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Abstract

Multilayer perceptron (MLP) has been widely used in two-
view correspondence learning for only unordered correspon-
dences provided, and it extracts deep features from individual
correspondence effectively. However, the problem of lacking
context information limits its performance and hence, many
extra complex blocks are designed to capture such informa-
tion in the follow-up studies. In this paper, from a novel
perspective, we design a correspondence learning network
called ConvMatch that for the first time can leverage convolu-
tional neural network (CNN) as the backbone to capture bet-
ter context, thus avoiding the complex design of extra blocks.
Specifically, with the observation that sparse motion vectors
and dense motion field can be converted into each other with
interpolating and sampling, we regularize the putative motion
vectors by estimating dense motion field implicitly, then rec-
tify the errors caused by outliers in local areas with CNN, and
finally obtain correct motion vectors from the rectified mo-
tion field. Extensive experiments reveal that ConvMatch with
a simple CNN backbone consistently outperforms state-of-
the-arts including MLP-based methods for relative pose es-
timation and homography estimation, and shows promising
generalization ability to different datasets and descriptors.

Introduction
Two-view corresponding is a fundamental problem in com-
puter vision. It aims to establish sparse feature correspon-
dences/matches between two-view images and estimate ge-
ometry relationship, serving as a premise for many complex
vision problems such as structure from motion (Snavely,
Seitz, and Szeliski 2008), simultaneous location and map-
ping (Mur-Artal, Montiel, and Tardos 2015), visual localiza-
tion (Philbin et al. 2010), and image fusion (Xu et al. 2022).
The most classical geometry matching pipeline starts from
feature extraction and matching, and great efforts have been
spent on handcrafted or learning-based detectors and de-
scriptors, e.g., SIFT (Lowe 2004) and SuperPoint (DeTone,
Malisiewicz, and Rabinovich 2018). Outlier rejection is then
applied to preserve correct matches (a.k.a. inliers) and re-
ject false ones (a.k.a. outliers) caused by sensitive detector-
descriptor methods, estimating relative pose robustly. This
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(a) Interconversion of dense motion field and sparse motion vectors

(b) Framework of ConvMatch for two-view correspondence learning
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Figure 1: Illustrations of the proposed framework for cor-
respondence learning. Lines or arrows colored with blue are
inliers, with red are outliers, and with green are rectified out-
liers. The head and tail of each arrow correspond to the posi-
tions of feature points in two images. (a) Interconversion of
dense motion field and sparse motion vectors, where motion
field can act as the bridge between unordered and ordered
motion vectors. From left to right: putative correspondences,
sparse unordered motion vectors, dense motion filed, sparse
ordered motion vectors. (b) Our framework with three steps:
regularizing the unordered motion vectors to ordered ones
with motion field F , rectifying errors of ordered motion
vectors with CNN, recovering the unordered motion vectors
from rectified ordered ones with rectified motion field F̃ .

paper also focuses on removing outliers to obtain two-view
correspondences and geometry relationship accurately.

Among the traditional methods, RANSAC (Fischler and
Bolles 1981) and its variants (Raguram et al. 2012; Barath,
Matas, and Noskova 2019) obtain the smallest consistent
inlier set to fit a given transformation model. The locality
consistency-based methods such as LPM (Ma et al. 2019)
and GMS (Bian et al. 2017) are also well developed, together
with another active topic based on motion field consensus,
e.g., CRC (Fan et al. 2021) and VFC (Ma et al. 2014). How-
ever, handcrafted methods often fail in case of heavy outliers
due to extreme viewpoint changes or repetitive structures,
which often occur in the feature matching problem. Hence,
researchers seek help from more powerful learning-based
techniques. After PointCN (Yi et al. 2018) first consider-



ing the outlier rejection as a binary classification problem
under the multilayer perceptron (MLP) framework, many
other algorithms are proposed with the similar MLP-based
network, e.g., PointACN (Sun et al. 2020), OANet (Zhang
et al. 2019), LMCNet (Liu et al. 2021), and CLNet (Zhao
et al. 2021). The essential reason for such a unified network
design is the sparse and unordered nature of point correspon-
dences, and only MLP can extract deep features stably in this
case. However, the individual feature-extraction property of
MLP leads to a huge defect, i.e., lack of context informa-
tion, which is indispensable for two-view correspondence
and geometry learning. Therefore, the MLP-based methods
have to design extra blocks to capture context as a rem-
edy. Although promising performance has been achieved us-
ing this pipeline, shortcomings still exist. For example, in
PointCN and PointACN, normalization operation only cap-
tures global context information. In OANet and LMCNet,
permutation-invariance pooling-like operation increases the
difficulty of training. While in CLNet, sorting operation ex-
acerbates instability easily. Clearly, all these problems in ex-
tra blocks have negative impacts on context information in-
corporation. In this case, one may wonder how to further
solve this problem: continuing to improve the context cap-
turing block, or just substituting context-agnostic MLP with
a context-perception network?

It is widely known that convolutional neural network
(CNN) can incorporate local information directly and global
information gradually such as in image recognition or seg-
mentation (He et al. 2016; Minaee et al. 2021). If we can use
CNN instead of MLP to extract deep features for correspon-
dences, the lack of local and global context information can
be naturally solved with the larger receptive field of CNN.
However, CNN operates only on ordered data such as im-
age and feature map while point correspondences are totally
unordered.

Fortunately, with the observation that dense motion field
can be interpolated with sparse motion vectors and the
sparse vectors can be sampled on the dense field in turn, the
motion field can act as the bridge between unordered cor-
respondences and ordered motion vectors as shown in Fig-
ure 1(a). In particular, after calculating the motion vector
of each correspondence, we interpolate a dense motion field
F , and then sample at equal intervals to obtain ordered data.
Clearly, the reverse process is also available. In this way,
CNN is applicable in two-view correspondence learning.

Based on the above analysis, we propose a new frame-
work for two-view correspondence learning, called Con-
vMatch, as shown in Figure 1(b). We first regularize the
unordered motion vectors into an image structure-like data
with motion field F estimated by an interpolated operation
implicitly. Then we rectify the error of each ordered motion
vector with the context information by CNN. From another
perspective, the errors caused by outliers are regarded as the
noise on motion field, and CNN can filter out it naturally
with its low-pass character, thus the rectification is analo-
gous to the denoising operation. Finally, with a similar inter-
polated operation to estimate the rectified motion field F̃ , we
obtain correct motion vectors for all correspondences from
the rectified ordered vectors, and the inliers and outliers can

be distinguished accordingly.
In summary, our main contributions are as follows:

• Rather than the MLP-based network together with extra
context capturing blocks for two-view correspondence
learning, we design a new framework with CNN to in-
corporate context information, avoiding the complex de-
sign and various shortcomings of additional blocks. To
our best knowledge, it is the first time leveraging CNN
as the backbone to solve the outlier rejection problem.

• With the observation that sparse motion vectors and
dense motion field can be converted into each other, we
regularize the sparse unordered motion vectors by esti-
mating motion field implicitly, so that they can be pro-
cessed by CNN rather than being restricted to MLP-
based equivalent permutation network.

• We implement a specific network of the new framework
named as ConvMatch. We demonstrate its effectiveness
on relative pose estimation and homography estimation,
which consistently outperforms the current state-of-the-
arts. We also further analyze the effects of CNN, regular-
izing and rectifying processes.

Methodology
The key innovation of our network lies in using CNN to
capture context information while extracting deep features
instead of MLP with extra blocks. To this end, we con-
vert the unordered motion vectors into ordered ones that can
be processed by CNN, in which the conversion is achieved
with a motion field estimated implicitly. Then, we incor-
porate context information to rectify the ordered motion
vectors with CNN analogous to the denoising problem.
As shown in Figure 2, given N putative correspondences
{(xi,yi)|i = 1, . . . , N,xi ∈ R2,yi ∈ R2}, the input of the
network is the putative motion vectors {mi = (xi,di)|i =
1, . . . , N,mi ∈ R4}, where xi and yi are the coordinates
of two corresponding keypoints, and di = yi−xi is the dis-
placement. The output is the logits for inlier/outlier classifi-
cation {ẑi|i = 1, . . . , N}. Specifically, we first initialize the
motion vectors in high dimensional space, and the coordi-
nates of ordered motion vectors as well. Then regularize the
unordered motion vectors followed by rectification on the
ordered ones with CNN. Finally, we recover the unordered
motion vectors from the rectified ordered ones in turn. The
inlier/outlier classification results are then predicted by com-
paring the ultimate unordered motion vectors with the orig-
inal ones. Built on the operations of Regularize, Rectify and
Recover, ConvMatch is stacked L times totally. In the fol-
lowing, we present the new framework for outlier rejection
and describe the specific network ConvMatch in detail.

Motion Vector Initialization
We use the sparse motion vectors {mi} as the input because
the motion field served as the bridge in Figure 1(a) is inter-
polated by them. However, the dimension of motion vector
is too low to extract the deep features, hence as LMCNet
(Liu et al. 2021) has done, we convert it to high dimensional
motion vector f i ∈ RC for input layer (layer 0):

(0)f i = E(mi), i = 1, . . . , N, (1)



Motion vector 
embedding𝒎 𝒇ℓ 

𝑿୰୧ୢ

ℱℓ

Regularize

Rectifying Conv Layer ൈ 𝐿

�̂�
ℓ

𝒇ℓାଵ
Rectify

Recover

ℱ෨ℓ
-Grid 

embedding
Inlier 

predictor
CNN

Figure 2: Architecture of ConvMatch. The Rectifying Conv Layer includes Regularize, Rectify and Recover blocks. Specifi-
cally, the Regularize block generates ordered motion vectors (ℓ)F grid from the unordered ones { (ℓ)f i} by sampling on implic-

itly estimated motion field (ℓ)F . The Rectify block rectify the errors in (ℓ)F grid with CNN and obtain
(ℓ)

F̃
grid

. The Recover

block outputs the rectified unordered motion vectors { (ℓ+1)f i} by sampling on the rectified motion field
(ℓ)

F̃ estimated from
(ℓ)

F̃
grid

. For each Rectifying Conv Layer, the input is the embedded unordered motion vectors { (ℓ)f i} and a fixed embedded
grid Xgrid. The output logits { (ℓ)ẑi} are used to calculate losses and classify inliers/outliers.

where E(·) means upgrading the dimension of motion vector
to C by conducting positional embedding (Vaswani et al.
2017), here we choose C = 128.

Then, due to the image structure-like data required by
CNN, we hope to sample on the motion field at the same
intervals. To this end, we divide bounded 2D space of image
into a K×K grid, sampling at the center of the grid xgrid

j,k to
obtain the ordered motion vector. Similarly, to better sample
with network, we embed xgrid

j,k to high dimensional space:

Xgrid
j,k = Up(xgrid

j,k ), j, k = 1, . . . ,K, (2)

where Up(·) is a simple MLP that maps variable from low
dimensional space to high dimensional space, and Xgrid

j,k ∈
RC with C = 128.

Ordered Motion Vector Generation
As mentioned above, to satisfy the requirement of CNN for
input data, we should interpolate a dense motion field and
then sample at the equal-interval location to obtain ordered
motion vectors. In traditional methods, interpolating mo-
tion field is normally realized by regularization (Baldassarre
et al. 2012). The process can be expressed briefly as:

F = ϕ({mi}), i = 1, . . . , N, (3)

where ϕ(·) is interpolating function, and F is the estimated
motion field. Then the ordered motion vector mgrid

j,k can be

sampled easily from F at the center of the grid xgrid
j,k :

mgrid
j,k =

(
xgrid
j,k ,d

grid
j,k

)
=

(
xgrid
j,k ,F(xgrid

j,k )
)

=
(
xgrid
j,k , ϕ({mi})|xgrid

j,k

)
.

(4)

However, the function ϕ(·) depends on the handcrafted
kernel and regularization parameter, and is hard to process
the high dimensional expressions in our network. Therefore,
we use the GAT network (Veličković et al. 2018) G(·, ·) in-
stead to interpolate motion field F implicitly and generate

ordered motion vector directly:

mgrid
j,k = G

(
{mi},xgrid

j,k

)
. (5)

Re-write it in high dimensional space according to Eqs. (1)
and (2) with matrix form:

(ℓ)F grid = G
(
{ (ℓ)f i}, {X

grid
j,k }

)
= G

(
(ℓ)F ,Xgrid

)
, (6)

where (ℓ)F grid = { (ℓ)f grid
j,k } and (ℓ)f grid

j,k is the high dimen-

sional embedding of mgrid
j,k . By simplifying the variable no-

tations of (ℓ)F and Xgrid, we further define G(F ,X) as:

G(F ,X) = Comb(X,Aggr(X,F )), (7)

where Aggr(·, ·) tries to estimate the motion field at the po-
sition of X by aggregating all known motion vectors F , and
Comb(·, ·) tries to combine the motion filed information and
location information on grid center points to obtain the new
motion vectors F grid. Specifically:

Aggr(X,F ) = Softmax(QKT )V ,

Q = W 1X + b1,[
K
V

]
=

[
W 2

W 3

]
F +

[
b2
b3

]
,

(8)

where W 1,W 2,W 3 are learnable weights and b1, b2, b3
are learnable biases, and

Comb(X,A) = X + MLP(X∥A), (9)

where A indicates the result of function Aggr(·, ·), and ∥
means concatenating by channels.

With ordered motion vector generation, we transfer the
putative motion vectors to the ordered ones. The transfor-
mation is achieved by interpolating a dense motion field
implicitly then sampling, i.e., Eq. (6). In the following, we
aim to reconstruct the ordered motion vectors into an image
structure-like data, and handle it with CNN to rectify the er-
rors caused by outliers.
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Figure 3: Architecture details of CNN backbone. It is
stacked with 3 Resblocks consisting of 3 × 3 convolu-
tional layer, batch normalization, Relu activation function
and shortcut connection, and finally scales the result adap-
tively. Note that we do not use the Context Normalization
which is heavily reused in MLP-based methods.

Rectify Motion Vectors with CNN

The ordered motion vectors (ℓ)F grid = { (ℓ)f grid
j,k } obtained

according to Eq. (6) can represent the dense motion field
F due to the local consistent of the motion field. Thus,
by selecting the motion vectors in sequence we reshape
{ (ℓ)f grid

j,k ∈ RC , j, k = 1, . . . ,K} to an image structure-
like data (ℓ)I ∈ RK×K×C , which can be considered as
the digital form of dense analogue motion field. Due to the
fact that the motion field built by inliers are smoother and
more local consistent than that with outliers (Ma et al. 2014),
once obtaining a motion field with heavy outliers, we can

smooth it to get the more consistent one
(ℓ)

F̃ . By doing so,
the contaminated motion field are fixed to filter out outliers.
Therefore, we further consider outlier rejection as a denois-
ing problem where outliers are noise signals, rectifying the
errors caused by outliers of the motion field with CNN:

(ℓ)
Ĩ = CNN

(
(ℓ)I

)
. (10)

Note that the CNN not only smooths the motion field to re-
duce the influence of outliers, but also incorporates local
and global context information from neighboring up to all
motion vectors. This information is conducive to rectify the
vector far different from its neighbors into similar to them,
which cannot be achieved with MLP.

We choose a simple Resblock (He et al. 2016) that con-
tains only two convolutional layers followed by batch nor-
malization (Ioffe and Szegedy 2015) and Relu (Glorot, Bor-
des, and Bengio 2011) activation function with shortcut con-
nection, as shown in Figure 3. We simply stack the Resblock
three times in a layer, which is sufficient to get satisfying re-
sults, proving the effectiveness of the CNN backbone.

By Eq. (10), the ordered digital motion field is smoothed
and rectified by a CNN block, means that original mo-

tion field represented by (ℓ)F is transferred to
(ℓ)

F̃ , then
(ℓ)

Ĩ can be re-expanded to sequence
(ℓ)

F̃
grid

= {
(ℓ)

f̃
grid
j,k },

where
(ℓ)

f̃
grid
j,k describes the motion vector of the corre-

sponding grid center in the new motion field
(ℓ)

F̃ .

Unordered Motion Vector Recovery
Ideally, the errors on motion vectors caused by outliers are

rectified after obtaining
(ℓ)

F̃
grid

. However, a single Rectify-
ing Conv Layer may not work well, and it is typically neces-
sary to filter out outliers progressively with multiple layers
(Ma et al. 2019). To this end, we convert the rectified ordered
motion vectors back to the unordered ones. As the same as
Eq. (5), we estimate rectified motion field F̃ implicitly and
obtain the new motion vector of each correspondence:

m̃i =
(
xi, F̃(xi)

)
= G

(
{ (ℓ)

m̃
grid
j,k },xi

)
, (11)

Re-write it in high dimensional space with matrix form as
well:

(ℓ+1)F =
(ℓ)

F̃ = G
(

(ℓ)
F̃

grid
, (ℓ)X

)
, (12)

where (ℓ)X = { (ℓ)Xi} should be the high dimensional em-
bedding of {xi} to provide the location information of orig-
inal motion vectors. Particularly, such information is avail-
able in original high dimensional motion vectors (l)F , we
can replace (ℓ)X with it, which also helps our network to
retrieve the possible information missing in the regularizing
processes:

(ℓ+1)F =
(ℓ)

F̃ = G
(

(ℓ)
F̃

grid
, (ℓ)F

)
. (13)

Note that (0)F is obtained from Eq. (1), and G is defined
as the same as Eq. (7). The new high dimensional mo-

tion vectors
(ℓ)

F̃ = {
(ℓ)

f̃ i} are the input of next layer as
(ℓ+1)F = { (ℓ+1)f i}.

Inlier Predictor
With Eq. (13), the new motion vector

(ℓ)
f̃ i substitutes (ℓ)f i

after a complete Rectifying Conv Layer. To judge whether
the correspondence (xi,yi) is an inlier or not, a common ap-

proach is comparing the similarity of (ℓ)f i and
(ℓ)

f̃ i using
Euclidean distance with the role that motion vector of inlier
should not change a lot after rectifying but outlier changes
significantly, classifying inliers and outliers with a thresh-
old. However, calculating similarity makes training process
unstable easily. Refer to other learning-based methods (Sun
et al. 2020; Chen et al. 2021), we add extra inlier predictor
in each layer while training but only preserve the last one at

inference. The input of inlier predictor is
(ℓ)

f̃ i −
(ℓ)f i, and

the predictor maps it to one dimension, outputting logit (ℓ)ẑi
for classification. Note that only the output of the last layer
ẑi =

(L−1)ẑi is used to classify the inlier at inference. The
structure of inlier predictor is shown in Figure 4.

Loss Functions
Our ConvMatch outputs the logits (ℓ)ẑ = { (ℓ)ẑi} similar to
PointCN, OANet, etc., so we use the same classification loss
function and regression loss function:

L =

L−1∑
ℓ=0

Lcls

(
z, (ℓ)ẑ

)
+ λLreg

(
E,

(ℓ)
Ê

)
, (14)
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Figure 4: Architecture details of inlier predictor. The input is
the difference between each motion vector before and after
the Rectifying Conv Layer. With projection blocks, the pre-
dictor reduces the dimension of feature difference and out-
puts the logit (ℓ)ẑi for classification and loss calculation.

where superscript (ℓ) means the ℓ-th layer, and we sum up
the classification and regression losses of all layers.

The classification loss function Lcls is a simple binary
cross entropy loss, and z is the weakly supervised label
judged by a threshold of 10−4 after calculating the Samp-
son distance (Hartley and Zisserman 2003). Lreg is also ob-
tained with the Sampson distance:

Lreg (E, Ê) =

N∑
i=1

(
yT
i Êxi

)2

∥Exi∥2[1] + ∥Exi∥2[2] + ∥ETyi∥2[1] + ∥ETyi∥2[2]
,

(15)
where Ê is calculated by the weighted eight-point algorithm
(Yi et al. 2018), ∥v∥[m] denotes the m-th element of vector
v. λ is the hyper-parameter to balance two loss functions.

Implementation Details
In our implementation, coordinates of correspondences are
normalized to the range [−1, 1] using the image size and
camera intrinsic if available. Our ConvMatch contains the
same Rectifying Conv Layer stacked 6 times which means
L = 6, ℓ ∈ {0, . . . , 5}, and we set K = 16 in regular-
izing process for performance and time balance, more de-
tails are discussed in parameter analysis. Putative correspon-
dences are established with SIFT features and nearest neigh-
bor method, and we extract up to 2000 correspondences for
each image pair. We use Adam (Kingma and Ba 2015) op-
timizer during training with a learning rate of 10−4 during
the first 80k iterations and then 5 × 10−5 in the rest 420k
iterations, and batch size 32. Weight λ is 0 during the first
20k iterations and then 0.5.

Experiment Results
We conduct experiments to evaluate ConvMatch with the
tasks of relative pose estimation and homography estima-
tion. In addition, we discuss the parameter setting and ana-
lyze our method comprehensively to demonstrate the effec-
tiveness of the CNN backbone, regularizing and rectifying
processes.

Relative Pose Estimation
The relative pose estimation tries to estimate the positional
relationship (rotation and translation) between the cameras

Table 1: Outdoor relative pose estimation with RANSAC.
All learning-based methods are trained on YFCC100M
dataset with SIFT features following OANet (Zhang et al.
2019), except for SuperGlue (Sarlin et al. 2020) of which
we use the results reported in their supplementary material.

Method AUC
@5◦ @10◦ @20◦

CRC 12.05 23.17 36.53
GMS 13.29 24.38 37.83
LPM 15.99 28.25 41.76
VFC 17.43 29.98 43.00

PointCN 26.73 44.01 60.49
OANet 27.26 45.93 63.17
CLNet 31.45 51.06 68.40

LMCNet 30.48 49.84 66.94
MS2DGNet 31.55 50.94 68.34

ConvMatch (Ours) 31.69 51.41 68.45
SuperGlue* 30.49 51.29 69.72

Table 2: Outdoor relative pose estimation without RANSAC.
Additional row for OANet with RANSAC to show the com-
petitive performance of ConvMatch even without RANSAC.

Method AUC
@5◦ @10◦ @20◦

PointCN 10.16 24.43 43.31
OANet 15.92 35.93 57.11
CLNet 24.34 44.69 63.61

LMCNet 22.35 43.57 63.34
MS2DGNet 20.61 42.90 64.26

ConvMatch (Ours) 26.83 49.14 67.91
OANet w. RANSAC 27.26 45.93 63.17

that capture the image pair with the predicted inliers. Fol-
lowing the same settings in OANet, we exploit the out-
door YFCC100M (Thomee et al. 2016) and indoor SUN3D
(Xiao, Owens, and Torralba 2013) datasets. The input pu-
tative correspondences up to 2000 are detected with SIFT
features and matched with nearest neighbor (NN) method.
We calculate the AUC (Yi et al. 2018; Zhang et al. 2019)
of the maxima pose error of rotation and translation at the
thresholds (5◦, 10◦, 20◦) to evaluate pose estimation accu-
racy. In addition, we report the F-score which considers pre-
cision and recall all together to evaluate inlier/outlier classi-
fication performance. We consider that the correspondence
whose epipolar distance is smaller than a certain threshold
(e.g. 10−4) is correct.

We compare ConvMatch with both classical outlier rejec-
tion methods such as CRC (Fan et al. 2021), GMS (Bian
et al. 2017), LPM (Ma et al. 2019), VFC (Ma et al. 2014),
and learning-based methods such as PointCN (Yi et al.
2018), OANet (Zhang et al. 2019), CLNet (Zhao et al. 2021),
LMCNet (Liu et al. 2021), MS2DGNet (Dai et al. 2022). For
outdoor relative pose estimation, we compare our method
with the feature matching method SuperGlue (Sarlin et al.
2020) additionally.



Table 3: Indoor relative pose estimation with RANSAC. All
learning-based methods are trained on SUN3D dataset with
SIFT features following OANet (Zhang et al. 2019).

Method AUC
@5◦ @10◦ @20◦

CRC 4.07 10.44 20.87
GMS 4.12 10.53 20.82
LPM 4.80 12.28 23.77
VFC 5.26 13.05 24.84

PointCN 6.09 15.43 29.74
OANet 6.78 17.10 32.41

LMCNet 6.84 17.62 33.43
MS2DGNet 7.13 17.80 33.47

ConvMatch (Ours) 7.32 18.45 34.41

Table 4: Indoor relative pose estimation without RANSAC.

Method AUC
@5◦ @10◦ @20◦

PointCN 3.05 10.00 24.06
OANet 5.93 16.91 34.32

LMCNet 7.08 19.09 37.15
MS2DGNet 5.88 16.83 34.28

ConvMatch (Ours) 8.76 22.23 40.49

For outdoor data, the estimation results with RANSAC
(Raguram et al. 2012) as robust essential matrix estimator
are shown in Table 1. We also report the results without it in
Table 2, where the relative pose is calculated from the essen-
tial matrix predicted by network directly with the weighted
eight-point algorithm (Yi et al. 2018). The threshold used
to classify the correspondence is set to 0 for all experi-
ments (the same in other sections, unless otherwise speci-
fied), which means that (xi,yi) is inlier if ẑi > 0. However,
we find that the value of threshold does affect the estima-
tion results, especially for learning-based methods. Thus we
test them under different thresholds and draw the results of
AUC@5◦ and F-score in Figure 5. Combining Table 1 and
Figure 5, we can conclude that ConvMatch performs better
than state-of-the-arts no matter with a fixed threshold for its
higher AUC metric, or with changeable thresholds for its
higher peak value in AUC and F-score metrics. For indoor
data, we also report the results with/without RANSAC in Ta-
bles 3 and 4, respectively. ConvMatch still outperforms oth-
ers, delivering the best AUC. We further illustrate the quali-
tative results of outlier rejection and relative pose estimation,
as shown in Figure 6, ConvMatch can capture stronger con-
text so that reversing more inliers and less outliers, and still
estimating good relative pose while some other methods fail
for the viewpoint and scale changing dramatically.

Homography Estimation
Homography estimation is a basic yet critical task in
computer vision. We perform homography estimation ex-
periment on HPatches benchmark (Balntas et al. 2017)
with RANSAC. There are 116 scenes with 696 images in
HPatches, where 57 scenes are taken under different illumi-

Figure 5: Outdoor relative pose estimation results on
AUC@5◦ and F-score with inlier classification threshold
changing. Note that CLNet (Zhao et al. 2021) and LMC-
Net (Liu et al. 2021) are the most recent well-performed
learning-based methods.

OANet LMCNet ConvMatch (Ours)
Figure 6: Qualitative illustration of outlier rejection. Image
pairs from left to right are outlier rejection results of OANet,
LMCNet and ConvMatch, respectively. The false matches
are marked with red while correct matches are marked with
blue. The relative pose estimation result is provided in the
top left corner of each image pair.

nation and others undergo viewpoint changes. Each scene
consists of 6 images, one for reference and others for tar-
gets with ground-truth homography. We detect keypoints up
to 4000 with SIFT and match them with NN method. For
metric, we follow the suggestion of SuperPoint (DeTone,
Malisiewicz, and Rabinovich 2018), adopting the homog-
raphy error to classify an estimate to be accurate or not by a
threshold as 3 pixels here. We calculate mean accurate of all
image pairs as Acc., and F-score (F.) for inlier/outlier clas-
sification. We also report the mean time cost of each image
pair.

We compare ConvMatch with almost the same learning-
based methods as relative pose estimation. The models we
used are trained with SIFT features on YFCC100M dataset.



Table 5: Homography estimation results. We report the mean
time of inference for all methods additionally.

Method Acc. F. Time (ms)
PointCN 67.93 81.74 7.26
OANet 69.66 81.87 13.36
CLNet 57.07 64.16 25.96

LMCNet 72.93 85.44 318.99
MS2DGNet 72.07 81.01 18.51

ConvMatch (Ours) 73.45 83.80 22.09

Table 6: Generalization ability test. We repeat relative pose
estimation on different datasets with multiple descriptors ex-
ploiting the same model. AUC@10◦ without RANSAC is
reported.

Method YFCC100M SUN3D
RootSIFT SuperPoint SIFT RootSIFT SuperPoint

PointCN 24.71 14.94 1.56 1.71 3.52
OANet 36.43 20.49 3.37 3.64 3.42
CLNet 44.71 24.05 2.66 2.84 3.45

LMCNet 44.42 23.63 5.41 5.59 4.15
MS2DGNet 43.60 25.24 5.49 5.75 3.93

ConvMatch (Ours) 50.03 29.31 7.34 7.78 6.42

The results are shown in Table 5. ConvMatch outperforms
other methods in homography estimation for its best Acc.,
although only achieves competitive performance on F-score.
This is because ConvMatch can make use of context in-
formation more comprehensively and evenly in the image
with CNN, which is more friendly to homography estima-
tion even in difficult scenes while other methods fail. In ad-
dition, our method takes exciting inference time especially
compared with the most recent methods (CLNet, LMCNet,
and MS2DGNet).

Analysis
We further analyze ConvMatch in this section, including the
generalization ability on different datasets with multiple de-
scriptors while using the same parameter model, the param-
eter analysis to determine the network structure, and the ab-
lation studies to reveal the effectiveness of our framework
and CNN backbone.

Generalization Ability. To demonstrate the good gen-
eralization ability of ConvMatch, we repeat the relative
pose estimation for learning-based methods on YFCC100M
with RootSIFT or SuperPoint, and on SUN3D with SIFT,
RootSIFT or SuperPoint, employing the models trained on
YFCC100M with SIFT only. Note that we generate Root-
SIFT keypoints up to 2000 as the same as SIFT, but Super-
Point keypoints up to 1000, and use NN method to obtain
putative correspondences. As shown in Table 6, ConvMatch
achieves the best performance in all cases, which proves the
robustness context incorporation of CNN in our method.

Parameter Analysis. The parameter values of layer num-
ber L and grid number K affect a lot for a larger L leads to
more rectifying processes and a larger K makes ordered mo-
tion vectors finer, which ideally contribute to better perfor-
mance but more consumption. After multiple attempts, we
choose L = 6,K = 16 to achieve performance and con-

Table 7: Parameter analysis of L and K. We finally choose
L = 6,K = 16 marked in bold. And the metric of perfor-
mance is AUC@20◦ without RANSAC. Note that one of the
parameters is fixed while another changes.

Metric L = 4 L = 6 L = 8 K = 8 K = 16 K = 24
AUC@20◦ 63.79 67.91 68.89 66.64 67.91 67.94
Time (ms) 16.90 23.49 29.04 23.43 23.49 23.59

Table 8: The results of ablation studies. All models are
trained on YFCC100M with SIFT features and evaluated
with exactly the same settings followed by RANSAC.

Method AUC
@5◦ @10◦ @20◦

ConvMatch-Classify 29.88 48.49 65.92
ConvMatch-MLP 30.79 49.43 66.21

ConvMatch 31.69 51.41 68.45
ConvMatch-UNet 33.30 53.02 69.96

sumption balance. And the results of outdoor relative pose
estimation in Table 7 with different L and K can support
our choice, where a larger L or K achieves similar perfor-
mance but more costs while the smaller one causes obvious
degradation for pose estimation.

Ablation Studies. Moreover, to demonstrate the effec-
tiveness of the regularizing and rectifying processes in Fig-
ure 1(b), we directly classify the unordered correspondences
with GAT network completely as the same as SuperGlue
(Sarlin et al. 2020), named as ConvMatch-Classify. The re-
sult is worse than ConvMatch that rectifies the errors of
the motion field with CNN, which demonstrates the impor-
tant role the regularizing and rectifying processes play. To
demonstrate the positive influence of CNN which incorpo-
rates context information more comprehensively and rec-
tify the motion field more naturally, we exchange the CNN
backbone with MLP followed by Context Normalization (Yi
et al. 2018) to capture context, named as ConvMatch-MLP.
Our full ConvMatch performs better than it, which reveals
that rectifying the motion field can reject more outliers and
the CNN does capture context information better. In addi-
tion, we exchange the simple backbone with a sophisticated
CNN architecture UNet, named as ConvMatch-UNet. The
result reveals that our new framework in Figure 1(b) has
great potential in performance boost with a well-designed
CNN backbone. All the results are shown in Table 8.

Conclusion
In this paper, we design a new network called ConvMatch
with CNN acting as the backbone instead of MLP to cap-
ture better context information. With the character that dense
motion field and sparse motion vectors can be converted into
each other, we regularize the putative motion vectors, so that
rectifying the errors of outliers with CNN. Extensive exper-
iments demonstrate the superiority of our method over the
state-of-the-arts and the competitive inference time as well,
and that more powerful backbone network can achieve fur-
ther enhancement.
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