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Abstract
Diffusion models have emerged as powerful tools
for generative modeling, demonstrating excep-
tional capability in capturing target data distribu-
tions from large datasets. However, fine-tuning
these massive models for specific downstream
tasks, constraints, and human preferences remains
a critical challenge. While recent advances have
leveraged reinforcement learning algorithms to
tackle this problem, much of the progress has been
empirical, with limited theoretical understand-
ing. To bridge this gap, we propose a stochastic
control framework for fine-tuning diffusion mod-
els. Building on denoising diffusion probabilistic
models as the pre-trained reference dynamics, our
approach integrates linear dynamics control with
Kullback–Leibler regularization. We establish the
well-posedness and regularity of the stochastic
control problem and develop a policy iteration
algorithm (PI-FT) for numerical solution. We
show that PI-FT achieves global convergence at
a linear rate. Unlike existing work that assumes
regularities throughout training, we prove that the
control and value sequences generated by the al-
gorithm preserve the desired regularity. Finally,
we extend our framework to parametric settings
for efficient implementation and demonstrate the
practical effectiveness of the proposed PI-FT al-
gorithm through numerical experiments.

1. Introduction
The growing availability of large-scale datasets, coupled
with advances in high-performance computing, has fueled
the rise of data-driven methods across scientific and engi-
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neering fields. Traditional approaches, which fit models
to offline or online data, heavily depend on data quality
and availability. As a result, data limitations can signif-
icantly degrade performance (Doersch, 2016; Durgadevi
et al., 2021; Fetaya et al., 2020). For instance, constraints
in experimental design often lead to data scarcity, hindering
model effectiveness. Moreover, acquiring sufficient data
for reliable experimentation is costly and time-consuming,
posing scalability challenges. Most critically, data collected
under specific conditions may not generalize well to new
environments or downstream tasks, limiting the adaptabil-
ity of learned models (Alzubaidi et al., 2023; Bansal et al.,
2022; Gangwal et al., 2024).

Generative modeling offers a flexible solution by creating
synthetic data that maintains the properties of collected data
while enhancing data diversity. Diffusion models, such as
those proposed by Ho et al. (2020); Sohl-Dickstein et al.
(2015); Song & Ermon (2019); Song et al. (2021), have
emerged as powerful tools in this area, supporting notable
advancements such as DALL·E (Betker et al., 2023; Ramesh
et al., 2022), Stable Diffusion (Rombach et al., 2022), and
Sora (OpenAI, 2024). These models excel by learning the
score function from potentially high-dimensional and lim-
ited data, extracting critical information for the data gen-
eration process. To achieve cost-effective, task-specific
data generation and multi-modal integration, techniques like
alignment (Wallace et al., 2024), including guidance (Dhari-
wal & Nichol, 2021; Ho & Salimans, 2021) and fine-tuning
(Black et al., 2024; Clark et al., 2024; Fan & Lee, 2023; Fan
et al., 2024), of pre-trained models are proposed. While dif-
fusion alignment has achieved significant empirical success,
the theoretical foundations remain in the early stages—a
gap this paper seeks to address.

Aligning a pre-trained diffusion model to a specific task or
dataset requires updating its parameters through additional
training, typically using a smaller, task-specific dataset (Dai
et al., 2023; Podell et al., 2023; Rombach et al., 2022; Wal-
lace et al., 2024). Among the prevalent alignment tech-
niques, fine-tuning and guidance differ in how the additional
criteria are handled—either as a soft constraint or a hard
constraint. The soft constraint approach is particularly ef-
fective for applications that incorporate human preference
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or embed human values as a reward signal evaluated on the
task-specific dataset (Black et al., 2024; Clark et al., 2024;
Fan et al., 2024; Uehara et al., 2024c; Zhao et al., 2024b),
which is the central focus of our paper.

Our work and contributions.

We introduce a discrete-time stochastic control formulation
with linear dynamics and Kullback–Leibler (KL) regular-
ization for fine-tuning diffusion models. Specifically, we
establish a novel connection to denoising diffusion proba-
bilistic models (DDPMs) (Ho et al., 2020) by treating the
fine-tuned score as a control to be learned. In particular, the
soft constraint or human preference is modeled by a reward
signal evaluated on the generated data output and the KL reg-
ularization term penalizes the deviation of the control from
the pre-trained score function. We utilize the discrete-time
formulation since fine-tuning is inherently a discrete-time
problem, as it relies on a pre-trained model which is typi-
cally implemented in discrete time, with DDPM being the
most commonly-used example. By appropriately select-
ing the regularization parameter, we demonstrate the well-
posedness of the control problem and analyze the regularity
of the optimal value function. A key insight arises from the
concavity of the nested one-step optimization problem in the
Bellman equation, a direct result of KL regularization under
a properly chosen regularization coefficient. Leveraging this
property, we develop a policy iteration algorithm (PI-FT)
with guaranteed convergence to the globally optimal solu-
tion at a linear rate. A central challenge involves preserving
the regularity of the sequence of value functions and out-
put controls generated during algorithm iterations. This is
achieved through a novel coupled induction argument and
precise estimations of the regularization parameters. Finally,
we discuss the algorithm design in parametric settings and
conduct thorough experiments to demonstrate the practical
efficiency and effectiveness of the proposed PI-FT method.

While existing methods such as DPOK (Fan & Lee, 2023)
and DDPO (Black et al., 2024) rely on generic RL devel-
opments such as PPO or REINFORCE, they do not fully
leverage the fine-tuning structure. On the contrary, the spe-
cific setting considered in this work, with linear dynamics
and entropy-regularization, is tailored towards the devel-
opment of efficient fine-tuning diffusion models. For this
reason, the PI-FT algorithm and its parametric extension
directly computes the policy gradient of a KL-regularized
control objective. This principled design leads to a more ef-
ficient implementation in practice compared to prior works,
while also offering theoretical guarantees.

Despite promising empirical evidence in the literature, ana-
lyzing algorithm convergence remains challenging due to
the continuous nature of the state-action space. To the best
of our knowledge, this work is the first on fine-tuning dif-

fusion models that presents a convergence guarantee. We
address this challenge by leveraging linear dynamics and the
(one-step) concavity introduced by the KL regularization
term, which inherently captures the essence of fine-tuning
problems. Specifically, we establish the universal regularity
of both the optimal value function and the sequence of value
functions generated during iterative updates. Moreoverover,
the foundational techniques underlying our results extend
naturally to parametric algorithm design, offering insights
beyond the specific context of diffusion model fine-tuning.

Related literature.

Our work is related to several emerging research directions.

Fine-tuning of diffusion models. Our framework is
closely related to the recent studies on fine-tuning diffusion
models. Motivated by advancements in the (discrete-time)
RL literature, Fan & Lee (2023) was the first to introduce
a reward-based approach for improving pre-trained diffu-
sion models. Building on this idea, two concurrent works
(Black et al., 2024; Fan et al., 2024) proposed a Markov
decision process (MDP) formulation for denoising diffusion
processes. To mitigate reward over-optimization (Gao et al.,
2023), Fan et al. (2024) examined the impact of incorpo-
rating KL regularization as an implicit reward signal. Fol-
lowing this idea, Uehara et al. (2024b) introduced an online
fine-tuning framework where the regret is upper-bounded by
the accuracy of a statistical error oracle for reward estima-
tion. Just recently, Yoon et al. (2024) formulated diffusion
training as an inverse RL problem and proposed a value-
based algorithm. For a comprehensive review of this topic,
we direct interested readers to Uehara et al. (2024a). Be-
yond RL-based fine-tuning methods, alternative approaches
include classifier guidance (Dhariwal & Nichol, 2021) and
classifier-free guidance (Ho & Salimans, 2021), supervised
fine-tuning (Lee et al., 2023), LoRA and its variants (Hu
et al., 2022; Ryu, 2023), DreamBooth (Ruiz et al., 2023),
and DRaFT (Clark et al., 2024) among others.

All the aforementioned references focused solely on empiri-
cal investigations, except for Uehara et al. (2024b), which
leaves theoretical foundations largely unexplored. While
the MDP formulation discussed above aligns well with the
RL literature, it overlooks the structural properties inherent
to diffusion models. In contrast, our approach specifically
leverages DDPM as the pre-trained model, thereby fully
utilizing the underlying structure of diffusion models. More-
over, the stochastic control formulation is more appropriate
than RL as the dynamics are known in diffusion models and
exploration is not necessary. Consequently, the efficiency of
our algorithm stems from taking control-based formulation.

Continuous-time control/RL for fine-tuning. Inspired
by the continuous-time nature of diffusion processes, recent
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work has explored the application of continuous-time con-
trol/RL for fine-tuning. For instance, Berner et al. (2024)
established a connection between fine-tuning and stochastic
control by analyzing the Hamilton-Jacobi-Bellman (HJB)
equation for the log density. Domingo-Enrich et al. (2025)
introduced an adjoint matching method for the fine-tuning
of rectified flow, drawing inspiration from Pontryagin’s
maximum principle. A more rigorous treatment of fine-
tuning within the framework of entropy-regularized control
problems is developed in Tang (2024), addressing the well-
posedness and regularity of the corresponding HJB equa-
tion and extending the analysis to general f -divergences,
though no specific algorithm was proposed. Following
this entropy-regularization perspective, Zhao et al. (2024a)
derived the formulas for continuous-time policy gradient
method and continuous-time version of proximal policy op-
timization (PPO). Furthermore, Gao et al. (2024) applied
a continuous-time q-learning algorithm to simulate data
that reflects human preferences directly, without relying on
pre-trained models.

Compared with the literature that technically remain at the
level of exploring HJB equations, we establish convergence
rate for the proposed algorithm in discrete time. Despite the
continuous-time nature of diffusion processes, the discrete-
time setting is more suitable because fine-tuning builds upon
a pre-trained model, which is naturally implemented and
provided in discrete time.

RL theory. Our theoretical developments are also closely
connected to the literature of RL and policy gradient meth-
ods in discrete time. For MDPs with finite state and action
spaces, recent advancements providing global convergence
guarantees for policy gradient methods and their variants can
be found in Berner et al. (2024); Bhandari & Russo (2021;
2024); Cen et al. (2021); Ding et al. (2020); Fatkhullin et al.
(2023); Fu et al. (2021); Liu et al. (2019; 2020); Mondal
& Aggarwal (2024); Wang et al. (2020b); Xiao (2022); Xu
et al. (2021); Zhan et al. (2023); Zhang et al. (2020; 2021).
Beyond MDPs, policy gradient methods have also been
applied to Linear Quadratic Regulators (LQRs), a specific
class of control problems characterized by linear dynamics
and quadratic cost functions (Bu et al., 2019; Fazel et al.,
2018; Guo et al., 2023; Hambly et al., 2021; Han et al., 2023;
Malik et al., 2019; Mohammadi et al., 2019; Szpruch et al.,
2021; 2024; Wang et al., 2020a; Zhou & Lu, 2023). While
the convergence analysis of policy gradient methods is well-
established in the above-mentioned settings, the study on
control problems with continuous state-action space and
general cost functions has been limited. Our work ventures
into this broader class of control problems, providing con-
vergence guarantees for policy gradient algorithms under
more general settings.

Notations and organization.

Take d ∈ N+, the set of all positive integers. We de-
note (Ω,F := {Ft}t≥0,P) as a usual filtered probabil-
ity space supporting a random variable R ∈ L1(Rd,F0),
namely, R(y) ∈ F0 has finite mean for all y ∈ Rd.
Denote {Wt}T−1

t=0 a sequence of independent standard d-
dimensional Gaussian random vectors. We denote by FW

the natural filtration of {Wt}T−1
t=0 . In addition, N (µ,Σ)

denotes the normal distribution with mean µ ∈ Rd and
covariance Σ ∈ Rd×d. Let f( · |µ,Σ) denote the probabil-
ity density of N (µ,Σ). For two probability distributions
P and Q such that P ≪ Q with densities p and q sup-
ported on Rd, we denote the KL divergence by KL(p∥q) :=∫
Rd p(y) log

p(y)
q(y)dy. Finally, Id ∈ Rd×d denotes the iden-

tity matrix and ∥ · ∥2 denotes the Euclidean norm.

The paper is organized as follows. Section 2 introduces the
set-up of the stochastic control problem and establishes the
well-posedness and regularity. Section 3 proposes a policy
iteration algorithm, develops the linear convergence result,
and discusses a parametric extension. Finally, numerical
experiments are demonstrated in Section 4.

2. Problem set-up and regularity results
2.1. Problem set-up

To address the challenge of fine-tuning, we first introduce
the dynamics of denoising diffusion probabilistic models
(DDPMs), a widely adopted pre-trained framework in prac-
tice. Our focus is on the discrete-time formulation, which
aligns with the standard implementation of diffusion models
in practice. In addition, DDPMs serve as a foundational
scheme for effective fine-tuning.

Denoising diffusion probabilistic models (DDPM). A
well-trained DDPM {Y pre

t }Tt=0 in discrete time follows the
following stochastic dynamics with state Y pre

t ∈ Rd:

Y pre
t+1 =

1
√
αt

(
Y pre
t + (1− αt)s

pre
t (Y pre

t )
)
+ σtWt, (1)

with Y pre
0 ∼ N (0, Id). Here, {Wt}T−1

t=0 are i.i.d. standard
Gaussian random vectors such that Wt ∼ N (0, Id). The
hyper-parameters {αt}T−1

t=0 with αt ∈ (0, 1) and {σt}T−1
t=0

with σt > 0 represent the prescribed denoising rate sched-
ules (Ho et al., 2020; Li et al., 2024). They control the vari-
ance of noise in data generation1. Here, spret : Rd → Rd

is the score function associated with the pre-trained model.
In practice, the score estimator spret is obtained by train-
ing a neural network to minimize the score matching loss
(Hyvärinen & Dayan, 2005). With a well-trained pre-trained

1While DDPM chooses σ2
t = 1/αt − 1, our analysis in the

subsequent sections works for general σt.
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model, we expect the distribution of Y pre
T to be close to the

target distribution, from which the pre-trained model has
access to samples and seeks to generate additional samples.
Given spret , we denote ppret+1|t(·|yt) as the conditional density
of Y pre

t+1 given Y pre
t = yt induced by the dynamics (1), i.e.,

ppret+1|t(·|yt) = f
(
·
∣∣1/√αt (yt + (1− αt)s

pre
t (yt)) , σ

2
t Id
)
.

Remark 2.1 (Choice of the pre-trained model.). DDPMs
have become the leading choice for pre-trained models
across a wide range of applications, serving as a power-
ful building block for fine-tuning in diverse tasks (Dhariwal
& Nichol, 2021; Ho et al., 2020; Li et al., 2024; Watson
et al., 2023). By pre-training on large datasets, DDPMs cap-
ture complex data distributions, enabling relatively easier
fine-tuning for specialized applications such as conditional
image synthesis, text-to-image generation, and even time-
series forecasting. This versatility has been demonstrated
in models such as Stable Diffusion (Rombach et al., 2022)
and DALL·E (Ramesh et al., 2022), where fine-tuning on
task-specific data enhances performance and customization
(Fan et al., 2024).

Stochastic control formulation. When human prefer-
ences or soft constraints are modeled through a stochas-
tic reward function R(·), our objective is to maximize the
following stochastic control formulation, which models fine-
tuning tasks in diffusion models:

E
[
R(YT )−

T−1∑
t=0

βtKL
(
pt+1|t(·|Yt)

∥∥∥ ppret+1|t(·|Yt)
)]

, (2)

with state Yt ∈ Rd and control Ut ∈ Rd following the
dynamics

Yt+1 =
1

√
αt

(Yt + (1− αt)Ut) + σtWt, (3)

where Y0 ∼ N (0, Id). In particular, we work with Marko-
vian policies such that the objective in (2) is well-defined.
Mathematically, the control process {Ut}T−1

t=0 is admissi-
ble if each Ut can be expressed as Ut = ut(Yt), where
ut : Rd → Rd is a measurable function ensuring that the
objective in (2) remains finite. In terms of the reward, we as-
sume R ∈ L1(Rd,F0), namely, R(y) ∈ F0 has finite mean
for all y ∈ Rd. We assume the reward function is known
in this work. The KL-divergence measures the deviation
of the fine-tuned model pt+1|t from the pre-trained model
ppret+1|t, where pt+1|t denotes the conditional distribution of
Yt+1 given Yt induced by the control policy ut. The regu-
larization coefficients {βt}T−1

t=0 control the strength of the
regularization term.

We have a few remarks in place.

Remark 2.2 (Control as score function). Our formulation is
rooted in both diffusion models and control theory. Com-
paring (3) with (1), we replace the pre-trained score spret

by a control policy ut. Consequently, in the context of
diffusion models, the learned control sequence {ut}T−1

t=0

can be viewed as the new score function of the fine-tuned
model. In other words, solving the control problem (2)–(3)
is essentially learning a new score function in response to
the reward signal R(·) for fine-tuning. Note that the linear
dynamics (3) with Gaussian noise is preferred in stochastic
control due to its tractability in analysis. Specifically, our
theoretical analysis in the subsequent sections heavily relies
on the linearity and the Gaussian smoothing effect.

Remark 2.3 (Rationale for the objective function and the
known reward assumption). The objective function in the
control formulation (2)–(3) consists of two parts: a termi-
nal reward function R(·) at time T and intermediate KL
penalties. The reward R(·) captures human preference on
the generated samples. For example, in the text-to-image
generation, the reward R(·) represents how the generated
data YT is aligned with the input prompt (Black et al., 2024;
Fan et al., 2024). In addition, the penalty term ensures that
the fine-tuned model is not too far away from the pre-trained
model, which prevents overfitting. Unlike the Shannon en-
tropy of the (randomized) control policy commonly used in
the RL literature to encourage exploration, the KL regular-
ization in (2) is applied between two conditional probability
densities. From an optimization perspective, the KL di-
vergence introduces concavity in control and consequently
leads to a better landscape of the objective. Indeed, we
will choose the parameter βt sufficiently large to guarantee
the existence and uniqueness of the optimal control and to
satisfy certain regularity conditions; see Theorem 2.8.

In practice, fine-tuning is typically performed on a dataset
containing reward ratings for each data sample, which is
much smaller than the pre-trained dataset. Using this fine-
tuning dataset, one can estimate the expected reward func-
tion. The assumption of known reward is not overly re-
strictive, as online learning to acquire new rewards is not
generally uncommon.

Remark 2.4 (Connection to KL divergence on path-wise
measures.). Another natural idea is to impose the KL diver-
gence between the path-wise measures, i.e., KL(p0:T ∥ppre0:T ),
where p0:T is the joint density of {Yt}Tt=0 and ppre0:T is the
joint density of {Y pre

t }Tt=0. This choice is relevant to for-
mulation (2)–(3). In particular, the Markov property of the
dynamics and the chain rule of the KL divergence imply

KL(p0:T ∥ppre0:T ) = E

[
T−1∑
t=0

KL
(
pt+1|t(·|Yt)∥ppret+1|t(·|Yt)

)]
,

where the expectation is taken over all random variables
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{Yt}Tt=0. Here, we define

KL(p0:T ∥ppre0:T ) :=

∫
p0:T (y) log

p0:T (y)

ppre0:T (y)
dy, (4)

with y = (y0, . . . , yT ), and for given yt ∈ Rd, denote

KL
(
pt+1|t( · |yt)∥ppret+1|t( · |yt)

)
:=

∫
pt+1|t(yt+1|yt) log

pt+1|t(yt+1|yt)
ppret+1|t(yt+1|yt)

dyt+1. (5)

Thus, when βt = β for all t, the objective in (2) becomes

E

[
R(YT )−

T−1∑
t=0

βtKL
(
pt+1|t(·|Yt)∥ppret+1|t(·|Yt)

)]
= E [R(YT )]− βKL(p0:T ∥ppre0:T ).

KL divergence is a common choice of regularization in fine-
tuning of diffusion models (Fan et al., 2024; Gao et al., 2024;
Uehara et al., 2024b; Zhao et al., 2024a). However, our work
is the first to use KL divergence over transition dynamics
(on path space) to control the deviation of the fine-tuned
model from the pre-trained model, whereas formulations
in the literature consider KL between the terminal state
distributions. Our formulation potentially utilizes more
information from the rich pre-trained models.

Given two Gaussian densities pt+1|t and ppret+1|t in (2), the
following lemma simplifies the KL divergence term.

Lemma 2.5. Consider the KL divergence defined as in (5).
For any yt ∈ Rd and any admissible control policy ut, it
holds that

KL
(
pt+1|t(·|yt)∥ppret+1|t(·|yt)

)
=

(1− αt)
2

2αtσ2
t

∥ut(yt)− spret (yt)∥
2
2 . (6)

Lemma 2.5 links the KL-divergence between two condi-
tional distributions with the squared loss between the con-
trol ut and the pre-trained score spret . Since the control
can be interpreted as the new score of the fine-tuned model,
(6) enjoys the spirit of the score matching loss in training
diffusion models (Han et al., 2024; Ho et al., 2020; Song
et al., 2021). The proof of Lemma 2.5 is based on direct
calculations; see Appendix B. With this in hand, we define
the optimal value function at time t as

V ∗
t (y) := supE

[
−

T−1∑
ℓ=t

βℓ
(1− αℓ)

2

2αℓσ2
ℓ

∥uℓ(Yℓ)− spreℓ (Yℓ)∥
2

2

+R(YT )
∣∣∣Yt = y

]
, (7)

where the supremum is taken over all admissible control
policies {uℓ}T−1

ℓ=t . The Dynamic Programming Principle
implies that V ∗

t satisfies the Bellman equation:

V ∗
t (y) = sup

ut

E
[
V ∗
t+1

( 1
√
αt

(y + (1− αt)ut(y)) + σtWt

)
− βt

(1− αt)
2

2αtσ2
t

∥ut(y)− spret (y)∥22

]
. (8)

In the next subsection, we will discuss the well-posedness
of the optimal control problem (2)–(3) and the regularity of
the optimal value function V ∗

t .

2.2. Regularity and well-posedness

In this subsection, we establish the regularity of the optimal
value function and the optimal control policy. To start, we
make the following assumptions on the reward and pre-
trained score functions.

Assumption 2.6 (Smoothness of the reward). Assume
r(y) := E[R(y)] is Lr

0-Lipschitz and Lr
1-gradient Lipschitz

in y ∈ Rd, i.e., the following holds for any y1, y2 ∈ Rd:

|r(y1)− r(y2)| ≤ Lr
0 ∥y1 − y2∥2 , (9)

∥∇r(y1)−∇r(y2)∥2 ≤ Lr
1 ∥y1 − y2∥2 . (10)

Assumption 2.7 (Smoothness of the pre-trained score func-
tion). Assume spret is Ls

0-Lipschitz and Ls
1-gradient Lips-

chitz in y ∈ Rd, i.e., the following holds for any y1, y2∈Rd:

∥spret (y1)− spret (y2)∥2 ≤ Ls
0,t ∥y1 − y2∥2 , (11)

∥∇spret (y1)−∇spret (y2)∥2 ≤ Ls
1,t ∥y1 − y2∥2 . (12)

While Assumptions 2.6 and 2.7 guarantee the smoothness
of both the expected reward r(·) and the pre-trained score
{spret }T−1

t=0 , no convexity assumptions are imposed, and thus
the control problem (2)–(3) is in general non-concave with
respect to {ut}T−1

t=0 .

Next, we establish the existence and uniqueness of the op-
timal control, as well as the regularities of the solution to
problem (2)–(3). For ease of exposition, we define a series
of constants recursively. Let λt ∈ (0, 1) for each t < T . Set
LV ∗

0,T = Lr
0 and LV ∗

1,T = Lr
1. For t < T , define

LV ∗

0,t =
1

√
αt

(1 + (1− αt)L
s
0,t)L

V ∗

0,t+1, (13)

LV ∗

1,t =
1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V ∗

1,t+1

+
1− αt√

αt
Ls
1,tL

V ∗

0,t+1, (14)

Lu∗

0,t = λ−1
t

(
Ls
0,t +

1− λt

1− αt

)
, (15)
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Lu∗

1,t = λ−1
t

(
Ls
1,t +

E [∥Wt∥2] (1− λt)

(1− αt)
√
αtσt

×
(
1 + (1− αt)L

u∗

0,t

)2)
. (16)

Here, E [∥Wt∥2] =
√
2Γ((d+1)/2)
Γ(d/2) < ∞ is a constant with

Γ(·) being the Gamma function. Note that the above con-
stants only depend on the system parameters αt, Lr

0, Lr
1,

Ls
0 and Ls

1 as well as the hyper-parameter λt. In the next
theorem, we show that the above constants are indeed the
Lipschitz coefficients for {V ∗

t }
T
t=0 and {u∗

t }
T−1
t=0 .

Theorem 2.8 (Regularity and well-posedness). Suppose
Assumptions 2.6 and 2.7 hold and let the constants be
defined according to (13)–(16). Choose βt such that
1− σ2

t

βt
LV ∗

1,t+1 ≥ λt > 0. Then,

(i) The optimal value function V ∗
t (y) defined in (7) is

LV ∗

0,t -Lipschitz, differentiable and LV ∗

1,t -gradient Lips-
chitz in y ∈ Rd.

(ii) There is a unique optimal control u∗
t : Rd → Rd of

problem (2)–(3) satisfying

u∗
t (y) = spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1 (y
′)
]
, (17)

where y′ = 1/
√
αt (y + (1− αt)u

∗
t (y)) + σtWt.

Moreover, the optimal value function V ∗
t is the unique

C1 solution to the Bellman equation (8).

(iii) The optimal control u∗
t (y) is Lu∗

0,t-Lipschitz, differen-
tiable, and Lu∗

1,t-gradient Lipschitz in y ∈ Rd.

When the regularization coefficient βt is sufficiently large,
Theorem 2.8 states that the optimal value function V ∗

t (·)
is Lipschitz and gradient Lipschitz. The choice of βt also
ensures the right hand side of (8) is strongly concave in ut(·),
guaranteeing the existence and uniqueness of the optimal
control u∗

t . Furthermore, Theorem 2.8 shows the optimal
control u∗

t is also Lipschitz and gradient Lipschitz. The
regularities of V ∗

t and u∗
t will serve as the foundation of the

algorithm design and convergence analysis in the subsequent
sections.

The main challenge in proving Theorem 2.8 stems from the
fact that Eq. (17) is an implicit equation, in which both sides
involve the optimal control u∗

t . This prevents a direct appli-
cation of Lipschitz assumptions on model parameters. We
outline a brief proof sketch to highlight the ideas and defer
the detailed proof to Appendix B, which is based on back-
ward induction. Assuming V ∗

t+1 is Lipschitz and gradient
Lipschitz, the first-order optimality condition implies that
(17) holds, given the optimization problem is unconstrained.

Direct calculation leads to the Lipchitz condition of u∗
t and

the smoothing effect of the Gaussian random variable is
utilized to obtain differentiability. In addition, the Lipschitz
property of ∇u∗

t is a consequence of the integration by parts
formula in (35); hence (iii) holds. Finally, the regularities
of V ∗

t follow from the Lipschitz conditions of u∗
t and ∇u∗

t ,
which completes the induction.

3. Algorithm development and convergence
analysis

In this section, we propose an iterative algorithm, PI-FT, for
fine-tuning and provide non-asymptotic analysis of its con-
vergence. Assuming that the expected reward function r(·)
is known, we develop an iterative algorithm to approximate
the optimal policy in high-dimensional settings, suitable for
practical implementation. In practice, r(·) is approximated
using a small sample set with human feedback, which then
serves as the basis for fine-tuning. The unknown r(·) case
is left as a topic for future investigation.

3.1. Proposed algorithm

Recall that the optimal control u∗
t satisfies (17). Motivated

by this observation, we propose the following iterative algo-
rithm for fine-tuning and computing the optimal control u∗

t .

Algorithm 1 Policy Iteration for Fine-Tuning (PI-FT)

1: Input: Expected reward function r(·), pre-trained
model {spret }Tt=0, and number of iterations {mt}T−1

t=0 .
2: Set V (mT )

T (y) = r(y) for all y ∈ Rd.
3: for t = T − 1, . . . , 0 do
4: Set u(0)

t (y) = spret (y).
5: for m = 1, . . . ,mt − 1 do
6: Update the control using

u
(m+1)
t (y) =

√
αtσ

2
t

(1− αt)βt
E
[
∇V

(mt+1)
t+1

(
y(m)

)]
+ spret (y). (18)

where y(m) = 1√
αt
(y+(1−αt)u

(m)
t (y))+σtWt

7: end for
8: Compute the value function V

(mt)
t using

V
(mt)
t (y) = E

[
V

(mt+1)
t+1

(
y(mt)

)
− βt

(1− αt)
2

2αtσ2
t

∥u(mt)
t (y)− spret (y)∥22

]
.

(19)

9: end for
10: return

{
u
(mt)
t

}T−1

t=0
and

{
V

(mt)
t

}T

t=0
.
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Algorithm 1 consists of two nested loops. The inner loop
updates the control at each iteration m and the outer loop
computes the value function at time t. Given the value
function V

(mt+1)
t+1 at time step t+ 1, we update u

(m)
t using

(18) and then evaluate the associated value function using
(19). Note that (18) can be viewed as an approximation of
the following update rule:

u
(m+1)
t (y)=spret (y) +

√
αtσ

2
t

(1− αt)βt
E[∇V ∗

t+1(y
(m))], (20)

with y(m) = 1/
√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt, and

(19) can be seen as an approximation of the Bellman equa-
tion (8), where we replace the unknown V ∗

t+1 with V
(mt+1)
t+1 .

Direct calculation shows that the fixed-point update rule
(20) guarantees the convergence of

{
u
(m)
t

}
m≥0

to u∗
t ; see

(69). However, in practice we cannot access V ∗
t+1. Hence,

Eq. (18) can be viewed as a proxy to (20) as long as we
can control the error

∥∥∥∇V
(mt)
t (y)−∇V ∗

t (y)
∥∥∥
2

for all t.

With u
(mt)
t and V

(mt+1)
t+1 , we use (19) to calculate V

(mt)
t ,

an estimate of the optimal value function V ∗
t .

3.2. Convergence analysis

In this subsection, we analyze the convergence of Algorithm
1. For a fixed λt ∈ (0, 1), define a series of constants
recursively as follows. Let LV̄

0,T = Lr
0 and LV̄

1,T = Lr
1. For

each t < T , set

LV̄
0,t =

1
√
αt

(1 + (1− αt)L
s
0,t)L

V̄
0,t+1

+
LV̄
0,t+1√
αt

(
1 + (1− αt)L

u∗

0,t

)
(1− λt), (21)

LV̄
1,t =

1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V̄
1,t+1

+
1− αt√

αt
Ls
1,tL

V̄
0,t+1 +max

m≥1

{(1− αt√
αt

Lu∗

1,t + (m+ 2)

×
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̄
0,t+1(1− λt)

m+1
}
.

(22)

Here, the constant LV̄
1,t is well-defined as the maximum

must be achieved for some m < ∞ due to the exponential
decay of (1− λt)

m+1. Similar to the constants defined in
(13)–(16), the above constants only depend on the system
parameters αt, Lr

0, Lr
1, Ls

0 and Ls
1 as well as the hyper-

parameter λt. Later, we will show that the constants defined
in (21) and (22) indeed serve as the Lipschitz coefficients

of
{
V

(m)
t

}T

t=0
universal over all m ≥ 0. The main result

of this subsection is stated as follows.
Theorem 3.1. Suppose Assumptions 2.6 and 2.7 hold. For
each t < T , choose βt such that 1 − σ2

t

βt
LV̄
1,t+1 ≥ λt > 0.

Let
{
u
(mt)
t

}T−1

t=0
and

{
V

(mt)
t

}T

t=0
be the output of Algo-

rithm 1. Then it holds that∥∥∥u(mt)
t (y)− u∗

t (y)
∥∥∥
2

≤
(
(1− λt)

mtLV ∗

0,t+1 + λ−1
t Et+1

) √
αt(1− λt)

(1− αt)LV ∗
1,t+1

,

(23)

where

Et :=
∥∥∥∇V

(mt)
t (y)−∇V ∗

t (y)
∥∥∥
2

≤
T−1∑
k=t

(
k−1∏
ℓ=t

C1,ℓ

)
C2,k(1− λk)

mk+1, (24)

and

C1,t =
1 + (1− αt)L

s
0,t

λt
√
αt

, and

C2,t =

(
1 + (1− αt)L

u∗

0,t

)
√
αt

LV̄
0,t+1

+

(
1 + (1− αt)L

s
0,t

)
√
αt

LV ∗

0,t+1.

To obtain a simplified convergence rate from Theorem 3.1,
we set λt ≡ λ := min0≤t≤T−1 λt and mt ≡ M for all t. In
this case, we have Et = O((1− λ)M+1) and consequently∥∥∥u(M)

t (y)− u∗
t (y)

∥∥∥
2
= O((1 − λ)M ). In other words,

the control sequence
{
u
(m)
t

}T−1

t=0
converges to the optimal

control at a linear rate. Note that the parameter λ determines
the convergence rate. In particular, setting a larger λ results
in faster convergence. However, when λ is large, Theorem
3.1 requires that the regularization parameter βt must also
be chosen to be sufficiently large. Recall that βt controls the
distance between the fine-tuned model and the pre-trained
model, while a bigger λ may result in an optimal control
far away from spret . Therefore, choosing an appropriate λ
(or equivalently βt) is crucial to trade-off computational
efficiency and closeness to the pre-trained model.

The convergence analysis of the PI-FT algorithm hinges on
proving that the regularity of the value function is preserved
throughout the training process. Here, we present a proof
sketch of Theorem 3.1, with the full proof deferred to Ap-
pendix C. The key idea is to employ backward induction,
breaking the problem down into a sequence of one-step
analyses. Assuming V

(mt+1)
t+1 is both Lipschitz and gradient

Lipschitz, Lemma C.1 establishes the regularities of both
u
(m)
t and V

(m)
t throughout the update rule (for all m ≥ 0).

Furthermore, given the approximation error at time t + 1,
Lemmas C.2 and C.3 provide the error bounds of both the
control and the gradient of value function at time t. This
completes the induction.
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Figure 1. Comparison of the ImageReward score among three mod-
els: pre-trained Stable Diffusion (red), DPOK (yellow), and PI-FT
(green). The ImageReward scores are averaged over 50 samples
from each model.

3.3. Extension to parametric formulation

To enable practical and efficient update of Algorithm 1, we
adopt a linear parameterization in this subsection:

ut(y) = Ktϕ(y), t = 0, . . . , T − 1, (25)

where ϕ(y) = (ϕ1(y), . . . , ϕp(y))
⊤ is a given basis func-

tion, and K = {Kt}T−1
t=0 is an (unknown) parameter to be

learned. Despite its simplicity, this parameterization is flexi-
ble, expressive, and tractable, and is widely used in control
and reinforcement learning (Agarwal et al., 2021; Jin et al.,
2020). With an appropriate choice of basis, it can capture a
broad class of score approximators, including random fea-
tures (Rahimi & Recht, 2007), kernel methods (Steinwart &
Christmann, 2008), and overparameterized neural networks
in the NTK regime (Jacot et al., 2018). This choice of pa-
rameterization enables linear convergence to the optimal
solution; details are deferred to Appendix A.

4. Numerical Experiments
In this section, we evaluate the performance of the PI-FT al-
gorithm from Section 3 via numerical experiments, focusing
on the following questions:

• In practice, how fast does the PI-FT algorithm converge
to the optimal solution?

• How does the choice of β affect the convergence rate
and the quality of the fine-tuned models?

As shown in this section, the PI-FT algorithm converges
efficiently to the global optimum; increasing β accelerates
convergence and yields a model closer to the pre-trained
one, aligning with our theoretical analysis in Section 3.

Model Setup. We fine-tune the Stable Diffusion v1.5
(Rombach et al., 2022) for text-to-image generation, using

LoRA (Hu et al., 2022) and ImageReward (Xu et al., 2023).
Following (Fan et al., 2024), we use four prompts—“A green
colored rabbit,” “A cat and a dog,” “Four wolves in the park,”
and “A dog on the moon”—to evaluate the model’s ability to
generate correct color, composition, counting, and location,
respectively. During training, we generate 10 trajectories,
each consisting of 50 transitions, to calculate the gradient
with 1000 gradient steps. By default, we use the AdamW
optimizer with a learning rate of 3× 10−4 , and set the KL
regularization coefficient to a fixed value as β = 0.01.

Evaluation. We first compare ImageReward scores for im-
ages generated by the pre-trained model, DPOK (Fan et al.,
2024), and our proposed PI-FT. For a fair comparison, we
configure DPOK to perform 10 gradient steps per sampling
step, using a learning rate of 1× 10−5. Each gradient step
is computed using 50 randomly sampled transitions from a
replay buffer. As a result, 1000 sampling steps and a total
of 10,000 gradient steps in DPOK yield a computational
cost comparable to that of PI-FT. As shown in Figure 1, PI-
FT consistently outperforms both baselines across all four
prompts. Figure 3 further shows that PI-FT more accurately
captures object counts and placements (e.g., four wolves
and the dog on the moon) and avoids errors like miscoloring
the rabbit. It also produces more natural textures compared
to the baselines.

Effect of KL regularization. KL regularization is known
to enhance fine-tuning. We study its effect in PI-FT us-
ing the prompt “Four wolves in the park,” varying β ∈
{0.01, 0.1, 1.0}. As shown in Figure 2a, the gradient
norm decreases to zero in all cases, indicating convergence.
Figure 2b shows that small β values improve and stabi-
lize the ImageReward score, while larger β offers limited
gains. This aligns with Figure 2c, where KL divergence
remains high for β = 0.01, but stays significantly lower for
β ∈ {0.1, 1.0}. Figure 4 also shows that smaller β produces
images with nearly four wolves, whereas larger β leads to
fewer. These results underscore the importance of the KL
coefficient in effective fine-tuning.

5. Conclusion
We introduce a stochastic control framework for fine-tuning
diffusion models, integrating linear dynamics with KL reg-
ularization. Our approach establishes the well-posedness
and regularity of the control problem and proposes a policy
iteration algorithm (PI-FT) that guarantees global linear con-
vergence. Unlike prior work that assumes regularity through-
out training, we prove that PI-FT inherently maintains these
properties. Additionally, we extend our framework to para-
metric settings, broadening its applicability. This work
advances the theoretical understanding of fine-tuning dif-
fusion models and provides a foundation for developing
more effective fine-tuning algorithms. Our algorithmic de-
sign and theoretical findings are also supported by thorough
numerical experiments.
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Figure 2. (a) Gradient norm (logarithmic scale) of PI-FT during training. The curves are smoothed using the exponential moving average
(EMA). A linear convergence rate is observed. (b) ImageReward score of PI-FT during training. Smaller KL regularization coefficient β
leads to higher ImageReward score. (c) KL divergence of PI-FT during training. Larger KL regularization coefficient β leads to smaller
KL divergence and faster convergence.

Figure 3. Visual comparison of images generated by the original Stable Diffusion model (pre-trained), DPOK model, and PI-FT model
(ours). Prompts from left to right: “A green colored rabbit” (color), “A cat and a dog” (composition), “Four wolves in the park” (count),
and “A dog on the moon” (location).

Figure 4. Randomly generated samples from PI-FT model with different KL regularization coefficients. Images from a single text prompt:
“Four wolves in the park”. The model with smaller β > 0 generates more accurate number of wolves.
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A. Extension to parametric formulation
In this section, we provide a roadmap to show how a linear convergence rate can be achieved with the linear parameteriza-
tion (25). We make the following realizability assumption.

Assumption A.1 (Realizability). Assume that at each timestamp t, the optimal control satisfies u∗
t (y) = K∗

t ϕ(y) for some
matrix K∗

t ∈ Rp×d.

Define the value function associated with the policy K as

J(K) := EY0∼D
[
V K
0 (Y0)

]
,

where D is the distribution of the initial state and we can take D = N (0, Id), which is the distribution of Y pre
0 . Here the

value function is defined as

V K
t (y) := E

[
−

T−1∑
ℓ=t

βℓ
(1− αℓ)

2

2αℓσ2
ℓ

∥Kℓϕ(Yℓ)− spreℓ (Yℓ)∥
2

2
+R(YT )

∣∣∣ Yt = y
]
,

with terminal condition

V K
T (y) = r(y) = E [R(y)] .

Similarly, define the Q-function:

QK
t (y, u) := E

[
V K
t+1

(
1

√
αt

(y + (1− αt)u) + σtWt

)
− βt

(1− αt)
2

2αtσ2
t

∥u− st(y)∥
2
2

]
,

where the expecation is taken over Wt. We remark that the policy K in the superscript refers to {Kℓ}ℓ>t at each t. Recall
the choice of βt implies the map u 7→ QK∗

t (y, u) is strongly concave uniformly over all y; see Theorem 2.8. If the feature
mapping ϕ is well-behaved, the map Kt 7→ QK∗

t (y,Ktϕ(y)) is also strongly concave.

Next, we calculate the policy gradient with respect to K. Note that

∂tJ(K) :=
∂J(K)

∂Kt
=

∂

∂Kt
E
[
−

t−1∑
ℓ=0

βℓ
(1− αℓ)

2

2αℓσ2
ℓ

∥Kℓϕ(Yℓ)− spreℓ (Yℓ)∥
2

2
+QK

t (Yt,Ktϕ(Yt))

]
=

∂

∂Kt
E
[
QK

t (Yt,Ktϕ(Yt))
]
, (26)

where the expectation is taken over the initial state Y0 ∼ D and noise {Wt}T−1
t=0 . We next show that the optimal policy K∗

is the unique stationary point of J(K). Let K be a stationary point, i.e., ∂tJ(K)
∣∣∣
K=K

= 0 for all t. In particular, we have

∂

∂KT−1
E
[
QK

T−1(YT−1,KT−1ϕ(YT−1))
] ∣∣∣

K=K
= 0.

The strong concavity in KT−1 implies that K∗
T−1 = KT−1. Similarly, we have

∂

∂KT−2
E
[
QK

T−2(YT−2,KT−2ϕ(YT−2))
] ∣∣∣

K=K
=

∂

∂KT−2
E
[
QK∗

T−2(YT−2,KT−2ϕ(YT−2))
] ∣∣∣

K=K
= 0.

By strong concavity again, we have K∗
T−2 = KT−2. Repeating the argument to conclude that K∗ = K is the unique

stationary point of the objective function J(K). We remark that the above analysis relies on the two facts:

(i) At T − 1, the map KT−1 7→ E
[
QK

T−1(YT−1,KT−1ϕ(YT−1))
]

has a unique stationary point.

(ii) For any t < T − 1, the map Kt 7→ E
[
QK∗

t (Yt,Ktϕ(Yt))
]

has a unique stationary point.
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These two conditions (i)–(ii) relax Bhandari & Russo (2024, Assumption 2.A), which assumes that Kt 7→
E
[
QK

t (Yt,Ktϕ(Yt))
]

has no sub-optimal stationary points under any K. While (Bhandari & Russo, 2024) primarily
focuses on global convergence guarantees for infinite-horizon problems, it also introduces a condition (cf. Condition 4) for
finite-horizon MDPs that aligns in spirit with our analysis.

Notably, Bhandari & Russo (2024) did not analyze the convergence rate of policy gradient methods for finite-horizon
problems. Since K∗ is the unique stationary point, the policy gradient method converges to the globally optimal solution
as long as the standard smoothness condition is satisfied. Moreover, we conjecture a linear convergence rate due to the
presence of strong concavity. Consider the policy gradient update rule:

K
(m+1)
t = K

(m)
t + η∂tJ(K

(m)), 0 ≤ t ≤ T − 1,m ≥ 0.

For each t < T , we have∥∥∥K(m+1)
t −K∗

t

∥∥∥
F
=
∥∥∥K(m)

t + η∂tJ(K
(m))−K∗

t

∥∥∥
F

≤
∥∥∥K(m)

t + η∂tJ(K
(m)
≤t ,K∗

>t)−K∗
t

∥∥∥
F
+ η

∥∥∥∂tJ(K(m)
≤t ,K∗

>t)− ∂tJ(K
(m))

∥∥∥
F
,

where K≤t := {Kℓ}tℓ=0 and K>t := {Kℓ}ℓ>t. Eq. (26) implies ∂tJ(K) = ∂tJ(K≥t) is independent of {Kℓ}ℓ<t. The
(one-step) strong concavity and smoothness leads to∥∥∥K(m)

t + η∂tJ(K
(m)
≤t ,K∗

>t)−K∗
t

∥∥∥
F
≤ c

∥∥∥K(m)
t −K∗

t

∥∥∥
F
,

for some constant c < 1. If ∂tJ(K) is further LJ
1,t-Lipschitz in K ∈ Rp×d, then we have∥∥∥∂tJ(K(m)

≤t ,K∗
>t)− ∂tJ(K

(m))
∥∥∥
F
≤ LJ

1,t

∥∥∥K(m)
>t −K∗

>t

∥∥∥
F
,

and consequently we prove the linear convergence rate of the policy gradient method.

B. Ommitted proofs in Section 2
B.1. Proof of Lemma 2.5

Proof. Recall that for any yt ∈ Rd,

pt+1|t( · |yt) = f
(
· |µt(yt), σ

2
t Id
)

and ppret+1|t( · |yt) = f
(
· |µpre

t (yt), σ
2
t Id
)
,

with

µt(yt) =
1

√
αt

(yt + (1− αt)ut(yt)) and µpre
t (yt) =

1
√
αt

(yt + (1− αt)s
pre
t (yt)) ,

where f(·|µ,Σ) is the Gaussian density with mean µ ∈ Rd and covariance Σ ∈ Rd×d. Thus, for any yt, yt+1 ∈ Rd, we have

log

(
pt+1|t(yt+1|yt)
ppret+1|t(yt+1|yt)

)
= − 1

2σ2
t

∥yt+1 − µt(yt)∥22 +
1

2σ2
t

∥yt+1 − µpre
t (yt)∥

2
2 .

Denote Ept+1|t as the expectation under the conditional density pt+1|t(·|yt) of Yt+1 given Yt = yt. By definition of the KL
divergence, we have

KL
(
pt+1|t( · |yt)∥ppret+1|t( · |yt)

)
= Ept+1|t

[
log

(
pt+1|t(Yt+1|yt)
ppret+1|t(Yt+1|yt)

)]

= − 1

2σ2
t

Ept+1|t

[
∥Yt+1 − µt(yt)∥22

]
+

1

2σ2
t

Ept+1|t

[
∥Yt+1 − µpre

t (yt)∥
2
2

]
. (27)
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Note that

Ept+1|t

[
∥Yt+1 − µpre

t (yt)∥
2
2

]
= Ept+1|t

[
∥Yt+1 − µt(yt)∥22

]
+ Ept+1|t

[
∥µt(yt)− µpre

t (yt)∥
2
2

]
+ 2Ept+1|t

[
(Yt+1 − µt(yt))

⊤(µt(yt)− µpre
t (yt))

]
= Ept+1|t

[
∥Yt+1 − µt(yt)∥22

]
+ ∥µt(yt)− µpre

t (yt)∥
2
2 ,

where we use the fact that Et+1|t [Yt+1] = µt(yt). Plugging the above equality into (27), we obtain

KL
(
pt+1|t( · |yt)∥ppret+1|t( · |yt)

)
=

1

2σ2
t

∥µt(yt)− µpre
t (yt)∥

2
2 =

(1− αt)
2

2αtσ2
t

∥ut(yt)− spret (yt)∥
2
2 ,

which completes the proof.

B.2. Proof of Theorem 2.8

Proof. We prove Theorem 2.8 by backward induction. At time t = T , Assumption 2.6 implies V ∗
T (y) = r(y) is LV ∗

0,T -
Lipschitz and LV ∗

1,T -gradient Lipschitz with LV ∗

0,T = Lr
0 and LV ∗

1,T = Lr
1.

Step 1: Lipschitz condition of u∗
t . Assume that V ∗

t+1 is LV ∗

0,t+1-Lipschitz and LV ∗

1,t+1-gradient Lipschitz in y ∈ Rd. The
choice of βt implies that the mapping

u 7→ E
[
V ∗
t+1

(
1

√
αt

(y + (1− αt)u) + σtWt

)
− βt

(1− αt)
2

2αtσ2
t

∥u− spret (y)∥22

]
(28)

is γt-strongly concave with γt =
(1−αt)

2

αt

(
βt

σ2
t
− LV ∗

1,t+1

)
> 0 for any y ∈ Rd. Hence, there is a unique optimal control u∗

t

satisfying

u∗
t (y) = spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
, (29)

which is obtained by setting the gradient of mapping (28) as zero for each y ∈ Rd. Here, we apply the Lipschitz condition
of V ∗

t+1 and the dominated convergence theorem to interchange the operators.

We next prove the Lipschitz condition of u∗
t in y ∈ Rd. Note that for any y1 and y2 in Rd, Eq. (29) implies

u∗
t (y1)− u∗

t (y2) = spret (y1)− spret (y2) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

(y1 + (1− αt)u
∗
t (y1)) + σtWt)

)]
−

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

(y2 + (1− αt)u
∗
t (y2)) + σtWt)

)]
.

Utilizing the Lipschitz condition of spret and ∇V ∗
t+1, we obtain

∥u∗
t (y1)− u∗

t (y2)∥2 ≤ ∥spret (y1)− spret (y2)∥2 +
√
αtσ

2
t

(1− αt)βt
E
[∥∥∥∇V ∗

t+1

(
1

√
αt

(y1 + (1− αt)u
∗
t (y1)) + σtWt)

)
−∇V ∗

t+1

(
1

√
αt

(y2 + (1− αt)u
∗
t (y2)) + σtWt)

)∥∥∥
2

]
≤ Ls

0,t ∥y1 − y2∥2

+

√
αtσ

2
t

(1− αt)βt
LV ∗

1,t+1

∥∥∥∥ 1
√
αt

(y1 + (1− αt)u
∗
t (y1))−

1
√
αt

(y2 + (1− αt)u
∗
t (y2))

∥∥∥∥
2

≤ Ls
0,t ∥y1 − y2∥2 +

√
αtσ

2
t

(1− αt)βt
LV ∗

1,t+1

(
1

√
αt

∥y1 − y2∥2 +
1− αt√

αt
∥u∗

t (y1)− u∗
t (y2)∥2

)
.

Equivalently, we have(
1− σ2

t

βt
LV ∗

1,t+1

)
∥u∗

t (y1)− u∗
t (y2)∥2 ≤

(
Ls
0,t +

σ2
tL

V ∗

1,t+1

(1− αt)βt

)
∥y1 − y2∥2 .
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Since 1− σ2
t

βt
LV ∗

1,t+1 ≥ λt > 0, we established the Lipschitz condition of the optimal control u∗
t :

∥u∗
t (y1)− u∗

t (y2)∥2 ≤ λ−1
t

(
Ls
0,t +

1− λt

1− αt

)
∥y1 − y2∥2 = Lu∗

0,t ∥y1 − y2∥2 .,

where we recall Lu∗

0,t defined in (15).

Step 2: Differentiability of u∗
t . We now argue that u∗

t (y) is differentiable for all y ∈ Rd. Let h ∈ Rd be an arbitrary
non-zero vector and let y ∈ Rd be fixed. Since spret is differentiable, we have

spret (y + h)− spret (y) = ∇spret (y)h+ o(∥h∥2). (30)

Moreover, by the inductive hypothesis, ∇V ∗
t+1(y) is Lipschitz and thus ∇2V ∗

t+1(y) exists for almost all y and is bounded.
Folland (1999, Theorem 2.27) implies the mapping z 7→ E

[
∇V ∗

t+1(z + σtWt)
]

is differentiable everywhere and its
derivative is given by

∂

∂z
E
[
∇V ∗

t+1(z + σtWt)
]
= E

[
∇2V ∗

t+1(z + σtWt)
]
. (31)

Let z = 1√
αt

(y + (1− αt)u
∗
t (y)) and k = 1√

αt
(h+ (1− αt)(u

∗
t (y + h)− u∗

t (y)). Eq. (31) implies

E
[
∇V ∗

t+1(z + k + σtWt)
]
− E

[
∇V ∗

t+1(z + σtWt)
]
= E

[
∇2V ∗

t+1(z + σtWt)
]
k + o(∥k∥2). (32)

Since u∗
t is Lipschitz, we have k = O(∥h∥2) as ∥h∥2 → 0. Combining (30) and (32), we obtain

u∗
t (y + h)− u∗

t (y) = spret (y + h)− spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

((y + h) + (1− αt)u
∗
t (y + h)) + σtWt)

)]
−

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt)

)]
= ∇spret (y)h+

√
αtσ

2
t

(1− αt)βt
Ht+1(y)

(
1

√
αt

(h+ (1− αt)(u
∗
t (y + h)− u∗

t (y))

)
+ o(∥h∥2),

where Ht+1(y) := E
[
∇2V ∗

t+1

(
1√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
. Re-arranging the terms leads to

u∗
t (y + h)− u∗

t (y) =

(
Id −

σ2
t

βt
Ht+1(y)

)−1(
∇spret (y) +

σ2
t

(1− αt)βt
Ht+1(y)

)
h+ o(∥h∥2),

which proves that u∗
t (y) is differentiable for any y ∈ Rd and its derivative is given by

∇u∗
t (y) =

(
Id −

σ2
t

βt
Ht+1(y)

)−1(
∇spret (y) +

σ2
t

(1− αt)βt
Ht+1(y)

)
. (33)

Step 3: Lipschitz condition of ∇u∗
t . Next, we show that ∇u∗

t is Lipschitz. Taking the derivative of both sides of (29),

∇u∗
t (y) = ∇spret (y) +

√
αtσ

2
t

(1− αt)βt
· ∂

∂y
E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
. (34)

For any z ∈ Rd, the integration by parts formula implies that

∂

∂z
E
[
∇V ∗

t+1 (z + σtWt)
]
= E

[
∇2V ∗

t+1 (z + σtWt)
]
= E

[
∇V ∗

t+1 (z + σtWt)
Wt⊤
σt

]
. (35)

Substituting z = 1√
αt

(y + (1− αt)u
∗
t (y)) and applying the chain rule, we obtain

∂

∂y
E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
= Wt+1(y)Ut(y),

17
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where Wt+1(y) := E
[
∇V ∗

t+1

(
1√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)
W⊤

t

σt

]
and Ut(y) := 1√

αt
(Id + (1− αt)∇u∗

t (y)). It
follows from (34) that

∇u∗
t (y) = ∇spret (y) +

√
αtσ

2
t

(1− αt)βt
Wt+1(y)Ut(y). (36)

For any y1 and y2 in Rd, Eq. (36) implies that

∇u∗
t (y1)−∇u∗

t (y2) = ∇spret (y1)−∇spret (y2) +

√
αtσ

2
t

(1− αt)βt

(
Wt+1(y1)Ut(y1)−Wt+1(y2)Ut(y2)

)
. (37)

Note that for any y ∈ Rd we have

∥Wt+1(y)∥2 = ∥Ht+1(y)∥2 ≤ LV ∗

1,t+1, (38)

∥Ut(y)∥2 ≤ 1
√
αt

(
1 + (1− αt)L

u∗

0,t

)
, (39)

where (38) holds by applying the identity (35), and (39) is a consequence of the Lipschitz condition of u∗
t . Moreover, for

any y1 and y2 in Rd, the Lipschitz conditions of ∇V ∗
t+1 and u∗

t imply that

∥Wt+1(y1)−Wt+1(y2)∥2 ≤
E [∥Wt∥2]

σt
LV ∗

1,t+1

1
√
αt

(
∥y1 − y2∥2 + (1− αt)L

u∗

0,t ∥y1 − y2∥2
)

=
E [∥Wt∥2]√

αtσt
LV ∗

1,t+1

(
1 + (1− αt)L

u∗

0,t

)
∥y1 − y2∥2 . (40)

Furthermore, the definition of Ut implies

∥Ut(y1)− Ut(y2)∥2 =
1− αt√

αt
∥∇u∗

t (y1)−∇u∗
t (y2)∥2 . (41)

Combining (37)–(41) together, we have

∥∇u∗
t (y1)−∇u∗

t (y2)∥2 ≤ ∥∇spret (y1)−∇spret (y2)∥2 +
√
αtσ

2
t

(1− αt)βt
∥Wt+1(y1)−Wt+1(y2)∥2 ∥Ut(y1)∥2

+

√
αtσ

2
t

(1− αt)βt
∥Wt+1(y2)∥2 ∥Ut(y1)− Ut(y2)∥2

≤ Ls
1,t ∥y1 − y2∥2 +

√
αtσ

2
t

(1− αt)βt

(
LV ∗

1,t+1

1− αt√
αt

∥∇u∗
t (y1)−∇u∗

t (y2)∥2

+
1

αt

(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
σt

LV ∗

1,t+1 ∥y1 − y2∥2

)
.

Since σ2
t

βt
LV ∗

1,t+1 ≤ 1− λt, we deduce that

∥∇u∗
t (y1)−∇u∗

t (y2)∥2 ≤ λ−1
t

(
Ls
1,t +

E [∥Wt∥2] (1− λt)

(1− αt)
√
αtσt

(
1 + (1− αt)L

u∗

0,t

)2)
∥y1 − y2∥2

= Lu∗

1,t ∥y1 − y2∥2 ,

where we recall Lu∗

1,t defined in (16).

Step 4: Lipschitz conditions of V ∗
t and ∇V ∗

t . Finally, we turn to prove the Lipschitz and gradient Lipschitz conditions of
V ∗
t . Plugging u∗

t into the Bellman equation (8), we have

V ∗
t (y) = E

[
V ∗
t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
− βt

(1− αt)
2

2αtσ2
t

∥u∗
t (y)− spret (y)∥22 . (42)
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Since V ∗
t+1 and spret are differentiable with Lipschitz gradients and u∗

t is differentiable, we know that V ∗
t is differentiable

and

∇V ∗
t (y) =

∂

∂y
E

[
V ∗
t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)
− βt

(1− αt)
2

2αtσ2
t

∥u∗
t (y)− spret (y)∥22

]

=
1

√
αt

(Id + (1− αt)∇u∗
t (y))

⊤ E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
− βt

(1− αt)
2

αtσ2
t

(∇u∗
t (y)−∇spret (y))⊤(u∗

t − spret (y)).

Define Gt+1(y) := E
[
∇V ∗

t+1

(
1√
αt

(y + (1− αt)u
∗
t (y)) + σtWt

)]
. It follows that

∇V ∗
t (y) =

1
√
αt

(Id + (1− αt)∇u∗
t (y))

⊤ Gt+1(y)− βt
(1− αt)

2

αtσ2
t

(∇u∗
t (y)−∇spret (y))⊤

( √
αtσ

2
t

(1− αt)βt
Gt+1(y)

)
=

1
√
αt

(Id + (1− αt)∇spret (y))
⊤ Gt+1(y), (43)

where (29) is applied to obtain the first equality. Next, we use (43) to establish the Lipschitz conditions of V ∗
t and ∇V ∗

t .
The Lipschitz condition of ∇V ∗

t+1 implies ∥Gt+1(y)∥2 ≤ LV ∗

0,t+1 for all y ∈ Rd. Based on (43), we have

∥∇V ∗
t (y)∥2 ≤ 1

√
αt

(1 + (1− αt)L
s
0,t)L

V ∗

0,t+1 = LV ∗

0,t ,

which proves the Lipschitz condition of V ∗
t . Next, we prove the gradient Lipschitz condition of V ∗

t . For ease of exposition,
we denote St(y) :=

1√
αt

(Id + (1− αt)∇spret (y)). We now use (43) to show the Lipschitz condition of ∇V ∗
t . We first note

that ∇Gt+1(y) = Ht+1(y)Ut(y) is well-defined at every y ∈ Rd, and thus

∥∇Gt+1(y)∥2 ≤ ∥Ht+1(y)∥2 ∥Ut(y)∥2 ≤ 1
√
αt

(1 + (1− αt)L
u∗

0,t)L
V ∗

1,t+1.

With the Lipschitz condition of Gt+1 in hand, for any y1 and y2 in Rd, we have that

∥∇V ∗
t (y1)−∇V ∗

t (y2)∥2 ≤
∥∥St(y1)

⊤Gt+1(y1)− St(y2)
⊤Gt+1(y2)

∥∥
2

≤
∥∥St(y1)

⊤ (Gt+1(y1)− Gt+1(y2))
∥∥
2
+
∥∥∥(St(y1)− St(y2))

⊤ Gt+1(y2)
∥∥∥
2

≤ ∥St(y1)∥2 ∥Gt+1(y1)− Gt+1(y2)∥2 + ∥St(y1)− St(y2)∥2 ∥Gt+1(y2)∥2

≤ 1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V ∗

1,t+1 ∥y1 − y2∥2

+
1− αt√

αt
Ls
1,tL

V ∗

0,t+1 ∥y1 − y2∥2 ,

where the last equation uses the Lipschitz conditions of spret , ∇spret , V ∗
t+1 and ∇V ∗

t+1. Consequently, we have

∥∇V ∗
t (y1)−∇V ∗

t (y2)∥2 ≤ LV ∗

1,t ∥y1 − y2∥2 ,

where we recall LV ∗

1,t defined in (14). In other words, LV ∗

1,t is indeed the Lipschitz constant of ∇V ∗
t . This completes the

proof.

C. Omitted proofs in Section 3
To prove Theorem 3.1, we need a few intermediate results for one-step update rule. We begin with a lemma that characterizes
the regularity of control and value functions after one update. Given a function V̂t+1 : Rd → R, define the following update
rule:

u
(m+1)
t (y) = spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
, (44)
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with initialization u
(0)
t (y) = spret (y). Furthermore, let V (m)

t be the value function induced by u
(m)
t , i.e.,

V
(m)
t (y) = E

[
V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)
− βt

(1− αt)
2

2αtσ2
t

∥u(m)
t (y)− spret (y)∥2

]
. (45)

Later, we will choose V̂t+1 = V
(mt+1)
t+1 to analyze the convergence of Algorithm 1. With (44) and (45), we state the lemma

as follows.

Lemma C.1 (One-step regularity and universal upper bound). Suppose Assumptions 2.6 and 2.7 hold. Let V̂t+1 be a function

that is LV̂
0,t+1-Lipschitz and LV̂

1,t+1-gradient Lipschitz. Consider
{
u
(m)
t

}mt

m=0
and

{
V

(m)
t

}mt

m=0
defined in (44) and (45).

For t < T , choose βt such that 1− σ2
t

βt
LV̂
1,t+1 ≥ λt > 0. Then it holds for every m ≥ 0 that

(i) u
(m)
t is Lu(m)

0,t -Lipschitz and Lu(m)

1,t -gradient Lipschitz, with coefficients Lu(m)

0,t and Lu(m)

1,t satisfying

Lu(m)

0,t ≤ Lu∗

0,t and Lu(m)

1,t ≤ Lu∗

1,t. (46)

(ii) V
(m)
t is LV (m)

0,t -Lipschitz and LV (m)

1,t -gradient Lipschitz, with coefficients LV (m)

0,t and LV (m)

1,t satisfying

LV (m)

0,t ≤ 1
√
αt

(1 + (1− αt)L
s
0,t)L

V̂
0,t+1 +

LV̂
0,t+1√
αt

(
1 + (1− αt)L

u∗

0,t

)
(1− λt)

m+1, (47)

LV (m)

1,t ≤ 1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V̂
1,t+1 +

1− αt√
αt

Ls
1,tL

V̂
0,t+1

+

(
1− αt√

αt
Lu∗

1,t + (m+ 2)
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̂
0,t+1(1− λt)

m+1. (48)

Lemma C.1 provides regularity properties of the sequence of controls and value functions generated by (44) and (45)
throughout the optimization process. Specifically, the Lipschitz and gradient Lipschitz constants of u(m)

t are bounded by
those of the optimal control u∗

t ; see (46). Furthermore, when V̂t+1 = V ∗
t+1, Eqs. (47) and (48) lead to

LV (m)

0,t = LV ∗

0,t +O((1− λt)
m+1) and LV (m)

1,t = LV ∗

1,t +O((m+ 2)(1− λt)
m+1).

The residual terms diminish to zero as m → ∞ and thus providing the convergence of Lipschitz constants. Consequently,
selecting V̂t+1 as V

(mt+1)
t+1 , when feasible, directly ensures the regularity of the control and value functions defined in

Algorithm 1.

We outline a brief proof sketch to highlight the ideas before providing the detailed proof. The Lipschitz condition of u(m)
t is

derived through direct calculation, while the gradient Lipschitz condition leverages the integration by parts formula (50).
Additionally, establishing the regularity of V (m)

t requires a careful analysis of the gradient expression, along with a tightly
controlled upper bound; see (57).

Proof of Lemma C.1. Step 1: Lipschitz conditions of u(m)
t and ∇u

(m)
t . We begin with the Lipschitz condition of u(m)

t . For
any y1 and y2 in Rd, the update rule (44) implies∥∥∥u(m+1)

t (y1)− u
(m+1)
t (y2)

∥∥∥
2

≤ Ls
0,t ∥y1 − y2∥2

+

√
αtσ

2
t

(1− αt)βt
LV̂
1,t+1

(
1

√
αt

∥y1 − y2∥2 +
1− αt√

αt

∥∥∥u(m)
t (y1)− u

(m)
t (y2)

∥∥∥
2

)
.

Since 1− σ2
t

βt
LV̂
1,t+1 ≥ λt, unrolling the recursion leads to

Lu(m+1)

0,t ≤ Ls
0,t +

σ2
t

(1− αt)βt
LV̂
1,t+1 +

σ2
t

βt
LV̂
1,t+1L

u(m)

0,t
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≤ λ−1
t

(
Ls
0,t +

1− λt

1− αt

)
= Lu∗

0,t.

Here, we also use the fact that Lu(0)

0,t = Ls
0,t. Note that the condition 1− σ2

t

βt
LV̂
1,t+1 ≥ λt is important as it decouples the

upper bound, in the sense that the last line does not depend on LV̂
1,t+1 directly.

Next, since u
(0)
t = spret is differentiable, a simple inductive argument shows that ∇u

(m)
t is well-defined. Furthermore, we

show that ∇u
(m)
t is Lipschitz. Differentiate both sides of the update rule (44),

∇u
(m+1)
t (y) = ∇spret (y) +

√
αtσ

2
t

(1− αt)βt
· ∂

∂y
E
[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
. (49)

For any z ∈ Rd, the integration by parts formula implies that

∂

∂z
E
[
∇V̂t+1 (z + σtWt)

]
= E

[
∇2V̂t+1 (z + σtWt)

]
= E

[
∇V̂t+1 (z + σtWt)

W⊤
t

σt

]
. (50)

Substituting z = 1√
αt

(
y + (1− αt)u

(m)
t (y)

)
and applying the chain rule, we have

∂

∂y
E
[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
= E

[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)
W⊤

t

σt

](
1

√
αt

(
Id + (1− αt)∇u

(m)
t (y)

))
. (51)

Define

Ĝ(m)
t+1 (y) := E

[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
,

Ŵ(m)
t+1 (y) := E

[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)
W⊤

t

σt

]
,

U (m)
t (y) :=

1
√
αt

(
Id + (1− αt)∇u

(m)
t (y)

)
.

It follows from (51) that ∂
∂y Ĝ

(m)
t+1 (y) = Ŵ(m)

t+1 (y)U
(m)
t (y). Consequently, Eq. (49) becomes

∇u
(m+1)
t (y) = ∇spret (y) +

√
αtσ

2
t

(1− αt)βt
Ŵ(m)

t+1 (y)U
(m)
t (y). (52)

Since ∇V̂t+1 and u
(m)
t are both Lipschitz, we know that ∇u

(m+1)
t is Lipschitz as long as ∇u

(m)
t is Lipschitz. Specifically,

for any y1 and y2 in Rd, we have

∇u
(m+1)
t (y1)−∇u

(m+1)
t (y2) = ∇spret (y1)−∇spret (y2) +

√
αtσ

2
t

(1− αt)βt

(
Ŵ(m)

t+1 (y1)U
(m)
t (y1)− Ŵ(m)

t+1 (y2)U
(m)
t (y2)

)
.

Note that for any y ∈ Rd we have ∥∥∥Ŵ(m)
t+1 (y)

∥∥∥
2
≤ LV̂

1,t+1, (53)∥∥∥U (m)
t (y)

∥∥∥
2
≤ 1

√
αt

(
1 + (1− αt)L

u∗

0,t

)
, (54)

where the (53) holds by applying the identity (50), and (54) is a consequence of the Lipschitz condition of u(m)
t . Moreover,

for any y1 and y2 in Rd, the Lipschitz conditions of ∇V̂t+1 and u
(m)
t imply that∥∥∥Ŵ(m)

t+1 (y1)− Ŵ(m)
t+1 (y2)

∥∥∥
2
≤

E [∥Wt∥2]
σt

LV̂
1,t+1

1
√
αt

(
∥y1 − y2∥2 + (1− αt)L

u(m)

0,t ∥y1 − y2∥2
)
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=
E [∥Wt∥2]√

αtσt
LV̂
1,t+1

(
1 + (1− αt)L

u∗

0,t

)
∥y1 − y2∥2 , (55)

and the Lipschitz condition of ∇u
(m)
t leads to∥∥∥U (m)

t (y1)− U (m)
t (y2)

∥∥∥
2
=

1− αt√
αt

∥∥∥∇u
(m)
t (y1)−∇u

(m)
t (y2)

∥∥∥
2

≤ 1− αt√
αt

Lu(m)

1,t ∥y1 − y2∥2 . (56)

Combine (52)–(56) together to have∥∥∥∇u
(m+1)
t (y1)−∇u

(m+1)
t (y2)

∥∥∥
2
≤ Ls

1,t ∥y1 − y2∥2 +
√
αtσ

2
t

(1− αt)βt

(
LV̂
1,t+1

1− αt√
αt

Lu(m)

1,t

+
1

αt

(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
σt

LV̂
1,t+1

)
∥y1 − y2∥2 ,

Since σ2
t

βt
LV̂
1,t+1 ≤ 1− λt, we deduce that

Lu(m+1)

1,t ≤ Ls
1,t +

(
Lu(m)

1,t +
E [∥Wt∥2]

(1− αt)
√
αtσt

(
1 + (1− αt)L

u∗

0,t

)2)
(1− λt).

Equivalently, we have

Lu(m)

1,t ≤ λ−1
t

(
Ls
1,t +

E [∥Wt∥2] (1− λt)

(1− αt)
√
αtσt

(
1 + (1− αt)L

u∗

0,t

)2)
= Lu∗

1,t.

Step 2: Lipschitz conditions of V (m)
t and ∇V

(m)
t . With the Lipschitz conditions of u

(m)
t and ∇u

(m)
t , we now turn to

establish the regularity of V (m)
t . Note that the expressions in (44), (45) and (52) imply that

∇V
(m)
t (y)

=
1

√
αt

(
Id + (1− αt)∇u

(m)
t (y)

)⊤
Ĝ(m)
t+1 (y)− βt

(1− αt)
2

αtσ2
t

(∇u
(m)
t (y)−∇spret (y))⊤

( √
αtσ

2
t

(1− αt)βt
Ĝ(m−1)
t+1 (y)

)
=

1
√
αt

(Id + (1− αt)∇spret (y))
⊤ Ĝ(m)

t+1 (y) +
(1− αt)√

αt

(
∇u

(m)
t (y)−∇spret (y)

)⊤ (
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)
. (57)

We will use the above expression (57) to derive the Lipschitz and gradient Lipschitz conditions of V (m)
t . To proceed, we first

get a few useful estimates. Recall the notation St(y) =
1√
αt

(Id + (1− αt)∇spret (y)). We first show that St(y)
⊤Ĝ(m)

t+1 (y)

is bounded and Lipschitz. Note that for any y ∈ Rd,∥∥∥St(y)
⊤Ĝ(m)

t+1 (y)
∥∥∥
2
≤ ∥St(y)∥2

∥∥∥Ĝ(m)
t+1 (y)

∥∥∥
2
≤ 1

√
αt

(1 + (1− αt)L
s
0,t)L

V̂
0,t+1. (58)

Also, for any y1 and y2 in Rd, we have∥∥∥St(y1)
⊤Ĝ(m)

t+1 (y1)− St(y2)
⊤Ĝ(m)

t+1 (y2)
∥∥∥
2
≤
∥∥∥St(y1)

⊤
(
Ĝ(m)
t+1 (y1)− Ĝ(m)

t+1 (y2)
)∥∥∥

2
+
∥∥∥(St(y1)− St(y2))

⊤ Ĝ(m)
t+1 (y2)

∥∥∥
2

≤ ∥St(y1)∥2
∥∥∥Ĝ(m)

t+1 (y1)− Ĝ(m)
t+1 (y2)

∥∥∥
2
+ ∥St(y1)− St(y2)∥2

∥∥∥Ĝ(m)
t+1 (y2)

∥∥∥
2

≤ 1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V̂
1,t+1 ∥y1 − y2∥2

+
1− αt√

αt
Ls
1,tL

V̂
0,t+1 ∥y1 − y2∥2 , (59)
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where we apply the Lipschitz conditions of V̂t+1, ∇V̂t+1, and spret in the assumptions and the Lipschitz condition of u(m)
t

in Step 1. It remains to show the second term in (57) is bounded and Lipschitz uniformly over m ≥ 0. Since ∇V̂t+1 is
LV̂
1,t+1-Lipschitz, we deduce that∥∥∥Ĝ(m)

t+1 (y)− Ĝ(m−1)
t+1 (y)

∥∥∥
2
≤ LV̂

1,t+1

1− αt√
αt

∥∥∥u(m)
t (y)− u

(m−1)
t (y)

∥∥∥
2

≤ LV̂
1,t+1

σ2
t

βt

∥∥∥Ĝ(m−1)
t+1 (y)− Ĝ(m−2)

t+1 (y)
∥∥∥
2
, (60)

where we apply the update rule (44) in the last equation. As σ2
t

βt
LV̂
1,t+1 ≤ 1− λt, unrolling the recursion (60) leads to∥∥∥Ĝ(m)

t+1 (y)− Ĝ(m−1)
t+1 (y)

∥∥∥
2
≤ (1− λt)

m−1
∥∥∥Ĝ(1)

t+1(y)− Ĝ(0)
t+1(y)

∥∥∥
2

≤ (1− λt)
m−1LV̂

1,t+1

1− αt√
αt

∥∥∥u(1)
t − u

(0)
t

∥∥∥
2

≤ (1− λt)
m−1LV̂

1,t+1

σ2
t

βt
LV̂
0,t+1 ≤ (1− λt)

mLV̂
0,t+1. (61)

Moreover, for any y ∈ Rd, we have∥∥∥∥ ∂

∂y

(
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)∥∥∥∥

2

=
∥∥∥Ŵ(m)

t+1 (y)U
(m)
t (y)− Ŵ(m−1)

t+1 (y)U (m−1)
t (y)

∥∥∥
2

≤
∥∥∥Ŵ(m)

t+1 (y)− Ŵ(m−1)
t+1 (y)

∥∥∥
2

∥∥∥U (m)
t (y)

∥∥∥
2
+
∥∥∥Ŵ(m−1)

t+1 (y)
∥∥∥
2

∥∥∥U (m)
t (y)− U (m−1)

t (y)
∥∥∥
2
.

(62)

The gradient expression (52) implies∥∥∥U (m)
t (y)− U (m−1)

t (y)
∥∥∥
2
≤ 1− αt√

αt

∥∥∥∇u
(m)
t (y)−∇u

(m−1)
t (y)

∥∥∥
2
≤ σ2

t

βt

∥∥∥∥ ∂

∂y

(
Ĝ(m−1)
t+1 (y)− Ĝ(m−2)

t+1 (y)
)∥∥∥∥

2

, (63)

and (60)–(61) lead to the fact that∥∥∥Ŵ(m)
t+1 (y)− Ŵ(m−1)

t+1 (y)
∥∥∥
2
≤

E [∥Wt∥2]
σt

LV̂
1,t+1

1− αt√
αt

∥∥∥u(m)
t (y)− u

(m−1)
t (y)

∥∥∥
2
≤

E [∥Wt∥2]
σt

LV̂
0,t+1(1− λt)

m. (64)

With (53), (54), (63) and (64), we can bound (62) with∥∥∥∥ ∂

∂y

(
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)∥∥∥∥

2

≤
LV̂
0,t+1E [∥Wt∥2]√

αtσt

(
1 + (1− αt)L

u∗

0,t

)
(1− λt)

m

+
σ2
t

βt
LV̂
1,t+1

∥∥∥∥ ∂

∂y

(
Ĝ(m−1)
t+1 (y)− Ĝ(m−2)

t+1 (y)
)∥∥∥∥

2

. (65)

Since σ2
t

βt
LV̂
1,t+1 ≤ 1− λt, unrolling the recursion (65) to have∥∥∥∥ ∂

∂y

(
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)∥∥∥∥

2

≤
LV̂
0,t+1E [∥Wt∥2]√

αtσt

(
1 + (1− αt)L

u∗

0,t

)
m(1− λt)

m

+ (1− λt)
(m)

∥∥∥∥ ∂

∂y
Ĝ(0)
t+1(y)

∥∥∥∥
2

≤
LV̂
0,t+1E [∥Wt∥2]√

αtσt

(
1 + (1− αt)L

u∗

0,t

)
(m+ 1)(1− λt)

m, (66)

where we utilize the fact that∥∥∥∥ ∂

∂y
Ĝ(0)
t+1(y)

∥∥∥∥
2

≤
∥∥∥Ŵ(0)

t+1(y)
∥∥∥
2

∥∥∥U (0)
t (y)

∥∥∥
2
≤

LV̂
0,t+1E [∥Wt∥2]√

αtσt

(
1 + (1− αt)L

u∗

0,t

)
.
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Hence, for any y1 and y2 in Rd, (53)–(56), (61) and (66) imply that∥∥∥∥(Ŵ(m)
t+1 (y1)U

(m)
t (y1)

)⊤ (
Ĝ(m)
t+1 (y1)− Ĝ(m−1)

t+1 (y1)
)
−
(
Ŵ(m)

t+1 (y2)U
(m)
t (y2)

)⊤ (
Ĝ(m)
t+1 (y2)− Ĝ(m−1)

t+1 (y2)
)∥∥∥∥

2

≤
∥∥∥Ŵ(m)

t+1 (y1)U
(m)
t (y1)− Ŵ(m)

t+1 (y2)U
(m)
t (y2)

∥∥∥
2

∥∥∥Ĝ(m)
t+1 (y1)− Ĝ(m−1)

t+1 (y1)
∥∥∥
2

+
∥∥∥Ŵ(m)

t+1 (y2)U
(m)
t (y2)

∥∥∥
2
sup
y∈Rd

∥∥∥∥ ∂

∂y

(
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)∥∥∥∥

2

∥y1 − y2∥2

≤
(
1− αt√

αt
Lu(m)

1,t +
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̂
1,t+1L

V̂
0,t+1(1− λt)

m ∥y1 − y2∥2

+
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

LV̂
1,t+1L

V̂
0,t+1(m+ 1)(1− λt)

m ∥y1 − y2∥2

=

(
1− αt√

αt
Lu∗

1,t + (m+ 2)
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̂
1,t+1L

V̂
0,t+1(1− λt)

m ∥y1 − y2∥2 . (67)

With there estimates in hand, we are ready to prove the Lipschitz and gradient Lipschitz conditions of V (m)
t . Note that

(1− αt)√
αt

(
∇u

(m)
t (y)−∇spret (y)

)
=

σ2
t

βt
Ŵ(m)

t+1 (y)U
(m)
t (y).

Consequently, for any y ∈ Rd, we deduce from (53), (54), (58) and (61) that∥∥∥∇V
(m)
t (y)

∥∥∥
2
≤
∥∥∥St(y)

⊤Ĝ(m)
t+1 (y)

∥∥∥
2
+

σ2
t

βt

∥∥∥Ŵ(m)
t+1 (y)

∥∥∥
2

∥∥∥U (m)
t (y)

∥∥∥
2

∥∥∥Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
∥∥∥
2

≤ 1
√
αt

(1 + (1− αt)L
s
0,t)L

V̂
0,t+1 +

σ2
t

βt
LV̂
1,t+1

(
1

√
αt

(
1 + (1− αt)L

u∗

0,t

))
(1− λt)

mLV̂
0,t+1

≤ 1
√
αt

(1 + (1− αt)L
s
0,t)L

V̂
0,t+1 +

LV̂
0,t+1√
αt

(
1 + (1− αt)L

u∗

0,t

)
(1− λt)

m+1.

Finally, for any y1 and y2 in Rd, it follows from (59) and (67) that∥∥∥∇V
(m)
t (y1)−∇V

(m)
t (y2)

∥∥∥
2

≤
∥∥∥St(y1)

⊤Ĝ(m)
t+1 (y1)− St(y2)

⊤Ĝ(m)
t+1 (y2)

∥∥∥
2

+
σ2
t

βt

∥∥∥(Ŵ(m)
t+1 (y1)U

(m)
t (y1)

)⊤ (
Ĝ(m)
t+1 (y1)− Ĝ(m−1)

t+1 (y1)
)

−
(
Ŵ(m)

t+1 (y2)U
(m)
t (y2)

)⊤ (
Ĝ(m)
t+1 (y2)− Ĝ(m−1)

t+1 (y2)
)∥∥∥

2

≤
(

1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V̂
1,t+1 +

1− αt√
αt

Ls
1,tL

V̂
0,t+1

)
∥y1 − y2∥2

+
σ2
t

βt
LV̂
1,t+1

(
1− αt√

αt
Lu∗

1,t + (m+ 2)
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̂
0,t+1(1− λt)

m ∥y1 − y2∥2

≤

(
1

αt
(1 + (1− αt)L

s
0,t)(1 + (1− αt)L

u∗

0,t)L
V̂
1,t+1 +

1− αt√
αt

Ls
1,tL

V̂
0,t+1

+

(
1− αt√

αt
Lu∗

1,t + (m+ 2)
(
1 + (1− αt)L

u∗

0,t

)2 E [∥Wt∥2]
αtσt

)
LV̂
0,t+1(1− λt)

m+1

)
∥y1 − y2∥2 ,

which finishes the proof.

Our next result characterizes the error of the control sequence obtained from the one-step update rule (44).
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Lemma C.2 (One-step error analysis on controls). Assume the same assumptions as in Lemma C.1. Moreover, suppose
there is a constant Et+1 such that for all y that∥∥∥(∇V̂t+1 −∇V ∗

t+1

)
(y)
∥∥∥
2
≤ Et+1.

Let u(m)
t and V

(m)
t be defined as in (44) and (45), respectively. Then it holds that for all y ∈ Rd that∥∥∥u(m)

t (y)− u∗
t (y)

∥∥∥
2
≤
(
(1− λt)

nLV ∗

0,t+1 + λ−1
t Et+1

) √
αt(1− λt)

(1− αt)LV ∗
1,t+1

.

Proof. Define the Bellman optimality operator Tt at time t as

(Ttu)(y) := spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V ∗

t+1

(
1

√
αt

(y + (1− αt)u(y)) + σtWt

)]
.

Moreover, define the approximate Bellman operator T̂t as

(T̂tu)(y) := spret (y) +

√
αtσ

2
t

(1− αt)βt
E
[
∇V̂t+1

(
1

√
αt

(y + (1− αt)u(y)) + σtWt

)]
.

The update rule (44) implies u(m+1)
t = T̂tu(m)

t . Together with the optimality condition u∗
t = Ttu∗

t , we obtain that∥∥∥u(m+1)
t (y)− u∗

t (y)
∥∥∥
2
=
∥∥∥(T̂tu(m)

t )(y)− (Ttu∗
t )(y)

∥∥∥
2

≤
∥∥∥(T̂tu(m)

t )(y)− (Ttu(m)
t )(y)

∥∥∥
2
+
∥∥∥(Ttu(m)

t )(y)− (Ttu∗
t )(y)

∥∥∥
2
. (68)

Note that Tt is a contraction operator. Indeed, for any u, v : Rd → Rd we have

∥(Ttu)(y)− (Ttv)(y)∥2 ≤
√
αtσ

2
t

(1− αt)βt
E

[∥∥∥∥∥∇V ∗
t+1

(
1

√
αt

(y + (1− αt)u(y)) + σtWt

)

−∇V ∗
t+1

(
1

√
αt

(y + (1− αt)v(y)) + σtWt

)∥∥∥∥∥
2

]

≤ σ2
t

βt
LV ∗

1,t+1 ∥u(y)− v(y)∥2

≤ (1− λt) ∥u(y)− v(y)∥2 , (69)

where we apply the Lipschitz condition of ∇V ∗
t+1 and the choice of βt. Consequently, the second term in (68) is bounded

with ∥∥∥(Ttu(m)
t )(y)− (Ttu∗

t )(y)
∥∥∥
2
≤ (1− λt)

∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2
. (70)

Next, define

G(m)
t+1 (y) := E

[
∇V ∗

t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
,

and recall that

Ĝ(m)
t+1 (y) = E

[
∇V̂t+1

(
1

√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
.

For the first term in (68), note that∥∥∥(T̂tu(m)
t )(y)− (Ttu(m)

t )(y)
∥∥∥
2
=

√
αtσ

2
t

(1− αt)βt

∥∥∥Ĝ(m)
t+1 (y)− G(m)

t+1 (y)
∥∥∥
2
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≤
√
αtσ

2
t

(1− αt)βt
E
[∥∥∥(∇V̂t+1 −∇V ∗

t+1

)
(y′)

∥∥∥
2

]
≤

√
αtσ

2
t

(1− αt)βt
Et+1, (71)

where y′ ∼ N
(

1√
αt

(
y + (1− αt)u

(m)
t )(y)

)
, σ2

t Id

)
.

With (70) and (71), we can further bound (68) with∥∥∥u(m+1)
t (y)− u∗

t (y)
∥∥∥
2
≤

√
αtσ

2
t

(1− αt)βt
Et+1 + (1− λt)

∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2
. (72)

Unrolling the recursion (72), we have∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2
≤ (1− λt)

m
∥∥∥u(0)

t (y)− u∗
t (y)

∥∥∥
2
+ λ−1

t

√
αtσ

2
t

(1− αt)βt
Et+1

≤
(
(1− λt)

mLV ∗

0,t+1 + λ−1
t Et+1

) √
αtσ

2
t

(1− αt)βt

≤
(
(1− λt)

mLV ∗

0,t+1 + λ−1
t Et+1

) √
αt(1− λt)

(1− αt)LV ∗
1,t+1

,

where we apply the condition that 1− σ2
t

βt
LV ∗

1,t+1 ≥ λt. This finishes the proof.

The last lemma in this section is on the error analysis of ∇V
(m)
t .

Lemma C.3 (One-step error analysis on the gradient of value function). Assume the same assumptions as in Lemma C.2.
Then it holds that for all y ∈ Rd,∥∥∥∇V

(m)
t (y)−∇V ∗

t (y)
∥∥∥
2
≤ C1,tEt+1 + C2,t(1− λt)

m+1, (73)

where

C1,t :=
1 + (1− αt)L

s
0,t

λt
√
αt

, and C2,t :=

(
1 + (1− αt)L

u∗

0,t

)
√
αt

LV̂
0,t+1 +

(
1 + (1− αt)L

s
0,t

)
√
αt

LV ∗

0,t+1.

Proof. Recall the definition that Ĝ(m)
t+1 (y) = E

[
∇V̂t+1

(
1√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
. It follows from (43) and

(57) that

∇V
(m)
t (y)−∇V ∗

t (y) =
1

√
αt

(Id + (1− αt)∇spret (y))
⊤
(
Ĝ(m)
t+1 (y)− Gt+1(y)

)
+

(1− αt)√
αt

(
∇u

(m)
t (y)−∇spret (y)

)⊤ (
Ĝ(m)
t+1 (y)− Ĝ(m−1)

t+1 (y)
)
. (74)

Observe that for any m ≥ 0, it holds that∥∥∥Ĝ(m)
t+1 (y)− Gt+1(y)

∥∥∥
2
≤
∥∥∥Ĝ(m)

t+1 (y)− G(m)
t+1 (y)

∥∥∥
2
+
∥∥∥G(m)

t+1 (y)− Gt+1(y)
∥∥∥
2
, (75)

where we recall G(m)
t+1 (y) = E

[
∇V ∗

t+1

(
1√
αt

(
y + (1− αt)u

(m)
t (y)

)
+ σtWt

)]
. For the first term on the right hand side

of (75), we notice the following inequality holds:∥∥∥Ĝ(m)
t+1 (y)− G(m)

t+1 (y)
∥∥∥
2
≤ E

[∥∥∥(∇V̂t+1 −∇V ∗
t+1

)
(y′)

∥∥∥
2

]
≤ Et+1, (76)

where y′ ∼ N
(

1√
αt

(
y + (1− αt)u

(m)
t )(y)

)
, σ2

t Id

)
. For the second term in (75), the Lipschitz continuity of ∇V ∗

t+1

implies ∥∥∥G(m)
t+1 (y)− Gt+1(y)

∥∥∥
2
≤ LV ∗

1,t+1

1− αt√
αt

∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2
. (77)
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Consequently, Eq. (75) becomes∥∥∥Ĝ(m)
t+1 (y)− Gt+1(y)

∥∥∥
2
≤ Et+1 + LV ∗

1,t+1

1− αt√
αt

∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2
. (78)

With (53), (54), (61) and (78), we further bound (74) with∥∥∥∇V
(m)
t (y)−∇V ∗

t (y)
∥∥∥
2
≤ C ′

1,t

(
Et+1 + LV ∗

1,t+1

1− αt√
αt

∥∥∥u(m)
t (y)− u∗

t (y)
∥∥∥
2

)
+ C ′

2,t(1− λt)
m+1,

where the coefficients are given by

C ′
1,t =

1
√
αt

(1 + (1− αt)L
s
0,t), and C ′

2,t =
1 + (1− αt)L

u∗

0,t√
αt

LV̂
0,t+1.

Finally, we apply Lemma C.2 to obtain∥∥∥∇V
(m)
t (y)−∇V ∗

t (y)
∥∥∥
2
≤ C ′

1,t

(
Et+1 + LV ∗

1,t+1

σ2
t

βt

(
(1− λt)

mLV ∗

0,t+1 + λ−1
t Et+1

))
+ C ′

2,t(1− λt)
m+1

≤ C ′
1,t

(
Et+1 + (1− λt)

(
(1− λt)

mLV ∗

0,t+1 + λ−1
t Et+1

))
+ C ′

2,t(1− λt)
m+1

≤ C1,tEt+1 + C2,t(1− λt)
m+1,

where

C1,t = λ−1
t C ′

1,t, and C2,t = C ′
2,t + C ′

1,tL
V ∗

0,t+1.

Therefore, we finish the proof.

Now we are ready to prove Theorem 3.1 with the results in Lemmas C.1, C.2 and C.3.

Proof of Theorem 3.1. It is straightforward to check that LV̄
1,t ≥ LV ∗

1,t for all t ≤ T . Thus, the choice of βt guarantees

that Theorem 2.8 holds. To prove the theorem, we begin with the error
∥∥∥∇V

(mt)
t (y)−∇V ∗

t (y)
∥∥∥
2
. Let t < T be

fixed. To apply Lemma C.3, we choose V̂t′ = V
(mt′ )
t′ for all t′ > t. Unrolling recursion (73) and use the fact that

V
(mT )
T (y) = r(y) = V ∗

T (y), we obtain that

∥∥∥∇V
(mt)
t (y)−∇V ∗

t (y)
∥∥∥
2
≤

T∏
k=t

C1,k

∥∥∥∇V
(mT )
T (y)− V ∗

T (y)
∥∥∥
2
+

T−1∑
k=t

(
k−1∏
ℓ=t

C1,ℓ

)
C2,k(1− λk)

mk+1

=

T−1∑
k=t

(
k−1∏
ℓ=t

C1,ℓ

)
C2,k(1− λk)

mk+1.

Next, we apply Lemma C.2 to have∥∥∥u(mt)
t (y)− u∗

t (y)
∥∥∥
2
≤
(
(1− λt)

mtLV ∗

0,t+1 + λ−1
t

∥∥∇V
mt+1

t+1 (y)−∇V ∗
t+1(y)

∥∥
2

) √
αt(1− λt)

(1− αt)LV ∗
1,t+1

≤

(
(1− λt)

mtLV ∗

0,t+1 + λ−1
t

T−1∑
k=t+1

(
k−1∏

ℓ=t+1

C1,ℓ

)
C2,k(1− λk)

mk+1

) √
αt(1− λt)

(1− αt)LV ∗
1,t+1

,

which finishes the proof.
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