; Niehaus et al., 2024). However, rescaling the weights can alter the behavior
of models, except in specific cases (e.g. a neural network without biases). It is clear that when a
constant is multiplied by the weight matrix and bias of the final layer, the network output will be
scaled accordingly. However, it becomes complicated when the scaling constant varies across layers.
To resolve this complexity, we demonstrate in Theorem 1 that it is possible to avoid decreasing
the model’s accuracy by employing a specific scaling method. We will first outline the relevant
properties in the form of Definition 1.

Definition 1 (Proportionality of neural network). Let the neural network fθ′ have the same input
and output dimension with fθ. Then, we say that fθ′ and fθ are proportional if and only if

fθ′(x) = k · fθ(x)

for a real constant k and all input data x. We refer to the constant k as the proportionality constant
of fθ and fθ′ .

We investigated the following theorem shows that it is always possible to construct a proportional
network for any arbitrary neural network.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1. Let fθ be a feed-forward neural network with affine, convolution layers, and homoge-
neous activation functions (e.g. ReLU, Leaky ReLU, etc.). For any positive real number C, we can
find infinitely many networks that are proportional to fθ with proportionality constant C.

We will briefly explain how to find the network that is proportional to fθ. Let a network that has
L layers be fθ, and a set c = {c1, c2, . . . , cL} consisting of positive real numbers such that C =
ΠL

i=1ci. Then, construct the new parameter set θc .
= {W c

1 , b
c
1, . . .W

c
L, b

c
L} by rescaling parameters

with the following rules:

W c
l ← cl ·Wl, bcl ←

(
l∏

i=1

ci

)
· bl

Then, for all input x, it satisfies fθc(x) = Cfθ(x). A detailed proof can be found in Appendix A.

In the following, scaled network fθc , final cumulative scaler C, and the scaler set c will refer to the
definitions provided above. Note that Theorem 1 indicates that two proportional neural networks
have identical behavior in classification tasks. This suggests that scaling the bias vectors according
to a certain rule allows for regularization without affecting the model’s performance. It remains the
same for the case of any homogeneous layer, such as max-pooling or average-pooling.
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Figure 1: An illustrative comparison of the proportionality. The left figure shows the results
of weight scaling without considering proportionality, while the right figure shows the results when
proportionality is accounted for. The dashed line represents the test accuracy right after scaling, and
the solid lines represent the best test accuracy achieved through additional training. All results are
averaged over 5 runs on the CIFAR-10 dataset.

An example illustrating the effect of the proportionality is shown in Fig. 1. The left figure represents
the outcomes of weight scaling without taking proportionality into account, and the right represents
the results when proportionality is considered. Two scaling approaches are compared across differ-
ent scaling magnitudes on the CIFAR-10 dataset (Krizhevsky et al., 2009). The black horizontal line
denotes the best test accuracy achieved during training over 100 epochs, and the blue line represents
the best test accuracy during an additional 50 epochs of training. All scaling methods outperformed
the best accuracy of the pre-trained model (black), indicating that the scaling method can address
the overfitting issue. However, it is notable that considering proportionality as Theorem 1 main-
tains its test accuracy perfectly across all scaling ratios, as indicated by the red line. In contrast,
the performance of the opposite exhibits a decline as the scaling magnitude increases. However, as
mentioned above, there are infinitely many ways to rescale parameters. In the following section, we
will discuss how to determine the scaler set c.

3.3 SOFT WEIGHT RESCALING

Selecting different scaling factors per layer becomes impractical as the number of layers increases.
In this subsection, we propose a novel method for effectively scaling parameters; the scaling factor
of each layer depends on the change rate of the layer. We define the rate of how much the model has
changed from the initial state as the ratio between the Frobenius norm of the current weight matrix
and that of the initial one. Therefore, the scaling factor of the l-th layer is cl = ∥W init

l ∥/∥Wl∥. This
ensures that the magnitude of the layer remains at the initial value, and may constrain the model,
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forcing the weight norm to remain unchanged from the initial magnitude. Since the initial weight
norm is small in most initialization techniques, the model may lack sufficient complexity (Neyshabur
et al., 2015b). To address this limitation, we alleviate the scaling factor as follows:

cl =
λ× ∥W init

l ∥+ (1− λ)× ∥Wl∥
∥Wl∥

With an exponential moving average (EMA), models can deviate from initialization smoothly while
still regularizing the model. While this modification breaks hard constraints for weight magnitude,
the algorithm still prevents unlimited growth of weight. We presented the proof of the boundedness
of the weight magnitude in Appendix B.

It is natural to question whether Theorem 1 can also be applied to networks that utilize commonly
used techniques such as batch normalization (Ioffe, 2015) or layer normalization (Ba, 2016), due
to their scale-invariant property (which is, if g is a function of normalization layer, for input x,
g(cx) = g(x) for ∀c > 0). However, this property implies that we only need to focus on the
learnable parameters of the final normalization layer to maintain the proportionality. The algorithm,
including the normalization layer, is provided in Algorithm 1. For simplicity, we denote the scale
and shift parameters of the normalization layer as W and b just like a typical layer, and in the case
of layers without a bias vector (e.g. like the convolution layer right before batch normalization), we
consider bias as the zero constant vector.

Algorithm 1 Soft Weight Rescaling

Given: Data stream D, neural network fθ with learnable parameters {(W1, b1), . . . , (WL, bL)}.
Initialize: step size α, coefficient λ
ninit
l ← ∥Wl∥, l ∈ {1, . . . , L}

k ←
{

Index of final normalization layer, if network has normalization layer
0, otherwise

for (x, y) in D do
θ ← Parameters after Gradient update for (x, y) ▷ e.g. update with CrossEntropyLoss
C ← 1 ▷ variable to calculate cumulative scaler
for l in {1, 2, . . . , L} do

cl ← λninit
l +(1−λ)∥Wl∥

∥Wl∥

C ←
{
cl · C if l ≥ k

cl otherwise
▷ cumulate scalers from last normalization layer

(Wl, bl)← (cl ·Wl, C · bl)
end for

end for

It is notable that SWR scales the weights preceding the final normalization layer, while they do not
affect the scale of the output. However, each of them has a distinct role. First, for convolution
layers, the scalers control the effective learning rate which has been studied in previous research
(Van Laarhoven, 2017; Zhang et al., 2018; Andriushchenko et al., 2023). Second, for the normal-
ization layer, Lyle et al. (2024a) mentioned that unbounded parameters in normalization layers may
cause issues in non-stationary environments such as continual or reinforcement learning. Although
Summers & Dinneen (2019) demonstrated regularization for scale and shift parameters is only ef-
fective in specific situations, we also regularize scale and shift parameters, since our experiments
focused on non-stationary environments and we observed that weights on several models diverged
during training. Due to the different roles of regularization for each type of layer, we split the coef-
ficient λ into two parts in the experiments. Henceforth, we denote the coefficient for the classifier as
λc and the coefficient applied to the feature extractor (before the classifier) as λf .

3.4 SWR FOR IMPROVED BALANCEDNESS

One of the advantages of SWR is that it aligns the magnitude ratios between layers. Neyshabur et al.
(2015a); Liu et al. (2021) have mentioned that when the balance between layers is not maintained, it
has a significant negative impact on subsequent gradient descent. Although Du et al. (2018) argued
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that the balance between layers is automatically adjusted during training for the ReLU network,
Lyle et al. (2024b) showed that in non-stationary environments, it is common for layers to grow
at different rates. Weight decay cannot resolve this issue, since when the magnitude of a specific
layer increases, the regularization effect on other layers is significantly reduced (Liu et al., 2021).
However, SWR, which applies regularization to each layer individually, is not affected by this issue.
We will show that using SWR at every update step makes the model balanced and illustrate empirical
results with a toy experiment in Appendix C.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of SWR, comparing with other weight regularization
methods. In all experiments, we used various models and datasets to compare results across dif-
ferent environments. For relatively smaller models, such as a 3-layer MLP and a CNN with 2
convolutional layers and 2 fully connected layers, we used MNIST (Deng, 2012), CIFAR10 and
CIFAR100(Krizhevsky et al., 2009) datasets, which is commonly used in image classification ex-
periment. To verify the effect of combining batch normalization, we additionally used a CNN-BN,
which is CNN with batch normalization layers. For an extensive evaluation, we consider VGG-
16 (Simonyan & Zisserman, 2014) with the TinyImageNet dataset (Le & Yang, 2015). In all the
following experiments, we compared our method with two weight regularizations, L2 (Krogh &
Hertz, 1991) and L2 Init (Kumar et al., 2023), as well as two re-initialization methods, Head Reset
(Nikishin et al., 2022) and S&P (Ash & Adams, 2020). Detailed experimental settings, including
hyperparameters for each method, are in Appendix D.

4.1 WARM-STARTING

We use a warm starting setup from Ash & Adams (2020) to evaluate whether SWR can close the
generalization gap. In our setting, models are trained for 100 epochs with 50% of training data and
trained the entire training dataset for the following 100 epochs. Re-initialization methods are applied
once before the training data is updated with the new dataset.
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Figure 2: Results on warm-starting. This figure shows the test accuracy after training half of the
data with 100 epochs. The dashed lines represent the final test accuracy with and without warm-
start, respectively.

Fig. 2 shows the test accuracy over the 100 epochs after the dataset was added. The dashed line indi-
cates the final accuracy of the model without applying any regularization. The red line represents the
warm-start scenario, and the black line shows the model trained from scratch for 100 epochs. Weight
regularization methods such as L2 regularization and L2 Init, generally exceed the accuracy of with-
out warm-starting in most small models, but it brings no advantage for larger models like VGG-16.
Re-initialization methods, S&P and resetting the last layer, perform well, occasionally surpassing
the performance of models without warm-start in VGG-16. Conversely, in smaller models, they
yield only marginal improvements, suggesting that using either re-initialization or regularization
methods in isolation fails to fully address warm-start challenges.

However, regardless of the model size, SWR exhibited either comparable or better performance
compared to other methods. In the case of VGG-16, while other regularization techniques failed to
overcome the warm-start condition, SWR surpassed the test accuracy of S&P, which achieved the
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highest performance among the other methods. This indicates that with proper weight regularization,
models may get more advantages than with methods that reset parts of the model. We leave the
additional results for the warm start in the Appendix F.

4.2 CONTINUAL LEARNING

In the earlier section, we examined the impact of SWR on the generalization gap and observed
considerable advantages. This subsection aims to verify whether a model that is repeatedly pre-
trained can continue to learn effectively. Similar to the setup provided by Shen et al. (2024), the
entire data is randomly split into 10 chunks, and the training process consists of 10 stages. At
each stage k, the model gains additional access to the k-th chunk. This allows us to evaluate how
effectively each method can address the generalization gap when warm starts are repeated.
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Figure 3: Results on continual full access setting. The test accuracy with training 10 chunks.
For each chunk, the model is trained for 100 epochs and once the chunk completes training, it gets
accumulated into the next chunk.

As shown in Fig. 3, the result exhibits a similar behavior as warm-start. The regularization methods
steadily improve performance during the entire training process for relatively small models. The
Re-init methods also achieve higher performance than the vanilla model, but it is inevitable to expe-
rience a performance drop immediately after switching chunks and applying those methods. For a
larger model, VGG-16, re-initializing weights is more beneficial for learning future data than sim-
ply regularizing weights. However, from the mid-phase of training, SWR begins to outperform S&P
without losing performance. It shows that re-initialization provides significant benefits in the early
stages of training, it becomes evident that well-regularized weights can offer greater advantages for
future performance.

Although S&P showed comparable effectiveness, such re-initialization methods lead to a loss of
previously acquired knowledge. This phenomenon not only incurs additional costs for recovery but
also presents critical issues when access to previous data is limited. In order to assess whether SWR
can overcome these challenges, we modified the configuration; at the k-th stage, the model is trained
only on the k-th chunk of data. This limited access setting restricts the model’s access to previously
learned data and is widely used to assess catastrophic forgetting.
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Figure 4: Results on continual limited setting. The test accuracy with training 10 chunks. For each
chunk, the model is trained for 100 epochs and it cannot be accessed when training the next chunk.
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As shown in Fig. 4, we observe that, with CNN networks, SWR loses less test accuracy than
other regularization methods when the chunk of training data changes. For VGG-16, SWR main-
tained test accuracy without a decrease at each stage. Although at risk of losing knowledge, S&P
demonstrates competitive performance with other regularization methods. This suggests that, while
re-initialization and re-training can demonstrate competitive performance in some cases, the risk
of losing previously acquired knowledge should not be overlooked. SWR, by contrast, mitigates
this risk and maintains stability in test accuracy across stages. Further investigation is needed to
explore the specific circumstances under which re-initialization may offer benefits despite the risk
of information loss. Additional results for other models and datasets are provided in Appendix F.

4.3 GENERALIZATION

To evaluate the impact of SWR not only on plasticity but also on standard generalization perfor-
mance, we conducted experiments in a standard supervised learning setting. We trained the models
for a total of 200 epochs with a learning rate, 0.001. The final test accuracy is shown in Table.
1. SWR outperformed other regularization methods across most datasets and models. Notably, in
larger models such as VGG-16, where other regularization techniques offered minimal performance
gains, SWR achieved an improvement of over 4% in test accuracy. This indicates that more ef-
fective methods for regulating parameters exist beyond conventional techniques like weight decay,
commonly employed in supervised learning.

MNIST CIFAR-10 CIFAR-100 CIFAR-100 TinyImageNet
Method (MLP) (CNN) (CNN) (CNN-BN) (VGG-16)
vanilla 0.9789± 0.0009 0.6500± 0.0083 0.3283± 0.0067 0.3234± 0.0053 0.3912± 0.0142
L2 0.9795± 0.0019 0.7119± 0.0037 0.3882± 0.0064 0.4222± 0.0043 0.3915± 0.0108
L2 Init 0.9793± 0.0016 0.7041± 0.0125 0.3881± 0.0050 0.4030± 0.0105 0.3870± 0.0143
SWR (Ours) 0.9822± 0.0024 0.7158± 0.0063 0.3914± 0.0070 0.4129± 0.0105 0.4348± 0.0025

Table 1: Results on generalization. The final test accuracy with training 200 epochs with a learning
rate of 0.001. SWR achieves comparable or even higher performance than other simple regulariza-
tion methods in stationary image classification.

To verify whether SWR works effectively with learning rate schedulers commonly used in super-
vised learning, we conducted additional experiments where the learning rate decays at specific
epochs. Detailed results are provided in Appendix E.

5 CONCLUSION

In this paper, we introduced a novel method to recover the plasticity of neural networks. The pro-
posed method, Soft Weight Rescaling, scales down the weights in proportion to the rate of weight
growth. This approach prevents unbounded weight growth, a key factor behind various issues in
deep learning. Through a series of experiments on standard image classification benchmarks, in-
cluding warm-start and continual learning settings, SWR consistently outperformed existing weight
regularization and re-initialization methods.

Our study primarily focused on scaling down parameters. However, scaling up the weights de-
pending on the learning progress could also prove beneficial. Investigating active scaling methods
could potentially address the issues associated with the extensive training time in large neural net-
works. Although SWR achieved impressive results in several experiments, L2 often demonstrated
better performance. This suggests the potential existence of even more effective weight rescaling
methods. Additionally, there are further opportunities for exploration, such as regularizing mod-
els like transformers using proportionality or investigating alternative approaches to estimating the
weight growth rate. A promising approach involves analyzing initialization techniques that effec-
tively address these challenges. This analysis could yield insights into the characteristics of model
parameters, potentially leading to improved initialization or optimization methods.
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A PROOF OF THEOREM 1

Proof. Consider a set c = {c1, c2, . . . , cL} consisting of positive real numbers such that C =
ΠL

i=1ci. Then, construct the new parameter set θc .
= {W c

1 , b
c
1, . . .W

c
L, b

c
L} according to the fol-

lowing rules:

W c
l ← cl ·Wl, bcl ←

(
l∏

i=1

ci

)
· bl

Let acl and zcl denote the output after passing through the l-th activation function and layer, respec-
tively. Since the homogeneous activation function ϕ satisfies cϕ(x) = ϕ(cx) for any c ≥ 0, output
of the constructed network zc = fθc(x) is,
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fθc(x) = zc = W c
La

c
L−1 + bcL

= cL

(
WLϕ(z

c
L−1) +

L−1∏
i=1

cibL

)

= cL

(
WLϕ

(
W c

L−1a
c
L−2 + bcL−1

)
+

L−1∏
i=1

cibL

)

= cL

(
WLϕ

(
cL−1

(
WL−1ϕ(z

c
L−2) +

L−2∏
i=1

cibL−1

))
+

L−1∏
i=1

cibL

)

= cLcL−1

(
WLϕ

(
WL−1ϕ(z

c
L−2) +

L−2∏
i=1

cibL−1

)
+

L−2∏
i=1

cibL

)
= . . .

= cLcL−1 . . . c1 · fθ(x)
= C · fθ(x)

Therefore, we can construct proportional networks with proportionality constant C using infinitely
many set c.

B BOUNDEDNESS

In this section, we present the proof for the weight magnitude boundedness of SWR. If the Frobenius
norm of the weight of an arbitrary layer is bounded by a constant, the entire network is also bounded.
Therefore, we focus on demonstrating the boundedness of a single layer.
Theorem 2. If the change of squared Frobenius norm of the weight matrix, resulting from the single
gradient update, is bounded by a constant for all weight matrices in the neural network, then SWR
for every update step with fixed coefficient λ bounds the Frobenius norm of the weight matrix.

Proof. It is enough to show the case where the gradient update increases the magnitude of the weight
matrix. For a weight matrix in step t ≥ 1, Wt, let the matrix after applying SWR with λ once be
W c

t , W c
t−1 be the weight matrix before the gradient update at Wt, and B > 0 be the bound of the

change of squared Frobenius norm of the matrix. W c
t can be written as below:

W c
t =

λ× ∥W0∥+ (1− λ)× ∥Wt∥
∥Wt∥

Wt (1)

=

(
λ
∥W0∥
∥Wt∥

+ (1− λ)

)
Wt (2)

The reduction of the Frobenius norm by scaling can be simply represented as:

∥Wt∥ − ∥W c
t ∥ = ∥Wt∥ −

(
λ
∥W0∥
∥Wt∥

+ (1− λ)

)
∥Wt∥ (3)

= ∥Wt∥ − (λ∥W0∥+ (1− λ)∥Wt∥) (4)
= λ(∥Wt∥ − ∥W0∥) (5)

From the assumption, the increase of the Frobenius norm by gradient update is bounded.

B ≥
∣∣∥Wt∥2 − ∥W c

t−1∥2
∣∣ (6)

=
∣∣∥Wt∥ − ∥W c

t−1∥
∥∥× ∣∣∥Wt∥+ ∥W c

t−1∥
∣∣ (7)

≥
∣∣∥Wt∥ − ∥W c

t−1∥
∣∣2 (8)

=⇒
∣∣∥Wt∥ − ∥W c

t−1∥
∣∣ ≤ √B (9)
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From the perspective of the Frobenius norm, the weight magnitude stops growing when the reduction
with scaling gets greater than the increase with gradient update. The condition can be written by
below inequality:

λ(∥Wt∥ − ∥W0∥) ≥
√
B (10)

∥Wt∥ ≥
√
B

λ
+ ∥W0∥

.
= B′ (11)

For all t ≥ 1, if the Frobenius norm exceeds B′, it will no longer increase. Since B′ is constant, we
can bound the Frobenius norm as follows:

∥Wt∥ ≤ B′ (12)

By following the assumptions of Theorem 2, it can be easily shown that the weight Frobenius norm
growth follows O(

√
t) as the empirical evidence shown in (Merrill et al., 2020), thereby indicating

that the assumption is not unreasonable.

Since the spectral norm of the weight matrix is lower than its Frobenius norm, we can show that the
neural network using SWR has an upper bound of the Lipschitz constant. For simplexity, we only
consider MLP with a 1-Lipschitz activation function.
Corollary 2.1. For an MLP, fθ, with 1-Lipshcitz activation function (e.g. ReLU, Leaky ReLU, etc.),
fθ is Lipschitz continuous with applying SWR for every update step.

Proof. We denote the spectral norm of the matrix with ∥ · ∥σ . Let weight matrices of fθ be W l

(l ∈ {1, 2, . . . L}), and Bl be the upper bound of the Frobenius norm of each of them. Using the
relationship between the Frobenius norm and the spectral norm, ∥W l∥σ ≤ ∥W l∥ for all l. Since the
Lipschitz constant of the weight matrix is same with its spectral norm and composition of l1 and l2
Lipschitz function is l1l2 Lipschitz function (Gouk et al. (2021)), the Lipschitz constant of neural
network kθ can be express as:

kθ ≤
∏
l

∥W l∥σ (13)

≤
∏
l

∥W l∥ (14)

≤
∏
l

Bl .
= B′ (15)

Note that the Lipschitz constant of the activation function is 1, so activation functions do not affect
to bound of the Lipschitz constant of kθ. Since Lipschitz constant kθ is bounded with B′, fθ is
B′-Lipschitz continuous function.

Similarly, we can get the neural network that is trained with SWR as Lipschitz continuous when
using a convolution network or normalization layer. We left a tight upper bound of Lipschitz constant
for future work.

C BALANCEDNESS

C.1 EMPIRICAL STUDY

Neyshabur et al. (2015a) defined the entry-wise ℓp,q-norm of the model, which is expressed as
follows:

∥W∥p,q =

(∑
i

(∑
j

|Wij |p
) q

p

) 1
q

. (16)
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If two models are functionally identical, the model that has a smaller ℓp,q-norm represents more
balanced. In order to estimate the model balancedness, we used the ratio between the entry-wise
ℓp,q-norm of current and global minimal. We compute the global minimal ℓp,q-norm using Algo-
rithm 1 of Saul (2023). Fig. 5 shows the balancedness of the 3-layer MLP, measured at the end
of each epoch, along with the test accuracy. SWR is shown to enhance model balancedness and
improve test accuracy compared to the vanilla model.
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Figure 5: Results for the balancedness. The left figure shows the balancedness of the model, and
the right figure shows the test accuracy. The results are averaged over 5 runs on CIFAR-10 dataset.

C.2 THEORETICAL ANALYSIS

Next, we will show that SWR improves the balance between layers. Before proving it, we define
how to express balancedness.
Definition 2 (Balancedness between two layers). Consider a network with two weight matrices at
time step t to be Wt and W ′

t (at initial, W0,W
′
0). Without loss of generality, we let ∥W0∥ ≤ ∥W ′

0∥.
We define the balance of two layers bt as the difference of rates of the Frobenius norms of weight
matrices from the initial state. This can be expressed as follows:

bt
.
= |rt − r0|, where rt =

∥W ′
t∥

∥Wt∥
(17)

That is, bt is a non-negative value, and the closer it is to 0, the better balance between the two layers.
Theorem 3. Applying SWR with coefficient λ enhances the balance of the neural network.

Proof. Keep the settings from Definition 2. Let Wt and W ′
t be the weight matrices of any two layers

at time step t in the neural network and bt be the balance of Wt and W ′
t . Then, bct , the balance after

applying SWR with coefficient λ, can represent it as below:

bct
.
= |rct − r0|, where rct =

∥W ′c
t ∥

∥W c
t ∥

(18)

where W c
t and W ′c

t are the weight matrices that scaled by SWR with λ. Then, by equation 5, rct can
be expanded as follows:

rct =
λ∥W ′

0∥+ (1− λ)∥W ′
t∥

λ∥W0∥+ (1− λ)∥Wt∥
(19)

Since rct is the form of generalized mediant of rt and r0, if r0 ≤ rt, the relationship between their
magnitudes and balance satisfies as below:

r0 ≤ rct ≤ rt (20)
⇒ 0 ≤ rct − r0 ≤ rt − r0 (21)
⇒ 0 ≤ |rct − r0| ≤ |rt − r0| (22)
⇒ 0 ≤ bct ≤ bt (23)

If r0 ≥ rt, we can derive equation 22, following a similar approach. Therefore, the balance of
arbitrary two layers gets better when applying SWR, which indicates an overall improvement in the
balance across all layers of the network.
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D DETAILS FOR EXPERIMENTAL SETUP

In this section, we will provide details on the experimental setup. First, we specify the hyperparam-
eters that we commonly use. We used 256 for the batch size of the mini-batch and 0.001 for the
learning rate. The Adam optimizer was employed, with its hyperparameters set to the default values
without any modification. We employed distinct 5 random seeds for all experiments while per-
forming 3 seeds for VGG-16 due to computational efficiency. In the following sections, we present
model architectures, the baseline methods that we compared, and the hyperparameters for the best
test accuracy.

D.1 MODEL ARCHITECTURES

We utilized four model architectures consistently throughout all experiments. The detailed informa-
tion on architectures is as follows:

MLP: We used the 3-layer Multilayer Perceptron (MLP) with 100 hidden units. The 784 (28× 28)
input size and 10 output size are fixed since MLP is only trained in the MNIST dataset.

CNN: We employed a Convolutional Neural Network (CNN), which is used in relatively small
image classification. The model includes two convolutional layers with a 5 × 5 kernel and 16
channels. The fully connected layers follow with 100 hidden units.

CNN-BN: In order to verify whether our methodology is effectively applied to normalization layers,
we attached batch normalization layers following the convolutional layer in the CNN model.

VGG-16 (Simonyan & Zisserman, 2014): We adopted VGG-16 to investigate whether SWR adapts
properly in large-size models. The number of hidden units of the classifiers was set to 4096 without
dropout.

D.2 BASELINES

L2. The L2 regularization is known as enhancing not only generalization performance Krogh &
Hertz (1991) but also plasticity Lyle et al. (2024b). We add the loss term λ

2 ∥θ∥
2 on the cross-entropy

loss. We sweeped λ in {0.1, 0.01, 0.001, 0.0001, 0.00001}.
L2 Init. Kumar et al. (2023) introduced a regularization method to resolve the problem of the loss
of plasticity where the input or output of the training data changes periodically. They argued that
regularizing toward the initial parameters, results in resetting low utility units and preventing weight
rank collapse. We add the loss term λ

2 ∥θ − θ0∥2 on the cross-entropy loss, where θ0 is the initial
learnable parameter. We performed the same grid search with L2.

S&P. Ash & Adams (2020) demonstrated that the network loses generalization ability for warm
start setup, and introduced effective methods that shrink the parameters and add noise perturbation,
periodically. In order to reduce the complexity of hyperparameters, we employ a simplified version
of S&P using a single hyperparameter, as shown in Lee et al. (2024). We applied S&P when the
training data was updated. The mathematical expression is θ ← (1− λ)θ + λθ0, where θ0 is initial
learnable parameters, and we swept λ in {0.2, 0.4, 0.6, 0.8}.
head reset. Nikishin et al. (2022) suggested that periodically resetting the final few layers is
effective in mitigating plasticity loss. In this paper, we reinitialized the fully connected layers with
the same period with S&P. We only applied reset to the final layer, when MLP is used for training.

SWR. For networks that do not have batch normalization layers, we swept λ in {1, 0.1, 0.01, 0.001,
0.0001}. Otherwise, we performed a grid search for λc and λf in the same range of λ.

Table. 2-4 shows the best hyperparameter set that we found in various experiments.

E GENERALIZATION RESULTS WITH LEARNING RATE DECAY

To assess the performance of SWR under the learning rate scheduler, we conducted learning rate
decay in Experiment 4.3. The rest of the configuration was kept unchanged, while the learning rate
was multiplied by 1/10 at the start of the 100th and 150th epochs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset Method Hyperparameter Set
S&P λ = 0.4

MNIST L2 λ = 1e−5
(MLP) L2 Init λ = 1e−5

SWR λ = 1e−4
S&P λ = 0.8

CIFAR-10 L2 λ = 1e−2
(CNN) L2 Init λ = 1e−2

SWR λ = 1e−3
S&P λ = 0.8

CIFAR-100 L2 λ = 1e−2
(CNN) L2 Init λ = 1e−2

SWR λ = 1e−3
S&P λ = 0.8

CIFAR-100 L2 λ = 1e−2
(CNN-BN) L2 Init λ = 1e−2

SWR λf = 1e−4, λc = 1e+0
S&P λ = 0.8

TinyImageNet L2 λ = 1e−5
(VGG-16) L2 Init λ = 1e−5

SWR λf = 1e−2, λc = 1e−1

Table 2: Hyperparameter set of each method on the warm-start experiment.

Dataset Method Full Access Limited Access
S&P λ = 0.6 λ = 0.2

MNIST L2 λ = 1e−4 λ = 1e−5
(MLP) L2 Init λ = 1e−4 λ = 1e−5

SWR λ = 1e−4 λ = 1e−4
S&P λ = 0.8 λ = 0.4

CIFAR-10 L2 λ = 1e−2 λ = 1e−2
(CNN) L2 Init λ = 1e−2 λ = 1e−2

SWR λ = 1e−3 λ = 1e−1
S&P λ = 0.8 λ = 0.6

CIFAR-100 L2 λ = 1e−2 λ = 1e−2
(CNN) L2 Init λ = 1e−2 λ = 1e−2

SWR λ = 1e−3 λ = 1e−1
S&P λ = 0.8 λ = 0.4

CIFAR-100 L2 λ = 1e−2 λ = 1e−2
(CNN-BN) L2 Init λ = 1e−2 λ = 1e−2

SWR λf = 1e−4, λc = 1e−1 λf = 1e−1, λc = 1e−2
S&P λ = 0.8 λ = 0.4

TinyImageNet L2 λ = 1e−4 λ = 1e−4
(VGG-16) L2 Init λ = 1e−4 λ = 1e−3

SWR λf = 1e−2, λc = 1e−2 λf = 1e−4, λc = 1e+0

Table 3: Hyperparameter set of each method on continual learning.

There is a consideration to be addressed when applying learning rate decay with SWR. When the
learning rate decays, we will show that the regularization strength that maintains balance becomes
relatively stronger. Suppose that after time step t, the L2 norm of the weight vector is near con-
vergence. To simplify the case, let us assume the weight vector, wt, aligns with the direction of
the gradient of the loss ∇wL(w). After the SGD update, the weight vector will be updated as
wt+1 = wt − α∇wL(w), meaning the change of L2 norm is α∥∇wL(w)∥.
According to equation 5, when applying SWR, the change in L2 norm becomes λ(∥wt+1∥−∥w0∥).
Under our assumption, we have α∥∇wL(w)∥ ≈ λ(∥wt+1∥ − ∥w0∥). Therefore, when a learning
rate decay occurs, this equivalence is broken, causing the weight norm to drop toward the initial
weight norm. To address this issue, we used a simple trick that reset the initial weight norm to the
current norm when decay happens, as ninit ← ∥wt∥. We refer to this method as SWR + re-init.

The results with learning rate decay can be found in Table 5. SWR+re-init demonstrated perfor-
mance largely comparable to other methods, specifically leading to an improvement of over 8% in
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Dataset Method Hyperparameter Set

MNIST L2 λ = 1e−5
(MLP) L2 Init λ = 1e−5

SWR λ = 1e−4
CIFAR-10 L2 λ = 1e−2
(CNN) L2 Init λ = 1e−2

SWR λ = 1e−3
CIFAR-100 L2 λ = 1e−2
(CNN) L2 Init λ = 1e−2

SWR λ = 1e−3
CIFAR-100 L2 λ = 1e−2
(CNN-BN) L2 Init λ = 1e−2

SWR λf = 1e−4, λc = 1e−1
TinyImageNet L2 λ = 1e−5
(VGG-16) L2 Init λ = 1e−5

SWR λf = 1e−2, λc = 1e−1

Table 4: Hyperparameter set of each method on generalization experiment.

test accuracy on VGG-16. While SWR + re-init generally outperformed standalone SWR, a slight
performance drop was observed in larger models such as VGG-16. This suggests that more effective
solutions exist to handle this issue when using learning rate decay. Further research on this matter
will be left as future work.

MNIST CIFAR-10 CIFAR-100 CIFAR-100 TinyImageNet
Method (MLP) (CNN) (CNN) (CNN-BN) (VGG-16)
vanilla 0.9798± 0.0005 0.6571± 0.0057 0.3490± 0.0021 0.3483± 0.0043 0.4126± 0.0236
L2 0.9811± 0.0007 0.7304± 0.0039 0.3949± 0.0091 0.4532± 0.0040 0.4080± 0.0124
L2 Init 0.9811± 0.0007 0.7286± 0.0023 0.4048± 0.0019 0.4341± 0.0019 0.4199± 0.0048
SWR (Ours) 0.9796± 0.0009 0.6925± 0.0078 0.3599± 0.0054 0.4240± 0.0015 0.5221± 0.0123
SWR + re-init (Ours) 0.9829± 0.0002 0.7269± 0.0027 0.4133± 0.0058 0.4451± 0.0028 0.5165± 0.0070

Table 5: Results on generalization with learning rate decay. The final test accuracy after training
200 epochs. The learning rate initialized with 0.001 and divided by 10 at epoch 100 and 150.

F ADDITIONAL RESULTS
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Figure 6: Additional results on warm-starting.
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Figure 7: Additional results on continual full access setting.
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Figure 8: Additional results on continual limited access setting.
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