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Abstract
We showcase important features of the dynamics
of the Stochastic Gradient Descent (SGD) in the
training of neural networks. We present empiri-
cal observations that commonly used large step
sizes (i) may lead the iterates to jump from one
side of a valley to the other causing loss stabiliza-
tion, and (ii) this stabilization induces a hidden
stochastic dynamics that biases it implicitly to-
ward simple predictors. Furthermore, we show
empirically that the longer large step sizes keep
SGD high in the loss landscape valleys, the bet-
ter the implicit regularization can operate and
find sparse representations. Notably, no explicit
regularization is used: the regularization effect
comes solely from the SGD dynamics influenced
by the large step sizes schedule. Therefore, these
observations unveil how, through the step size
schedules, both gradient and noise drive together
the SGD dynamics through the loss landscape of
neural networks. We justify these findings theo-
retically through the study of simple neural net-
work models as well as qualitative arguments in-
spired from stochastic processes. This analysis
allows us to shed new light on some common prac-
tices and observed phenomena when training deep
networks. The code of our experiments is avail-
able at https://github.com/tml-epfl/
sgd-sparse-features.

1. Introduction
Deep neural networks have accomplished remarkable
achievements on a wide variety of tasks. Yet, the understand-
ing of their remarkable effectiveness remains incomplete.
From an optimization perspective, stochastic training proce-
dures challenge many insights drawn from convex models.
Notably, large step size schedules used in practice lead to
unexpected patterns of stabilizations and sudden drops in
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the training loss (He et al., 2016). From a generalization per-
spective, overparametrized deep nets generalize well while
fitting perfectly the data and without any explicit regulariz-
ers (Zhang et al., 2017). This suggests that optimization and
generalization are tightly intertwined: neural networks find
solutions that generalize well thanks to the optimization pro-
cedure used to train them. This property, known as implicit
bias or algorithmic regularization, has been studied both
for regression (Li et al., 2018; Woodworth et al., 2020) and
classification (Soudry et al., 2018; Lyu & Li, 2020; Chizat &
Bach, 2020). However, for these theoretical results, it is also
shown that typical timescales needed to enter the beneficial
feature learning regimes are prohibitively long (Woodworth
et al., 2020; Moroshko et al., 2020).

In this paper, we aim at staying closer to the experimental
practice and consider the SGD schedules from the ResNet
paper (He et al., 2016) where the large step size is first
kept constant and then decayed, potentially multiple times.
We illustrate this behavior in Fig. 1 where we reproduce a
minimal setting without data augmentation or momentum,
and with only one step size decrease. We draw attention
to two key observations regarding the large step size phase:
(a) quickly after the start of training, the loss remains ap-
proximately constant on average and (b) despite no progress
on the training loss, running this phase for longer leads to
better generalization. We refer to such large step size phase
as loss stabilization. The better generalization hints at some
hidden dynamics in the parameter space not captured by the
loss curves in Fig. 1. Our main contribution is to unveil
the hidden dynamics behind this phase: loss stabilization
helps to amplify the noise of SGD that drives the network
towards a solution with sparser features, meaning that for a
feature vector ψ(x), only a few unique features are active
for a given input x.

1.1. Our Contributions

The effective dynamics behind loss stabilization. We
characterize two main components of the SGD dynamics
with large step sizes: (i) a fast movement determined by the
bouncing directions causing loss stabilization, (ii) a slow
dynamics driven by the combination of the gradient and the
multiplicative noise—which is non-vanishing due to the loss
stabilization.

1

https://github.com/tml-epfl/sgd-sparse-features
https://github.com/tml-epfl/sgd-sparse-features


SGD with Large Step Sizes Learns Sparse Features

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

= 0.007
= 1.5, decay at 10% epochs
= 1.5, decay at 30% epochs
= 1.5, decay at 50% epochs

0 20 40 60 80 100
Epoch

15%

20%

25%

30%

35%

40%

Te
st

 e
rro

r = 0.007
= 1.5, decay at 10% epochs
= 1.5, decay at 30% epochs
= 1.5, decay at 50% epochs

Figure 1. A typical training dynamics for a ResNet-18 trained on CIFAR-10. We use weight decay but no momentum or data
augmentation for this experiment. We see a substantial difference in generalization (as large as 12% vs. 35% test error) depending on the
step size η and its schedule. When the training loss stabilizes, there is a hidden progress occurring which we aim to characterize.

SDE model and sparse feature learning. We model the ef-
fective slow dynamics during loss stabilization by a stochas-
tic differential equation (SDE) whose multiplicative noise
is related to the neural tangent kernel features, and vali-
date this modeling experimentally. Building on the existing
theory on diagonal linear networks, which shows that this
noise structure leads to sparse predictors, we conjecture a
similar “sparsifying” effect on the features of more complex
architectures. We experimentally confirm this on neural
networks of increasing complexity.

Insights from our understanding. We draw a clear general
picture: the hidden optimization dynamics induced by large
step sizes and loss stabilization enable the transition to a
sparse feature learning regime. We argue that after a short
initial phase of training, SGD first identifies sparse features
of the training data and eventually fits the data when the
step size is decreased. Finally, we discuss informally how
many deep learning regularization methods (weight decay,
BatchNorm, SAM) may also fit into the same picture.

1.2. Related Work

He et al. (2016) popularized the piece-wise constant step
size schedule which often exhibits a clear loss stabilization
pattern which was later characterized theoretically in Li
et al. (2020) from the optimization point of view. However,
the regularization effect of this phase induced by the under-
lying hidden stochastic dynamics is still unclear. Li et al.
(2019b) analyzed the role of loss stabilization for a synthetic
distribution containing different patterns, but it is not clear
how this analysis can be extended to general problems. Jas-
trzebski et al. (2021) suggest that large step sizes prevent
the increase of local curvature during the early phase of
training. However, they do not provide an explanation for
this phenomenon.

The importance of large step sizes for generalization has
been investigated with diverse motivations. Many works
conjectured that large step sizes induce minimization of
some complexity measures related to the flatness of minima

(Keskar et al., 2016; Smith & Le, 2018; Smith et al., 2021;
Yang et al., 2022). Notably, Xing et al. (2018) point out that
SGD moves through the loss landscape bouncing between
the walls of a valley where the role of large step sizes is to
guide the SGD iterates towards a flatter minimum. How-
ever, the correct flatness measure is often disputed (Dinh
et al., 2017) and its role in understanding generalization is
questionable since full-batch GD with large step sizes (un-
like SGD) can lead to flat solutions which don’t generalize
well (Kaur et al., 2022)

The attempts to explain the effect of large step size on
strongly convex models (Nakkiran, 2020; Wu et al., 2021;
Beugnot et al., 2022) are inherently incomplete since it is a
phenomenon related to the existence of many zero solutions
with very different generalization properties. Works based
on stability analysis characterize the properties of the mini-
mum that SGD or GD can potentially converge depending
on the step size (Wu et al., 2018; Mulayoff et al., 2021;
Ma & Ying, 2021; Nacson et al., 2022). However, these
approaches do not capture the entire training dynamics such
as the large step size phase that we consider where SGD
converges only after the step size is decayed.

To grasp the generalization of SGD, research has focused
on SGD augmented with label noise due to its beneficial
regularization properties and resemblance to the standard
noise of SGD. Its implicit bias has been first characterized
by Blanc et al. (2020) and extended by Li et al. (2022).
However, their analysis only holds in the final phase of the
training, close to a zero-loss manifold. Our work instead
is closer in spirit to Pillaud-Vivien et al. (2022) where the
label noise dynamics is analyzed in the central phase of the
training, i.e., when the loss is still substantially above zero.

The dynamics of GD with large step sizes have received
a lot of attention in recent times, particularly the edge-of-
stability phenomenon (Cohen et al., 2021) and the catapult
mechanism (Lewkowycz et al., 2020; Wang et al., 2022).
However, the lack of stochastic noise in their analysis ren-
ders them incapable of capturing stochastic training. Note
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that it is possible to bridge the gap between GD and SGD by
using explicit regularization as in Geiping et al. (2022). We
instead focus on the implicit regularization of SGD which
remains the most practical approach for training deep nets.

Finally, sparse features and low-rank structures in deep
networks have been commonly used for model compression,
knowledge distillation, and lottery ticket hypothesis (Denton
et al., 2014; Hinton et al., 2015; Frankle & Carbin, 2018). A
common theme of all these works is the presence of hidden
structure in the networks learned by SGD which allows one
to come up with a much smaller network that approximates
well the original one. In particular, Hoefler et al. (2021) note
that ReLU activations in deep networks trained with SGD
are typically much sparser than 50%. Our findings suggest
that the step size schedule can be the key component behind
emergence of such sparsity.

2. The Effective Dynamics of SGD with Large
Step Size: Sparse Feature Learning

In this section, we show that large step sizes may lead the
loss to stabilize by making SGD bounce above a valley.
We then unveil the effective dynamics induced by this loss
stabilization. To clarify our exposition we showcase our
results for the mean square error but other losses like the
cross-entropy carry the same key properties in terms of
the noise covariance (Wojtowytsch, 2021b, Lemma 2.14).
We consider a generic parameterized family of prediction
functions H := {x → hθ(x), θ ∈ Rp}, a setting which
encompasses neural networks. In this case, the training loss
on input/output samples (xi, yi)1≤i≤n ∈ Rd×R is equal to

L(θ) := 1

2n

n∑
i=1

(hθ(xi)− yi)2 . (1)

We consider the overparameterized setting, i.e. p ≫ n,
hence, there shall exists many parameters θ∗ that lead to
zero loss, i.e., perfectly interpolate the dataset. Therefore,
the question of which interpolator the algorithm converges
to is of paramount importance in terms of generalization. We
focus on the SGD recursion with step size η > 0, initialized
at θ0 ∈ Rp: for all t ∈ N,

θt+1 = θt − η(hθt(xit)− yit)∇θhθt(xit), (2)

where it ∼ U (J1, nK) is the uniform distribution over the
sample indices. In the following, note that SGD with mini
batches of size B > 1 would lead to similar analysis but
with η/B instead of η.

2.1. Background: SGD is GD with Specific Label Noise

To emphasize the combined roles of gradient and noise,
we highlight the connection between the SGD dynamics
and that of full-batch GD plus a specific label noise. Such

manner of reformulating the dynamics has already been used
in previous works attempting to understand the specificity
of the SGD noise (HaoChen et al., 2021; Ziyin et al., 2022).
We formalize it in the following proposition.

Proposition 2.1. Let (θt)t≥0 follow the SGD dynamics
Eq.(2) with the random sampling function (it)t≥0. For
t ≥ 0, define the random vector ξt ∈ Rn such that

[ξt]i := (hθt(xi)− yi)(1− n1i=it), (3)

for i ∈ J1, nK and where 1A is the indicator of the event A.
Then (θt)t≥0 follows the full-batch gradient dynamics on L
with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yti)∇θhθt(xi), (4)

where we define the random labels yt := y + ξt. Further-
more, ξt is a mean zero random vector with variance such
that 1

n(n−1)E ∥ξt∥
2
= 2L(θt).

This reformulation shows two crucial aspects of the SGD
noise: (i) the noisy part at state θ always belongs to the linear
space spanned by {∇θhθ(x1), . . . ,∇θhθ(xn)}, and (ii) it
scales as the training loss. Going further on (ii), we highlight
in the following section that the loss can stabilize because
of large step sizes: this may lead to a constant effective
scale of label noise. These two features are of paramount
importance when modelling the effective dynamics that take
place during loss stabilization.

2.2. The Effective Dynamics Behind Loss Stabilization

On loss stabilization. For generic quadratic costs, e.g.,
F (β) := ∥Xβ − y∥2, gradient descent with step size η
is convergent for η < 2/λmax, divergent for η > 2/λmax

and converges to a bouncing 2-periodic dynamics for η =
2/λmax, where λmax is the largest eigenvalue of the Hes-
sian. However, the practitioner is not likely to hit perfectly
this unstable step size and, almost surely, the dynamics shall
either converge or diverge. Yet, non-quadratic costs bring to
this picture a particular complexity: it has been shown that,
even for non-convex toy models, there exist an open interval
of step sizes for which the gradient descent neither converge
nor diverge (Ma et al., 2022; Chen & Bruna, 2022). As we
are interested in SGD, we complement this result by pre-
senting an example in which loss stabilization occurs almost
surely in the case of stochastic updates. Indeed, consider a
regression problem with quadratic parameterization on one-
dimensional data inputs xi’s, coming from a distribution ρ̂,
and outputs generated by the linear model yi = xiθ

2
∗. The

loss writes F (θ) := 1
4Eρ̂

(
y − xθ2

)2
, and the SGD iterates

with step size η > 0 follow, for any t ∈ N,

θt+1 = θt + η θt xit
(
yit − xitθ2t

)
where xit ∼ ρ̂. (5)
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For the sake of clarity, suppose that θ∗ = 1 and supp(ρ̂) =
[a, b], we have the following proposition (a more general
result is presented in Proposition B.1 of the Appendix).

Proposition 2.2. For any η ∈ (a−2, 1.25 · b−2) and initial-
ization θ0 ∈ (0, 1), for all t > 0,

δ1 < F (θt) < δ2 almost surely, and (6)
∃T > 0,∀k > T, θt+2k < 1 < θt+2k+1 almost surely. (7)

where δ1, δ2, T > 0 are constant given in the Appendix.

The proposition is divided in two parts: if the step size is
large enough, Eq.(6) the loss stabilizes in between level sets
δ1 and δ2 and Eq.(7) shows that after some initial phase, the
iterates bounce from one side of the loss valley to the other
one. Note that despite the stochasticity of the process, the
results hold almost surely.

The effective dynamics. As observed in the prototypical
SGD training dynamics of Fig. 1 and proved in the non-
convex toy model of Proposition 2.2, large step sizes lead
the loss to stabilize around some level set. To further un-
derstand the effect of this loss stabilization in parameter
space, we shall assume perfect stabilization. Then, from
Proposition 2.1, we conjecture the following behaviour

During loss stabilization, SGD is well modelled by GD with
constant label noise.

Label noise dynamics have been studied recently (Blanc
et al., 2020; Damian et al., 2021; Li et al., 2022) thanks
to their connection with Stochastic Differential Equa-
tions (SDEs). To properly write a SDE model, the
drift should match the gradient descent and the noise
should have the correct covariance structure (Li et al.,
2019a; Wojtowytsch, 2021a). Proposition 2.1 implies that
the noise at state θ is spanned by the gradient vectors
{∇θhθ(x1), . . . ,∇θhθ(xn)} and has a constant intensity
corresponding to the loss stabilization at a level δ > 0.
Hence, we propose the following SDE model

dθt = −∇θL(θt)dt+
√
ηδ ϕθt(X)⊤dBt, (8)

where (Bt)t≥0 is a standard Brownian motion in Rn and
ϕθ(X) := [∇θhθ(xi)

⊤]ni=1 ∈ Rn×p referred to as the Ja-
cobian (which is also the Neural Tangent Kernel (NTK)
feature matrix (Jacot et al., 2018)). This SDE can be seen
as the effective slow dynamics that drives the iterates while
they bounce rapidly in some directions at the level set δ. It
highlights the combination of the deterministic part of the
full-batch gradient and the noise induced by SGD. Beyond
the theoretical justification and consistency of this SDE
model, we validate it empirically in Sec. C showing that it
indeed captures the dynamics of large step size SGD. In
the next section, we leverage the SDE (8) to understand the
implicit bias of such learning dynamics.

2.3. Sparse Feature Learning

We begin with a simple model of diagonal linear networks
that showcase a sparsity inducing dynamics and further
disclose our general message about the overall implicit bias
promoted by the effective dynamics.

2.3.1. A WARM-UP: DIAGONAL LINEAR NETWORKS

An appealing example of simple non-linear networks that
help in forging an intuition for more complicated archi-
tectures is diagonal linear networks (Vaskevicius et al.,
2019; Woodworth et al., 2020; HaoChen et al., 2021; Pesme
et al., 2021). They are two-layer linear networks with
only diagonal connections: the prediction function writes
hu,v(x) = ⟨u, v ⊙ x⟩ = ⟨u ⊙ v, x⟩ where ⊙ denotes ele-
mentwise multiplication. Even though the loss is convex
in the associated linear predictor β := u ⊙ v ∈ Rd, it
is not in (u, v), hence the training of such simple models
already exhibit a rich non-convex dynamics. In this case,
∇uhu,v(x) = v ⊙ x, and the SDE model Eq.(8) writes

dut = −∇uL(ut, vt) dt +
√
ηδ vt ⊙

[
X⊤dBt

]
, (9)

where (Bt)t≥0 is a standard Brownian motion in Rn. Equa-
tions are symmetric for (vt)t≥0.

What is the behaviour of this effective dynamics?
(Pillaud-Vivien et al., 2022) answered this question by ana-
lyzing a similar stochastic dynamics and unveiled the sparse
nature of the resulting solutions. Indeed, under sparse recov-
ery assumptions, denoting β∗ the sparsest linear predictor
that interpolates the data, it is shown that the associated
linear predictor βt = ut ⊙ vt: (i) converges exponentially
fast to zero outside of the support of β∗ (ii) is with high
probability in a O(√ηδ) neighborhood of β∗ in its support
after a time O(δ−1).

Overall conclusion on the model. During a first phase,
SGD with large step sizes η decreases the training loss
until stabilization at some level set δ > 0. During this
loss stabilization, an effective noise-driven dynamics takes
place. It shrinks the coordinates outside of the support of
the sparsest signal and oscillates in parameter space at level
O(√ηδ) on its support. Hence, decreasing later the step
size leads to perfect recovery of the sparsest predictor. This
behaviour is illustrated in our experiments in Figure 2.

2.3.2. THE SPARSE FEATURE LEARNING CONJECTURE
FOR MORE GENERAL MODELS

Results for diagonal linear nets recalled in the previous para-
graph show that the noisy dynamics (9) induce a sparsity
bias. As emphasized in HaoChen et al. (2021), this effect
is largely due to the multiplicative structure of the noise
v⊙ [X⊤dBt] that, in this case, has a shrinking effect on the
coordinates (because of the coordinate-wise multiplication
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with v). In the general case, we see, thanks to Eq.(8), that
the same multiplicative structure of the noise still happens
but this time with respect to the Jacobian ϕθ(X). Hence,
this suggests that similarly to the diagonal linear network
case, the implicit bias of the noise can lead to a shrink-
age effect applied to ϕθ(X). This effect depends on the
noise intensity δ and the step size of SGD. Indeed, an in-
teresting property of Brownian motion is that, for v ∈ Rp,
⟨v,Bt⟩ = ∥v∥2Wt, where the equality holds in law and
(Wt)t≥0 is a one-dimensional Brownian motion. Hence, the
process Eq.(8) is equivalent to a process whose i-th coordi-
nate is driven by a noise proportional to ∥ϕi∥dW i

t , where
ϕi is the i-th column of ϕθ(X) and (W i

t )t≥0 is a Brownian
motion. This SDE structure, similar to the geometric Brow-
nian motion, is expected to induce the shrinkage of each
multiplicative factor (Oksendal, 2013, Section 5.1), i.e., in
our case (∥∇θh(xi)∥)ni=1. Thus, we conjecture:

The noise part of Eq.(8) seeks to minimize the ℓ2-norm of
the columns of ϕθ(X).

Note that the fitting part of the dynamics prevents the Ja-
cobian to collapse totally to zero, but as soon as they are
not needed to fit the signal, columns can be reduced to
zero. Remarkably, from a stability perspective, Blanc et al.
(2020) showed a similar bias: locally around a minimum,
the SGD dynamics implicitly tries to minimize the Frobe-
nius norm ∥ϕθ(X)∥F =

∑n
i=1 ∥∇θhθ(xi)∥2. Resolving

the above conjecture and characterizing the implicit bias
along the trajectory of SGD remains an exciting avenue for
future work. Now, we provide a specification of this implicit
bias for different architectures:

• Diagonal linear networks: For hu,v(x) = ⟨u⊙v, x⟩, we
have ∇u,vhu,v(x) = [v ⊙ x, u⊙ x]. Thus, for a generic
data matrix X , minimizing the norm of each column of
ϕu,v(X) amounts to put the maximal number of zero
coordinates and hence to minimize ∥u⊙ v∥0.

• ReLU networks: We take the prototypical one hid-
den layer to exhibit the sparsification effect. Let
ha,W (x) = ⟨a, σ(Wx)⟩, then ∇aha,W (x) = σ(Wx)
and ∇wj

ha,W (x) = ajx1⟨wj ,x⟩>0. Note that the ℓ2-
norm of the column corresponding to the neuron is re-
duced when it is activated at a minimal number of training
points, hence the implicit bias enables the learning of
sparse data-active features. Finally, when some direc-
tions are needed to fit the data, similarly activated neurons
align to fit, reducing the rank of ϕθ(X).

Feature sparsity. Our main insight is that the Jacobian
could be significantly simplified during the loss stabiliza-
tion phase. Indeed, while the gradient part tries to fit the
data and align neurons (see e.g. Fig. 10), the noise part of
Eq.(8) intends to minimize the ℓ2-norm of the columns of
ϕ(X). Hence, in combination, this motivates us to count the
average number of distinct (i.e., counting a group of aligned

neurons as one), non-zero activations over the training set.
We refer to this as the feature sparsity coefficient (see the
next section for a detailed description). Note that the afore-
mentioned sparsity comes both in the number of distinct
neurons and their activation.

We show next that the conjectured sparsity is indeed ob-
served empirically for a variety of models. Remark that
both the feature sparsity coefficient and the rank of ϕθ(X)
can be used as a good proxy to track the hidden progress
during the loss stabilization phase.

3. Empirical Evidence of Sparse Feature
Learning Driven by SGD

Here we present empirical results for neural networks of in-
creasing complexity: from diagonal linear networks to deep
DenseNets on CIFAR-10, CIFAR-100, and Tiny ImageNet.
We make the following common observations for all these
networks trained using SGD schedules with large step sizes:

(O1) Loss stabilization: training loss stabilizes around a
high level set until step size is decayed,

(O2) Generalization benefit: longer loss stabilization leads
to better generalization,

(O3) Sparse feature learning: longer loss stabilization
leads to sparser features.

Importantly, we use no explicit regularization (in particular,
no weight decay) in our experiments so that the training
dynamics is driven purely by SGD and the step size sched-
ule. Additionally, in some cases, we cannot find a single
large step size that would lead to loss stabilization. In such
cases, whenever explicitly mentioned, we use a warmup
step size schedule—i.e., increasing step sizes according to
some schedule—to make sure that the loss stabilizes around
some level set. Warmup is commonly used in practice (He
et al., 2016; Devlin et al., 2018) and often motivated purely
from the optimization perspective as a way to accelerate
training (Agarwal et al., 2021), but we suggest that it is also
a way to amplify the regularization effect of the SGD noise
which is proportional to the step size.

Measuring sparse feature learning. We track the sim-
plification of the Jacobian by measuring both the feature
sparsity and the rank of ϕθ(X). We compute the rank over
iterations for each model (except deep networks for which
it is prohibitively expensive) by using a fixed threshold on
the singular values of ϕθ(X) normalized by the largest sin-
gular value. In this way, we ensure that the difference in
the rank that we detect is not simply due to different scales
of ϕθ(X). Moreover, we always compute ϕθ(X) on the
number of fresh samples equal to the number of parameters
|θ| to make sure that rank deficiency is not coming from
n≪ |θ| which is the case in the overparametrized settings
we consider. To compute the feature sparsity coefficient,

5



SGD with Large Step Sizes Learns Sparse Features

0 20000 40000 60000 80000 100000

Iteration

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 20000 40000 60000 80000 100000

Iteration

10−4

10−3

10−2

10−1

100

T
es

t
lo

ss

0 20000 40000 60000 80000 100000

Iteration

60

80

100

120

140

160

180

200

ra
n
k

(φ
θ
(X

))

0 20000 40000 60000 80000 100000

Iteration

0

50

100

150

200

‖u
�
v
‖ 0

SGD η=0.25 SGD η=0.28, decay at 10% iterations SGD η=0.28, decay at 30% iterations SGD η=0.28, decay at 50% iterations

Figure 2. Diagonal linear networks. We observe loss stabilization, better generalization for longer schedules, minimization of the rank of
ϕθ(X) and sparsity of the predictor u⊙ v.

we count the average fraction of distinct (i.e., counting a
group of highly correlated activations as one), non-zero ac-
tivations at some layer over the training set. Note that the
value of 100% means a completely dense feature vector and
0% means a feature vector with all zeros. We count a pair
of activations i and j as highly correlated if their Pearson’s
correlation coefficient is at least 0.95. Unlike rank(ϕθ(X)),
the feature sparsity coefficient scales to deep nets and has
an easy-to-grasp meaning.

3.1. Sparse Feature Learning in Diagonal Linear
Networks

Setup. The inputs x1, . . . , xn with n = 80 are sampled
fromN (0, Id) where Id is an identity matrix with d = 200,
and the outputs are generated as yi = ⟨β∗, xi⟩ where β∗ ∈
Rd is r = 20 sparse. We consider four different SGD runs
(started from ui = 0.1, vi = 0 for each i): one with a small
step size and three other with initial large step size decayed
after 10%, 30%, 50% iterations, respectively.

Observations. We show the results in Fig. 2 and note that
(O1)–(O3) hold even in this simple model trained with
vanilla SGD without any explicit regularization or layer
normalization schemes. We observe that the training loss
stabilizes around 10−1.5, the test loss improves for longer
schedules, both rank(ϕθ(X)) and ∥u⊙ v∥0 decrease during
the loss stabilization phase leading to a sparse final predictor.
While the training loss has seemingly converged to 10−1.5,
a hidden dynamics suggested by Eq.(9) occurs which slowly
drifts the iterates to a sparse solution. This implicit sparsifi-
cation explains the dependence of the final test loss on the
time when the large step size is decayed, similarly to what
has been observed for deep networks in Fig. 1. Interestingly,
we also note that SGD with large step-size schedules en-
counters saddle points after we decay the step size (see the
training loss curves in Fig. 2) which resembles the saddle-
to-saddle regime described in Jacot et al. (2021) which does
not occur in the large-initialization lazy training regime.

SGD and GD have different implicit biases. Since we
observe from Fig. 2 that for loss stabilization, stochastic-
ity alone does not suffice and large step sizes are neces-
sary, one may wonder if conversely, only large step sizes

can be sufficient to have a sparsifying effect. Even if spe-
cial instances can be found for which large step sizes are
sufficient (such as for non-centered input features as in
Nacson et al. (2022)), we answer this negatively showing
that gradient descent in general does not go to the spars-
est solution as demonstrated in Fig. 11 in the Appendix.

winit
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w?

Training loss over a 2D subspace

GD

SGD

10−6

10−4

10−2

100

Figure 3. Diagonal linear net-
works. GD and SGD take dif-
ferent trajectories.

Moreover, in Fig. 3, we visu-
alize the difference in trajec-
tory between the two meth-
ods taken with large step
sizes over a 2D subspace
spanned by w⋆ − winit and
wflow − winit, where w⋆ is
the ground truth, wflow is
the result of gradient flow,
and winit is the initializa-
tion. This example provides
an intuition that loss stabi-
lization alone is not sufficient for sparsification and that the
role of noise described earlier is crucial.

3.2. Sparse Feature Learning in Simple ReLU Networks

Two-layer ReLU network in 1D. We consider the 1D re-
gression task from Blanc et al. (2020) with 12 points, where
label noise SGD has been shown to learn a simple model.
We show that similar results can be achieved with large-step-
size SGD via loss stabilization. We train a ReLU network
with 100 neurons with SGD with a long linear warmup
(otherwise, we were unable to achieve approximate loss sta-
bilization), directly followed by a step size decay. The two
plots correspond to a warmup/decay transition at 2% and
50% of iterations, respectively. The results shown in Fig. 4
confirm that (O1)–(O3) hold: the training loss stabilizes
around 10−0.5, the predictor becomes much simpler and is
expected to generalize better, and both rank(ϕθ(X)) and the
feature sparsity coefficient substantially decrease during the
loss stabilization phase. Interestingly, the rank reduction of
ϕθ(X) occurs because of zero activations, and not because
of zero weights. For this one-dimensional task, we can di-
rectly observe the final predictor which is sparse in terms
of the number of distinct ReLU kinks (i.e., having a few
piecewise-linear segments) as captured by the feature spar-
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Figure 4. Two-layer ReLU networks for 1D regression. We observe loss stabilization, simplification of the model trained with a longer
schedule, lower rank of ϕθ(X), and much sparser features.
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Figure 5. Three-layer ReLU networks in a teacher-student setup. We observe loss stabilization, lower rank of the Jacobian and lower
feature sparsity coefficient on both hidden layers.

sity coefficient and the rank of the Jacobian. Interestingly,
we also observed overregularization for even larger step
sizes when we cannot fit all the training points (see Fig. 12
in Appendix). This phenomenon clearly illustrates how the
capacity control is induced by the optimization algorithm:
the function class over which we optimize depends on the
step size schedule. Additionally, Fig. 13 in App. shows
the evolution of the predictor over iterations. The general
picture is confirmed: first the model is simplified during the
loss stabilization phase and only then fits the data.

Deeper ReLU networks. We use a teacher-student setup
with a random three-layer teacher ReLU network having 2
neurons on each hidden layer. The student network is over-
parametrized with 10 neurons on each layer and is trained
on 50 examples. Such teacher-student setup is useful since
we know that the student network can implement the ground
truth function but might not find it due to the small sample
size. We train models using SGD with a medium constant
step size and a large step size with warmup decayed after
10%, 30%, 50% iterations, respectively. The results shown
in Fig. 5 confirm that (O1)–(O3) hold: the training loss
stabilizes around 10−1.5, the test loss is smaller for longer
schedules, and both rank(ϕθ(X)) and the feature sparsity
coefficient substantially decrease during the loss stabiliza-
tion phase. All methods have the same value of the training
loss (10−3) after 104 iterations but different generalization.
Moreover, we see that the feature sparsity coefficient de-
creases on each layer which makes this metric a promising
one to consider for deeper networks.

3.3. Sparse Feature Learning in Deep ReLU Networks

Setup. We consider here an image classification task and
train a DenseNet-100-12 on CIFAR-10, CIFAR-100, and
Tiny ImageNet using SGD with batch size 256 and different
step size schedules. We use an exponentially increasing
warmup schedule with exponent 1.05 to stabilize the train-
ing loss. We cannot measure the rank of ϕ(X) here since
this matrix is too large (≈ (5×104)× (2×107)) so we mea-
sure only the feature sparsity coefficient taken at two layers:
at the end of super-block 3 (i.e., in the middle of the net-
work) and super-block 4 (i.e., right before global average
pooling at the end of the network) of DenseNets. We test
two settings: a basic setting and a state-of-the-art setting
with momentum and standard augmentations.

Observations. The results shown in Fig. 6 and 7 confirm
that our main findings also hold for deep convolutional
networks used in practice: the training loss approximately
stabilizes, the test error is becoming progressively better for
longer schedules, and the feature sparsity coefficient gradu-
ally decreases at both super blocks 3 and 4 until the step size
is decayed. We also see that small step sizes consistently
lead to suboptimal generalization, e.g., 60% vs. 35% in the
basic setting on CIFAR-100. This poor performance con-
firms that it is crucial to leverage the implicit bias of large
step sizes. The difference in the feature sparsity coefficient
is also substantial: typically 50%-60% for small step sizes
vs. 10%-20% for larger step sizes at block 4. The obser-
vations are similar for the state-of-the-art setting as well
where we also see a noticeable difference in generalization
and feature sparsity depending on the step size and schedule.
Finally, we note that while both the feature sparsity coeffi-
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DenseNet-100 on CIFAR-10, basic setting (no momentum and augmentations)
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DenseNet-100 on CIFAR-100, basic setting (no momentum and augmentations)
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DenseNet-100 on Tiny ImageNet, basic setting (no momentum and augmentations)
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Figure 6. Experiments with DenseNet-100 in the basic setting. We can see that the training loss stabilizes, the test error noticeably
depends on the length of the schedule, and the feature sparsity coefficient is minimized during the large step size phase.

cient and test error decrease together, it remains to be seen
whether they are causally related on natural datasets.

We show the results with similar findings for other archi-
tectures (ResNets-18 and ResNets-34) on CIFAR-10 and
CIFAR-100 in Fig. 15 and Fig. 16 in Appendix. Addition-
ally, Fig. 17 illustrates that for small step sizes, the early and
middle layers stay very close to their random initialization
which indicates the absence of feature learning similarly to
what is suggested by the neuron movement plot in Fig. 10 in
the Appendix for a two-layer network in a teacher-student
setup.

4. Conclusions and Insights from our
Understanding of the Training Dynamics

Here we provide an extended discussion on the training
dynamics of neural networks resulting from our theoretical
and empirical findings.

The multiple stages of the SGD training dynamics. As
analyzed and shown empirically, the training dynamics we
considered can be split onto three distinct phases: (i) an

initial phase of reducing the loss down to some level where
stabilization can occur, (ii) a loss stabilization phase where
noise and gradient directions combine to find architecture-
dependent sparse representations of the data, (iii) a final
phase when the step size is decreased to fit the training
data. This typology clearly disentangles the effect of the
stabilization phase (ii) which relies on the implicit bias of
SGD to simplify the model. Note that phases (ii) and (iii)
can be repeated until final convergence (He et al., 2016).
Moreover, in some training schedules, (ii) does not explicitly
occur, and the effect of loss stabilization (ii) and data fitting
(iii) can occur simultaneously (Loshchilov & Hutter, 2019).

From lazy training to feature learning. Similar sparse im-
plicit biases have been shown for regression with infinitely
small initialization (Boursier et al., 2022) and for classifica-
tion (Chizat & Bach, 2020; Lyu & Li, 2020). However, both
approaches are not practical from the computational point
of view since (i) the origin is a saddle point for regression
leading to the vanishing gradient problem (especially, for
deep networks), and (ii) max-margin bias for classification
is only expected to happen in the asymptotic phase (Mo-
roshko et al., 2020). On the contrary, large step sizes enable
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DenseNet-100 on CIFAR-10, state-of-the-art setting (with momentum and augmentations)
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DenseNet-100 on CIFAR-100, state-of-the-art setting (with momentum and augmentations)
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DenseNet-100 on Tiny ImageNet, state-of-the-art setting (with momentum and augmentations)
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Figure 7. Experiments with DenseNet-100 in the state-of-the-art setting. We can see that the training loss stabilizes, the test error
noticeably depends on the length of the schedule, and the feature sparsity coefficient is minimized during the large step size phase.

to initialize far from the origin, while allowing to efficiently
transition from a regime close to the lazy NTK regime (Jacot
et al., 2018) to the rich feature learning regime.

Common patterns in the existing techniques. Tuning the
step size to obtain loss stabilization can be difficult. To
prevent early divergence caused by too large step sizes, we
sometimes had to rely on an increasing step size schedule
(known as warmup). Interpreting such schedules as a tool
to favor implicit regularization provides a new explanation
to their success and popularity. Additionally, normalization
schemes like batch normalization or weight decay, beyond
carrying their own implicit or explicit regularization proper-
ties, can be analyzed from a similar lens: they allow to use
larger step sizes that boost further the implicit bias effect
of SGD while preventing divergence (Bjorck et al., 2018;
Zhang et al., 2018; Li & Arora, 2019). Note also that we
derived our analysis with batch size equal to one for the
sake of clarity, but an arbitrary batch size B would simply
be equivalent to replacing γ ← γ/B. Similarly to the con-
sequence of large step sizes, preferring smaller batch sizes
(Keskar et al., 2016) while avoiding divergence seem key
to benefit from the implicit bias of SGD. Finally, the effect

of large step sizes or small batches is often connected to
measures of flatness of the loss surface via stability anal-
ysis (Wu et al., 2018) and some methods like the Hessian
regularization (Damian et al., 2021) or SAM (Foret et al.,
2021) explicitly optimize it. Such methods resemble the
implicit bias of SGD with loss stabilization implied by the
label noise equation (Eq.(8)) where matrix ϕθ(X) is the key
component of the Hessian. However, an important practical
difference is that the regularization strength in these methods
is explicit and decoupled from the step size schedule which
may be harder to properly tune since it is simultaneously
responsible for optimization and generalization.
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APPENDIX

In Section A, we show Proposition 2.1 on the equivalence between SGD and GD with added noise. In Section B, we provide
the proof that loss stabilization occurs as written in Proposition 2.2. In Section C, we show experimentally that the proposed
SDE model matches well the SDE dynamics. Finally, we present additional experiments in Section D.

Figure 8. Three-dimensional visualisation of the SGD dynamics in a non-convex loss landscape. The SGD dynamics (blue points) is
bouncing side-to-side to the bottom of the valley (the dotted green line). A slow movement occurs pushing the iterates in the direction
given by the green arrows.

To begin this appendix, we provide in Figure 8 a toy visualization in which we showcase a typical SGD dynamics when loss
stabilization occurs. We run SGD on the diagonal linear network with one sample in two dimensions (n = 1, d = 2) adding
label noise of the shape given by equation Eq.(9), with balanced layers u = v. The blue points corresponds to iterates of the
dynamics (that are linked with the orange dotted lines). The green line corresponds to the global minimum of the loss, what
can be called the “bottom of the valley”. This hopefully will serve the reader forge a visual intuition on (i) the bouncing
dynamics side-to-side to the bottom of the valley (in green), and (ii) the slow stochastic movement (in the direction of the
green arrows).

A. SGD and Label Noise GD
For the sake of clarity we recall below the statement of the Proposition 2.1 which we prove in this section.
Proposition 2.1. Let (θt)t≥0 follow the SGD dynamics Eq.(2) with sampling function (it)t≥0. Let 1i=it be indicator
function, define for t ≥ 0, the random vector ξt ∈ Rn such that for all i ∈ J1, nK,

[ξt]i := (hθt(xi)− yi)(1− n1i=it). (10)

Then (θt)t≥0 follows the full-batch gradient dynamics on L with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yti)∇θhθt(xi), (11)

where we define the random labels yt := y + ξt. Furthermore, ξt is a mean zero random vector with variance such that
1

n(n−1)E ∥ξt∥
2
= 2L(θt).

13
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Proof. Note that

n∑
i=1

(hθt(xi)− yti)∇θhθt(xi) =

n∑
i=1

(hθt(xi)− yi − [ξt]i)∇θhθt(xi). (12)

Using [ξt]i := (hθt(xi)− yi)(1− n1i=it),

=
1

n

n∑
i=1

(hθt(xi)− yi − (hθt(xi)− yi)(1− n1i=it))∇θhθt(xi), (13)

=

n∑
i=1

1i=it(hθt(xi)− yi)∇θhθt(xi) = (hθt(xit)− yit)∇θhθt(xit). (14)

which is exactly the stochastic gradient wrt to sample (xit , yit).

Now we prove the latter part of the proposition regarding the scale of the noise. Recall that, for all i ⩽ n, we have
[ξt]i = (hθt(xi)− yi)(1− n1i=it), where it ∼ U (J1, nK). Now taking the expectation,

E[ξt]i = E [(hθt(xi)− yi)(1− n1i=it)] = (hθt(xi)− yi)(1− nE [1i=it ]) = 0, (15)

as E [1i=it ] = 1/n. Coming to the variance,

E ∥ξt∥2 = E

[
n∑

i=1

[ξt]i
2

]
=

n∑
i=1

E[ξt]i2 (16)

=

n∑
i=1

(hθt(xi)− yi)2E
[
(1− n1i=it)

2
]

(17)

=

n∑
i=1

(hθt(xi)− yi)2E
[
(1− 2n1i=it + n21i=it)

]
(18)

=

n∑
i=1

(hθt(xi)− yi)2(1− 2 + n) (19)

= (n− 1)

n∑
i=1

(hθt(xi)− yi)2 = 2n(n− 1)L(θt), (20)

and this concludes the proof of the proposition.

B. Quadratic Parameterization in One Dimension
Again, for the Appendix to be self-contained, we recall the setup of the Proposition 2.2 on loss stabilization. We consider a
regression problem with quadratic parameterization on one-dimensional data inputs xi’s, coming from a distribution ρ̂, and
outputs generated by the linear model yi = xiθ

2
∗. The loss writes F (θ) := 1

4Eρ̂

(
y − xθ2

)2
, and the SGD iterates with step

size η > 0 follow, for any t ∈ N,

θt+1 = θt + η θt xit
(
yit − xitθ2t

)
where xit ∼ ρ̂. (21)

We rewrite the proposition here.

Proposition B.1. (Extended version of Proposition 2.2) Assume ∃ xmin, xmax > 0 such that supp(ρ̂) ⊂ [xmin, xmax].
Then for any η ∈ ((θ∗xmin)

−2, 1.25(θ∗xmax)
−2), any initialization in θ0 ∈ (0, θ∗), for t ∈ N, we have almost surely

F (θt) ∈
(
ϵ2o θ

2
∗, 0.17 θ

2
∗
)
. (22)

where ϵo = min
{
(η(θ∗xmin)

2 − 1)/3, 0.02
}

. Also, almost surely, there exists t, k > 0 such that θt+2k ∈
(0.65 θ∗, (1− ϵo) θ∗) and θt+2k+1 ∈ ((1 + ϵo) θ∗, 1.162 θ∗).
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Proof. Consider SGD recursion Eq.(21) and note that y = xθ2∗.

θt+1 = θt + η θt x(xθ
2
∗ − xθ2t ) (23)

θt+1 = θt + η θt x
2 (θ2∗ − θ2t ) (24)

For the clarity of exposition, we consider the rescaled recursion of the original SGD recursion.

θt+1/θ∗ = θt/θ∗ + η θ2∗ x
2 θt/θ∗

(
1− (θt/θ∗)

2
)
, (25)

and, by making the benign change θt ← θt/θ∗, we focus on the stochastic recursion instead,

θt+1 = θt + γθt(1− θ2t ), (26)

where γ ∼ ρ̂γ the pushforward of ρ̂ under the application z → η θ2∗ z
2. Let Γ := supp(ρ̂γ), the support of the distribution of

γ. From the range of η, it can be verified that Γ ⊆ (1, 1.25). Now the proof of the theorem follows from Lemma B.3.

Lemma B.2 (Bounded Region). Consider the recursion Eq.(26), for Γ ⊆ (1, 1.25) and 0 < θ0 < 1, then for all t > 0,
θt ∈ (0, 1.162).

Proof. Consider a single step of Eq.(26), for some γ ∈ (1, 1.25),

θ+ = θ + γθ(1− θ2)

The aim is to show that θ+ stays in the interval (0, 1.162). In order to show this, we do a casewise analysis.

For θ ∈ (0, 1]: Since 0 < θ ≤ 1, we have θ+ ≥ θ > 0. To prove the bound above, consider the following quantity,

θmax = max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) (27)

Say hγ(θ) = θ + γθ(1− θ2), note that h′γ(θ) = 1 + γ − 3γθ2 and h′′γ(θ) = −6γθ < 0. Hence, for any γ in our domain,

the maximum is attained at θγ = 1√
3

√
1
γ + 1 and hγ(θγ) =

2(1+γ)3/2

3
√
3γ

.

max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) = max
γ∈(.5,1.25)

2(1 + γ)3/2

3
√
3γ

(28)

It can be verified that 2(1+γ)3/2

3
√
3γ

is increasing with gamma in the interval (1, 1.25). Hence,

max
γ∈(1,1.25)

2(1 + γ)3/2

3
√
3γ

≤ 2(1 + γ)3/2

3
√
3γ

∣∣∣∣
γ=1.25

< 1.162 (29)

Combining them, we get,

θ+ ≤ max
γ∈(0,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) < 1.162 (30)

For θ ∈ (1, 1.162): Since θ > 1, we have, θ+ < θ < 1.162. For lower bound, note that for θ+ to be less than 0, we need
1 + γ − γθ2 < 0. But for γ ∈ (1, 1.25) and θ ∈ (1, 1.162),

γ(θ2 − 1) < 1.25((1.162)2 − 1) < 1. (31)

Hence, it never goes below 0.

Lemma B.3. Consider the recursion Eq.(26) with Γ ⊆ (1, 1.25) and θ0 initialized uniformly in (0, 1). Then, there exists
ϵ0 > 0, such that for all ϵ < ϵ0 there exists t > 0 such that for any k > 0,

θt+2k ∈ (0.65, 1− ϵ) and θt+2k+1 ∈ (1 + ϵ, 1.162) (32)

almost surely.
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Proof. Define γmin > 1 as the infimum of the support Γ. Let ϵo = min{(γmin−1)/3, 0.02}. Note that ϵ0 > 0 as γmin > 1.
Now for any 0 < ϵ < ϵo, we have γmin(2− ϵ)(1− ϵ) > 2.

Divide the interval (0,1.162) into 4 regions, I0 = (0, 0.65], I1 = (0.65, 1 − ϵ), I2 = [1 − ϵ, 1), I3 = (1, 1.162). The
strategy of the proof is that the iterates will eventually end up in I1 and that once it ends up in I1, it comes back to I1 in 2
steps.

Let θ0 be initialized uniformly random in (0, 1). Consider the sequence (θt)t≥0 generated by

θt+1 = hγt
(θt) := θt + γtθt(1− θ2t ) where γt ∼ ρ̂γ . (33)

We prove the following facts (P1)-(P4):

(P1) There exists t ≥ 0 such that the θt ∈ I1 ∪ I2 ∪ I3.

(P2) Let θt ∈ I3, then θt+1 ∈ I1 ∪ I2.

(P3) Let θt ∈ I2, there exists k > 0 such that for k′ < k, θt+2k′ ∈ I2 and θt+2k ∈ I1.

(P4) When θt ∈ I1, then for all k ≥ 0, θt+2k ∈ I1 and θt+2k+1 ∈ (1 + ϵ, 1.162).

Proof of (P1)-(P4): Let t ∈ N, note first that the event {θt = 1} = ∪k⩽t{θk = 1|θk−1 ̸= 1} and hence a finite union of
zero measure sets. Hence {θt = 1} is a zero measure set and therefore we do not consider it below. For any other sequence,
from the above four properties, we can conclude that the lemma holds.

Proof of P1: Assume that until time t > 0, the iterates are all in I0, then we have

θt = θt−1(1 + γ(1− θ2t−1)) ≥ θt−1(2− θ2t−1) > 1.5 θt−1 > 1.5t θ0 (34)

Hence, the sequence eventually exits I0. We know that it will stay bounded from Lemma B.2, hence it will end up in
I1 ∪ I2 ∪ I3.

Proof of P2: For any θt ∈ (1, 1.162), 1 < γ < 1.25, since hγ(.) is decreasing in (1,1.162), we have hγ(1.162) < hγ(θt) <
hγ(1). Also hγ(θ) is linear in gamma with negative coefficient for θ > 1. Hence it decreases as γ increases. Using this,

.652 = h1.25(1.162) < hγ(1.162) < hγ(θt) < hγ(1) = 1. (35)

Hence, θt+1 ∈ I1 ∪ I2.

Proof of P3: The proof of this follows from Lemma B.5.

Proof of P4: The proof of this follows from Lemma B.8.

Lemma B.4. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2,

hγmax
(hγmax

(θ)) ≤ ha(hb(θ)) ≤ hγmin
(hγmin

(θ)). (36)

Proof. For any γ ∈ Γ, recall

hγ(θ) = θ + γθ(1− θ2) = 1 + (1− θ)(γθ(1 + θ)− 1). (37)

Note that for θ ∈ I1 ∪ I2, θ(1 + θ) > 1, Hence γθ(1 + θ) > 1. This gives us that hγ(θ) > 1. Now we will track where
θ ∈ I1 ∪ I2 can end up after two stochastic gradient steps.

• For any b ∈ Γ, as θ ∈ I1 ∪ I2, we have

hγmax
(θ) ≥ hb(θ) ≥ hγmin

(θ) > 1,

note hγmax(θ) ≥ hb(θ) ≥ hγmin(θ) holds since θ < 1.
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• Now for any a ∈ Γ and x > 1, ha(x) is a decreasing function in x. Hence

ha(hγmax
(θ)) ≤ ha(hb(θ)) ≤ ha(hγmin

(θ)).

Using γmin ≤ a, ha(hγmin
(θ)) ≤ hγmin

(hγmin
(θ)), Similarly using γmax > a, we have, hγmax

(hγmax
(θ)) ≤

ha(hγmax(θ)). Combining them we get,

hγmax
(hγmax

(θ)) ≤ ha(hb(θ)) ≤ hγmin
(hγmin

(θ)). (38)

Similar argument can extend it to,

h1.25(h1.25(θ)) < ha(hb(θ)) < h1(h1(θ)). (39)

Lemma B.5. Let θt ∈ I2, there exists k > 0 such that θt+2k ∈ I1.

Proof. For any γ ∈ Γ, let θ+ = hγ(θ), then we have

hγ(hγ(θ))− θ = hγ(θ+)− θ = γθ(1− θ2) + γθ+(1− θ2+). (40)

Furthermore,

θ+ = θ + γθ(1− θ2) = θ(1 + γ(1− θ2)), (41)

1 + θ+ = 1 + θ + γθ(1− θ2) = (1 + θ)(1 + γθ(1− θ)), (42)

1− θ+ = 1− θ − γθ(1− θ2) = (1− θ)(1− γθ(1 + θ)). (43)

And multiplying the above three terms and adding θ(1− θ2), we get,

θ+(1− θ2+) + θ(1− θ2) = θ(1− θ2){1 +
[
(1 + γ(1− θ2))(1 + γθ(1− θ))(1− γθ(1 + θ))

]︸ ︷︷ ︸
P (θ)

} (44)

For θ ∈ I2, using γmin(2− ϵ)(1− ϵ) > 2, we have the inequalities

(1 + γ(1− θ2))(1 + γθ(1− θ)) > 1, (45)
(1− γθ(1 + θ)) < 1− γmin(2− ϵ)(1− ϵ) < −1, (46)

P (θ) < −1. (47)

Hence,

hγ(hγ(θ))− θ = γ(1− θ2)(1 + P (θ)) < 0. (48)

Therefore, for [1 − ϵ, 1), for any γ ∈ Γ, hγ(hγ(θ)) < θ. Hence for any two stochastic gradient step with a, b ∈ Γ, from
Eq.(36), θt+2 = ha(hb(θt)) ≤ hγmin(hγmin(θt)) < θt. From any point in I2, we have |θt+2− 1| > |θt− 1|, for any a, b ∈ Γ.
Intutively this means that in two gradient steps the iterates move further away from 1 until it eventually leaves the interval I2
as the sequence {θt+2k}k≥0 is strictly decreasing with no limit point in I2. From Lemma B.7 , we know that in two steps
the iterates will never leave I1 ∪ I2. Hence they will eventually end up in I1 leaving I2.

Property B.6. Define gγ(θ) := hγ(hγ(θ)) for the sake of brevity. The followings properties hold for θ ∈ I1 ∪ I2, γ ∈ Γ and
θγ the root of h

′

γ(θ):

Q1 gγ(θ) ≥ gγ(θγ).

Q2 The function gγ(.) is decreasing in [0.65, θγ) and increasing in (θγ , 1].

Proof. Note h
′

γ(θ) = 1 + γ − γ3θ2 has at most one root θγ ∈ (0, 1). Note that for all γ ∈ Γ, θγ ∈ I1 ∪ I2. For any γ,
g

′

γ(θ) = h
′

γ(hγ(θ))h
′

γ(θ). For any θ ∈ I1 ∪ I2, we have, hγ(θ) > 1 =⇒ h
′

γ(hγ(θ)) < 0. Therefore, g
′

γ(θ) has only one
root in I1 ∪ I2. Since θγ ∈ I1 ∪ I2, note g

′′

γ (θγ) = h
′

γ(hγ(θγ))h
′′

γ (θγ) > 0. Therefore, gγ(.) attains its minimum at θγ and
this shows the desired properties.
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Lemma B.7. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2.

Proof. Lower Bound: From Eq.(39), we know

h1.25(h1.25(θ)) < ha(hb(θ)) (49)

We know that from property Q1 that gγ(θ) ≥ gγ(θγ). Hence

g1.25(θ1.25) < g1.25(θ) < ha(hb(θ)) (50)

It can be quickly checked that .65 < g1.25(θ1.25). Hence the lower bound holds.

Upper Bound: From Eq.(39), we know

ha(hb(θ)) < h1(h1(θ)) (51)

We know that from property Q2 that g1(θ) ≤ max{g1(1), g1(0.65)}. It can be easily verified that g1(0.65) < 0.98. Hence
g1(θ) < 1.

Lemma B.8. For any θ ∈ I1 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 and ha(θ) ∈ (1 + ϵ, 1.162).

Proof. The lower bound in Lemma B.7 holds here. For the upper bound, from and Eq.(36),

ha(hb(θ)) ≤ hγmin(hγmin(θ)). (52)

Using property Q2,

hγmin
(hγmin

(θ)) ≤ max{gγmin
(1− ϵ), gγmin

(0.65)} (53)

From Eq.(48), gγmin
(1− ϵ) < 1− ϵ. From Eq.(39), gγmin

(0.65) < g1(0.65) < 0.98 < 1− ϵ. In I1, the function ha(.) first
increases reaches maximum and decreases. Hence for θ ∈ I1, ha(θ) ≥ min{ha(0.65), ha(1− ϵ)} .

ha(1− ϵ) ≥ 1− ϵ+ a(1− (1− ϵ)2)(1− ϵ), (54)

= 1− ϵ+ a(2ϵ− ϵ2)(1− ϵ), (55)

≥ 1− ϵ+ γmin(2ϵ− ϵ2)(1− ϵ), (56)
= 1 + ϵ+ ϵ (γmin(2− ϵ)(1− ϵ)− 2) > 1 + ϵ. (57)

Also ha(0.65) > h1(0.65) > 1.02 > 1 + ϵ, therefore ha(θ) > 1 + ϵ and this completes the proof.

C. Empirical Validation of the SDE Modeling
In this section, we experimentally check the validity of the SDE modeling of SGD in Eq.(8) in terms of the key metrics:
training loss, test loss, rank of the Jacobian, and feature sparsity.

SDE discretization. Let γt be the SDE discretization step size, ηt the step size of the corresponding SGD that we aim to
validate, δt the noise intensity level, and Zt ∼ N (0, In). Then we discretize the SDE from Eq.(8) as follows:

θt+1 = θt − γt∇θL(θt) +
√
γt
√
ηtδt ϕθt(X)⊤Zt. (58)

To approximate continuous time, we use a small discretization step size γt := ηt/10 and run the discretization for 10×
longer than the corresponding SGD run. We use ηt := ηSGD

⌊t/10⌋ and δt := c · L(θSGD
⌊t/10⌋) where c is a constant that we select

for each setting separately to match the training dynamics of the corresponding SGD run. In addition, we also evaluate a
discretization of gradient flow (i.e., Eq.(58) without the noise term) which helps to draw conclusions about the role of the
noise term.

Experimental results. We present the discretization results in Fig. 9 for all models considered in the paper except deep
networks for which computing the Jacobian ϕθt on each iteration of the SDE discretization is too costly. In all cases, the

18



SGD with Large Step Sizes Learns Sparse Features

Diagonal linear networks

0 20000 40000 60000 80000 100000

Iteration

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 20000 40000 60000 80000 100000

Iteration

10−4

10−3

10−2

10−1

T
es

t
lo

ss

0 20000 40000 60000 80000 100000

Iteration

50

75

100

125

150

175

200

ra
n
k

(φ
θ
(X

))

0 20000 40000 60000 80000 100000

Iteration

0

50

100

150

200

‖u
�
v
‖ 0

Gradient flow discretization (γ = 0.03) SGD η = 0.28, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.03)

Two-layer ReLU networks on 1D regression

0 5000 10000 15000 20000 25000 30000

Iteration

10−4

10−3

10−2

10−1

100

101

T
ra

in
lo

ss

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

0 50000 100000 150000 200000 250000 300000

Iteration

20

30

40

50

60

70

80

90

ra
n
k

(φ
θ
(X

))

0 5000 10000 15000 20000 25000 30000

Iteration

5%

10%

15%

20%

25%

F
ea

tu
re

sp
ar

si
ty

co
ef

.

Gradient flow discretization (γ = 0.00002) SGD η = 0.00020, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.00002)

Two-layer ReLU networks in a teacher-student setup

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10−4

10−3

10−2

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10

15

20

25

30

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10%

15%

20%

25%

30%

F
ea

tu
re

sp
ar

si
ty

Gradient flow discretization (γ = 0.05) SGD η = 0.46, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.05)

Three-layer ReLU networks in a teacher-student setup

0 2000 4000 6000 8000 10000

Iteration

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 2000 4000 6000 8000 10000

Iteration

10−2

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000

Iteration

100

110

120

130

140

150

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000

Iteration

30%

35%

40%

45%

50%

55%

60%

F
ea

tu
re

sp
ar

si
ty

co
ef

.,
la

ye
r

1

0 2000 4000 6000 8000 10000

Iteration

15%

20%

25%

30%

35%

40%

45%

50%
F

ea
tu

re
sp

ar
si

ty
co

ef
.,

la
ye

r
2

Gradient flow discretization (γ = 0.004) SGD η = 0.040, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.004)

Figure 9. Empirical validation of the SDE modeling. In all cases, the dynamics of the SDE discretization qualitatively matches the
dynamics of the corresponding SGD run. Moreover, gradient flow discretization exhibits no rank minimization or feature sparsity which
suggests that the presence of the noise plays a key role in learning sparse features.

dynamics of the SDE discretization qualitatively matches the dynamics of the corresponding SGD run. In particular, we
observe similar levels of decrease in the rank of the Jacobian and feature sparsity coefficient. We note that the match between
SDE and SGD curves is not expected to be precise due to the inherent randomness of the process. Finally, we observe that
gradient flow discretization exhibits no rank minimization or feature sparsity which suggests that the presence of the noise
(either from the original SGD or its SDE discretization) plays a key role in learning sparse features.

D. Additional Experimental Results
This section of the appendix presents additional experiments complementing the ones presented in the main text.
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Figure 10. Only for a large step size, the neurons wi cluster along
the teacher neurons w⋆

i leading to a model that uses a sparse set of
features.

Illustration of neuron dynamics. We illustrate the change
of neurons during training of two-layer ReLU networks
(without biases) in the teacher-student setup of Chizat et al.
(2019) (see Fig. 1 therein) using a large initialization scale
for which small step sizes of GD or SGD lead to lazy train-
ing. We illustrate (O1)–(O3) in Fig. 14 and show neuron
dynamics in Fig. 10. We see that for SGD with a small step
size, the neurons wi stay close to their initialization, while
for a large step size, there is a clear clustering of directions
wi along the teacher directions w⋆

i . The overall picture
is very similar to Fig. 1 of Chizat et al. (2019) where the
same feature learning effect is achieved via gradient flow
from a small initialization which is, however, much more
computationally expensive due to the saddle point at zero.
Finally, we note that the clustering phenomenon of neurons wi motivates the removal of highly correlated activations in the
feature sparsity coefficient: although the corresponding activations are often non-zero, many of them in fact implement the
same feature and thus should be counted only once.

Further results. We give a short overview of additional figures referred to in the main text. More details can be found in the
captions.

• Figure 11 shows that even if loss stabilization occurs in diagonal linear networks, the implicit bias towards sparsity is
largely weaker than that of SGD and generalization is poor.

• Figures 12 and 13 demonstrate that the implicit bias resulting from high-loss stabilization makes the neural nets learn
first a simple model then eventually fits the data.

• Figure 14 presents the sparsifying effect corresponding to the neurons’ movements exhibited in Figure 10.

• Figures 15 and 16 exhibit the feature sparsity in ResNet-18 / ResNet-34 architectures on CIFAR-10 and CIFAR-100
in the basic and state-of-the-art settings.

• Figure 17 showcases the features learning induced by large step sizes for different layers of ResNets-18 when trained
on CIFAR-10.
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Figure 11. Diagonal linear networks. Loss stabilization also occurs for full-batch gradient descent but does not lead to a similar level of
sparsity as SGD and also does not improve the test loss.
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Figure 12. Two-layer ReLU networks for 1D regression. Unlike for Fig. 4, here we use a larger warmup coefficient (500× vs. 400×)
which leads to overregularization such that the 50%-schedule run fails to fit all the training points and gets stuck at a too high value of the
training loss (≈ 10−0.5).
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Figure 13. Two-layer ReLU networks for 1D regression. Illustration of the resulting models from Fig. 4 over training iterations. We can
see that first the model is simplified and only then it fits the training data.
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Figure 14. Two-layer ReLU networks in a teacher-student setup. Loss stabilization for two-layer ReLU nets in the teacher-student setup
with input dimension d = 2. We observe loss stabilization, better test loss for longer schedules and sparser features due to simplification
of ϕ(X).
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ResNet-18 on CIFAR-10, basic setting (no momentum and augmentations)
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ResNet-18 on CIFAR-10, state-of-the-art setting (with momentum and augmentations)
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Figure 15. ResNet-18 trained on CIFAR-10. Both in the basic and state-of-the-art settings, the training loss stabilizes, the test loss
noticeably depends on the length of the schedule, and the feature sparsity coefficient is minimized over iterations.

ResNet-34 on CIFAR-100, basic setting (no momentum and augmentations)
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ResNet-34 on CIFAR-100, state-of-the-art setting (with momentum and augmentations)
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Figure 16. ResNet-34 trained on CIFAR-100. Both in the basic and state-of-the-art settings, the training loss stabilizes, the test loss
significantly depends on the length of the schedule, and feature sparsity is minimized over iterations. However, differently from the plots
on CIFAR-10, here without explicit regularization we observe oscillating behavior after the step size decay (although at a very low level
between 10−4 and 10−2).
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Early layer
Initial Small η Large η

Middle layer
Initial Small η Large η

Last layer
Initial Small η Large η

Figure 17. Visualization on four sets of convolutional filters taken from different layers of ResNets-18 trained on CIFAR-10 with small vs.
large step size η (the 50% decay schedule). For small step sizes, the early and middle layers stay very close to randomly initialized ones
which indicates the absence of feature learning.
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