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Abstract

Conversational agents like Siri, Alexa and Chat-
GPT have gained immense popularity due to
their ability to comprehend the type of informa-
tion being conveyed by the user and generate
appropriate responses based on context. This
task is known as Dialog Act Classification. In
this paper, we propose a hierarchical encod-
ing strategy to tackle this problem. We use
a BERT model to encode each utterance of a
dialog, then, a BILSTM encodes the encoded
utterances from a same dialog. Since we en-
code at the utterance-level then at the dialog
level, our model has a well-understanding of
the context of a sentence to classify it. We con-
ducted our experiments on the dyda_da dataset
from the SILICONE benchmark developed by
HuggingFace, which contains everyday com-
munication styles and diverse topics related to
daily life. Our model outperforms the baseline
BERT model, achieving an accuracy of 85%
on the validation set. We also analyse the in-
fluence of context and imbalanced data on the
performance of the model.

1 Context of the problem

Conversational agents have become powerful tools
that significantly help people in their daily lives,
as demonstrated by the widespread adoption of
Siri, Alexa, and ChatGPT in recent years. A key
factor contributing to their success is their abil-
ity to comprehend the type of information being
conveyed by the user. This distinction is crucial,
as the response generated will differ depending
on whether the user requests a joke or inquires
about the weather for the afternoon. This particu-
lar task is referred to as Dialog Act Classification.
Numerous studies have explored language under-
standing at the sentence-level (Kim, 2014), focus-
ing on determining whether a given sentence is a
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declarative statement, a question, and so on. In this
project, we aim to expand this framework to the
dialog-level (Chapuis et al., 2020; Colombo et al.,
2021; Colombo* et al., 2020), which presents a
more complex challenge as the context can alter
the meaning of a word. The ultimate objective is to
classify each sentence within a dialog.

Using the notation of (Colombo, 2021), let us
consider D; = (uq, ..., u|Di|) a dialog with uy, the
k-th utterance and considering that each utterance is
composed of words ug = (w1, ..., Wy, ) , the goal
is to predict the labels associated to each utterance
Vi=Y1,...,Y|p,))-

2 Experiments Protocol’

2.1 Dataset

We conducted our experiments using the SILI-
CONE (Sequence labelllng evalLuatlon benCh-
mark fOr spoken laNguagE) benchmark from Hug-
ging Face (Wolf et al., 2020), which comprises 10
datasets of various sizes (Godfrey et al., 1992; Li
et al., 2017; Leech and Weisser, 2003; Busso et al.,
2008; Passonneau and Sachar., 2014; Thompson
etal., 1993; Poria et al., 2018; Shriberg et al., 2004;
Dinkar* et al., 2020; Mckeown et al., 2013), focus-
ing on dialog act or sentiment analysis.

Specifically, we worked with the dyda_da (Dai-
lyDialog Act Corpus) dataset. The dialogs in this
dataset mirror everyday communication styles and
encompass a wide range of topics related to daily
life. The dataset is annotated with both communi-
cation intention and emotion information, though
our experiments centred on the communication in-
tention task. Each sentence is categorized as either
”commissive”, “directive,” “inform,” or “question,”
corresponding to labels 0, 1, 2, and 3 in the table
below.

'nttps://github.com/thibautvalour/NLP_
Intent_classification.git


https://youtu.be/_HrdagOms7Q
https://github.com/thibautvalour/NLP_Intent_classification.git
https://github.com/thibautvalour/NLP_Intent_classification.git

Utterance DA

say, jim, how about going for a few | 1 1
beers after dinner ?

you know that is tempting but is really | 0 1
not good for our fitness

what do you mean ? it will helpus to | 3 1
relax !

can you do push-ups ? 3 2
of course i can. I can do 30 push-upsa | 2 2
minute.

really ? i think that’s impossible ! 3 2

Table 1: Extract from dyda_da (SILICONE) where DA
represents the dialog act label and ID the id of the con-
versation.

The dataset is split into a train set (87 170 utter-
ances) and a validation set (7 740 utterances). As
illustrated in 1a, the distribution of labels in the
dataset is imbalanced, reflecting the natural vari-
ation in the frequency of different sentence types
in everyday conversations. We will discuss this
aspect in section 3. On average, a dialog consists
of 8 utterances, indicating that we are working with
relatively brief conversations.
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Figure 1: Statistics on dyda_da (SILICONE)

ID 2.2 Hierarchical encoding strategy

Our approach to tackle dialog act classification is
grounded in a hierarchical encoding methodology,
as demonstrated in (Chapuis et al., 2020). The
architecture of our model is depicted in Figure 2.
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Figure 2: Architecture of our model

This architecture comprises two primary lay-
ers: BERT and BiLSTM (Staudemeyer and Morris,
2019). Initially, BERT encodes each utterance inde-
pendently of its context, followed by concatenating
the encoded utterances from the same dialog. The
resulting vector, representing a single conversation,
serves as input for the BILSTM layer. This hierar-
chical architecture encodes at two levels: BERT at
the utterance level and BiLSTM at the conversation
level. Lastly, we incorporate a linear and softmax
layer to generate the classification output.

2.2.1 BERT model

In 2018, Google Al researchers introduced a pre-
trained model for Natural Language Processing
known as BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2018).
The primary concept is that bidirectionally trained
language models can gain a more profound com-
prehension of the context of a discussion than uni-
directional models. To achieve this, the researchers
presented the notion of Masked Language Mod-
elling (MLM) to facilitate bidirectional training.
BERT is built upon the attention mechanism of
Transformers (Vaswani et al., 2017), enabling the
understanding of the relationships between words
within a sentence. More specifically, our focus lies
on the encoder component of the Transformers. To
accomplish this, a portion of the words intended
for encoding is replaced with a [MASK] token, and



the model attempts to predict the original value of
the masked words using the remaining words.

2.2.2 BIiLSTM

Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are a subclass
of Recurrent Neural Networks (RNN). They are
designed to overcome the long-term dependency
issues encountered by traditional RNNs. LSTMs
leverage the information provided by the first k-1
terms to predict the k-th term of a sequence, making
them particularly useful for language-related prob-
lems. LSTMs employ three gates (forget, input,
and output) to manage the retention or discarding
of information. The latter are stored in a cell state,
representing the current long-term memory of the
network, and in the hidden state, which constitutes
the output at the previous time step.

In dialog act classification, the objective is to
classify an utterance based on the context of the
dialog to which it belongs. Following the same
idea as BERT, we utilize a bidirectional LSTM to
comprehend the context of the utterance. BILSTM
involves combining two independent LSTMs to ob-
tain both backward and forward information about
the sequence at every time step. In our model, we
stacked two layers of BILSTM.

In summary, each utterance from a dialog is fed
into a BERT model for encoding at the utterance
level. The encoded utterances are then inputted
into a BiLSTM that encodes and decodes at the
conversation level. Finally, the linear and softmax
layers provide the prediction for the classification
task.

2.3 Training details
2.3.1 Padding

To utilize the BERT model, it is necessary to en-
sure that all input sentences have the same length.
This is achieved through padding. Additionally, the
[CLS] (classification) and [SEP] (separator) tokens
are incorporated, as they were employed in the orig-
inal BERT training to indicate the beginning and
end of sentences, respectively. To further prepare
our data for compatibility with the BERT-BiLSTM
model, we also applied padding and truncation to
the dialogs to create a uniform size, effectively for-
matting the data for seamless integration into our
model. The padding size for dialog was chosen
based on a trade-off between minimizing training
time and maximizing information retention. By
examining Figure 1b, we opted for a value of 16.

2.3.2 Dropout

Our model, particularly the BERT component, has
a large number of trainable parameters (110M).
Given that our dataset is relatively small, it is cru-
cial to prevent overfitting. Dropout (Srivastava
et al., 2014) is an effective method for addressing
this issue. Dropout is a regularization technique
where a proportion of neurons is randomly selected,
and their outputs are temporarily set to zero dur-
ing training. This prevents the model from relying
too heavily on individual neurons, thus promoting
generalization and reducing the risk of overfitting.
We chose a dropout rate of 50%, striking a balance
between maintaining the model’s capacity to learn
and preventing overfitting on the limited dataset.
Dropout layers were incorporated at two points:
between the BERT output and the LSTM, as well
as between the LSTM output and the linear layer.
These dropout layers are not depicted in Figure 2.

2.3.3 Freezing BERT Layers

During the training process of our BERT-BiLSTM
model, we found that training all the parameters on
a single GPU was computationally feasible, but the
results were not satisfactory. To address this issue,
we experimented with training only the n last layers
of BERT, while still training all the parameters of
the LSTM layers. This approach yielded improved
performance. We optimized the hyperparameter n
and found that the best results were achieved when
n=3.

3 Results

3.1 Baseline

First, we experiment a baseline model consisting in
just a BERT at the utterance-level. It means that we
ignore the context and we fed independently our
model with sentences. The BERT model consists of
110M trainable parameters. It is then still possible
to train all of them with a single GPU. After 2
epochs, the loss is constant, and we get a 67%
accuracy on the validation set. Our results on the
baseline are disappointing compared to the 82%
accuracy achieves with BERT in (Chapuis et al.,
2020).

3.2 BERT-BiLSTM Model

The hierarchical model, presented in the section 2.2,
has been run with the hyperparameters presented
in the table 2 in the Appendix. It has largely better



results, since after 2 epochs of training we reach
85 % of accuracy on the validation set.

First, we observe that we succeed to improve
the baseline thanks to the BiLSTM layer. It con-
firms the idea that the context adds some relevant
information for the understanding of a sentence. In
(Chapuis et al., 2020), they reach an 80% accuracy,
which is slightly less than our model.

4 Discussion

4.1 Imbalanced data

In the section 2.1, we observed that the dataset
was imbalanced. Indeed, 46% of the utterances are
labelled *inform’, 29% are ’question’, 16% are ’di-
rective’ and 9% are commissive’. Imbalanced data
in the classification case can be problematic, since
the model can predict poorly an underrepresented
class without decreasing significantly the accuracy.

The confusion matrix reveals the model’s per-
formance across different classes in the dataset. In
summary, while the model shows decent perfor-
mance in identifying more prevalent classes, there
is room for improvement when it comes to the least
represented class.

com.| 0.64 |8-1072| 024 |3-1072
direct. | 3-1072 0.15 | 9-1072
inform. | 5-1072 | 8.1072 21072
quest.| 9-107% | 4-1072 | 1-102

Figure 3: Confusion matrix

To enhance our model’s performance across var-
ious classes, we employed a weighted loss strat-
egy, which utilizes the inverse proportion of each
class in the training set as the weight. This method
encourages the model to focus on learning from
underrepresented classes. The resulting confusion
matrix can be found in the appendix. While this
approach does lead to improved accuracy for under-
represented classes, the overall loss and accuracy
have not seen substantial improvements.

A potential avenue for further improvement
could involve employing an iterative loss strategy.

Initially, the loss would be weighted based on the
inverse class proportion, but as training progresses,
it would gradually transition toward a uniform loss
after a specified number of epochs, as suggested by
(ValizadehAslani et al., 2022).

4.2 Impact of context

To evaluate the influence of context in our model,
we shuffle the sentences within each dialog in the
validation set. The findings were unexpected, as the
overall accuracy remained unchanged. This sug-
gests that the order of the text is not crucial; instead,
the overall context of the dialog is what matters.
To investigate the significance of the global context
further, additional researches would be required,
such as incorporating sentences from different di-
alogs.

5 Conclusion

In conclusion, we have successfully developed a
hierarchical BERT-BiLSTM model for the task of
dialog act classification. Our model outperforms
the baseline model, demonstrating the importance
of incorporating context in understanding and clas-
sifying dialog acts.

Our approach showed that the order of sentences
within a dialog may not be as significant as initially
expected. However, additional researches are re-
quired to further explore the influence of global
context on the model’s performance. Addition-
ally, our analysis on imbalanced data suggests that
class imbalance does not significantly impact our
model’s performance.

This work contributes to the ongoing develop-
ment of more effective conversational agents capa-
ble of understanding and responding to user input
in a contextually relevant manner. In addition to the
type of request made by the user, emotions (Witon*
et al., 2018) can also play a critical role in gener-
ating an appropriate response. For example, if a
user is feeling sad and requests a joke, the response
generated should be empathetic and uplifting. On
the other hand, if the user is feeling anxious about
the weather forecast, the response generated should
be informative and reassuring. Thus, taking into
account the emotional state of the user is an impor-
tant factor in creating a personalized and effective
response (Colombo* et al., 2019; Jalalzai* et al.,
2020).
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6 Appendix

Parameter Value
Optimizer Adam
Learning rate 10
Epochs 3
Batch size 4
Sentence size after truncation/padding | 32
Dialog size after truncation/padding 16
Trainable Bert layers 3
LSTM hidden dimension 768
LSTM layers 2
Dropout rate 0.5

Table 2: Model and training hyperparameters
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Figure 4: Confusion matrix with the weighted loss
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