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ABSTRACT

In self-supervised learning frameworks, deep networks are optimized to align
different views of an instance that contains the similar visual semantic information.
The views are generated by conducting series of data augmentation to the anchor
samples. Although the data augmentation operations are often designed to be
aggressive and extensive to lower the mutual information between views, the
family of Information-Erasing data augmentation that masks out region of images
is barely considered. In this work, we propose the Piecing and Chipping enhanced
Erasing Augmentation (PCEA) approach to making the self-supervised learning
algorithms benefit from the effectiveness of Information-Erasing data augmentation.
Specifically, we design a pipeline to generate mutually weakly related transformed
views using random erasing and build corresponding loss terms to take advantage
of these views. Extensive experiments demonstrate the effectiveness of our method.
Particularly, applying our PCEA to MoCo v2 improves the baseline by 12.84%,
3.3% in terms of linear classification on ImageNet-100 and ImageNet-1K.

1 INTRODUCTION

The deep convolutional neural networks (CNNs) (Krizhevsky et al., 2012) have a great success in
computer vision tasks, and in recent years, self-supervised learning (Oord et al., 2018; Chen et al.,
2020b;c; He et al., 2020; Li et al., 2021; Zbontar et al., 2021; Grill et al., 2020; Chuang et al., 2020; Hu
et al., 2020; Kim et al., 2020; Zhu et al., 2020; Caron et al., 2020; Xiao et al., 2020; Kalantidis et al.,
2020) also achieve a great success and gained attentions because of its ability of reducing the labor
cost on large-scale dataset annotation. Self-supervised learning aims at learning some forms of image
representations by figuring out a pattern that can explain the image reasonably. The learned pattern
can be used in downstream tasks, such as image classification, object detection, segmentation and
etc. The self-supervised learning can be achieved majorly in two different styles: contrastive (Chen
et al., 2020b;c; He et al., 2020; Chuang et al., 2020) and non-contrastive (Li et al., 2021; Zbontar
et al., 2021; Grill et al., 2020) (though the detailed taxonomy of self-supervised learning is the topic
of this study). The key component of both styles is the generation of views of the anchor sample.

The term “view” in self-supervised learning is roughly grounded as “augmented or transformed
samples that maintain semantically similar information to the anchor sample”. In the computer
vision tasks, the generation of views is accomplished a series of domain transformation operations,
e.g. ColorJitter, RandomGrayscale, GaussianBlur. Former literature has examined the
influence of the adaptation of different types of transformation. In these works, the composition of
transformation operations is considered as the crucial part for learning good representations (Chen
et al., 2020b). And the proper approach to reduce the mutual information between views while
keeping task-relevant information intact (Tian et al., 2020).

One family of data augmentation that is commonly employed in computer vision tasks is “information-
erasing”. By which, we refer to the methods that mask small regions of an image, such that the
information concerning the objects in the image is erased (DeVries & Taylor, 2017; Yun et al., 2019;
French et al., 2020; Singh & Lee, 2017; Chen et al., 2020a). However, this family of data augmentation
is barely seen in self-supervised learning algorithms. While in (Chen et al., 2020b), the researchers
also denote the Cutout (DeVries & Taylor, 2017) as an unflavored augmentation method to generate
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Figure 1: Semantic representation with fine-grained instance discrimination method.

views. We conjecture the primary reason for the inferior performance of the information-erasing
family in the self-supervised learning algorithms is the inconsistency in preserving the task-relevant
information. At the same time, information-erasing methods do not contribute to the reduction of the
mutual information between views and anchor images in the non-masked regions. As a consequence,
the generated views could be valueless for feature extractors to learning semantically meaningful
representations.

In this work, we tackle the aforementioned drawbacks of inconsistency and mutual information
reduction. We build an approach with the simple random erasing method to provide stable views with
high qualities to improve the performance of self-supervised learning algorithms. We refer to our
approach as Piecing and Chipping enhanced Erasing Augmentation (PCEA), which is built upon four
motivations:

1. Multiple instances of erasing augmented images are generated and pieced, and we chip the
larger image irregularly such that views would be weakly related by acquiring peripheral
patches from other views;

2. We resize the irregularly chipped views without preserving the aspect ratio to reduce mutual
information in the non-mask regions;

3. We feed more than one view (two in this work) to the “positive pair” loss head of the
self-supervise algorithms to lessen the inconsistency brought by random selection of masked
regions.

4. Considering the above approach for the view generation, we also regularize the predicted
similarity between these views. Thus, we could largely prevent the non-task-relevant
information from being memorized.

In simple terms, we spawn weakly related child-views that are similar to their parent-view while
being considerably different from each other. The overall approach is shown in Figure 1 and Figure 2.
The dark and light blue spots denote the negatives samples from different images. The red (k) and
green ones (q1 and q2) indicate the positive pairs. The proposed method aims to enlarge the margin
between the blue/non-blue spots and the distance between the spots in green color (q1 and q2). For
positives in red and green, the margin between the red (k) and each green spot (q1 or q2) is narrowed.

In our experimental analysis, we firstly compare the effectiveness of the proposed approach with other
information-erasing family data augmentation. We keep the comparison fair by offering multiple
child-views for all the augmentation methods as demonstrating in Figure 1. We show that the piecing-
and-chipping-based random erasing augmentation out-performs other well-designed augmentation
methods by a large margin. We also conduct experiments compared with other state-of-the-art
self-supervised learning algorithms. Specifically, we employ MoCo v2 (Chen et al., 2020d) as
our backbone and modify its view generation codes with the proposed PCEA. We then achieve a
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competitive performance on the linear-probe classification task using the ImageNet-1K datasets.
Overall, the main contributions of this work can be summarized as follows:

• We propose Piecing and Chipping enhanced Erasing Augmentation (PCEA), a novel data
augmentation approach for the view generation in self-supervised learning algorithms.

• The proposed PCEA data augmentation approach also offers a novel method of utilizing
multiply child-views. The method not only reduces the inconsistency in the view generation
process but also regularizes the utilization of non-task-relevant information during the
self-supervised learning progress.

• We conduct extensive experiments to demonstrate the effectiveness of our method. To
the best of our knowledge, this is the first successful attempt in involving the Information-
Erasing family data augmentation in self-supervised learning algorithms.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING

A wide range of self-supervised learning algorithms has been proposed to improve the quality of
learned representations. Recent self-supervised learning algorithms can be divided into two categories:
Non-contrastive ones that employ positive pairs of sample; Contrastive ones that employ negative
pairs of samples. Here the terms positive/negative do not strictly refer to pairs of sample with
similar/different semantic information, but pairs of views generated from the same or different anchor
samples. In the family of non-contrastive self-supervised learning, BYOL (Grill et al., 2020) achieves
an outstanding performance, which relies on two neural networks to represent the visual semantic
information; the online and target network interact and learn from each other. SimSiam architecture
(Chen & He, 2020) aims at enlarging the similarity between the two augmented views of one image
with a shared encoder network. On the other hand, typical contrastive self-supervised learning applies
multi-layer perceptions and stop-gradient tricks in case of collapsing (Chen et al., 2020b). To reduce
the memory cost of large amount of negative samples, MoCo (He et al., 2020) proposes a momentum
memory bank to record negative samples of previous steps. SWAV (Caron et al., 2020) is an online
algorithm, which improves the contrastive method without the pairwise comparison. An online
clustering loss is constructed, and a multi-crop strategy is introduced to increase the number of
views without the extra computational overhead. In this study, we employ both of the self-supervised
learning algorithm families to verify the effectiveness and efficiency of our proposed method.

2.2 DATA AUGMENTATION IN SELF-SUPERVISED LEARNING

Data augmentation in vanilla computer vision tasks helps to improve performance by increasing the
amount of training data. Specifically, in practical implementation, this technology helps the model
find the indistinguishable features in the image, that can reduce the over-fitting of the model like
a regularizer. However, in the scenarios of self-supervised learning, the data augmentation plays a
much different role. In the SimCLR paper (Chen et al., 2020b), the author carefully examine the
effects of different data augmentation w.r.t. the downstream classification tasks. In their conclusion,
the Gaussian blur for the input images and a stronger color distortion act as critical roles in obtaining
an effective predicted result. SimCLR has experimentally demonstrated that the ImageNet linear
classification accuracy at Top-1 is increased from 59.6% to 63.2% by stronger color distortion strength.
This conclusion is further confirmed in Chen et al. (2020c), which shows that the accuracy of MoCo
v1 with extra blur augmentation is increased by 2.8% to 63.4%. Furthermore, Tian et al. (2020) argues
the proper data augmentation should reduce the mutual information between views while keeping
task-relevant information, and develops the more aggressive info-min data augmentation approach.
However, we consider the regular induced data augmentations are still limited in the desire of fully
using the semantic information of visual representation in self-supervised learning. In this work, we
focus on the family of data augmentation that masks out semantic information straightforwardly.

2.3 INFORMATION ERASING DATA AUGMENTATION

In paper (Noroozi & Favaro, 2016), a puzzle-based data augmentation method is developed with an
unsupervised visual representation manner, which builds a CNN to solve Jigsaw puzzles as a pretext
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task for enhancing classification and detection performance. In paper (DeVries & Taylor, 2017), a
method named “CutOut” is designed for the objective classification task, which randomly masks
square regions of training images and tries to find out less prominent features. These two methods
can be regarded as early explorations of advanced data augmentation for object classification and
detection-related tasks. With their convenience and efficiency, these two methods reached the highest
level of computer vision-related tasks at that time and profoundly influenced other methods. However,
this type of single splicing and deletion of images or image parts also limits the performance of the
models.

In the object localization area, a weakly supervised framework named “Hide-and-Seek” is proposed
in the paper (Singh & Lee, 2017), which randomly hides patches of the images and enhances the
model. In this method, not only the most discriminative part of the image can be identified, but
other parts with weak discriminative can also be identified. Through the overall organization of
each part in the image, the discriminative performance of the model is improved. Another method,
MixUp is designed in paper (Zhang et al., 2017), which aims to provide an image data augmentation
idea with a convex combination of the training data. With the state-of-art performance in several
tasks such as ImageNet2021, CIFAR-10, and CIFAR-100, the method Mixup inspires a potential
clue for unsupervised, semi-supervised, and reinforcement learning. Different from the traditional
regional dropout or patch removal methods, a CutMix data augmentation method is proposed in
paper (Yun et al., 2019), which cuts patches and pasted them among training images with ground
truth labels to enhance the reliability and stability of the model. These three methods provide new
ideas for data augmentation, and the methods based on them also archived the highest level at that
time. However, these methods still do not completely get rid of the relatively inflexible processing
methods for images or patches, such as the proportion of the original image and the shape of the
patches, which also restricts the performance of the model.

Based on these studies above, a regional dropout strategy is designed as GridMask in paper (Chen
et al., 2020a), which provides a controllable method to delete patches of a training image. Compared
with previous methods, this structured information dropping method is more effective and avoids
random information dropping. At the same time, to overcome the shortages of squared patches in
previous studies, a Gaussian filter-based data augmentation method “Milking CowMask” is proposed
in paper (French et al., 2020). This method provides more flexibly shaped masks according to turn-
able parameters in Gaussian filter with fewer correlations and reaches a new state-of-art performance
in related tasks. However, these methods discussed above focus on increasing the discriminability of
samples in the entire dataset, which results in limited performance in the self-supervised learning
cases.

3 METHODOLOGY

3.1 PCEA: PIECING AND CHIPPING ENHANCED ERASING AUGMENTATION

In this section, we first introduce how the views are generated in the proposed Piecing and Chipping
enhanced Erasing Augmentation (PCEA) method. The overall approach is depicted in Figure 2.

We refer 2 pipelines of image transformation operations as T1 and T2. T2 is an ordinary adopted data
augmentation method used in state-of-the-art self-supervised learning algorithms (in this paper, we
employ the data augmentation strategy in MoCov2 (Chen et al., 2020d)). T1 is based on T2, with
an additional masking operation (in this paper, we employ random erasing). The PCEA method is
described as follows:

• Step 1: For each image x ∈ Rw×h×c1, we generate views x_v1,2,3,4 and x_k using T1
and T2, respectively. The x_v1,2,3,4 are denoted as “child-views”, while x_k is denoted as
the “parent-view”.

• Step 2: We piece the 4 different child-views x_v1,2,3,4 (224×224) to obtain a larger
image (448×448). This newly generated image is considered as an alternative image to
obtain more positive samples with more substantial semantic information.

1For the rest of the paper, we let the w, h = 224 and omit the channel notation c, for sake of good readability.
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Figure 2: The process of the proposed Piecing and Chipping enhanced Erasing Augmentation.

• Step 3: We locate a candidate region (green rectangle in the figure) at the centroid of the
newly generated image. 2 We then (uniformly) randomly select a segmentation point in the
candidate region, and chip the image vertically and horizontally. Thus we obtain a new set
of child-views x_q1,2,3,4.

• Step 4: The set of new child-views are resized to their original size (224×224), without
preserving the aspect ration. We finally select 2 child-views as the new positive pairs of
their parent-view x_k.

3.2 SIMILARITY REGULARIZATION LOSS

Although xq1 and xq2 can still be roughly judged as identical by human beings, the randomness of
in choosing the erasing and the change of aspect ratio develop a considerable margin between the
semantic information of visual representation in xq1 and xq2 . Meanwhile, the ordinary InfoNCE
loss aligns both child-views to their parent view. To prevent the deep model implicitly aligns the
child-views, we put an additional Similarity Regularization (SimReg) loss term to attain explicit
discrimination between them. This loss term is implemented with a simple cosine similarity between
the embedded representations of the child-views. According to this, the loss between q1 and q2 is
defined as (1).

LSimReg =
q1·q2

max(‖q1‖2, ‖q2‖2) (1)

In the experimental analysis, we find that the loss term is insensitive to the loss weight (so-called λ in
many literature) empirically. Therefore, we leave the loss weight hyper-parameter to be 1.0 in all
experimental configurations.

2Here we set the size of candidate region to be same as the ‘child-views’ (224×224), more details are
discussed in the ablation study.
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4 EXPERIMENTS

4.1 DATASETS & EXPERIMENTAL CONFIGURATIONS

Datasets. In this work, we conduct experiments on ImageNet ILSVRC-2021 dataset (Deng et al.,
2009) with 1.28 million images in 1000 categories (ImageNet-1K) and a subset of images in 100
categories (ImageNet-100), which have been widely utilized as benchmark datasets (Tian et al.,
2019; He et al., 2020; Grill et al., 2020; Hu et al., 2020). We also construct a more difficult subset of
the original ImageNet-1K dataset, named Small-ImageNet-1000 (S-ImageNet-1K). S-ImageNet-1K
only selects 10 percent of the images from each of the categories, which aims at reducing the richness
of visual representations while maintaining the same representation distribution as the original
ImageNet-1K. The evaluation is carried out by training a linear probe for the classification task, while
keeping the weights of feature extractor frozen. For ImageNet-1K and ImageNet-100, we employ the
commonly adopted classification accuracy as the evaluation metric. For S-ImageNet-1K, we employ
the average correct classification rate among all 1000 categories proposed in Le & Yang (2015) as
our evaluation metric.

In addition, we also employ the widely acknowledged MsCOCO (Lin et al., 2014) to verify the
proposed PCEA with the object detection task. We fine-tune the ImageNet-1K pre-trained backbone
models using the train2017 split, and perform evaluation on the val2017 split.

Configurations. We employ the vanilla ResNet-50 (He et al., 2016) equipped with an global average
pooling on its head as our backbone architecture. We employ the projection head with only one
linear layer for encoding fθ and fε. The feature dimensions of the output of ResNet-50 pooling layer
and the embedding vector are 2048 and 128, respectively. For other hyper-parameters, we keep the
same configuration as in MoCo v2 (Chen et al., 2020d) and SimSiam (Chen & He, 2021). In the
MoCo v2 algorithm, the augmented views x_q1 and x_q2 are fed into the encoder network fθ with
back-propagation. Meanwhile, x_k is represented as k = fε(x_k) without back-propagation, where
fε(·) denotes the momentum encoder. In the SimSiam algorithm, we simply average the similarity
between multiply child-views and the parent views. For the detection task, we adopt the commonly
used Faster-RCNN with ResNet-50 as the baseline architecture.

Training. During training, a mini-batch size of 256 is used in 8 GPUs (Tesla V100 16G), and the
initial learning rate is defined as 0.03. SGD (Loshchilov & Hutter, 2016) is used as the optimizer, the
weight decay and the momentum update parameter is defined as 0.0001 and 0.9. 200/100 epochs are
trained with a cosine learning rate decay for MoCo v2 and SimSiam, respectively. The number of
negative samples in momentum queue and the sliding queue are 65536 and 32768, respectively. The
temperature is set as 0.2.

4.2 EXPERIMENTAL RESULTS

ImageNet-100. Following previous work (Chen et al., 2020d; Chen & He, 2021), we evaluate nine
data augmentation methods on MoCo v2 (Chen et al., 2020d) and SimSiam (Chen & He, 2021),
where linear classifier are trained on frozen features from these methods. The comparison results are
reported in Table 1. As can be seen, applying PCEA to MoCo v2 with negative samples involved
achieves the best performance against baselines using other data augmentation methods. Particularly,
our PCEA outperforms the vanilla baseline by 12.84% and 3.85% in terms of top-1 and top-5
accuracy. This demonstrates the effectiveness of our PCEA in learning discriminative representations
by treating the positive and negative samples separately. We can also observe that SimSiam (Chen
& He, 2021) with our PCEA achieves superior performance on the ImageNet-100 dataset against
previous data augmentations, which further validates the generalizability of our PCEA to existing
contrastive self-supervised methods.

ImageNet-1K. Furthermore, we compare our PCEA with existing state-of-the-art self-supervised
methods under the linear classification setting in Table 2. From the results, we can observe that our
PCEA outperforms MoCo v2, the vanilla baseline by a large margin, i.e., 3.3% in terms of top-1
accuracy. Meanwhile, we also achieve competitive results with previous methods in terms of top-1
and top-5 accuracy, which further demonstrates the advantage of our PCEA over baselines under the
same linear classification setting.
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Table 1: Top-1/top-5 accuracy for linear classification on ImageNet-100 via applying nine data
augmentations to MoCo v2 and SimSiam, where models are trained on frozen features from different
methods. Bold and underline numbers denote the first and second place.

Method Data Aug. Param.(M) Batch Epochs Top-1(%) Top-5(%)

MoCo v2

- 28 256 200 81.65 95.77
Jigsaw Puzzles 28 256 200 78.41 94.69
CutOut 28 256 200 82.64 95.84
Hide-and-Seek 28 256 200 82.72 95.87
MixUp 28 256 200 84.08 96.79
CutMix 28 256 200 83.51 96.51
Random Erasing 28 256 200 81.04 95.27
Grid Mask 28 256 200 80.35 94.42
Milking CowMask 28 256 200 85.32 97.35
PCEA (ours) 28 256 200 94.49 99.62

SimSiam

- 28 256 100 72.32 91.35
Jigsaw Puzzles 28 256 100 68.15 90.13
CutOut 28 256 100 72.26 91.17
Hide-and-Seek 28 256 100 74.38 91.87
MixUp 28 256 100 72.16 91.03
CutMix 28 256 100 73.55 92.06
Random Erasing 28 256 100 73.42 92.01
Grid Mask 28 256 100 70.47 90.75
Milking CowMask 28 256 100 75.26 93.22
PCEA (ours) 28 256 100 84.25 96.71

Table 2: Comparisons between PCEA and other methods under the linear classification evaluation.
For fair comparison, all results are trained under the same architecture on ImageNet-1K training set
and validation set. Parameters are of the feature extractor He et al. (2020). Views denote the number
of images fed into the encoder in one iteration under batch size 1.

Method Arch. Param.(M) Batch Epochs Views Top-1 (%) Top-5 (%)
InstDisc ResNet-50 24 256 200 2x224 58.5 -
LocalAgg ResNet-50 24 128 200 2x224 58.8 -
MoCo ResNet-50 24 256 200 2x224 60.6 -
MoCo v2 ResNet-50 24 256 200 2x224 67.5 -
CMC ResNet-50 47 128 240 2x224 66.2 87.0
SimCLR ResNet-50 24 256 200 2x224 61.9 -
PCL v2 ResNet-50 24 512 200 2x224 67.6 -
CPC v2 ResNet-50 24 512 200 2x224 63.8 85.3
PIC ResNet-50 24 512 200 2x224 67.6 -
MoCHi ResNet-50 24 512 200 2x224 68.0 -
AdCo ResNet-50 24 256 200 2x224 68.6 -
SwAV ResNet-50 24 4096 200 2x224 69.1 -
BYOL ResNet-50 24 256 200 4x224 70.6 -
SimSiam ResNet-50 24 256 200 4x224 70.0 -
MoCo v2 + PCEA (ours) ResNet-50 24 256 200 3x224 70.8 90.2
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Table 3: Top-1 accuracy for linear classification on S-ImageNet-1K, where models are trained on
frozen features from different methods. Bold numbers denote the first place.

Method Param.(M) Batch Epochs Top-1(%)
MoCo v2 28 256 200 42.3
SwAV 28 256 200 53.6
BYOL 28 256 200 54.1
MoCo v2 + PCEA (ours) 28 256 200 57.3

S-ImageNet-1K. Table 3 reports the comparison results of linear classification on our S-ImageNet-1K
dataset, a smaller dataset with the same distribution of the original ImageNet-1K, but lacks richness
in visual representations. The proposed PCEA with MoCo v2 out-performs its baseline algorithm
with a large margin (15.0%) in terms of top-1 accuracy. This superior performance validates the
effectiveness and efficiency of PCEA in difficult configurations.

MsCOCO. Table 4 reports the detection performance (mAP) on the Ms COCO datasets. The
proposed PCEA with MoCo v2 achieve the best result compared to state-of-the-art self-supervisely
pre-trained backbones. Specifically, it outperforms its baseline MoCo v2 by 1.1% and supervisely
trained model by 4.3%.

Table 4: The object detection result on MsCOCO 2017 datasets. all the models use Faster RCNN-
ResNet-50 and are finetuned using the 1x schedule.

Pre-trained Model #Epochs mAP
Supervised 200 35.2
Supervised 300 38.2
MoCo-v2 300 39.3
SwAV 300 38.4
Barlow Twins 300 39.2

MoCo v2 + PCEA (ours) 200 39.5

5 ABLATION STUDY

In this section, we conduct extensive ablation studies to explore how each step of our PCEA and the
size of candidate region affect the final performance of our approach. Unless specified, we perform
the experiments on ImageNet-100 dataset.

5.1 ABLATION ON EACH STEP OF PCEA

Table 5: Ablation study on each step of PCEA on ImageNet-100 dataset.
Step 1 Step 2 & Step 3 Step 4 Top-1 (%) Top-5 (%)

7 7 7 81.65 95.77
3 7 7 87.15 97.87
3 3 7 90.76 98.21
3 3 3 94.49 99.62

In order to explore the effect of each step of our PCEA on the final performance, we ablate each step
and report the experimental results in Table 5. The methods with different steps are analysed, which
describe the effectiveness of each steps in the Mosaic process. The top-1 accuracy on ImageNet-100
with the same data augmentation processing as MoCo v2 (Chen et al., 2020d) is 81.65% with two
inputs(k and q). After that, the result benefits an promotion with two inputs as x_q1 and x_q2 in
step 1, which increases the performance by 5.5%. As for the combination of step 2 and step3, we
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Table 6: Ablation study on the size of candidate region on ImageNet-100 dataset.
Size Top-1 (%) Top-5 (%)

28*28 88.07 98.17
56*56 88.65 98.33

112*112 89.41 98.57
224*224 94.49 99.62
336*336 88.80 98.49
448*448 88.56 98.44

Table 7: The ablation experiments on different child-views and SimReg loss.
Datasets # Child-Views SimReg loss Top-1 Top-5

S-ImageNet-1K 1 7 42.3 64.7
S-ImageNet-1K 2 7 53.4 76.4
S-ImageNet-1K 3 7 48.3 71.4
S-ImageNet-1K 2 3 57.3 80.2
ImageNet-1K 2 7 70.3 90.1
ImageNet-1K 2 3 70.8 90.3

use padding and random crop to modify the output images instead of resizing the splitted images
into 224*224, which achieves a higher accuracy as 90.76%. Adding step 4 to previous three steps
boosts the top-1 and top-5 accuracy to 94.49% and 99.62%, which indeed validates the rationality of
interpolation in our PCEA to capture the fine-grained instance features.

5.2 ABLATION ON THE SIZE OF CANDIDATE REGION

To analyze how the size of the candidate region affect the final performance of our PCEA, we vary
the size from 28, 56, 112, 224, 336, 448. The comparison results are reported in Table 6. As can
be seen, our PCEA with the size of 224×224 achieves the best performance compared to other size
settings. With the increase of the size of the candidate region, the performance of our PCEA degrades
a lot, which could be caused by more background information introduced in the selected region. In
the meanwhile, when the size of the candidate region is decreased to 112×112, our PCEA performs
worse than the best result in terms of top-1 and top-5 accuracy. This further shows the importance of
choosing the right size of the candidate region to learn more discriminative representations during
pre-training.

5.3 ABLATION ON NUMBER OF VIEWS IN LOSS TERMS

We modify the number of child-views participated in the self-supervise learning loss (InfoNCE for
MoCo, CosSim for SimSiam). The loss terms are duplicated and averaged according to the number
child-views. We also conduct experiments on the effects of the SimReg loss term. Table 7 reports
these results on both S-ImageNet-1K and ImageNet-1K. It can be seen that, two child-views achieves
the best performance among different configurations. On the other hand, the SimReg loss functions
overwhelmingly in the difficult S-ImageNet-1K dataset.

6 CONCLUSION

In this work, we propose Piecing and Chipping enhanced Erasing Augmentation (PCEA), a novel
approach to employ information-erasing family of data augmentation methods in self-supervised
learning scenarios. We exploit eight existing information-erasing data augmentation over previous
methods on commonly-used benchmark datasets. We also equip the PCEA on 2 popular self-
supervised learning baseline algorithm. Both results prove that the effectiveness and efficiency of
the proposed PCEA approach. We believe the involvement of information-erasing family of data
augmentation has a border impact on further developing of self-supervised learning algorithm.
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