AgentSynth: Scalable Task Generation for Generalist
Computer-Use Agents

Jingxu Xie, Dylan Xu, Xuandong Zhao, Dawn Song
University of California, Berkeley
{jingxuxie,dylanx26,xuandongzhao,dawnsong}@berkeley.edu

Abstract

We introduce AgentSynth, a scalable and cost-efficient pipeline for automatically
synthesizing high-quality tasks and trajectory datasets for generalist computer-use
agents. Leveraging information asymmetry, AgentSynth constructs subtasks that
are simple during generation but significantly more challenging when composed
into long-horizon tasks, enabling the creation of over 6,000 diverse and realistic
tasks. A key strength of AgentSynth is its ability to precisely modulate task
complexity by varying the number of subtasks. Empirical evaluations show that
state-of-the-art LLM agents suffer a steep performance drop, from 18% success at
difficulty level 1 to just 4% at level 6, highlighting the benchmark’s difficulty and
discriminative power. Moreover, our pipeline achieves a low average cost of $0.60
per trajectory, orders of magnitude cheaper than human annotations.

1 Introduction

Large language models (LLMs) have recently shown promise as autonomous agents capable of
solving complex, multi-step tasks across a wide range of domains. These LLM agents interact with an
environment through structured actions—such as mouse clicks, keystrokes, or code executions—and
are prompted to complete specific tasks using tools provided by the interface. This paradigm has
been explored for web navigation tasks [Yao et al., 2023a, Drouin et al., 2024], software development
[Yang et al., 2024], formal mathematics [Lin et al., 2025], and many others [Boisvert et al., 2024,
Agashe et al., 2025]. As research in LLM agents progresses, the availability of high-quality datasets
tailored to these domains becomes increasingly critical.

General computer-use tasks that involve interacting with desktop environments and software appli-
cations pose especially difficult challenges for data collection. Existing datasets in this space, such
as 7-bench [Yao et al., 2024], TheAgentCompany [Xu et al., 2024], OSWorld [Xie et al., 2024],
WorkArena [Drouin et al., 2024] rely heavily on human demonstrations over a limited set of tools
and tasks. While effective in showcasing agent capabilities, this human-in-the-loop approach is
labor-intensive, expensive, and fundamentally unscalable, making it impractical for covering the full
breadth of real-world computing scenarios.

To overcome these limitations, recent work has turned to synthetic data generation using LLMs.
However, existing pipelines face two core challenges: (1) current LLM agents struggle to generate
reliable trajectories for complex tasks, and (2) simplistic or repetitive generation strategies limit task
diversity. These challenges are especially acute in visually grounded or long-horizon tasks, where
agents must maintain contextual awareness, reason over multiple steps, and adapt when plans fail
[Xie et al., 2024, Bonatti et al., 2024]. Moreover, limited task diversity increases the risk of overfitting
or model collapse during downstream training [Shumailov et al., 2024].

We introduce AgentSynth, a scalable and flexible pipeline for synthesizing diverse, high-quality
datasets for training and evaluating computer-use agents. The core insight behind AgentSynth is

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models (MTI-LLM).

to exploit information asymmetry between the data generation and evaluation phases, the idea that
solving a task step-by-step in the forward direction is far easier than reasoning out the entire solution
all at once. Therefore, we construct the task through a sequence of simple, solvable subtasks. Each
subtask builds incrementally on the prior state, with the corresponding trajectories collected during
execution. A summarization agent then merges the subtasks into a composite long-horizon task,
producing realistic scenarios that are easy to generate but hard to solve.

This design offers several key advantages. By constructing complex tasks from simple, solvable
components, AgentSynth enables reliable trajectory collection while maintaining benchmark difficulty.
Varying the chaining of subtasks induces combinatorial task diversity. The pipeline is fully automated
and achieves a low cost of just $0.60 per trajectory. While we generate over 6,000 tasks in this work,
the approach readily scales to tens of thousands of realistic tasks across diverse environments.

Our contributions are as follows:

* We introduce AgentSynth, a fully automated pipeline that synthesizes challenging and diverse
computer-use tasks by iteratively chaining LLM-generated subtasks

* We demonstrate how information asymmetry between generation and execution improves trajectory
reliability and task complexity, enabling fine-grained task difficulty control.

* We build a benchmark using AgentSynth and show that state-of-the-art agents struggle significantly,
revealing a large room for future improvement.

We describe our methodology in detail in Section 3, anaylized the generated tasks and datasets in
Section 4, and present empirical evaluation results in Section 5.

2 Related Work

Substantial research has focused on synthesizing data to improve the training and evaluation of LLMs.
However, most existing datasets and benchmarks for computer-use agents still rely heavily on manual
design and annotation, limiting their scalability and diversity.

Synthetic Data Generation. Synthetic data generation has emerged as a promising approach to
enhance model performance and foster new capabilities. Many recent studies have leveraged LLMs
to automate and diversify data generation. For instance, Yuan et al. [2025] curated diverse, high-
quality datasets extracted from extensive pretraining corpora. Xu et al. [2025a] (Evol-Instruct), Su
et al. [2025] (Learn-by-interact), and Sun et al. [2025] (OS-Genesis) both use sequential pipelines
to generate synthetic datasets. However, OS-Genesis and Learn-by-interact retroactively define a
task over a trajectory instead of stringing together subtasks, while Evol-Instruct only generates the
trajectory with the final instruction.

Shin et al. [2019] generated synthetic datasets with controlled distributions over programs and
specifications. Li et al. [2025] employed an optimization loop where a data generator continuously
produces challenging problems targeted at specific evaluation models. Many other applications of
synthetic data for LLMs are listed in Liu et al. [2024]. These works highlight the power of synthetic
pipelines but focus primarily on static text benchmarks rather than interactive agents.

Agent Datasets and Benchmarks. Current datasets and benchmarks for agents predominantly depend
on human annotators for task creation, demonstration provision, and the definition of evaluation
metrics [Yao et al., 2024, Xu et al., 2024, Zhou et al., 2024], which are costly to scale and often
limited in diversity. More recent work explores using LLMs to generate agent tasks and trajectories.
For example, Pahuja et al. [2025], Trabucco et al. [2025], Murty et al. [2025], Gandhi and Neubig
[2025] employed LLMs as web agents to synthesize web-based interactions. Boisvert et al. [2025]
composed atomic tasks from Drouin et al. [2024] to form difficult tasks. Xu et al. [2025b] and Ou
et al. [2024] turned online tutorials into tasks and demonstrations. Nonetheless, these generated tasks
and trajectories are limited primarily to web-based activities and typically involve simple interactions
without complex multi-step reasoning or extensive tool utilization.

Agent Environments. Early agent environments such as MiniWob++ [Liu et al., 2018] focused on
simplified web tasks and low-level actions. Later advancements such as Mind2Web [Deng et al., 2023],
WebArena [Zhou et al., 2024], and Online-Mind2Web [Xue et al., 2025] introduced more realistic
websites but remained constrained in breadth and complexity. More comprehensive environments
have been developed by Yao et al. [2024], Drouin et al. [2024], Xu et al. [2024] which expanded the
action space and interface diversity, yet they still deviate from the actual computer environments.

Persona A senator who is open to prison reform but needs convincing data
and evidence to support policy changes

Initial task generation

Search for recent recidivism rate statistics following prison

Initial task reform initiatives in the United States.

Follow-up task generation

Create a text file summarizing and comparing historical and current

Follow-up subtask recidivism rate statistics in the United States.

Verify if the task is
successfully executed

Yes No
xn Summarize what the agent has done
. o Search for historical (pre-reform) recidivism rate statistics in the
Revised subtask description United States fo compare with current post-reform rates.

Collect recidivism rate statistics in the United States for the
Summarize the sequence of subtasks 1980s, 1990s, 2000s, and 2010s using online sources, enter this
data into a LibreOffice Calc spreadsheet with columns labeled
'Period’ and 'Recidivism Rate', and create a clearly-labeled line
chart titled 'US Recidivism Rates by Decade' with the X axis
labeled 'Decade’ and the Y axis labeled 'Recidivism Rate (%)" to
visually compare changes in recidivism rates across these decades.

Final tasks

A
-]
-]

Initial state Initial task Follow-up task 1 eee Follow-up task n

Task difficulty level 1 Task difficulty level 2 eoe Task difficulty level n+1

Figure 1: AgentSynth data generation pipeline. Given a persona, the task proposer generates an initial
task, which is followed by a sequence of subtasks executed by the agent. Each step is verified; if
execution fails, a revised subtask description is generated. After n successful steps, a summarization
agent composes final high-level tasks. Tasks at different difficulty levels are formed by summarizing
the first 1 to n subtasks, enabling controllable task complexity.

Recent developments like OSWorld [Xie et al., 2024] and WindowsArena [Bonatti et al., 2024]
address this gap by transforming real operating systems into interactive gym environments for agent
training and trajectory generation. Our work leverages the capabilities of OSWorld, providing
comprehensive access to authentic computer tools to enhance synthetic data generation for generalist
computer-use agents.

3 Scalable Agent Tasks and Trajectories Generation

We design a synthetic data generation pipeline powered by six distinct LLM-based agents: a rask
proposer, a task executor, a task verifier, a task reviser, a follow-up task proposer, and a task
summarizer. Central to our methodology is the exploitation of information asymmetry [Li et al.,
2025]; the idea that solving a task step-by-step in the forward direction is far easier than inferring
the entire solution from scratch. Specifically, we generate sequences of simple, tractable subtasks,
collecting trajectories along the way, and later summarizing the sequence into a single, coherent long-
horizon task. This approach allows us to synthesize tasks that are easy to generate but substantially
more difficult for agents to complete at test time. Full prompt templates for each agent are included
in Appendix A.

Our pipeline operates in the OSWorld environment [Xie et al., 2024], a Gym-compatible simulated
desktop interface that mirrors real-world computer usage. Within this environment, agents can interact
freely with a broad range of software applications and system tools hosted on a virtual machine. At
each step, the agent receives a full-screen screenshot (1920 x 1080), typically spanning 1k—2k tokens
depending on the model’s tokenizer. Based on this visual context and the current task, the LLM agent
generates executable actions, such as mouse clicks, key presses, text input, and scrolling, which are
executed using pyautogui [Sweigart, 2025] to closely emulate human behavior. The full action

space is detailed in Table E.1, where the percentage listed for each action type reflects its frequency
of occurrence across all trajectories in our dataset. To highlight the generality of our pipeline, we also
apply it to a web agent environment (InSTA [Trabucco et al., 2025]), as discussed in Appendix D.
The overall data generation pipeline is detailed below and is presented in Figure 1.

Task Proposer. We initiate the data generation process by instructing a task proposer agent to
generate an initial, straightforward task. To enrich task diversity, the proposer is guided by a randomly
assigned persona sampled from the persona hub [Ge et al., 2024], prompting it to suggest tasks
relevant to a specific user profile. The proposer takes as input the persona and the initial Ubuntu
desktop screenshot, and is prompted to create clear, specific tasks that can be completed in a few
atomic actions. To ensure safety and privacy, we prohibit any tasks involving login credentials or
actions such as email sending or social media posting. Prompt details for the task proposer are
provided in Appendix Table A.1.

We currently rely on GPT-4.1-based agents for task generation due to their robustness and broad
generalization. Different LLM models might generate tasks with systematically different complexity,
realism, or meaningfulness, and it remains an open and interesting research question how model
choice affects generated task properties. Exploring task-generation variance across different LLM
architectures could be beneficial to further enrich task diversity and calibrate difficulty more precisely.

Task Executor. To execute the proposed tasks, we construct a ReAct-style [Yao et al., 2023b] agent
that integrates OpenAI’'s GPT-4.1 [OpenAl, 2025b] and computer-use-preview [OpenAl, 2025a]
models. Empirically, GPT-4.1 is good at planning and interpreting visual context, while the computer-
use model is more accurate in grounding actions to pixel-level coordinates. We therefore assign
GPT-4.1 the role of planner: it receives the task, current screenshot, and execution history, and outputs
a natural language description of the next action. This description, along with the screenshot, is then
passed to the computer-use model, which generates the precise executable action (e.g., mouse click
coordinates, keystrokes). This two-stage setup balances high-level reasoning with fine-grained visual
grounding. During execution, we log both the model’s reasoning trace and the resulting actions,
enabling rich trajectory annotation. Each task execution is limited to a maximum of 10 steps. The
prompts for the task executor are shown in Appendix Table A.2 and Table A.3.

Task Verifier. The task verification agent evaluates whether a given trajectory successfully completes
the intended task. It reviews the full screenshot sequence and task description, and outputs both a
binary success label and a completion percentage. To avoid overwhelming the verifier with excessive
visual input, we adopt a WebJudge-style architecture inspired by Xue et al. [2025]. The verifier first
extracts key requirements from the task description, then analyzes each screenshot to select a subset
of key screenshots most relevant to task completion. The final verdict is made based on the task
description, identified key requirements, and the filtered key screenshots. To reduce token usage, all
screenshots are downsampled to 960x480. If a task is not fully completed, the verifier estimates the
percentage of task completion. In such cases, the task reviser generates a revised task description that
reflects the actual progress. Prompt details for the verifier are provided in Appendix Table A.5 to
Table A.7.

Task Reviser. When a trajectory is only partially successful, we invoke a task reviser agent to
generate a revised task description that accurately reflects the actions actually completed by the
agent. The reviser takes as input the full execution screenshots and identifies the goals that were
successfully accomplished. It then outputs a revised task description that aligns with the observed
behavior. Prompt details for the task reviser are shown in Appendix Table A.8.

Follow-up Task Proposer. Upon completing a task, the follow-up task proposer generates the next
logical subtask to continue the sequence. This agent is given the full history of prior subtasks and the
most recent desktop screenshot, and is instructed to generate a simple, specific follow-up action that
builds on the previous state. Additionally, the proposer is informed of previously unsuccessful tasks,
prompting it to propose simpler alternatives. Like the initial proposer, it avoids tasks that require
login or unsafe actions. The resulting task is executed and verified as before, and if incomplete, a
revised description is generated. This iterative generation process continues until a desired sequence
length is reached. Prompt templates for the follow-up proposer are shown in Appendix Table A.4.

Task Summarizer. Finally, the task summarizer converts a sequence of completed subtasks into a
single high-level task description. This summary abstracts away step-level details while preserving
the overarching objective and required actions. By varying the number of subtasks summarized, we

systematically control task difficulty: more subtasks yield longer, more complex tasks that require
greater reasoning and planning. This mechanism enables us to generate tasks at multiple difficulty
levels in a principled way. While each subtask may be trivial in isolation, the final composed task
presents a challenging, multi-step problem for LLM agents. The summarization process is illustrated
in Figure 1, and prompt details are provided in Appendix Table A.9.

4 Dataset Analysis
4.1 Quality

To assess the quality of the generated tasks and trajec- Table 1: Human evaluation of AgentSynth
tories, we conducted a manual evaluation on a random task and trajectory quality.
sample of 100 instances across difficulty levels (approx-

imately 16 tasks per difficulty level) to ensure represen- Quality Metric Yes
tativeness across complexity. Our evaluation focused Feasibility and realism 91%
on the feasibility and realism of the overall task, the co- Subtask coherence 90%
herence and logical flow of subtasks, their relevance to Persona Relevance 94%
the assigned persona, and the accuracy of the verifier’s Verifier Accuracy 88%

assessment of the agent’s trajectory. Specifically, human
annotators are instructed to assess:

* Feasibility and realism: Could a real human user plausibly complete this task using standard
software tools?

» Subtask coherence: Does each subtask logically follow from the previous subtasks, maintaining
clear and meaningful workflow progression?

* Persona relevance: Is the task aligned meaningfully with the persona provided to guide task
creation?

* Verifier accuracy: Does the automated verifier’s binary assessment (task success or failure) align
correctly with human judgment?

As shown in Table 1, all quality metrics exceed 85%, highlighting the consistency, realism, and
reliability of the data produced by the AgentSynth pipeline. On verifier accuracy, the evaluators who
independently evaluated the random sample also had an inter-rater agreement of 0.74 (Cohen’s kappa).
We note that prior findings [Lu et al., 2025] indicate potential limitations of LLM-based verification,
and our high manual-validation rate suggests our engineered verification pipeline, including selective
screenshot sampling, visual context filtering, and task requirement extraction, improves verifier
reliability compared to simpler methods.

4.2 Case Study

To illustrate the quality and realism of tasks generated by the AgentSynth pipeline, we present a
representative example. Additional examples can be found in Appendix B.

First, a persona is sampled from the persona hub [Ge et al., 2024]:

[Persona: a senior student at Kentucky Wesleyan College.]

Then, the task proposer generated an initial task tailored to this persona:

[Initial task: Search for the ’Kentucky Wesleyan College 2024 academic calendar’ in Google Chrome.]

Next, this initial task was successfully executed, and five follow-up tasks were iteratively generated
and completed:

()
* Follow-up Task 1 Find the Kentucky Wesleyan College 2024 commencement (graduation) date on
the academic calendar currently open in Chrome

* Follow-up Task 2 Open the Calendar application after searching for graduation-related dates on an
academic calendar website.

* Follow-up Task 3 Scroll backwards month-by-month in the calendar application from March 2025 to
June 2024 using the month view.

* Follow-up Task 4 Create a new calendar event on Kentucky Wesleyan College’s 2024 commencement
titled *Graduation Day’ and add a note: ’Remember to bring gown and arrive 1 hour early.

* Follow-up Task 5 Add a notification/reminder to the ’Graduation Day’ event on May 3, 2024 in the
Calendar app to alert you 1 day before.

Each of these subtasks is simple and logically follows from the previous one. The task summarizer
composes them into coherent, high-level tasks. We define task difficulty level n as the summary of the
first n subtasks, resulting in increasingly complex and realistic scenarios. These summarized tasks
are then used for evaluation and benchmarking. The list below shows the final task descriptions at six
difficulty levels, with italicized text indicating the incremental complexity introduced at each level:

(N\
* Task Difficulty Level 1 (same as the initial task): Search for the *Kentucky Wesleyan College 2024
academic calendar’ in Google Chrome.

 Task Difficulty Level 2: Find and report the date and time of the Kentucky Wesleyan College 2024
commencement ceremony by searching for the 2024 academic calendar online, locating the official
calendar, and identifying the commencement event listed there.

 Task Difficulty Level 3: Search for the ’Kentucky Wesleyan College 2024 academic calendar’ in
Google Chrome, find the 2024 commencement date, and then open the Calendar application to view
or record the commencement date.

 Task Difficulty Level 4: Find the Kentucky Wesleyan College 2024 commencement date using
Google Chrome, then open the Calendar application and scroll back in month view from March 2025
to June 2024 in preparation for viewing or adding the graduation date to the calendar.

« Task Difficulty Level 5: Find the Kentucky Wesleyan College 2024 commencement date by searching
online (using the academic calendar), and create a new event titled 'Graduation Day’ in your digital
Calendar application, adding a note that says 'Remember to bring gown and arrive 1 hour early’.

* Task Difficulty Level 6: Find the Kentucky Wesleyan College 2024 commencement date by searching
the 2024 academic calendar online, then create a calendar event titled ’Graduation Day’ in the Calendar
application with a note saying ’'Remember to bring gown and arrive 1 hour early,” and set a reminder
to alert you one day before the event.
G J

As the task level increases, both task length and complexity grow accordingly. Each additional subtask
introduces new actions, tools, or planning steps. Figure 2a shows the average token count across task
levels, confirming that longer task compositions correspond to more elaborate task descriptions and
execution requirements.

We note that our notion of task difficulty corresponds primarily to task horizon and the compositional
complexity of multiple subtasks. However, we acknowledge that a task considered hard under this
criterion may reflect both intrinsic complexity and lack of familiarity to agents trained primarily
on shorter or simpler tasks. Intrinsic complexity, such as the cognitive load required to manage
multi-application workflows, maintain intermediate states, and recover from errors, often increases
with task horizon, but shorter tasks may also be intrinsically challenging if they involve nuanced
visual perception, context-dependent decisions, or unfamiliar interfaces. Future analyses could
systematically separate intrinsic task complexity from novelty or lack of exposure.

4.3 Comparison to Other Datasets and Benchmarks

We designed the AgentSynth pipeline with a focus on generating diverse, realistic, and challenging
data for training and evaluating computer-use agents. Table 3 compares our dataset to several existing
agent benchmarks, highlighting key advantages in diversity, complexity, and scalability.

Diverse Real-World Tasks. AgentSynth spans a broad range of software applications and domains,
including office productivity, information retrieval, entertainment, coding, and research. This breadth
ensures rich task diversity and supports generalization across practical, everyday scenarios. The
pipeline leverages versatile environments that require agents to fluidly interact with multiple software
tools within a single task. Figure 3 shows the coverage across domains and tools, illustrating the
dataset’s alignment with real-world complexity.

Importantly, our pipeline encourages multi-tool usage through chained subtasks. As shown in
Figure 2c, over 60% of trajectories involve two or more software applications, and more than 40%
involve three or more, demonstrating the inherent compositionality of AgentSynth tasks.

= 6 40

S 100 _ .

38 8° &30

s 75 o4 o

~ [[=2]

] &3 220

P 50 I <

[[J] [}

g 52 510

= jo

g 25 g, 3

< 0 0 0

1 2 3 4 5 6 0 10 20 30 40 50 60 1 2 3 4 5 6 7
Task Difficulty Level Number of Steps Number of Software
(@ (b) ©

Figure 2: AgentSynth dataset statistics. (a) Average token count by task difficulty. (b) Distribution of
the number of steps at task difficulty level 6. (c) Distribution of the number of software applications
for each task at difficulty level 6.

Information
2 Presentation Spreadsheet

K3 8.1% 8.7% General
%, 12.5%

Education
11.0%

Entertainment Service

Music Movie General

2.9% 2.4% 3.0%
Sports Health Housing ° ° °

30% 22% 19% Gt Health

Chrome
31.8%

Sports Game b
ol Ny o 23% 19%
SF Social ‘;;‘;/n i‘;ﬁ;‘:‘"g Event Gemerm Pet Home
R o 2.9% 22% 1.4% 1.4% 1.3%
i Weather Music ¢
AN Finance 15% 13% PPIE
: 24% Bvent e Spectlly G Digial e
- 1.4%
(a) Distribution of software involved. (b) Distribution of task topics.

Figure 3: Data composition for AgentSynth. Its diverse topics and software involved demonstrate the
potential to train generatlist computer-use agents.

Long-Horizon Trajectories: Real-world tasks often require extended sequences of actions involving
planning, memory, and interface coordination. AgentSynth explicitly supports such long-horizon
tasks by composing them from interdependent subtasks. As shown in Figure 2b, tasks at difficulty
level 6 typically require 40-60 steps, exceeding the trajectory lengths of existing benchmarks. These
tasks challenge agents to maintain context, manage interleaved goals, and execute multi-step plans,
closely reflecting the demands of real-world computer use.

4.4 Cost Analysis

Beyond diversity and high quality, our data generation pipeline is also highly scalable and cost-
efficient. Our approach achieves a cost of $0.6 per trajectory with 5 follow-up subtasks. This is
comparable with recent methods such as AgentTrek [Xu et al., 2025b] ($0.55 per trajectory), Explorer
[Pahuja et al., 2025] ($0.28 per trajectory), and InSTA [Trabucco et al., 2025] ($0.27 per trajectory).
Furthermore, our method is much cheaper than human annotations for complex tasks with long
trajectories. Table 2 shows the cost of several datasets from human annotations, where we assume the
labor rate is in the range of $2 - $25 per hour. The detailed calculation of our cost and human labor
hours is shown in Appendix C.

5 Results and Discussion
5.1 Evaluation Setup

To assess the general-purpose computer-use capabilities of current language models, we evaluated
several state-of-the-art multimodal agents with visual understanding. At each interaction step, the

2We use “multi-domain” to indicate coverage across different types of software environments (e.g., OS tools,
native applications, web interfaces), rather than just topic categories within a single interface modality like
websites. While WebArena and Mind2Web span many topics, their environments are restricted to web browsers.

3Scalable” indicates that the dataset can be expanded via automated or synthetic pipelines without requiring
additional manual annotation.

Table 2: Comparison of the cost of AgentSynth versus human annotations.

Framework \ Typical Steps Human Hours per Task Cost per Task
T-bench [Yao et al., 2024] 20 - 30 2 $4 - $50
OSWorld [Xie et al., 2024] 10-15 44 $8.8 - $110
TheAgentCompany [Xu et al., 2024] 30-40 17 $34 - $425
AgentSynth | 40 - 60 NA $0.6

Table 3: Comparison of AgentSynth to some existing LLLM agent datasets and benchmarks.

Framework ‘ Multi-domain’ Domain Categories Scalable®* Long Horizon
Mind2Web [Deng et al., 2023] X Web X X
Online-Mind2Web [Xue et al., 2025] X Web X X
WebArena [Zhou et al., 2024] X Web X X
VisualWebArena [Koh et al., 2024] X ‘Web X X
INSTA [Trabucco et al., 2025] X Web X
AgentTrek [Xu et al., 2025b] X Web X
Explorer [Pahuja et al., 2025] X Web
SWE-bench [Jimenez et al., 2024] X Coding X X
WorkArena [Drouin et al., 2024] Enterprise Software X
OSWorld [Xie et al., 2024] OS, Web, Office, Coding X X
WindowsAgentArena [Bonatti et al., 2024] 0OS, Web, Office, Coding X X
T-bench [Yao et al., 2024] Retail, Airline X
SWE, HR, Admin, PM,
TheAgentCompany [Xu et al., 2024] Research, X
Web, OS, Office, Coding,
AgentSynth Research

model receives a prompt containing the task description, the current desktop screenshot, and its own
previous thoughts. The model is then asked to generate executable Python code using the pyautogui
library to perform the next action. We sampled 50 tasks from each difficulty level for agent evaluation.
Additionally, to benchmark human performance, we evaluated 20 tasks sampled from difficulty level
6, the most challenging tier in AgentSynth.

To isolate the role of the underlying language model and focus on the task difficulty itself, we use
bare LL.Ms without fine-tuning or additional agent-specific scaffolding. Each model is prompted
to generate pyautogui actions step-by-step based on the screenshot, task description, and action
histories. This setup reflects a lower bound on performance and is intended to benchmark agents
under minimal guidance rather than deploy optimized, production-grade agents. Prompts used for
evaluation are detailed in Appendix A.10. Task completion is assessed using the automatic verifier
agent introduced in section 3, which analyzes the full trajectory and determines whether the task was
successfully completed.

5.2 Results

The top panel of Figure 4 shows the success rates of four state-of-the-art language models on the
AgentSynth benchmark across task difficulty levels 1 through 6. Despite having visual capabilities
and strong general reasoning skills, all models exhibit poor performance on our benchmark, especially
as task complexity increases. In contrast, humans achieve a 70% success rate even on the most
difficult tasks, underscoring the performance gap. Key observations include:

Sharp Decline with Difficulty. All models show a consistent and steep drop in success rate as task
difficulty increases. For example, o4-mini achieves 18% success on level 1 but drops to 4% by levels
5 and 6. GPT-4.1 fails to complete tasks beyond level 3. This highlights the significant challenge
in realistic GUI environments and demonstrates the increasing challenge posed by longer-horizon,
multi-step tasks in AgentSynth.

Model Comparison. o4-mini consistently outperforms other models, achieving the highest success
rates at every level, particularly on easier tasks. Claude-3.7 performs second-best overall, with stable
success rates across levels 2—6, suggesting more robustness under increasing difficulty. GPT-4.1
and Gemini-2.5-pro perform comparably at level 1, but their success drops to near-zero by level 4,
indicating limited ability to generalize in long sequences of interactions.

o 04-mini Gemini-2.5-pro

0.151 ola ' ola GPT-4.1 Claude-3.7-Sonnet
O } :
z
- 0.10 0.10
%0.10
8 0.08
Q
@ 0.06 0.06 0.06

0.051 0.04 0.04 0.04 0.04 004 0.04

0.02 0.02 0.02
0.00 0.0 00 0.0 0.0 00
' 1 2 3 4 5 6

Task Difficulty Level
Figure 4: Model performance across task difficulty levels.

Near-Zero Success on Hard Tasks. At levels 4 and 6, only 04-mini and Claude-3.7 achieve non-zero
scores, and even then, the success rate is only around 4%. This indicates that current models are
far from achieving generalizable competence in realistic multi-step computer tasks, showcasing the
difficulty and discriminative power of our benchmark. The results highlight the need for models that
can handle long-term dependencies, maintain state, and ground their decisions in visual observations
over extended sequences.

5.3 Common Agent Failure Modes

Despite the promising capabilities of LLM agents, their performance on the AgentSynth benchmark
remains low, with most tasks ending in failure. We identify several recurring failure modes that
highlight key limitations and suggest directions for future improvement:

Inaccurate Mouse Clicks. A frequent failure involves imprecise mouse click coordinates. While the
agent often identifies the correct Ul element conceptually (e.g., the "Save" button or a browser tab), it
fails to locate it precisely on screen. This results in misclicks, unintended interactions (e.g., clicking
ads or wrong icons), and cascading errors, such as obscuring or losing focus on the target window.
Moreover, agents often repeat the same incorrect click multiple times without adapting.

Poor Screenshot Understanding and State Tracking. Agents frequently fail to properly interpret
the visual information in screenshots. They may misidentify popups, ads, or irrelevant overlays as
part of the main task UI. Other papers benchmarking LL.M agents have also found problems with
perceptual grounding [Xie et al., 2024, Koh et al., 2024]. This weak perceptual grounding results
in repetitive or irrational actions: for example, repeatedly trying to save a file that has already been
saved. Moreover, agents often lose track of what has already been done, lacking persistent memory
or state awareness.

Lack of Recovery from Errors: Once an agent becomes stuck, it struggles to recover. Rather than
exploring alternative actions or reasoning about potential mistakes, the agent tends to repeat the
same failed behavior. This lack of introspection and self-correction severely limits task completion,
especially for multi-step tasks requiring contingency handling. This is a common error found with
complex, long-horizon across many domains in the literature, from computer-use to general remote
tasks [Xu et al., 2024, Drouin et al., 2024] to math and reasoning questions [Huang et al., 2024]
among others.

6 Conclusion

In this work, we introduce AgentSynth, a scalable pipeline for synthesizing diverse, high-quality
datasets of computer-use tasks and trajectories. By leveraging information asymmetry and LLM-
based agents, our method decomposes complex tasks into solvable subtasks, enabling fine-grained
control over difficulty and long-horizon planning. The resulting benchmark reveals performance
gaps in state-of-the-art models, with success rates dropping sharply as task complexity increases,
highlighting both the challenging and discriminative power of our dataset. Notably, AgentSynth can
continuously and flexibly generate harder tasks, ensuring long-term benchmarking utility.

References

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin
Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: Towards
compositional planning and reasoning-based common knowledge work tasks. Advances in Neural
Information Processing Systems, 37:5996-6051, 2024.

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier De Chezelles,
Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++:
Towards compositional planning and reasoning-based common knowledge work tasks, 2025. URL
https://arxiv.org/abs/2407.05291.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/2409.
08264.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.org/
abs/2306.06070.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration,
2025. URL https://arxiv.org/abs/2506.03533.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
creation with 1,000,000,000 personas, 2024. URL https://arxiv.org/abs/2406.20094.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024. URL https://arxiv.org/abs/2401.
13649.

Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori Hashimoto.
Autobencher: Towards declarative benchmark construction, 2025. URL https://arxiv.org/
abs/2407.08351.

Haohan Lin, Zhiging Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking
and proving, 2025. URL https://arxiv.org/abs/2407.10040.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018. URL https://arxiv.org/
abs/1802.08802.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on synthetic
data, 2024. URL https://arxiv.org/abs/2404.07503.

10

https://arxiv.org/abs/2407.05291
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2506.03533
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2404.07503

Xing Han Lu, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejandra
Zambrano, Karolina Stanczak, Peter Shaw, Christopher J. Pal, and Siva Reddy. Agentrewardbench:
Evaluating automatic evaluations of web agent trajectories, 2025. URL https://arxiv.org/
abs/2504.08942.

Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux J., 2014(239), March 2014. ISSN 1075-3583.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised
learning of browser agents through environment interaction in the wild, 2025. URL https:
//arxiv.org/abs/2410.02907.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world. OpenAl Blog, 2025a. URL https://openai.com/index/computer-using-agent.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025b. Ac-
cessed: 2025-05-10.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409.15637.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents, 2025. URL https://arxiv.org/abs/2502.11357.

Richard Shin, Neel Kant, Kavi Gupta, Christopher Bender, Brandon Trabucco, Rishabh Singh, and
Dawn Song. Synthetic datasets for neural program synthesis, 2019. URL https://arxiv.org/
abs/1912.12345.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 2024.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O. Arik. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments, 2025. URL
https://arxiv.org/abs/2501.10893.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025. URL https://arxiv.org/abs/2412.19723.

Al Sweigart. Pyautogui: Cross-platform gui automation for human beings. https://pyautogui.
readthedocs.io/, 2025. Accessed: 2025-05-06.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards
internet-scale training for agents, 2025. URL https://arxiv.org/abs/2502.06776.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese,
Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/2404.07972.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex
instructions, 2025a. URL https://arxiv.org/abs/2304.12244.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking 1lm agents on consequential real world tasks, 2024.
URL https://arxiv.org/abs/2412.14161.

11

https://arxiv.org/abs/2504.08942
https://arxiv.org/abs/2504.08942
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907
https://openai.com/index/computer-using-agent
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/1912.12345
https://arxiv.org/abs/1912.12345
https://arxiv.org/abs/2501.10893
https://arxiv.org/abs/2412.19723
https://pyautogui.readthedocs.io/
https://pyautogui.readthedocs.io/
https://arxiv.org/abs/2502.06776
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2412.14161

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025b. URL
https://arxiv.org/abs/2412.09605.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL https:
//arxiv.org/abs/2504.01382.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023a. URL https://arxiv.org/
abs/2207.01206.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.org/
abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/2406.
12045.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun
Cho, Yuandong Tian, Jason E Weston, and Xian Li. Naturalreasoning: Reasoning in the wild with
2.8m challenging questions, 2025. URL https://arxiv.org/abs/2502.13124.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/2307.
13854.

12

https://arxiv.org/abs/2412.09605
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

A Prompt Details

The prompts for the task proposal agent, task execution agent, task verification agent, task revision
agent, follow-up task proposal agent, and task summarization agent are given in tables A.1 through
A9.

Table A.1: Prompt for Task Proposal Agent.

System Role What does this screen show? You are a real user on this computer. Please provide a
single task that the user might perform on this computer and the corresponding first
action towards completing that task. You can use any software in the computer and the
web. Be creative and come up with diverse tasks. The task should be simple enough
that can be finished in a few atomic actions. The task should be clear and very specific.

Task proposal rules:

1. The task should be specific and clear.

2. The task should be achievable within 5 atomic actions like clike, scroll, type, press,
etc.

3. The task should be relevant to the content of the webpage.

4. You should only propose tasks that do not require login to execute the task.

5. Provide concrete information or constraints to the task, and use mock-up information.
(identifier, number, personal information, name, attributes, etc.) to make the task more
specific and realistic.

7. The task description should provide all the necessary information to complete the task.

Output with JSON block:

{

"thoughts":"<Detailed Thoughts and Reasons. Think about if the rules are met, e.g. why
the task is related to the user character, why the task is simple enough to be finished in a
few actions, is the task clear and specific, etc.>",

"task":"<TASK>",

"action":"<ACTION>"

}

User Role You are {PERSONA }, what task would you perform on the computer?
{SCREENSHOT}

13

Table A.2: Prompt for Task Execution Agent (Planner).

System Role

You are a computer agent which perform desktop computer tasks as instructed. You
have good knowledge of computer and good internet connection and assume your will
controll the mouse and keyboard. For each step, you will be asked to finish a task, and
you will get a screenshot of the current computer screen. You also know the actions that
are already done towards the target. You need to provide the next action based on the
screenshot. If you have tried similar actions several times but haven’t success, analyze
the reason carefully and propose a different action. Try to think if you were wrong or
you missed any steps. If you think the task is finished, return "DONE" in the action field.

Rules:

1. First analyze the screeenshot carefully, pay attention to details in the screenshot.

2. Then analyze the previous thoughts and actions to make sure you are on the right
track.

3. Note: the previous actions may not be executed successfully, so you need to analyze
the screenshot carefully.

4. If you find you have tried similar actions several times but haven’t success, analyze
the reason carefully. Try to think if you were wrong or you missed any steps. Carefully
analyze the screenshot to find the reason of the failure and propose a different action.
5. If you think the task is finished, return "DONE" in the action field.

Output with JSON block:
{

"thoughts":"<Detailed Thoughts and Reasons>",
"action":"<ACTION>"

}

User Role

Given the task: {TASK}. You have gathered some information {INFO}. Here is your
previous thinking process to complete the task {THOUGHTS_HISTORY }. Here are
your previous actions tried { ACTION_HISTORY}. Here is the current screenshot.
What would be the next action?

{SCREENSHOT}

Table A.3: Prompt for Task Execution Agent (Visual Grounding).

System Role

You are a computer agent which perform desktop computer tasks as instructed. You
have good knowledge of computer and good internet connection, and assume you
control the mouse and keyboard. For each step, you will be asked to finish a task, and
you will get a screenshot of the current computer screen. You also know the actions that
are already done towards the target. You need to provide the next action based on the
screenshot.

Rules:

1. You have all the permissions to proceed, and you don’t need to ask for permission.
The safety checks are acknowledged, and you can always proceed.

2. If you have clicked the same item several times, you don’t need to click it again.

3. Do not click on ads.

4. If the computer is locked, type "password".

User Role

Given the task: {TASK}, you have done the following actions: { ACTION_HISTORY }.
You need to do the next step: {STEP}. What would be the action?
{SCREENSHOT}

14

Table A.4: Prompt for Follow-up Task Proposal Agent.

System Role

What does this screen show? You are a real user on this computer. Given the tasks the
user has done, please provide a single follow-up task that the user might perform on this
computer and the corresponding first action towards completing that task. You can use
any software on the computer and the web. Be creative and come up with diverse tasks.
The task should be simple enough that can be finished in a few atomic actions.

Task proposal rules:

1. The task should depend on the previous tasks.

2. The task should be achievable within 5 atomic actions like click, scroll, type, press,
etc.

4. The task should be relevant to the content of the previous tasks.

5. You should only propose tasks that do not require a login to execute the task.

6. Provide concrete information or constraints to the task, and use mock-up information
(identifier, number, personal information, name, attributes, etc.) to make the task more
specific and realistic.

7. The task description should provide all the necessary information to complete the
task.

8. Do not propose tasks including sending emails or sharing on social media.

Output with JSON block:

{

"thoughts":"<Detailed Thoughts and Reasons. Think about if the rules are met, e.g.
why the task is related to the user character and previous tasks, why the task is simple
enough to be finished in a few actions, is the task clear and specific, etc.>",
"task":"<TASK>",

"action":"<ACTION>"

}

User Role

You are {PERSONA}. Given the task history {TASK_HISTORY }, what would be a
follow-up task? Note that these tasks { FAILED_TASKS} are too hard for the agent,
propose a simpler one.

{SCREENSHOT}

Table A.5: Prompt for Task Verification Agent (Key Requirement Identification).

System Role

You are an expert tasked with analyzing a given task to identify the key points explicitly
stated in the task description. Carefully analyze the task description and extract the
critical elements explicitly mentioned in the task for achieving its goal.

Rules

1. Read the task description carefully.

2. Identify and extract key points directly stated in the task description.

3. A key point is a critical element, condition, or step explicitly mentioned in the task
description.

4. Do not infer or add any unstated elements.

Output with JSON block:
{

"thoughts":"<Your detailed thinking and reasoning process>",

non

"key_points":"<List of the key points for completing this task>"

}

User Role

Given the task {TASK}, what are the key points?

15

Table A.6: Prompt for Task Verification Agent (Key Screenshot Identification).

System Role You are an expert evaluator tasked with determining whether a screenshot contains
information about the necessary steps to complete a task. Analyze the provided image
and decide if it shows essential steps or evidence required for completing the task. Use
your reasoning to explain your decision.

Rules

1. Provide a detailed description of the screenshot, including its contents, visible
elements, text (if any), and any notable features.

2. Carefully examine the screenshot and evaluate whether it contains necessary steps or
evidence crucial to task completion.

3. Identify key points that could be relevant to task completion, such as actions, progress
indicators, tool usage, applied filters, or step-by-step instructions.

4. Does the screenshot show actions, progress indicators, or critical information directly
related to completing the task

5. Is this information indispensable for understanding or ensuring task success?

6. If the screenshot contains partial but relevant information, consider its usefulness
rather than dismissing it outright.

Output with JSON block:

{

"thoughts":"<Your detailed thinking and reasoning process>",

"necessary":"<True or False>"

}

User Role Given the task {TASK}, the key points to finish the task {KEY_POINTS}, and the
screenshot of an action, is this screenshot a necessary step to complete the task?
{SCREENSHOT}

Table A.7: Prompt for Task Verification Agent (Final Judgement).

System Role You are an expert in evaluating the performance of a computer-use agent. The agent is
designed to help a human user complete a computer-use task. Given the user’s task, the
agent’s action history, key points for task completion, and some important screenshots
in the agent’s trajectory, your goal is to determine whether the agent has completed the
task and achieved all requirements.

Rules

1. The filtered results must be displayed correctly. If filters were not properly applied
(i.e., missing selection, missing confirmation, or no visible effect in results), it should
be considered a failure.

2. You must carefully check whether these screenshots and action history meet these
key points. Ensure that specific requirements are correctly applied. 3. Some tasks
require a submission action or a display of results to be considered successful. Repeat
actions or actions that do not lead to a visible result should be considered a failure.

4. If the agent loops through a sequence of actions that do not make progress toward
the goal (including failing to click "Save" or "Submit," etc.), it should be considered a
failure.

Output with JSON block:
{

"thoughts":"<Your detailed thinking and reasoning process>",

"success":"<True or False>",

"success rate":"<Probability of success in unit of percentage, like 20, 50, 100, numbers
only>" }

User Role Given the task {TASK}, the key points to finish the task {KEY_POINTS}, and the
screenshots history, is the agent successful?
{LIST OF SCREENSHOTS}

16

Table A.8: Prompt for Task Revision Agent.

System Role Given a list of screenshots of actions performed on the computer, you are asked to come
up with a single task description that will be accomplished by performing these actions
in the given sequence. First analyze these actions and generate the task description.
Only summarize the completed actions, and ignore the actions that are not completed.
If there is no completed action or no meaningful task, return "NONE" in the task field.
Rules:

1. The task should be specific and clear.

2. The task description should provide all the necessary information to complete the
task.

3. The task should be feasible to complete by a real user and should not require any
additional information that is not specified in this input.

Output with JSON block:

{

"thoughts":"<Detailed Thoughts and Reasons>",

"task":"<TASK>"

}

User Role Given the set of screenshots of actions, what would be a single task description that will
be accomplished by performing these actions in the given sequence?"
{LIST OF SCREENSHOTS}

Table A.9: Prompt for Task Summarize Agent.

System Role Given a list of subtasks performed on the computer, you are asked to come up with a
single task description that will be accomplished by performing these subtasks in the
given sequence. First analyze these subtasks and generate the task description.

Rules:
1. The task should be specific and clear.
2. The task description should provide all the necessary information to complete the
task.
3. The task should be feasible to complete by a real user and should not require any
additional information that is not specified in this input.
4. The task should include all the numbers and information used in the subtasks.
Output with JSON block:
{
"thoughts":"<Detailed Thoughts and Reasons>",
"task":"<TASK>"
}
User Role Given the subtasks history { TASK_HISTORY} and the final screenshot, what would be

a single task description that will be accomplished by performing these subtasks in the
given sequence?
{SCREENSHOT}

17

Table A.10: Prompt for Evaluation Agent.

System Role You are an agent which follow my instructions and performs desktop computer
tasks as instructed. You have good knowledge of computers and a good internet
connection, and assume your code will run on a computer for controlling the mouse and
keyboard. For each step, you will get an observation of the desktop through a screenshot.
And you will predict the action of the computer based on the image and text information.
You are required to use ‘pyautogui to perform the action grounded to the observation.
You can use the following functions:
pyautogui.click(x, y, button);
pyautogui.doubleClick(x, y);
pyautogui.moveTo(X, y);
pyautogui.write(string);
pyautogui.dragTo(x, y);
pyautogui.scroll(amount);
pyautogui.press(key);
pyautogui.hotkey(keyl, key2, ...);
time.sleep(5)
Note that "pyautogui’ and ’time’ packages have already been imported. Return one
line or multiple lines of python code to perform the action each time, be time efficient.
When predicting multiple lines of code, make some small sleep like time.sleep(1). You
need to to specify the coordinates of by yourself based on your observation of current
observation, and you should be careful to ensure that the coordinates are correct.
If you think the task is finished, return "DONE" in the code field.
Output must be a valid JSON block with the following format:
{
"thoughts":"<Detailed Thoughts and Reasons>",
"code":"<Python code>"
}

User Role Given the task: {TASK}. Here are your previous thoughts {THOUGHTS_HISTORY }.

And here is the current screenshot. What would be the next action?
{SCREENSHOT}

18

B Example Tasks

We show a few example tasks generated by our AgentSynth pipeline.

Example 1

s

Tasks:

. iy

Persona: A climate-conscious teenager who confronts their parent about the negative envi-
ronmental impact of their investments

Subtasks:

Search for a recent article about the environmental impact of investing in fossil fuel
companies and open it to prepare for discussion with your parent.

Create and edit a new text file using Visual Studio Code.

Add a section to your text file in Visual Studio Code listing three alternative sustain-
able investment options (e.g., renewable energy funds, green bonds, or ESG index
funds) and a brief reason why each is better for the environment.

Add a relevant quote or statistic from the recent article about fossil fuel investments’
environmental impact to your text file in Visual Studio Code, citing the source.

Enter energy source categories (’Fossil Fuels’ and ’Renewables’) and their respective
values (200 and 20) into a LibreOffice Calc spreadsheet, then select this data to
initiate the creation of a pivot table.

Select a range of data in LibreOffice Calc and initiate the creation of a pivot table
using the selected data.

Search for a recent article about the environmental impact of investing in fossil fuel
companies and open it to prepare for discussion with your parent.

Search for a recent article about the environmental impact of investing in fossil fuel
companies, open it to gather information, and then create a new text file in Visual
Studio Code where you write or summarize the key points from the article to prepare
for a discussion with your parent.

Research and summarize a recent article about the environmental impact of investing
in fossil fuel companies, then use Visual Studio Code to create a new text file. In this
file, document the summary and add a section listing three alternative sustainable
investment options (e.g., renewable energy funds, green bonds, ESG index funds),
including a brief explanation for each on why it is better for the environment, to
prepare for a discussion with your parent.

Research a recent article about the environmental impact of investing in fossil fuel
companies, then create a new text file in Visual Studio Code. In the file, summarize
the article by including a relevant quote or statistic (with proper citation), and list
three alternative sustainable investment options, renewable energy funds, green
bonds, and ESG index funds, each with a brief explanation of their environmental
benefits, to prepare for a discussion with your parent.

Prepare for a discussion about the environmental impact of investing in fossil fuel
companies by (1) finding and reviewing a recent article on the topic, (2) creating a
text file in Visual Studio Code summarizing three alternative sustainable investment
options (such as renewable energy funds, green bonds, or ESG index funds) and
explaining why each is better for the environment, (3) adding a relevant quote or
statistic from the article to the text file with a citation, and (4) entering the energy
source categories 'Fossil Fuels’ (value 200) and Renewables’ (value 20) into a
LibreOffice Calc spreadsheet, then selecting this data to initiate the creation of a
pivot table for comparison.

Research a recent article about the environmental impact of investing in fossil fuel
companies and open it. Use the information to prepare a text file in Visual Studio
Code that includes: (1) three alternative sustainable investment options (such as

19

~

-

renewable energy funds, green bonds, or ESG index funds) and a brief reason each
is better for the environment, and (2) a relevant quote or statistic from the article
about fossil fuel investments. Then, in LibreOffice Calc, enter the values for two
energy source categories: 'Fossil Fuels’ (200) and Renewables’ (20), select this
data, and initiate the creation of a pivot table to compare them for a discussion with
your parent

Research a recent article about the environmental impact of investing in fossil fuel
companies and open it. Use the information to prepare a text file in Visual Studio
Code that includes: (1) three alternative sustainable investment options (such as
renewable energy funds, green bonds, or ESG index funds) and a brief reason each
is better for the environment, and (2) a relevant quote or statistic from the article
about fossil fuel investments. Then, in LibreOffice Calc, enter the values for two
energy source categories: 'Fossil Fuels’ (200) and Renewables’ (20), select this
data, and initiate the creation of a pivot table to compare them for a discussion with
your parent

P

Example 2

Persona: A mentor who guides the student in exploring more advanced concepts and experi-

ments

Subtasks:

Tasks:

Create a new Python file named "experimentl.py’ using VS Code to start an advanced
programming experiment.

Install the recommended *Python’ extension for Visual Studio Code to enable ad-
vanced Python features for your experiment.

Write a simple print statement (e.g., print(’ Advanced experiment ready!’)) in ’exper-
imentl.py’ and run the file in VS Code to confirm successful Python setup.

Create and run a Python script (Cexperimentl.py’) in Visual Studio Code that first
prints *Advanced experiment ready!’, then edit the script to define and call a function
*greet()’ that prints *Welcome to advanced Python!’, and run the updated script to
confirm the new output.

Create and test a Python function named personal_greet that takes a name as an
argument and returns *Hello, name! Welcome to advanced Python!’, then call it with
the name ’Alice’ and print the result.

Edit a Python script to prompt the user for their name and print a personalized
greeting using a function called personal_greet.

Create a new Python file named "experiment1.py’ using VS Code to start an advanced
programming experiment.

Set up an advanced Python programming environment in Visual Studio Code by
creating a new Python file named ’experiment].py’ and installing the recommended
’Python’ extension for VS Code to enable advanced Python features.

Set up an advanced Python programming environment in Visual Studio Code by
creating a new file named ’experiment].py’, installing the recommended ’Python’
extension for VS Code, writing the code print(’ Advanced experiment ready!’) in
“experiment1.py’, and running the file in VS Code to confirm the Python environment
is correctly configured.

Set up Visual Studio Code for advanced Python development on your system by
creating a new Python file named ’experimentl.py’, installing the recommended
"Python’ extension for VS Code, and confirming your environment by first adding a
print statement (print(’ Advanced experiment ready!’)) and running the file. Then,
modify ’experimentl.py’ to define and call a function named ’greet()’ that prints

20

"Welcome to advanced Python!’, and run the script again to verify it outputs the new
message as expected.

Set up a Python development environment in Visual Studio Code by creating a new
file named ’experimentl.py’, installing the recommended Python extension, and
verifying the Python setup by writing and running a script that: first, prints ’Advanced
experiment ready!’; next, defines and calls a function "greet()’ that prints *Welcome
to advanced Python!’; and finally, defines and tests a function ’personal_greet’ that
takes a name argument and returns a personalized greeting *Hello, name! Welcome
to advanced Python!’, calling it with *Alice’ and printing the result.

Set up Visual Studio Code for advanced Python programming by installing the
recommended 'Python’ extension. Create a new Python file named ’experiment1.py’.
In this file, first write and run a simple print statement (such as print(’ Advanced
experiment ready!’)) to confirm Python is working. Next, enhance the script by
defining a function ’greet()’ that prints "Welcome to advanced Python!” and run
it. Then, define a function "personal_greet’ that takes a name argument and returns
a personalized message: "Hello, name! Welcome to advanced Python!’. Call this
function with the argument ’Alice’ and print the output to test it. Finally, edit the
script so that it prompts the user to enter their name and prints a personalized greeting
using the ’personal_greet’ function. Run the script after each change to verify correct
output.

-
- Example 3

Persona: A whistleblower who anonymously provides crucial information about the art
dealer’s illegal operations

Subtasks:

Tasks:

Open the web browser and navigate to the SecureDrop homepage to review the
instructions for submitting anonymous tips about the art dealer’s illegal operations.

Open a text editor and draft an anonymous tip detailing the art dealer’s illegal
activities, including evidence (e.g., *Art Dealer John Smith is selling forged artworks
under the alias ArtHouseX. Key transaction dated 2023-09-12 with buyer code 9743.
See attached invoice scan.”). Save the file as ’Anonymous_Tip_ArtDealer.txt’ in the
Documents folder.

Create an invoice slide in LibreOffice Impress with the following details: Title
"Invoice’, Date: 2023-09-12, Buyer Code: 9743, Seller: John Smith (Alias: ArtHou-
seX), Description: Forged artwork, Total: $12,000.

Export the invoice slide as a PDF file named ’Invoice_ArtDealer_20230912.pdf’ in
the Documents folder for submission as evidence.

Create and save an anonymous tip text file " Anonymous_Tip_ArtDealer.txt’) sum-
marizing and reporting the details of a forged artwork transaction documented on an
invoice, including the seller’s alias, transaction date, buyer code, and a reference to
the attached invoice scan.

Write an anonymous tip about an art dealer selling forged artworks in a text file
named ’Anonymous_Tip_ArtDealer.txt’.

Open the web browser and navigate to the SecureDrop homepage to review the
instructions for submitting anonymous tips about the art dealer’s illegal operations.

Review the SecureDrop homepage for instructions on anonymously submit-
ting tips, then draft and save an anonymous tip in a text file named ’Anony-
mous_Tip_ArtDealer.txt’ in the Documents folder. The tip should state: *Art Dealer
John Smith is selling forged artworks under the alias ArtHouseX. Key transaction
dated 2023-09-12 with buyer code 9743. See attached invoice scan.

21

* Prepare and save an anonymous tip about art dealer John Smith’s illegal activities
for submission via SecureDrop by (1) reviewing SecureDrop instructions online, (2)
drafting and saving a detailed anonymous tip as *Anonymous_Tip_ArtDealer.txt’
in the Documents folder, including evidence that John Smith (alias: ArtHouseX)
sold forged artwork on 2023-09-12 to buyer code 9743 for $12,000, and referencing
an attached invoice, and (3) creating and saving an invoice slide in LibreOffice
Impress with the following details: Title *Invoice’, Date: 2023-09-12, Buyer Code:
9743, Seller: John Smith (Alias: ArtHouseX), Description: Forged artwork, Total:
$12,000.

* Prepare an anonymous tip about illegal forged artwork sales by art dealer John
Smith (alias: ArtHouseX), including supporting evidence. Draft an anonymous
tip in a text editor stating that *Art Dealer John Smith is selling forged artworks
under the alias ArtHouseX. Key transaction dated 2023-09-12 with buyer code 9743.
See attached invoice scan.” Save this draft as ’Anonymous_Tip_ArtDealer.txt’” in
your Documents folder. In LibreOffice Impress, create an invoice slide with the
title *Invoice’, date *2023-09-12°, buyer code *9743’, seller *John Smith (Alias:
ArtHouseX)’, description "Forged artwork’, and total *$12,000”. Export this slide as
"Invoice_ArtDealer_20230912.pdf’ to the Documents folder. These two files will be
prepared for anonymous submission via SecureDrop after reviewing the SecureDrop
submission instructions.

* Prepare and save a complete anonymous report for submission to SecureDrop about
art dealer John Smith’s illegal sale of forged artworks (alias: ArtHouseX), including
drafting an anonymous tip file (" Anonymous_Tip_ArtDealer.txt’) outlining the activi-
ties and transaction (dated 2023-09-12, buyer code 9743, total $12,000), and creating
an invoice as corroborating evidence (slide in LibreOffice Impress with these details)
exported as "Invoice_ArtDealer_20230912.pdf’, both saved in the Documents folder,
in accordance with the reviewed SecureDrop submission instructions.

* Prepare and save two files in the Documents folder to submit an anonymous tip
about art dealer John Smith (alias ArtHouseX) selling forged artworks: (1) a text
file named *Anonymous_Tip_ArtDealer.txt’ that details the illegal transaction (dated
2023-09-12, buyer code 9743, evidence reference to attached invoice scan), and (2) a
PDF export of an invoice slide (created in LibreOffice Impress) titled *Invoice’, with
the same transaction details (seller: John Smith (ArtHouseX), description: forged
artwork, total: $12,000), saved as ’Invoice_ArtDealer_20230912.pdf’, ready for

9 anonymous submission via SecureDrop.)

C Cost Analysis

In this section, we analyze the cost of AgentSynth and compare it to the labor costs of several
human-curated agent datasets. Since many of these datasets are created by graduate students, a labor
rate of $25 USD per hour is a reasonable baseline. However, labor rates vary widely across regions
and can be as low as $2 per hour in some low-income countries. To account for this variability, we
estimate costs using a range of $2-$25 per hour.

7-bench [Yao et al., 2024] includes tasks with up to 30 steps, but the authors did not provide a
detailed breakdown of the human labor involved in the data curation process. The dataset construction
comprises three stages: (1) manual design of the database, (2) automatic data generation, and (3)
manual task annotation. Labor costs for the first two stages are not disclosed. For the third stage, the
authors reported manual inspection of over 40 trials per task. Assuming an average of 3 minutes per
trial, this implies approximately 2 hours of labor per task. At the estimated labor rate of $2-$25/hour,
the cost per task is around $4 - $50. This should be considered a lower-bound estimate, as it does not
include the potentially substantial cost of database and API design.

OSWorld [Xie et al., 2024] limits each task to a maximum of 15 steps and provides clear reporting
on human labor. The dataset was created by 9 computer science students over approximately 1,800
person-hours, resulting in 412 tasks. This averages to about 4.4 hours per task, or $8.8 - $110 per
task, assuming a labor rate of $2-$25/hour.

22

TheAgentCompany [Xu et al., 2024] reports a total of 3,000 person-hours for the creation of 175
tasks. This equates to roughly 17.1 hours of labor per task, yielding a cost of approximately $34 -
$425 per task, assuming a labor rate of $2-$25/hour.

AgentSynth. We use GPT-4.1 ($2 per million tokens) for most agents in the pipeline, the computer-
use-preview model ($3 per million tokens) for visual grounding, and GPT-4.1-mini ($0.40 per million
tokens) for the verifier to reduce costs. A full-resolution screenshot (1920 x 1080) typically consumes
around 1k tokens for GPT-4.1 and 2k tokens for the computer-use-preview model. For verification,
we downsample screenshots to 960 x 540, which results in approximately 1k tokens per image for
GPT-4.1-mini. Each execution step costs roughly $0.011, and a typical trajectory consists of 50 steps
across 6 subtasks. This results in an average total cost of approximately $0.60 per trajectory. Since
we can generate 6 tasks from the 6 subtasks, each task is only $0.1.

D Applying AgentSynth Pipeline for Web Agent

60
gpt-4.1

» (%]
o o
[emm—

N
o

Success Rate (%)
w
o

=
o

|

0 Baseline Summarized Task 1 Task 2 Task 3 Task 4

Figure D.1: Comparison of model performance at different task levels for the web agent built in the
InSTA environment. 2-sigma error bars are included.

To highlight the generality of our pipeline, we also apply it to a web agent environment (InSTA
[Trabucco et al., 2025]). This section describes results for our test dataset of 194 tasks in 61 task
sequences from InSTA, which converts webpages into text outlines with interactable elements
annotated with numerical IDs. The agent can choose from a set list of actions like clicking, filling out
text fields, and going to websites, on any of the interactable elements.* A Playwright server hosted
on Docker [Merkel, 2014] is then used to access the Internet and send GET and POST requests. At
least 20GB is needed for the InSTA Docker image, and ideally more for storing Playwright calls; on
an E2 Google Cloud Compute VM with 8 vCPUs, generating five task sequences using two workers
takes somewhere from 60-90 minutes.

In InSTA, as shown in Figure D.1, similar drop-offs in task difficulty occur as in Figure 2a. Sum-
marized tasks are substantially more difficult than the baseline existing tasks in the InSTA dataset
[Trabucco et al., 2025], from 40% and 12% for gpt-4.1 and o4-mini respectively to 12.9% and 6.45%.
Furthermore, as shown in Figure D.2, InSTA summarized tasks also grow in description length as the
number of tasks included increases.

“Since websites are less general-purpose than applications, most personas are not relevant to a given website,
so personas are not used for InSTA task generation.

23

140

120

100

80

60

40

Average Token Number

20

1 2 4 5 6+

3
Task Difficulty Level

Figure D.2: Average token count for different task levels in InSTA. The tasks become more complex
as the number of subtasks increases.

Table D.1: Prompt for Task Proposer Agent for InSTA.

System Role What does this screen show? Imagine you are a real user on this webpage. Given the
webpage link, please provide a single task that a user might perform on this website and
the corresponding first action towards completing that task. You can use any software in
the computer and the web. Be creative and come up with diverse tasks. The task should
be simple enough that can be finished in a few steps. You should propose tasks that are
clear and specific.

Task proposal rules:

1. The website should be explicitly mentioned in the task description.

2. The task should be specific, clear, and easily evaluated, not open-ended.

3. The task should be achievable within 1-3 steps.

4. The task should be relevant to the content of the webpage.

5. You should only propose tasks that do not require login to execute the task.

6. Generally try to avoid tasks that require sending emails, submitting forms, login, or
other forms of communication.

7. Provide concrete information or constraints to the task, and use mock-up information
(identifier, number, personal information, name, attributes, etc.) to make the task more
specific and realistic.

8. The task description should provide all the necessary information to complete the
task.

9. Do not propose tasks that are not possible in the Playwright API, such as downloading
reports or opening and interacting with files.

Output with JSON block:
M {"task":"<TASK>", "action":"<ACTION>"}"*

User Role Given the website: {website} and webpage layout { webpage_text}, please propose a
task.

24

Table D.2: Prompt for Follow-up Task Proposer Agent for InSTA.

System Role What does this screen show? Imagine you are a real user on this webpage. Given the
website link, and the tasks the user has done, please provide a single followup task
that a user might perform on this website and the corresponding first action towards
completing that task. You can use any software in the computer and the web. Be creative
and come up with diverse tasks. The task should be simple enough that can be finished
in a few steps.
Task proposal rules:
1. The website should be explicitly mentioned in the task description.
2. The task should depend on the previous tasks.
3. The task should be specific, clear, and easily evaluated, not open-ended.
4. The task should be achievable within 1-3 steps.
5. The task should be relevant to the content of the webpage.
6. You should only propose tasks that do not require login to execute the task.
7. Provide concrete information or constraints to the task, and use mock-up information
(identifier, number, personal information, name, attributes, etc.) to make the task more
specific and realistic.
8. The task description should provide all the necessary information to complete the
task.
9. The task should be relevant to the overall task listed in the user prompt, if applicable.
If the overall task is achievable within a few steps, you can simply propose the overall
task as the followup task. If the overall task is already achieved, you can propose an
extension of the overall task.
10. Do not propose tasks that are not possible in the Playwright API, such as download-
ing reports or opening and interacting with files.
11. Try to avoid tasks that require sending emails, submitting forms, login, or other
forms of communication.
12. Avoid tasks that modify the backend state of the website.
Output with JSON block: ™" {"task":"<TASK>", "action":"<ACTION>"}""

User Role Given the website: {website}, webpage layout: {webpage_text} and task history:

{task_history}, please propose a followup task. [If given: “Overall task: {over-
all_task}."]

25

E OSWorld Action Space

Table E.1: Action space for the computer-use agent. The percentage indicates the relative frequency
of each action type in the full AgentSynth dataset.

Action Type Description Percentage
click [z, y, button] Click at position (x, y) with button of left or right. 59.1%
write [text] Type text. 12.1%
press [key] Press a single key. 8.2%
scroll [amount] Scroll up or down for amount. 5.4%
move [, y] Move the mouse to position (z, y). 5.3%
drag [z1, y1, x2, y2] Drag from (z1, y1) to (x2, y2). 4.6%
hotkey [list of keys] Press several keys at the same time 3.0%
double-click [z, y] Double click at position (z, y). 1.5%
wait Wait 5 seconds 0.8%

F Broader Impacts

The data synthesis pipeline proposed in this work is designed exclusively for academic research
on GUI-based computer-use agents. We hope this work increases our ability to benchmark and
train LLM agents on computer-use tasks, which would allow the broader community to understand
and enhance LLM agent development. We acknowledge that enhancing LLM computer-use agent
development can have both positive and negative economic and societal effects.

To ensure ethical integrity and mitigate potential risks, we explicitly prompt our proposer agents
to avoid any tasks involving login credentials or real personal information, or sending forms that
change the backend of any website (emails, transactions, etc). Additionally, we introduce time delays
between each action to prevent excessive requests and reduce potential load on external websites,
thereby minimizing any unintended impact on online services. Finally, only secure applications and
websites are visited so that users of our dataset do not run into malware or other security issues.
We also recognize that our method could be used to improve LLMs’ abilities in harmful tasks like
cyberattacks.

G Acknowledgments

Funding for the compute used in this paper was provided by the sponsors for Dawn Song’s research
group at UC Berkeley.

26

	Introduction
	Related Work
	Scalable Agent Tasks and Trajectories Generation
	Dataset Analysis
	Quality
	Case Study
	Comparison to Other Datasets and Benchmarks
	Cost Analysis

	Results and Discussion
	Evaluation Setup
	Results
	Common Agent Failure Modes

	Conclusion
	Prompt Details
	Example Tasks
	Cost Analysis
	Applying AgentSynth Pipeline for Web Agent
	OSWorld Action Space
	Broader Impacts
	Acknowledgments

