
Published as a SSI-FM Workshop paper at ICLR 2025

AN ARCHITECTURE SEARCH FRAMEWORK FOR
INFERENCE-TIME TECHNIQUES

Jon Saad-Falcon†∗, Adrian Gamarra Lafuente†, Shlok Natarajan†, Nahum Maru†,
Hristo Todorov†, Etash Guha‡, E. Kelly Buchanan†, Mayee Chen†, Neel Guha†,

Christopher Ré†, Azalia Mirhoseini†

† Stanford University
‡ University of Washington

ABSTRACT

Inference-time techniques, such as repeated sampling or iterative revisions, are
emerging as powerful ways to enhance large-language models (LLMs) at test time.
However, best practices for developing systems that combine these techniques
remain underdeveloped due to our limited understanding of the utility of each
technique across models and tasks, the interactions between them, and the massive
search space for combining them. To address these challenges, we introduce
ARCHON, a modular and automated framework for optimizing the process of
selecting and combining inference-time techniques and LLMs. Given a compute
budget and a set of available LLMs, ARCHON explores a large design space to
discover optimized configurations tailored to target benchmarks. It can design
custom or general-purpose architectures that advance the Pareto frontier of accuracy
vs. maximum token budget compared to top-performing baselines. Across
instruction-following, reasoning, and coding tasks, we show that ARCHON can
leverage additional inference compute budget to design systems that outperform
frontier models such as OpenAI’s o1, GPT-4o, and Claude 3.5 Sonnet by an average
of 15.1%. ARCHON is open-source and plug-and-play, allowing users to select from
existing inference-time techniques (or add new ones) while optimizing for their
desired objective functions: task performance, cost, latency, and more.

1 INTRODUCTION

Inference-time techniques—strategies that use additional compute during model inference—are
gaining traction as effective methods for improving model capabilities. LLMs, such as OpenAI’s o1
(OpenAI, 2024a), QwQ (Team, 2024), and Sky-T1 (Team, 2025), utilize such techniques to translate
additional inference compute into better performance across a broad set of tasks. Example techniques
include generation ensembling, ranking, and fusion, where models in the ensemble are queried in
parallel, their responses are ranked, and the best ones are fused into a single, higher quality output,
respectively (Jiang et al., 2023b; Wang et al., 2024). Other types of inference-time techniques are
based on querying a single LLM successively (via repeated sampling) and using a voting strategy
or unit tests to select the top generation (Brown et al., 2024; Chen et al., 2024; Li et al., 2024a).

Recent work has made progress towards building robust inference-time architectures: systems
composed of one or more large language models (LLMs) leveraging inference-time techniques.
Examples include Mixture-of-Agents (MoA) (Wang et al., 2024) and LLM-Blender (Jiang et al.,
2023b), as well as single-model systems like ADAS (Hu et al., 2024) and AFlow (Zhang et al.,
2024). However, our experiments show that these top-performing baselines have limitations in
compute utilization and task generalization. (see Section 3.2). We argue that designing effective and
generalizable inference-time architectures requires the following:

• Understanding the Utilities of Inference-Time Techniques: Inference-time architectures typically
delegate their additional inference budget towards more model sampling calls (Chen et al., 2024;
∗Corresponding author: <jonsaadfalcon@stanford.edu>

1

Published as a SSI-FM Workshop paper at ICLR 2025

Available
LLMs

Target
Benchmark(s)

Inference Call
Budget

Generator

U
G

nit Test

enerator

U
E

nit Test

valuator

Verifier

Ranker

Critic

Fuser

Inference Time
Techniques Architecture

Optimizer
(Hyperparameter

Selection)

Proposed

Archon

Architecture

Sample
Benchmark

Results

Optimized Archon
Architecture

G

C

GR

F

G G

Output

Inputs Optimizer Outputs

Figure 1: Overview of ARCHON Framework: ARCHON’s search algorithm requires the following
inputs: target benchmarks, inference call budget, available LLMs, and available inference-time
techniques (left). The search algorithm uses Bayesian optimization (Snoek et al., 2012) to construct
and evaluate different ARCHON configurations (middle) before returning the optimized ARCHON
architecture (right) for the target benchmarks (Section 2.3).

Brown et al., 2024), which can be effective for math and coding tasks. Other tasks, such as following
instructions and reasoning, have been shown to benefit from additional techniques, including ranking
and fusion (Wang et al., 2024; Jiang et al., 2023b). While all of these methods are valuable, it is
essential to identify which inference-time techniques are most effective for different task categories.

• Understanding the Interactions Between Inference-Time Techniques: While previous studies
analyzed these techniques individually (e.g., generation sampling in Chen et al. (2024)), we need a
more comprehensive understanding of the relationships between different inference-time techniques
across different tasks (e.g., is it better to use more models or generate more samples per model?).

• Efficiently and Automatically Searching the Large Design Space of Inference-Time Archi-
tectures: Given a set of available LLMs and target tasks, there is currently no single prevailing
inference-time architecture for maximizing downstream accuracy across all tasks (Table 1). The
search space for inference-time architectures is expansive, requiring practitioners to make several
key configuration decisions, such as which LLMs to use, how many times to sample them, and how
to combine and filter the candidate generations. These motivate the need for automated and adaptive
architecture search approaches.

In our work, we address each of these challenges. First, we evaluate the utilities of a comprehensive
set of existing and proposed inference-time techniques across instruction-following, reasoning,
and coding tasks. Using both open-source and closed-source models, we examine a range of
techniques such as ensembling, fusion, ranking, critiquing, verification, and model-based unit test
generation/evaluation (Sections 2.1 and 2.2). We find that no single technique completely dominates
across all tasks, with different approaches being more effective for different tasks.

Second, we analyze the interactions between inference-time techniques and explore the benefits
of adding new models and new techniques individually. We find that generation ensembling combined
with critique, verification, and fusion improves the final response quality beyond the oracle best
candidate from individual (non-fused) responses, particularly for instruction-following and reasoning
tasks (Figure 2.2; Figure 7; Table 18). We also demonstrate increased performance as we scale up
the layers of inference-time techniques and combine multiple approaches together, allowing us to
discover effective new combinations of inference-time techniques (Sections 2.2, 3.2, A.4). Combining
multiple strategies significantly improves task performance, but determining the specific combination
remains challenging. This requires manually testing models, inference-time techniques, architecture
designs, inference budgets, and more.

Third, drawing upon our analysis of inference-time techniques, we present ARCHON, an
open-source modular framework for automatically designing LLM systems composed of existing
inference-time techniques (or new ones), allowing practitioners to optimize for their desired objective
functions: accuracy, latency, and cost (Sections 2.1, 2.3). Unlike alternative LM systems that perform
prompt engineering and tool use over a single LM (Khattab et al., 2023; Yuksekgonul et al., 2024;
Hu et al., 2024; Zhang et al., 2024), our approach integrates multiple LMs in a single architecture
and reduces prompt selection to a set of core components. The ARCHON framework utilizes automatic

2

Published as a SSI-FM Workshop paper at ICLR 2025

architecture search algorithms to maximize generation quality for the given tasks(s), leveraging
Bayesian optimization (Snoek et al., 2012; Nardi et al., 2019) techniques inspired by (NAS) (Zoph & Le,
2017; Ren et al., 2021) to rapidly traverse the space of potential inference architectures (Section 2.3).

We evaluate ARCHON architectures across a diverse set of instruction-following, reasoning, and
coding benchmarks (Table 1): MT-Bench, Arena-Hard-Auto, Alpaca-2.0 Eval, MixEval, MATH, and
CodeContests (Zheng et al., 2023; Li et al., 2024b; 2023; Ni et al., 2024; Hendrycks et al., 2021; Li
et al., 2022). Our best ARCHON architectures surpass both frontier models (e.g. OpenAI’s O1, GPT-4o
and Claude-3.5 Sonnet) and prior top-performing inference-time architectures (e.g. ADAS, AFlow, and
MoA), boosting state-of-the-art (SOTA) performance by 15.1%, on average. Furthermore, ARCHON
achieves SOTA performances while using 20.0% less inference calls, 15.1% less input tokens, and
13.5% less output tokens than alternative inference-time architectures (Table 1; Figure 4). Even when
solely using open-source LLMs, ARCHON architectures, on average, surpass SOTA LLMs by 11.2%.

Overall, we present ARCHON as an open-source inference-time framework, readily extensible to
new inference-time techniques, models, and tasks via user-friendly interfaces.

2 INFERENCE-TIME TECHNIQUES FOR ARCHON

With the proliferation of inference-time techniques, ARCHON introduces a systematic framework for
understanding and unifying these methods into inference-time architectures. Below, we elaborate on
the structure, inputs, and outputs of each of the inference-time techniques (Table 8). Then, we discuss
how to combine the different techniques into an inference-time architecture (Section 2.2) before finally
exploring automatic approaches for constructing inference-time architectures (Section 2.3).

2.1 LLM COMPONENTS OF ARCHON

In this section, we discuss the LLM components of ARCHON, which are LLMs that perform a
specific inference-time technique. We test an array of different components inspired by recent work,
incorporating approaches for generating, ranking, and fusing candidates (Wang et al., 2024; Jiang
et al., 2023b) as well as approaches for improving candidate response quality through critiquing,
verifying, and unit testing (Bai et al., 2022; Zheng et al., 2023). The components and their prompts
are summarized in Table 8 and Section A.3.

Generator is an LLM that takes in the instruction prompt and outputs candidate responses. Generators
can be called in parallel to perform generation ensembling (i.e. calling multiple LLMs in parallel)
(Wang et al., 2024), or sampled multiple times (Brown et al., 2024). The number of models, samples,
and generation temperature can be adjusted.

Fuser is an LLM that, given an instruction prompt and a set of proposed responses as input, combines
these responses to generate one or more higher-quality fused responses.

Ranker is an LLM that, given an instruction prompt and a set of proposed responses as input, ranks
the candidate generations based on their quality, producing a ranked list of responses as output. This
ranking is then used to filter the set of responses to the top-K, as specified.

Critic is an LLM that, given an instruction prompt and a set of proposed responses as input, produces
a list of strengths and weaknesses for each response, which is then used to improve the quality of the
final response (Section 2.2; Figure 2.2).

Verifier is an LLM that verifies whether a provided candidate response has appropriate reasoning
for a given instruction prompt. It proceeds in two stages: Stage #1 takes in the instruction prompt
and a candidate response as input and outputs reasoning for why the candidate response is correct;
Stage #2 takes in the instruction prompt, candidate response, and produced reasoning before outputting
reasoning and a verdict (i.e., binary [Correct] or [Incorrect]) for whether or not the candidate response
is correct according to the provided instruction prompt and reasoning. Only verified responses are
passed to the next ARCHON layer.

Unit Test Generator is an LLM that takes the instruction prompt as input and outputs a list of unit tests
for assessing the accuracy and relevance of candidate responses. Each test is a concise statement that
can be passed or failed as determined by a Unit Test Evaluator, allowing such tests to extend to tasks
beyond coding. The number of unit tests generated is a configurable choice; we find 5-10 generated
unit tests to be most effective with our set of LM prompts (Section 3.2; examples in Table 16).

3

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 2: Example ARCHON Architecture: This architecture starts with ten generator models (each
sampled once), followed by a critic model, a ranker model, one layer of six fuser models, a verifier
model, and finishes with a fuser model.

Unit Test Evaluator is an LLM that takes the instruction prompt, candidate response(s), and generated
unit tests as input and outputs the candidate response(s), ranked in descending order by how many
unit tests they pass. We use model-based unit test evaluation by prompting the LLM to justify and
aggregate unit test verdicts across each of the candidate responses, scoring each candidate response
for reasoning and coding tasks (Table 1). Only responses that pass all the unit tests are passed to the
next ARCHON layer.

2.2 COMBINING THE LLM COMPONENTS

Overview: Inspired by the structure of neural networks (Hinton et al., 1992), ARCHON consists of layers
of LLM components (Figure 1; Section 2.1). Each layer is composed of sets of LLM components called
in parallel. These components perform a text-to-text operation on the initial instruction prompt and the
candidate responses from the previous layer. Furthermore, like a neural network, some layers perform
transformations of the provided list of strings (e.g., Generator and Fuser), converting a list of strings into
a different list of strings (the numbers of candidates can vary from the original number of candidates).
Other components introduce non-linearities into the ARCHON structure, performing filtering of the list
of strings (e.g., Ranker and Verifier). Ultimately, the inputs and outputs for each layer is always a list of
strings, whether that is the instruction prompt (i.e., a single string) or a list of candidate responses. If a
list of strings is outputted at the last layer of the ARCHON structure, the first string in the list is returned.

Unlike a classical neural network, no weights are learned between the LLM components and
the layers; in turn, the ARCHON architecture can be deployed off-the-shelf without any tuning.
Additionally, a single state is transformed sequentially from the input layer to the final output; this
single state is the initial instruction prompt and the current candidate responses. In Figure 2, we
provide an example ARCHON architecture composed of six layers.

Rules for Construction: The LLM components in Section 2.1 can only be placed in specific orders (9):

1. Only one type of component is allowed in any given layer.
2. Generator components can only be placed in the first layer of ARCHON; you can place one or more.
3. The Critic must come before a Ranker or a Fuser. Otherwise, the generated strengths and

weaknesses cannot be incorporated into generation ranking or fusion.
4. Ranker, Critic, Verifier, and Unit Test Generator/Evaluator layers can go anywhere in ARCHON

except the first layer. For each of these components, it must be the only module in its layer.
5. Fuser components can go anywhere in ARCHON except the first layer. Multiple Fusers can be used

in a layer.
6. Unit Test Generators and Evaluators are placed in consecutive layers: Generator then Evaluator.

Performance Gains from Scaling Inference-Time Techniques: We explore the utilities of individual
ARCHON components and evaluate whether combinations of inference-time techniques enable us
to build LM systems greater than the sum of their parts. From our analysis, we find several trends
(designated with Ts) across ARCHON architectures:

• T1: Repeated model sampling and additional ensemble models leads to substantial gains, leading
to 9.3% and 18.5% increases, respectively (Figure 5; Figure 7).

4

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 3: Performance Improves by Scaling Layers of Inference-Time Techniques: When control-
ling for inference budget, generation ensembling and fusion across 8 different 70B LLMs is generally
more effective than repeated sampling with only the top performing model. Furthermore, adding
layers of critique and fusion led to a 18.8% boost in task performance, on average. However, the best
inference-time architecture differed by task, such as MixEval and CodeContests (Section 3.3; Table 4;
Table 5), which inspired us to develop architecture search techniques for ARCHON (Section 2.3).

• T2: Scaling the layers of inference-time techniques significantly improves ARCHON performance
across instruction-following, reasoning, and coding tasks, such as always adding a single fuser as
the last layer (Figure 2.2).

• T3: Scaling the diversity of inference-time techniques bolsters performance across the explored
tasks, with critics and rankers before fusers being particularly effective (Figure 2.2; Figure 5).

• T4: In reasoning tasks, incorporating the Verifier and Unit Test Generator/Evaluator modules
alongside the Fuser improves performance by filtering out flawed responses, contributing to
significant performance gains in tasks like MixEval and CodeContests (Table 18; Section A.6).

For detailed analysis of interactions between LLM components, please see Section A.4, where
we perform a series of ablation experiments in which we vary ARCHON component combinations
(Table 18) and the models used in the combinations (Table 19; Table 22).

2.3 ARCHITECTURE SEARCH ALGORITHMS

Search Hyperparameters: In this section, we explore how to automatically design inference-time
architectures for target tasks via ARCHON’s architecture search algorithms. Guided by the trends
found in our analysis in Section 2.2, we establish six axes of hyperparameters for the search space:

1. Top-K Generators for Ensemble: The top-K models for the Generator ensemble, ranging from
1 to 10 (T1). The top-K models are selected greedily based on their task performances (Table 24).

2. Top-K Generator Samples: The number of samples gathered from each ensemble generator
(same for all the models), ranging from 1 to 5 (T1). For CodeContests, we explore high-sample
settings: [1, 10, 100, 500, 1000].

3. Number of Fusion Layers: Ranges from 1 to 4. The last fusion layer always has a single Fuser (T2).
4. Top-K Fusers: Number of models used for each fusion layer, ranges from 2 to 10 (T2,3).
5. Critic and Ranker Layers: We add critic and ranker layers before each fuser layer since we find

they provide added benefits across the benchmarks explored (T3) (Section 2.2; Figure 2.2; Figure 7).
6. Evaluation Layer: Add Verifier, Unit Test Gen./Eval., or neither before final Fuser layer (T4).

While it is possible to further expand the search space of potential ARCHON architectures (e.g.,
different temperatures for generative LLM components, alternative prompts for each LLM component,
additional LLM components for ARCHON, etc.), the trends we identify from Section 2.2 reasonably
constrain the search space of configurations to focus on the most influential hyperparameters. In
total, our search space contains 9,576 configurations, which we obtain by combining all possible
hyperparameters and removing invalid configurations (for example, we discard configurations where
the number of initial generations exceeds the context window of the fusers).

5

Published as a SSI-FM Workshop paper at ICLR 2025

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH∗ Code

Contests∗

Approaches
Average

Infer.
Calls

Average
Input

Tokens

Average
Output
Tokens

TFLOPs
per Token W.R. L.C.

W.R. W.R Acc. Acc. Pass
@1

Pass
@1

B
as

el
in

es

LM
GPT-4o 1 95 549 Unk. 44.2% ±0.5 57.8% ±0.6 80.6% ±0.6 63.4% ±0.2 87.5% ±0.3 83.5% ±0.4 18.1% ±0.2

Claude 3.5 Sonnet 1 105 602 Unk. N/A 52.7% ±0.4 81.4% ±0.4 68.7% ±0.2 89.1% ±0.2 82.5% ±0.7 12.3% ±0.4
Llama 3.1 405B 1 118 631 0.81 44.1% ±0.3 40.7% ±0.5 64.5% ±0.7 66.0% ±0.3 88.2% ±0.2 85.0% ±0.5 20.4% ±0.5

LM
Systems

MoA 19 25,109 17,422 1.36 51.6% ±0.6 65.0% ±0.3 85.3% ±0.3 62.3% ±0.4 86.9% ±0.2 82.9% ±0.6 15.1% ±0.5
ADAS 52 72,804 44,872 Unk. 66.3% ±0.7 60.1% ±0.5 85.4% ±0.4 64.2% ±0.2 87.0% ±0.2 86.0% ±0.8 23.7% ±0.3
AFlow 48 68,596 41,748 Unk. 62.4% ±0.2 57.8% ±0.6 83.2% ±0.6 63.5% ±0.3 87.2% ±0.4 84.5% ±0.2 21.1% ±0.6

o1 Unk. 112 Unk. Unk. 56.3% ±0.5 59.3% ±0.5 81.7% ±0.3 72.0% ±0.4 87.5% ±0.2 92.7% ±0.5 31.5% ±0.8

A
rc

ho
n

Open
Source

General Purpose 35 51,113 31,508 3.14 67.2% ±0.4 63.3% ±0.6 85.6% ±0.5 65.3% ±0.3 86.2% ±0.2 87.5% ±0.6 18.2% ±0.4
Task Specific 44 63,157 39,949 3.71 71.1% ±0.6 68.1% ±0.4 89.6% ±0.4 67.5% ±0.2 88.8% ±0.3 89.5% ±0.3 28.9% ±0.9

Closed
Source

General Purpose 32 52,747 27,894 Unk. 72.7% ±0.3 63.9% ±0.7 86.2% ±0.7 67.5% ±0.4 87.2% ±0.2 87.9% ±0.7 20.2% ±0.6
Task Specific 40 59,085 37,271 Unk. 77.0% ±0.5 68.9% ±0.5 90.5% ±0.3 72.3% ±0.3 89.5% ±0.3 92.1% ±0.4 25.1% ±0.6

All
Source

General Purpose 35 50,427 30,461 Unk. 76.2% ±0.7 66.4% ±0.3 89.8% ±0.6 69.8% ±0.2 87.3% ±0.4 89.3% ±0.5 23.4% ±0.9
Task Specific 39 58,250 36,114 Unk. 79.5% ±0.4 69.0% ±0.6 92.5% ±0.5 72.7% ±0.3 89.7% ±0.2 93.5% ±0.6 41.4% ±0.7

Table 1: ARCHON’s Strong Performance with Open Source, Closed Source, and All Source
Models: Consistent outperformance over SOTA LLMs and LM Systems across explored benchmarks.
The standard error numbers were calculated from 10 independent evaluation runs. ∗MATH and
CodeContests use a subset of their test sets for evaluation (Section 3.1).

Search Method: The ARCHON search method takes in four inputs: the target benchmark(s), the
inference call budget, the set of available LLMs, and the inference-time techniques for construction
(Figure 1). As output, the search method outputs a single optimized ARCHON architecture. We use 20%
of each target dataset as a development set for guiding architecture search. We explore three approaches
for ARCHON’s architecture search: random search (randomly test potential architectures in the search
space), greedy search (greedily optimize individual hyperparameters one at a time, starting from a
random initial architecture), and Bayesian Optimization (Snoek et al., 2012) (global hyperparameter
optimization with Gaussian processes). As inputs, Bayesian optimization takes in a vector specifying
the configuration choices for the generators (i.e., number of models and samples), layers of fusers,
numbers of fusers per layer, and final verifier / unit tester (Section 2.2). Bayesian optimization begins
by sampling a specified number of random ARCHON architectures to calibrate its surrogate model.
The task performance of these sampled architectures is used to guide more informed architecture
suggestions during the configuration search. The algorithm repeats the following cycle—evaluating
each suggested architecture and using its performance to refine future suggestions—until it discovers
the optimal ARCHON configuration, or until the inference call budget is exhausted. For more details
on our open-source Bayesian optimization approach, please see Section A.8.

Bayesian optimization found the best architectures in 96.0% of searches and required 88.5%
fewer architecture evaluations than greedy search and 90.4% fewer than random search (Figure 13).
The effectiveness of Bayesian optimization increases with the number of initial randomly sampled
architectures, up to around 230-240 samples, after which further testing is better focused on
configuration search (Table 32). For limited inference call budgets (<20 calls), Bayesian optimization
is less effective, and traditional methods like greedy search may perform comparably (Table 33).

3 EXPERIMENTS

Our experiments focus on answering the following questions: (1) how does ARCHON compare to
existing SOTA LLMs and inference-time architectures in terms of accuracy and compute efficiency
(Section 3.2)? (2) how does ARCHON performance compare across the tasks explored (Section 3.3)? (3)
what are the considerations for model size, latency, and cost surrounding ARCHON (Section 3.4)? We
outline the benchmarks, models, and techniques for constructing ARCHON architectures in Section 3.1.

3.1 BENCHMARKS AND MODELS

Benchmarks: We evaluate our models with several benchmarks for instruction-following, reasoning,
and coding: MT-Bench (Zheng et al., 2023), AlpacaEval 2.0 (Li et al., 2023), Arena Hard Auto (Li et al.,
2024b), MixEval (Ni et al., 2024), MixEval-Hard, MATH (Hendrycks et al., 2021), and CodeContests
(Li et al., 2022). We provide an overview of each dataset in Table 2. Since we perform automatic
architecture search on a randomly sampled 20% subset of each benchmark, we evaluate on the remaining

6

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 4: ARCHON’s Performance Exceeds Baselines across Token Budgets: Across different token
budgets (Section 2.3), we compare ARCHON architectures against top-performing inference-time sys-
tem baselines. The MoA architecture and OpenAI’s o1 are static so they use the same number of tokens
across budgets. ∗MATH and CodeContests use a subset of their test sets for evaluation (Section 3.1).

held-out 80% subset of the benchmark (Table 1) (for ARCHON performances on the entire benchmarks,
please see Table 7). The delta between the ARCHON performance on the entire benchmark vs. 80%
held-out subset is relatively small: only 0.44%, on average, across these datasets with an S.D. of 0.20%.
For MATH, we evaluate a random sample of 200 problems from the dataset’s test set. For CodeContests,
we evaluate on the 140 test set questions that do not include image tags in the problem description.

Models: We test the efficacy of the ARCHON framework by creating different ARCHON architectures
across three model categories: 8B or less parameter models, 70B or more parameter models, and
closed-source model APIs. For our 8B and 70B+ models, we selected the top-10 performing chat
models for each parameter range on the Chatbot Arena Leaderboard (Chiang et al., 2024) as of July
2024. For our ARCHON architectures, we explore multiple model types: open-source, closed-source,
and all-source (i.e. both open-source and closed-source available). For our closed-source model APIs,
we include GPT-4o, GPT-4-Turbo, Claude Opus 3.0, Claude Haiku 3.0, and Claude Sonnet 3.5. We
list and compare all of the models tested in the ARCHON framework in Table 23 and Table 24. For
all the LLMs utilized and every ARCHON component, we set the generation temperature to 0.7. As
baselines, we compare ARCHON against both SOTA single-call LLMs (GPT-4o, Claude 3.5 Sonnet,
and Llama 3.1 405B Instruct) as well as SOTA inference-time approaches (OpenAI’s o1 (OpenAI,
2024a), MoA (Wang et al., 2024), ADAS (Hu et al., 2024), and AFlow (Zhang et al., 2024)).

Task-Specific and General-Purpose ARCHON Architectures: We compare custom ARCHON archi-
tectures, specifically configured to a single evaluation dataset ("Task-specific ARCHON Architectures"),
and a generalized ARCHON architecture configured to handle all the evaluation datasets ("General-
purpose ARCHON Architectures") (Table 1). For our three model selection settings for ARCHON (i.e.
open-source, closed-source, and all-source), we utilize automatic architecture search to find targeted
ARCHON architectures for each task (7 architectures total) and find a single generalized ARCHON
architecture for maximizing performance over all the tasks (Table 1). The benchmarks are concatenated
together and shuffled for generalized ARCHON architecture search. Importantly, all the ARCHON archi-
tectures utilized in Section 3 are automatically generated by our Bayesian architecture search technique,
which searches over the hyperparameter search space for ARCHON as covered in Section 2.3. For
examples of targeted and generalized ARCHON architectures, please see Figure 2 and Appendix A.6.

3.2 ARCHON VS. CLOSED-SOURCE LLMS AND OTHER INFERENCE-TIME ARCHITECTURES

Task Performances: We start by comparing ARCHON architectures to existing SOTA closed-source
LLMs and inference-time architectures across a set of instruction-following, reasoning, and coding
tasks. Based on our results in Table 1, we find that ARCHON architectures consistently match or surpass
existing approaches across all the benchmarks explored. ARCHON architectures with open-source mod-
els demonstrate a 11.2% average improvement over SOTA open-source approaches; for its worst perfor-
mance, our open-source ARCHON architectures are still 3.1% above SOTA open-source approaches on
AlpacaEval 2.0. ARCHON architectures with closed-source models achieve SOTA performance across
MT Bench, Arena-Hard-Auto, MixEval, and MixEval-Hard, leading to a 15.1% average improvement
over closed-source LMs and a 8.4% average improvement over open-source inference-time frameworks
(i.e. MoA, ADAS, and AFlow). Compared to o1 and o1-mini, ARCHON’s best targeted architectures
beat them by 8.1% and 9.7%, on average, on MT Bench, AlpacaEval 2.0, Arena Hard Auto, MixEval,

7

Published as a SSI-FM Workshop paper at ICLR 2025

MixEval Hard, MATH, and CodeContests. For approaches that use all models available, both open
and closed-source, ARCHON achieves an average 10.9% improvement over existing SOTA single-call
LLMs and an average 8.6% improvement over existing inference-time frameworks.

Compute Efficiency: Compared to open-source inference-time frameworks (i.e. AFlow, ADAS,
MoA), ARCHON is 20.0% more inference call efficient while having higher performances on all
benchmarks tested (Table 1). We also find that our best ARCHON architectures use 15.1% less input
tokens and 13.5% less output tokens compared to the best alternative open-source inference-time
frameworks. When we utilize ARCHON’s architecture search technique with different token budgets
(Figure 4), we find that the generated ARCHON architectures achieve 12.4% higher performance
than alternate baselines when given the same budget. Overall, the generalized all-source ARCHON
architecture achieves 6.4% better performance across all the tasks while being 31% more token
efficient than the best LM system baselines (Table 1). Furthermore, compared to the generalized
all-source ARCHON architecture, the targeted all-source ARCHON architectures use 15.5% and 18.6%
more input tokens and output tokens, respectively, but they achieve 8.4% higher accuracies, on average.
The targeted architectures are more compute intensive since they can further leverage additional LM
operations towards a single set of specific task constraints (Appendix A.6).

Discovered Architectures: We include the targeted and generalized ARCHON architectures in Ap-
pendix A.6 (Figure 9). The best performing all-source, general-purpose ARCHON architecture starts
with a broad initial layer of our 10 best generators before four successive layers of critique and fusion
with Qwen2 72B and Claude 3.5 Sonnet, respectively. Each subsequent layer has fewer fuser models (i.e.
8, 6, and 4), leading to a "funneling" effect on the generations before the final output. The best targeted
architectures can vary by task. For instruction-following and reasoning tasks, the targeted architectures
tend to be multiple layers of critiquing and fusing with a diverse mix of LMs (Figure 10). For math tasks,
the targeted architectures tend to consist of an initial broad set of generations before being reduced
quickly to a chosen answer (Figure 11). For coding tasks, the targeted architectures tend to focus on iter-
ations of generation, critique, and fusion over a single response before outputting an answer (Figure 12).

3.3 ARCHON BY TASK

Instruction-Following and Reasoning: On MT Bench, AlpacaEval 2.0, and Arena-Hard-Auto,
open-source ARCHON architectures outperform current open-source baselines by 10.5%, on average,
while closed-source ARCHON outperforms current closed-source baselines by 14.6% (Table 1). With
ARCHON, multiple models used for Generators and the depth of fusion layers lead to performance
boosts on instruction-following tasks, increasing the richness of responses and allowing multiple
iterations for step-by-step instruction-following (Table 25). For reasoning, while the performance
boost from ARCHON is smaller when we consider the aggregate scores for MixEval and MixEval-Hard,
we do see meaningful increases in performance when we create inference-time architectures for each
individual task under MixEval and MixEval-Hard (Table 4; Table 5). When we create individual
ARCHON architectures for each subtask, we see 3.7 and 8.9 percentage point increases in accuracy,
on average, for MixEval and MixEval-Hard, respectively. This finding suggests that reasoning tasks
(e.g. math, sciences, logic) require more individualized inference-time architectures.

Coding: We have observed that ensembling, fusion, and ranking techniques have limited impact on
CodeContests (Figure 2.2). For example, when we apply the general all-source architecture from Table 2
to CodeContests problems, we achieve small gains from ARCHON (see Table 1). One contributing
factor is that, unlike the distribution of instruction-following/reasoning tasks, coding tasks tend to have
one or two LLMs that perform substantially better than the rest of models (Table 24). However, when
we add unit test generation/evaluation, and scale the number of samples, ARCHON’s performance on
CodeContests improves significantly (Table 1), allowing us to boost GPT-4o Pass@1 performance by
44.3% for Pass@1 (from 40 to 58 out of 140 questions). For model-based unit test generation/evaluation,
we generate 5 unit tests and use the LM to evaluate each candidate response against the generated unit
tests, allowing us to rank the different candidate responses (details are provided in Section A.3)

3.4 DISCUSSION

Impact of Model Size: The ARCHON framework is most effective when utilizing LLMs with 70B+
parameters. When we build ARCHON architectures with 7B open-source models, we can boost task per-
formance over the best individual 7B LM by 7.5%, on average, compared to the best individual 7B model
(Table 27). Across tasks, 7B models work well for ranking but are less effective for critique and fusion.

8

Published as a SSI-FM Workshop paper at ICLR 2025

Latency and Costs: Since ARCHON architectures make multiple LLM API calls successively for
different operations (e.g. ensembling, critiquing, ranking, etc.), it can take 5x more time and money than
a single LLM API call (Section A.6; Table 28; Table 29). Note that these increases in compute costs and
latency translate to higher quality responses, and can be justified in many application domains, such as
science, programming, and complex agentic tasks (Rein et al., 2023; Mialon et al., 2023). Furthermore,
LLM vendors are rapidly decreasing their inference costs (Table 28). For tasks in which speed is most
preferred, future work should explore how distillation strategies (Sreenivas et al., 2024; DeepSeek-AI
et al., 2025) could be used to pack the aggregate knowledge of ARCHON architectures into a smaller LM.

4 ACKNOWLEDGEMENTS

We thank Simran Arora, Bradley Brown, Ryan Ehrlich, Sabri Eyuboglu, Jordan Juravsky, Jerry Liu,
Benjamin Spector, Alyssa Unell, Benjamin Viggiano, and Michael Zhang for their constructive
feedback during the composition of the paper. We would also like to thank our collaborators at the
Stanford Artificial Intelligence Laboratory (SAIL) and TogetherAI.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under
Nos. CCF2247015 (Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to
Velocity), and 1937301 (RTML); US DEVCOM ARL under Nos. W911NF-23-2-0184 (Long-context)
and W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under Nos. N000142312633 (Deep
Signal Processing); Stanford HAI under No. 247183; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices,
Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the Stanford
Data Science Initiative (SDSI), and members of the Stanford DAWN project: Meta, Google, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. ArXiv, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu,
Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling, 2024.
URL https://arxiv.org/abs/2407.21787.

9

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2407.21787

Published as a SSI-FM Workshop paper at ICLR 2025

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.
URL https://arxiv.org/abs/2403.02419.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

Databricks. Dbrx technical report. 2024.

Jared Quincy Davis, Boris Hanin, Lingjiao Chen, Peter Bailis, Ion Stoica, and Matei Zaharia. Networks
of networks: Complexity class principles applied to compound ai systems design, 2024. URL
https://arxiv.org/abs/2407.16831.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue
Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi
Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu
Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie,
Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong
Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen
Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu
Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary,

10

https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2407.16831
https://arxiv.org/abs/2501.12948

Published as a SSI-FM Workshop paper at ICLR 2025

Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti,
Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi,
Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik
Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srini-
vasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor,
Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean
Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie,
Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin
Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie
Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang
Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer,
Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Di-
ana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute,
Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni,
Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada
Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor
Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron
Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Nau-
mov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich
Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar,
Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty
Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,
Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,

11

Published as a SSI-FM Workshop paper at ICLR 2025

Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk,
Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen
Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian
Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda
Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi
He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Neel Guha, Mayee F Chen, Trevor Chow, Ishan S Khare, and Christopher Re. Smoothie: Label free
language model routing. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Eric Hartford. dolphin-2.2.1-mistral-7b. January 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Geoffrey E Hinton et al. How neural networks learn from experience. na, 1992.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El
Sayed. Mixtral of experts, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of
the Association for Computational Linguistics (ACL 2023), 2023b.

Sayash Kapoor, Benedikt Stroebl, Zachary S Siegel, Nitya Nadgir, and Arvind Narayanan. Ai agents
that matter. arXiv preprint arXiv:2407.01502, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need, 2024a.
URL https://arxiv.org/abs/2402.05120.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2402.05120

Published as a SSI-FM Workshop paper at ICLR 2025

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Joseph E. Gonzalez Banghua Zhu, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024b. URL
https://lmsys.org/blog/2024-04-19-arena-hard/.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
reference-free reward. ArXiv, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and
Thomas Scialom. Gaia: a benchmark for general ai assistants, 2023. URL
https://arxiv.org/abs/2311.12983.

Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. Hypermapper: a practical design
space exploration framework. In 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 425–426, 2019.
doi: 10.1109/MASCOTS.2019.00053.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures, 2024. URL
https://arxiv.org/abs/2406.06565.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2024.
URL https://arxiv.org/abs/2406.18665.

OpenAI. Learning to reason with LLMs. https://openai.com/research/
learning-to-reason-with-llms, September 2024a. Accessed November 13, 2024.

OpenAI. Learning to reason with large language models, 2024b. URL https:
//openai.com/index/learning-to-reason-with-llms/. Accessed: 2024-09-12.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton,
Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela
Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt
Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic,
Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan
Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine

13

https://lmsys.org/blog/2024-04-19-arena-hard/
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.18665
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Published as a SSI-FM Workshop paper at ICLR 2025

McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz,
Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong
Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres,
Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H.
Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford,
Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob
Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish
Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher,
Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Qwen. Qwen2 technical report. 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark, 2023.
URL https://arxiv.org/abs/2311.12022.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1–34, 2021.

Yijia Shao, Yucheng Jiang, Theodore A Kanell, Peter Xu, Omar Khattab, and Monica S Lam.
Assisting in writing wikipedia-like articles from scratch with large language models. arXiv preprint
arXiv:2402.14207, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms, 2012. URL https://arxiv.org/abs/1206.2944.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo
Molchanov. Llm pruning and distillation in practice: The minitron approach, 2024. URL
https://arxiv.org/abs/2408.11796.

NovaSky Team. Sky-t1: Train your own o1 preview model within 450. https :
//novasky−ai.github.io/posts/sky−t1,2025.Accessed :2025−01−09.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

Hoang Tran, Chris Glaze, and Braden Hancock. Iterative dpo alignment. Technical report, Snorkel AI,
2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clementine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024. URL https://arxiv.org/abs/2406.04692.

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/2408.11796
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2406.04692

Published as a SSI-FM Workshop paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL
https://arxiv.org/abs/2201.11903.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow complex
instructions. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=CfXh93NDgH.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. Textgrad: Automatic "differentiation" via text. 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin Wu. Aflow: Au-
tomating agentic workflow generation, 2024. URL https://arxiv.org/abs/2410.10762.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

15

https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/1611.01578

Published as a SSI-FM Workshop paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

Inference-time architectures combine multiple frozen LLMs and inference-time techniques, achieving
superior performance compared to individual models. Notable works include Mixture-of-Agents
(MoA) (Wang et al., 2024), LLM Blender (Jiang et al., 2023b), RouteLM (Ong et al., 2024), Smoothie
(Guha et al.), and various approaches around compound AI, which are AI systems that use multiple
components (e.g., LLMs, retrievers, tool use, APIs, etc.) (Chen et al., 2024; Davis et al., 2024;
Lewis et al., 2020; Shao et al., 2024; Kapoor et al., 2024). LM frameworks like DSPy (Khattab et al.,
2023) have emerged for orchestrating LMs and other components. Even with a single LLM, various
techniques can improve performance by building better reasoning strategies, such as OpenAI’s o1
(OpenAI, 2024b) and Chain of Thought (Wei et al., 2023), as well as inference-time frameworks, such
as ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024).

Despite these advancements, challenges remain in developing inference-time architectures.
Many architectures focus on additional generations (Jiang et al., 2023b; Chen et al., 2024; Davis
et al., 2024), which is effective for reasoning tasks (Brown et al., 2024). However, for tasks like
instruction-following and reasoning, techniques such as fusion and ranking are effective for bolstering
task performances (Wang et al., 2024; Jiang et al., 2023b). Prior studies have explored limited aspects
of configurations, often focusing on specific benchmarks (Jiang et al., 2023b; Wang et al., 2024; Chen
et al., 2024; Li et al., 2024a). It’s crucial to efficiently develop inference-time architectures, as optimal
configurations vary based on benchmarks, available models, and inference compute limits (Section
3.2). Furthermore, LM orchestration frameworks, such as DSPy (Khattab et al., 2023), only optimize
a single prompt for a single LM, better equipping it for tool use by utilizing supervised data but still
unable to leverage multiple inference-time techniques in parallel or sequentially. While each of these
approaches manually selects a subset of existing techniques, ARCHON unifies available inference-time
techniques and automates architecture construction with search algorithms, simplifying the model
and component selection process for each set of tasks (Sections 2.1 and 2.3).

A.2 ARCHON BENCHMARKS AND RESULTS

Benchmark Example
Count

Reference
Model

Judge
Model Scoring Type Metric

AlpacaEval 2.0 805 GPT-4-Turbo GPT-4-Turbo Pairwise
Comparison

L.C. & Raw
Win Rates

Arena-Hard-Auto 500 Claude-3.5-Sonnet
GPT-4-0314 GPT-4-Turbo Pairwise

Comparison Win Rate

MT-Bench 80 Claude-3.5-Sonnet GPT-4-0314 Pairwise
Comparison

Adjusted
Win Rate

MixEval 2000 N/A N/A Ground Truth Accuracy

MixEval-Hard 500 N/A N/A Ground Truth Accuracy

MATH 200
(sampled from 5000) N/A N/A Ground Truth Pass@1

CodeContests 140
(non-visual queries) N/A N/A Ground Truth Pass@1

Table 2: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0 (Li et al., 2023),
Arena-Hard-Auto (Li et al., 2024b), MT-Bench (Zheng et al., 2023), MixEval (Ni et al., 2024),
MixEval Hard, MATH (Hendrycks et al., 2021), and CodeContests (Li et al., 2022)

.

16

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 5: Performance Gains from Repeated Sampling, Ensembling, Ranking, and Fusing
on Arena-Hard-Auto: The ARCHON win-rate continues to grow significantly as we scale model
sampling (left) or add additional models to the generator ensemble (right), increasing by 9.3% and
18.5%, respectively. These best results are achieved by selecting the top-5 responses and fusing them.
The ensemble models are added based on their individual performance on this task, from best to worse
(Table 24). The oracle selection is the performance of picking the best answer generation out of all the
generated samples from the ensemble. The results were averaged over 10 independent evaluation runs.

Arena-Hard-Auto

Model / LLM System Score C.I.

Claude 3.5 Sonnet N/A N/A
GPT-4o 48.1% (-2.3, 1.8)

Llama 3.1 405B Instruct 28.4% (-2.7, 2.5)

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 66.2% (-2.4, 2.2)

Task-specific
ARCHON Architectures 69.0% (-2.8, 2.5)

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 70.5% (-2.5, 2.0)

Task-specific
ARCHON Architectures 74.4% (-2.3, 1.6)

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 72.5% (-2.5, 1.8)

Task-specific
ARCHON Architectures 76.1% (-1.8, 2.2)

Table 3: ARCHON Results on Arena-Hard-Auto Results with Claude-3.5-Sonnet as Baseline
Model: The baseline model is Claude-3.5-Sonnet (default baseline model: GPT-4-0314) while the
judge model is GPT-4-Turbo.

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 94.9 89.1 88.2 98.5 98.3 71.5 90.3

Claude 3.5 Sonnet 1 98.0 92.0 92.6 96 95.6 78.0 92.0

Llama 3.1 405B Instruct 1 98.2 87.9 89.6 91.5 95.8 73.2 89.6

General-purpose
ARCHON Architecture 29 98.3 94.8 94.6 98.1 97.3 82.1 94.2

Task-specific
ARCHON Architectures 34 98.2 96.7 95.6 98.5 98.8 84.2 95.7

Table 4: MixEval Results by Sub-Dataset: For the average computed, we do not introduce any
weighting for each dataset.

17

Published as a SSI-FM Workshop paper at ICLR 2025

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 72.3 70.5 70.2 94.4 80.0 53.5 73.5

Claude 3.5 Sonnet 1 87.3 75.5 79.3 82.5 80.0 74.6 79.9

Llama 3.1 405B Instruct 1 98.7 71.2 70.7 86.9 78.8 62.0 78.1

General-purpose
ARCHON Architecture 33 96.7 82.7 83.2 93.4 82.0 76.7 85.8

Task-specific
ARCHON Architectures 37 98.9 86.2 85.2 96.2 86.0 80.1 88.8

Table 5: MixEval-Hard Results by Sub-Dataset: For the average computed, we do not introduce
any weighting for each dataset.

GSM8K MMLU
Math

HumanEval
Python MBPP

Model Pass@1 Pass@1 Pass@1 Pass@1

GPT-4o 97.1% 84.8% 89.0% 87.5%

Claude 3.5 Sonnet 96.8% 90.9% 90.2% 88.9%

Llama 3.1 405B Instruct 95.9% 85.4% 90.2% 88.6%

Table 6: Additional Math and Code Benchmarks Explored

18

Published as a SSI-FM Workshop paper at ICLR 2025

Datasets

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

Arena
Hard Auto

MixEval
Hard MixEval MATH∗

Judge Model GPT-4
0314

GPT-4
Turbo

GPT-4
Turbo

GPT-4
Turbo N/A N/A N/A

Reference Model Claude 3.5
Sonnet

GPT-4
Turbo

Claude 3.5
Sonnet

GPT-4
Turbo N/A N/A N/A

Model / LLM System Infer.
Calls W.R. L.C.

W.R.
Raw
W.R. W.R. W.R Acc. Acc. Pass

@1

GPT-4o - 2024-05-13 1 44.7% 57.5% 51.3% 48.1% 80.3% 63.6% 88.0% 84.5%
Claude 3.5 Sonnet 1 N/A 52.4% 40.6% N/A 80.9% 68.9% 89.7% 85.0%

Llama 3.1 405B Instruct 1 44.7% 40.3% 37.7% 28.4% 64.1% 66.2% 88.9% 83.5%

MoA 19 51.6% 65.1% 59.8% 52.2% 84.2% 62.5% 87.3% 82.0%
MoA Lite 7 45.6% 59.3% 57.0% 40.6% 87.8% 61.1% 87.1% 83.0%

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 35 67.5% 63.0% 68.3% 66.2% 85.1% 65.5% 86.9% 86.5%

Task-specific
ARCHON Architectures 44 71.6% 66.7% 70.7% 69.0% 89.5% 67.5% 89.6% 90.5%

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 32 73.1% 63.5% 69.1% 70.5% 85.8% 67.7% 88.2% 88.0%

Task-specific
ARCHON Architectures 40 77.5% 68.4% 72.1% 74.4% 90.2% 72.9% 90.4% 89.5%

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 35 76.8% 65.8% 70.2% 72.5% 89.3% 70.1% 88.1% 90.0%

Task-specific
ARCHON Architectures 39 80.4% 67.6% 73.3% 76.1% 92.1% 72.9% 90.6% 93.5%

Table 7: ARCHON’s Strong Performance on the Complete Evaluation Datasets after ARCHON
Architecture Optimization: We find that ARCHON’s inference-time architectures consistently
outperform single-call state-of-the-art LLMs, both open-source and closed-source baselines, when
evaluating on the complete benchmarks (Table 2). We explore two configurations: architecture search
for building custom ARCHON configurations for each individual benchmark and architecture search for
building a single general-purpose ARCHON configuration for all the benchmarks (Section 3.1). We find
that a general ARCHON configuration lags behind the custom ones by only 3.2 percentage points, on
average, across our all-source settings, which suggests the efficacy of general-purpose inference-time
architectures created with our framework. For Arena-Hard-Auto, we also include a configuration
with Claude 3.5 Sonnet as a stronger reference model for comparison against ARCHON inference-time
architectures and to mitigate bias from GPT judges towards GPT generations. For MT Bench, we use
a GPT-4-0314 judge model instead of newer LLM judges to be consistent with previous results on this
benchmark. For our task-specific ARCHON architectures, we also provide the average inference calls
across the given benchmarks. For our full-list of models explored, please see Table 23. For MATH,
we use a randomly sampled subset of size 200 for evaluation (Section 3.1; Table 2). We include our
ARCHON architecture results on the held-out 80% subset of each evaluation benchmark in Table 1.

19

Published as a SSI-FM Workshop paper at ICLR 2025

A.3 ARCHON LLM COMPONENTS

Inference-Time
Technique Definition Input Output Inference

Cost Domains

Generator Generates a candidate response
from an instruction prompt Instruction Prompt Candidate Response(s) 1 call

per cand.
All

Domains

Fuser Merges multiple candidate
responses into a single response

Instruction Prompt +
Candidate Response(s)

Fused Candidate
Response(s)

1 call
per cand.

All
Domains

Critic Generates strengths/weaknesses
for each candidate response

Instruction Prompt +
Candidate Response(s)

Candidate Response(s)
Strengths/Weaknesses 1 call All

Domains

Ranker Returns top-K
candidate responses

Instruction Prompt +
Candidate Response(s)

Ranked Candidate
Response(s) 1 call All

Domains

Verifier Returns the candidate responses
with verified reasoning

Instruction Prompt +
Candidate Response(s)

Verified Candidate
Response(s)

2 calls
per cand.

Reasoning
Tasks

Unit Test
Generator

Generates unit tests to evaluate
the candidate responses Instruction Prompt Instruction Prompt

+ Unit Tests 1 call Reasoning
Tasks

Unit Test
Evaluator

Uses generated unit tests to
evaluate candidate response

Instruction Prompt +
Unit Tests +

Candidate Response(s)

Scored Candidate
Response(s)

1 call
per cand.

Reasoning
Tasks

Table 8: Overview of ARCHON’s Inference-time Techniques: Definitions, Inputs, Outputs, Costs,
and Application Domains.

Module Initial Layer
Placement

Placement after
Initial Layer

>1 Module
in Layer

Increase
Candidate
Responses

Decrease
Candidate
Responses

Generator Yes No Yes Yes No

Fuser No Yes Yes Yes Yes

Ranker No Yes No No Yes

Critic No Yes No No No

Verifier No Yes No No Yes

Unit Test
Generator No Yes No No No

Unit Test
Evaluator No Yes No No No

Table 9: Rules of ARCHON Construction: Allowed combinations of each LLM component from
Section 2.1.

<instruction here>.

Table 10: Generator Prompt

20

Published as a SSI-FM Workshop paper at ICLR 2025

You have been provided with a set of responses with their individual critiques of strengths/weaknesses from various open-source
models to the latest user query. Your task is to synthesize these responses into a single, high-quality response. It is crucial to
critically evaluate the information provided in these responses and their provided critiques of strengths/weaknesses, recognizing
that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined,
accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest
standards of accuracy and reliability.
Responses from models:
1. <response #1>
Critique: <critique #1>
2. <response #2>
Critique: <critique #2>
...
N. <response #N>
Critique: <critique #N>
<instruction here>

((a)) With Critiques

You have been provided with a set of responses from various open-source models to the latest user query. Your task is to synthesize
these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses,
recognizing that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should
offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres
to the highest standards of accuracy and reliability.
1. <response #1>
2. <response #2>
...
N. <response #N>
<instruction here>

((b)) Without Critiques

Table 11: Fuser Prompt: Without and With Critiques

I will provide you with N responses, each indicated by a numerical identifier []. Rank the responses based on their relevance to the instruction:
<instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Rank the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers, in
descending order of relevance to the instruction. The output format should be [] > [], e.g., [4] > [2]. Only respond with the ranking results,
do not say any word or explain.

Table 12: Decoder-Based Ranking Prompt

You are a helpful assistant. I will provide you with N responses, each indicated by a numerical identifier (e.g., [1], [2], etc.). Rank the responses
based on their relevance to the instruction: <instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Evaluate the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers. For
each response, start the critique with the numerical identifier (e.g., [1]) followed by the strengths and weaknesses. You must include both strengths
and weaknesses, even if there are more of one than the other. At the end of each response’s analysis, include two new lines to separate the critiques.
Do not include any preface or text after the critiques. Do not include any references to previous critiques within a critique. Start with the analysis
for the first response and end with the analysis for the last response. All of the N responses should be included and evaluated using identifiers.
Structure each response’s analysis as follows:
Strengths:
- <strength #1>
- <strength #2>
- <strength #n>
Weaknesses:
- <weakness #1>
- <weakness #2>
- <weakness #n>

Table 13: Critic Prompt

21

Published as a SSI-FM Workshop paper at ICLR 2025

I will provide you with a response indicated by the identifier ’Response’. Provide reasoning for why the response accurately and completely
addresses the instruction: <instruction here>.
Response: <response>
Instruction: <instruction here>.
Provide the reasoning for the response above based on its relevance, completeness, and accuracy when compared to the instruction. Do not include
any preface or text after the reasoning.

Table 14: Verifier Prompt

Instruction Prompt: Given the following query, generate a set of N unit tests that would evaluate the correctness of responses
to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the
expected outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests
as a list of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

((a)) With Unit Test Cap

Instruction Prompt: Given the following query, generate a set of unit tests that would evaluate the correctness of responses to
this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the
expected outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests
as a list of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

((b)) Without Unit Test Cap

Table 15: Unit Test Generator Prompt: With and Without Unit Test Cap

Instruction Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and
must-see attractions.
1. Unit Test #1: The blog post mentions at least two cultural experiences specific to Hawaii.
2. Unit Test #2: The blog post highlights at least three must-see attractions in Hawaii.
3. Unit Test #3: The tone of the blog post is engaging and uses descriptive language that would appeal to readers interested in travel.
4. Unit Test #4: The blog post includes factual information about Hawaii’s culture, such as local customs, festivals, or historical facts.
5. Unit Test #5: The blog post contains a clear narrative structure, including an introduction, main body, and a conclusion.

((a)) Instruction-Following Query

Instruction Prompt: Alice and Bob have two dice. They roll the dice together, note the sum of the two values shown, and repeat.
For Alice to win, two consecutive turns (meaning, two consecutive sums) need to result in 7. For Bob to win, he needs to see an
eight followed by a seven. Who do we expect to win this game?
1. Unit Test #1: The response correctly identifies the winning condition for Alice (two consecutive sums of 7).
2. Unit Test #2: The response correctly identifies the winning condition for Bob (a sum of 8 followed by a sum of 7).
3. Unit Test #3: The response explains the probability of achieving two consecutive 7s when rolling two dice.
4. Unit Test #4: The response explains the probability of achieving an 8 followed by a 7 when rolling two dice.
5. Unit Test #5: The response provides a conclusion on who is more likely to win based on the probability analysis.

((b)) Reasoning Query

Table 16: Unit Test Examples

22

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 6: Performance Gains from Applying Inference Time Techniques on a Single Model: We
repeatedly sample more responses for each individual query. For each sample count, we choose the
best response in 5 different ways: (1) using an oracle (to get the upper bound for performance of best
sample), (2) randomly, (3) using a ranker model, (4) by fusion, in which a model synthesizes a response
based on all the samples, and (5) by ranking the top-5 best answers and then fusing them. For both MT
Bench and Arena-Hard-Auto, we find that fusion is an effective technique. In particular, ranking the
candidates first, and then selecting the top-5 and fusing them scores the highest. The best open-source
model for these tasks across all the 70B+ models we are considering is WizardLM-2-8x22B (Xu et al.,
2024) (see Table 24 for details). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

Given the following query, candidate response, and unit tests, evaluate whether or not the response passes each unit
test.
- In your evaluation, you should consider how the response aligns with the unit tests, retrieved documents, and
query.
- Provide reasoning before you return your evaluation.
- At the end of your evaluation, you must finish with a list of verdicts corresponding to each unit
test.
- You must include a verdict with one of these formatted options: ’[Passed]’ or ’[Failed]’.
- Here is an example of the output format:
Unit Test #1: [Passed]
Unit Test #2: [Failed]
Unit Test #3: [Passed]
- Each verdict should be on a new line and correspond to the unit test in the same posi-
tion.
- Here is the query, response, and unit tests for your evaluation:

Query: <instruction here>.

Candidate Response: <response>

Unit Tests:
Unit Test #1: <Unit Test #1>
Unit Test #2: <Unit Test #2>
...
Unit Test #N: <Unit Test #N>

Table 17: Unit Test Evaluator Prompt

A.4 UTILITIES AND INTERACTIONS OF LLM COMPONENTS

In this subsection, we present our analysis of the effectiveness of each LLM component (i.e. the Utility)
and the relationships between each component (i.e. the Component Interactions) by evaluating on
instruction-following tasks (MT Bench, AlpacaEval 2.0, Arena-Hard-Auto), reasoning tasks (MixEval,
MixEval-Hard, MATH) and coding tasks (CodeContests) (Section 3.1). For our ARCHON models,
we utilize a host of 70B+ open-source models (Section 3.1; Table 23).

A.4.1 GENERATOR

Utility: For our Generator module, we find additional model sampling to significantly boost
performance (Figure 6), particularly for coding tasks (Table 1). In settings with a limited inference

23

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 7: Performance Gains from Applying Inference-Time Techniques on an Ensemble of
Models: We incrementally add more models to the ensemble, which consists of open-source 70B+
models. The models are added to the pool based on their performance for each task, from best to worse
(see Table 24 for details). For each ensemble size, we choose the best response in 5 different modes: (1)
using an oracle (to get the upper bound for performance of best individual response in the ensemble), (2)
randomly, (3) using a ranker model, (4) by fusion, in which one model synthesizes a response based on
all the responses of the ensemble models, and (5) ranking the top-5 best responses and then fusing them.
For MT Bench and Arena-Hard-Auto, we find consistent performance improvements as we add more
models to the ensemble. We find that fusion is beneficial across various ensemble sizes and in particular
a fused candidate based on the top-5 ranked responses scores highest. The ensemble approach scores
higher than applying the same techniques on repeated samples from a single best-performing model
(see Figure 6). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

call budget, additional model samples lead to the largest marginal benefit. We see a similar pattern for
model ensembling, where sampling from additional models leads to continual performance increases
(assuming the models are ordered from best to worst for the given task) (Figure 7).

A.4.2 FUSER

Utility: For every benchmark explored, we found that the Fuser module substantially improved
performance (Figure 6; Figure 7; Figure 2.2). For the single-generation 10-model ensemble of 70B+
models, the Fuser module improved downstream accuracy by 5.2 points, on average, compared to
the single-generation best model (Figure 7). When combined with the Ranker module for ranking the
top-5 candidate responses, the Fuser improved downstream accuracy by 7.3 points and 3.6 points, on
average, compared to the single-sample best model and the oracle best candidate response, respectively
(Figure 7). Overall, we found that Fuser efficacy increased as more candidate responses were provided,
demonstrating that additional candidate generations can continue to bolster inference-time architecture
performance when combined with a Fuser.

In previous work like Mixture-of-Agents (MoA) (Wang et al., 2024), multiple layers of Fusers was
found to boost performance on some instruction-following tasks (i.e. MT Bench and Alpaca Eval 2.0).
Across all the benchmarks explored, we observed similar benefits in the ARCHON framework when
adding multiple layers of Fusers (Figure 2.2). However, based on our results in Figure 8, the number of
Fuser layers needed to improve performance varied by task, with some tasks receiving limited benefits
from added layers (1-2 point increase in accuracy for MixEval) while others experienced significant
benefits with 3-4 fusion layers and more (2 to 5 point increase in win rate for MT Bench and Alpaca
Eval 2.0). We attribute this distinction to the difference in task requirements, with chat and instruction
following tasks benefiting more from multiple iterations of revisions through the multiple Fuser layers,
leading to greater diversity in the final generation (Table 25).

Component Interactions: To better understand how the Fuser module works with the other LLM com-
ponents, we took the single-sample 10-model ensemble of Generators with a Fuser and tried adding each
of these components individually: a Critic, a Ranker, a Verifier, and a Unit Test Generator/Evaluator.
Across all of the benchmarks, the added candidate response analyses from the Critic improved the
Fuser’s ability to effectively merge the different candidate responses, increasing performance by an av-

24

Published as a SSI-FM Workshop paper at ICLR 2025

erage of 3.1 percentage points (Figure 2.2). With the added Ranker, the ARCHON architecture improved
the combined Ensemble + Critic + Fuser performance across all the benchmarks by 4.8 percentage
points, on average (Figure 2.2). The Ranker proved most effective for style-oriented tasks (e.g. MT
Bench and AlpacaEval 2.0) since the examples mostly focus on improving the instruction-guidance
towards the provided prompt. With the added Verifier module (Figure 2.2), the performance of the
Ensemble + Critic + Fuser configuration improved marginally for the instruction-following tasks (1.2
percentage points, on average, for MT Bench, AlpacaEval 2.0, and Arena-Hard-Auto). However, this
configuration improved performance more on reasoning tasks (3.2 percentage points for MixEval and
MixEval-Hard, on average), assisting generation by filtering out irrelevant or flawed answers before the
final fusion step (Figure 2.2). The added Unit Test Generator and Evaluator was less effective for the
instruction-following and reasoning tasks, only providing a 1.5 percentage points increase, on average,
when added to the Ensemble + Critic + Fuser configuration (Table 18). However, for coding tasks, we
found unit test generation and evaluation significantly improved performance, leading to a 10.7 percent-
age point increase (56% performance increase comparatively) as we scale model sampling (Table 1).

A.4.3 CRITIC

Utility: The Critic module proved effective for every task we explored in Figure 2.2 and Table 18.
With our 10-model 70B+ Generator ensemble and Fuser configuration of ARCHON, the added Critic
improved performance on average by 3.1 percentage points across the benchmarks explored.

Component Interactions: While useful for most ARCHON architectures, the added strengths and
weaknesses from the Critic module are particularly useful when combined with the Fuser module,
helping guide generation fusion for a single layer and even useful when placed between multiple fusion
layers (on average 3.2 percentage point boost across benchmarks in Figure 2.2). The Critic module
was also effective with the Ranker module, providing additional information for comparing candidate
responses (Figure 6) and leading to a 5.9 percentage point increase, on average (Table 18).

A.4.4 RANKER

Utility: From our results in Table 18, Figure 6, and Figure 7, we found the Ranker to be most effective
for instruction-following tasks, where pair-wise comparisons of answers focus on style and adherence
to the prompt. To examine the candidate selection improvement provided by candidate ranking, we
compare three approaches to the Ranker: (1) random selection of candidate generation, (2) oracle
selection of candidate generation, and (3) the top-ranked candidate selected by our Ranker. For MT
Bench and Arena-Hard-Auto, we find that the ranker improves generation output quality by 3.8%
compared to random candidate selection and performs within 2.7% of oracle selection (Figure 6).

Component Interactions: Based on our benchmark results in Table 18, the Ranker pairs well
with the Critic module; the provided strengths and weaknesses helps guide ranking, particularly for
instruction-following tasks, improving performance by 5.9 percentage points, on average. Furthermore,
the Ranker was also effective when paired with the Fuser; the filtered list of candidate responses helped
improve the final condensed response produced by the Fuser by 3.8 percentage points, on average
(Figure 7). When paired with the Verifier and Unit Test Generator, the Ranker had neutral effects;
performances changed marginally, either positively or negatively by 1-2 percentage points (Table 18).

Overall, our findings demonstrate the value of added Rankers for instruction-following and
reasoning tasks when paired with Fusers. We find that when Rankers are used alone with an ensemble
of Generators, their performance lags behind the 10-sample best single model configuration by 3.0
percentage points, on average (Table 18). Additionally, our findings show the importance of building
better rankers for more complex reasoning tasks, such as math and coding, which is a challenge also
raised by Brown et al. (2024).

A.4.5 VERIFIER

Utility: The Verifier was most effective for the reasoning benchmarks explored in Table 18. When just
using a 70B+ Generator ensemble with Verifier module after generation, the ARCHON configuration
lagged behind the ARCHON ensemble and fuser configuration by 1.5 percentage points, on average,
across all benchmarks explored. This suggests that the Verifier is most effective when combined with
other inference-time techniques.

25

Published as a SSI-FM Workshop paper at ICLR 2025

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R.

Raw
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Best Open-Source 70B+ Model, Sampled Once 1 55.0% ±0.4 44.7% ±0.5 37.1% ±0.6 45.6% ±0.5 58.7% ±0.2 86.5% ±0.3 84.5% ±0.6 22.5% ±0.3

Ensemble + Fuser 9 58.4% ±0.6 57.5% ±0.4 51.3% ±0.5 54.3% ±0.7 60.1% ±0.5 87.3% ±0.2 85.5% ±0.3 23.1% ±0.7
Ensemble + Critic + Fuser 10 60.9% ±0.3 58.7% ±0.6 65.8% ±0.3 58.8% ±0.4 61.7% ±0.5 87.4% ±0.3 87.2% ±0.5 24.9% ±0.4

A
bl

at
io

ns

Ensemble + Ranker 9 52.5% ±0.7 54.7% ±0.5 47.6% ±0.4 50.5% ±0.6 58.7% ±0.3 86.8% ±0.4 80.4% ±0.4 24.1% ±0.4
Ensemble + Verifier 24 53.2% ±0.5 56.2% ±0.3 50.2% ±0.7 52.4% ±0.3 55.9% ±0.5 85.6% ±0.2 85.2% ±0.7 25.3% ±0.5
Ensemble + Unit Test Gen./Eval. 18 51.5% ±0.4 54.4% ±0.6 49.4% ±0.5 46.1% ±0.8 55.2% ±0.4 86.0% ±0.3 85.2% ±0.5 24.6% ±0.6
Ensemble + Ranker + Fuser 10 62.5% ±0.8 60.3% ±0.4 63.6% ±0.6 57.2% ±0.5 59.7% ±0.2 87.6% ±0.3 85.3% ±0.6 24.0% ±0.2
Ensemble + Verifier + Fuser 25 60.5% ±0.3 59.4% ±0.7 58.7% ±0.3 59.2% ±0.4 68.3% ±0.3 87.5% ±0.2 86.7% ±0.4 26.3% ±0.6
Ensemble + Unit Test Gen./Eval. + Fuser 17 61.4% ±0.6 58.5% ±0.5 55.1% ±0.4 56.4% ±0.7 63.9% ±0.3 86.9% ±0.3 86.4% ±0.8 28.0% ±0.6
Ensemble + Critic + Verifier + Fuser 25 61.3% ±0.5 60.0% ±0.3 61.0% ±0.7 59.5% ±0.3 65.8% ±0.4 87.8% ±0.4 86.1% ±0.3 26.8% ±0.3
Ensemble + Critic + Ranker + Fuser 11 64.7% ±0.4 62.6% ±0.6 72.4% ±0.5 60.9% ±0.6 66.8% ±0.4 88.3% ±0.2 87.3% ±0.5 25.5% ±0.3

Table 18: Impact of Different Compositions of ARCHON’s Inference-Time Techniques: We see
increased task performances from adding new LLM components to ARCHON. For CodeContests,
we find that there is a single model (Llama 3.1 405B Instruct) that performs considerably better than
the rest of the LLMs studied, making it more effective leverage additional model sampling (Table 1).
For our ensemble, we use the best 8 open-source 70B+ models for the task (Table 24). For our fuser,
critic, ranker, and verifier components, we use the best fuser model found for the task (Table 24). For
each evaluation benchmark, we explain its configuration in Table 2 and Section 3.1. The standard
error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 44.2% ±0.6 57.8% ±0.5 48.1% ±0.7 63.4% ±0.3 87.5% ±0.2 82.1% ±0.4 17.9% ±0.3

Ensemble + Fuser 11 53.7% ±0.3 59.5% ±0.6 49.7% ±0.5 65.5% ±0.2 82.0% ±0.3 81.0% ±0.6 16.0% ±0.4
Ensemble + Critic + Fuser 12 56.1% ±0.7 59.7% ±0.4 53.9% ±0.6 67.4% ±0.4 82.0% ±0.2 82.3% ±0.5 18.9% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 47.6% ±0.4 49.7% ±0.5 45.5% ±0.4 63.3% ±0.3 81.6% ±0.4 77.3% ±0.7 17.9% ±0.5
Ensemble + Verifier 11 48.4% ±0.5 51.2% ±0.7 47.7% ±0.8 61.4% ±0.2 80.5% ±0.3 75.5% ±0.3 23.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 46.8% ±0.8 49.3% ±0.3 41.2% ±0.5 60.2% ±0.4 80.7% ±0.2 78.9% ±0.8 24.0% ±0.7
Ensemble + Ranker + Fuser 12 58.0% ±0.2 60.1% ±0.6 52.2% ±0.3 65.0% ±0.3 82.0% ±0.4 82.1% ±0.4 18.0% ±0.3
Ensemble + Verifier + Fuser 12 55.8% ±0.6 54.2% ±0.4 60.3% ±0.7 67.0% ±0.2 82.5% ±0.3 83.1% ±0.6 22.4% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 56.5% ±0.3 61.4% ±0.5 51.6% ±0.4 67.7% ±0.4 81.7% ±0.2 84.3% ±0.5 25.4% ±0.6
Ensemble + Critic + Verifier + Fuser 13 56.6% ±0.7 62.0% ±0.3 55.0% ±0.6 68.5% ±0.3 82.7% ±0.4 85.7% ±0.3 22.2% ±0.4
Ensemble + Critic + Ranker + Fuser 13 60.0% ±0.4 62.8% ±0.6 56.2% ±0.5 69.4% ±0.2 88.5% ±0.3 87.0% ±0.7 18.5% ±0.5

Table 19: ARCHON Component Compositions with GPT-4o: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent
evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 32.1% ±0.7 38.5% ±0.5 30.4% ±0.6 45.2% ±0.3 69.5% ±0.2 72.3% ±0.5 10.5% ±0.6

Ensemble + Fuser 11 44.2% ±0.3 43.0% ±0.6 40.2% ±0.4 46.0% ±0.4 73.0% ±0.3 70.5% ±0.7 6.0% ±0.4
Ensemble + Critic + Fuser 12 46.6% ±0.5 44.2% ±0.4 44.4% ±0.7 47.9% ±0.2 73.0% ±0.4 72.5% ±0.3 8.4% ±0.5

A
bl

at
io

ns

Ensemble + Ranker 11 38.1% ±0.6 40.2% ±0.7 36.0% ±0.5 43.8% ±0.3 72.1% ±0.2 66.2% ±0.6 7.5% ±0.4
Ensemble + Verifier 11 38.9% ±0.4 41.7% ±0.3 38.2% ±0.8 41.9% ±0.4 71.0% ±0.3 68.5% ±0.4 19.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 37.3% ±0.8 39.8% ±0.6 31.7% ±0.3 40.7% ±0.2 71.2% ±0.4 69.8% ±0.8 22.0% ±0.3
Ensemble + Ranker + Fuser 12 48.0% ±0.2 45.6% ±0.5 42.7% ±0.6 45.0% ±0.3 73.0% ±0.2 70.1% ±0.5 8.0% ±0.6
Ensemble + Verifier + Fuser 12 46.3% ±0.5 44.7% ±0.4 45.0% ±0.4 50.5% ±0.4 73.0% ±0.3 71.3% ±0.3 18.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 47.0% ±0.3 43.9% ±0.7 42.1% ±0.7 48.2% ±0.2 72.2% ±0.4 73.1% ±0.6 23.5% ±0.4
Ensemble + Critic + Verifier + Fuser 13 47.1% ±0.7 46.0% ±0.3 45.0% ±0.5 52.4% ±0.3 73.2% ±0.5 74.1% ±0.4 18.4% ±0.7
Ensemble + Critic + Ranker + Fuser 13 50.5% ±0.4 48.3% ±0.6 46.7% ±0.3 55.1% ±0.4 73.7% ±0.3 76.4% ±0.5 8.1% ±0.5

Table 20: ARCHON Component Compositions with GPT-4o-mini: The ensemble uses generates
10 samples for the given query. The standard error numbers were calculated from 10 independent
evaluation runs.

26

Published as a SSI-FM Workshop paper at ICLR 2025

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 N/A 52.7% ±0.4 81.4% ±0.6 68.7% ±0.3 89.1% ±0.2 83.5% ±0.5 12.5% ±0.3

Ensemble + Fuser 11 N/A 53.0% ±0.6 83.2% ±0.4 69.5% ±0.2 89.0% ±0.3 81.8% ±0.6 17.0% ±0.4
Ensemble + Critic + Fuser 12 N/A 54.2% ±0.3 85.4% ±0.7 70.9% ±0.4 89.5% ±0.2 82.6% ±0.4 19.4% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 N/A 50.2% ±0.5 85.7% ±0.5 63.8% ±0.3 82.1% ±0.4 80.2% ±0.7 18.5% ±0.5
Ensemble + Verifier 11 N/A 51.7% ±0.7 78.2% ±0.3 60.9% ±0.2 81.0% ±0.3 80.1% ±0.3 21.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 N/A 49.8% ±0.4 71.7% ±0.8 59.0% ±0.2 81.2% ±0.2 80.9% ±0.8 22.0% ±0.7
Ensemble + Ranker + Fuser 12 N/A 55.6% ±0.5 82.7% ±0.4 65.0% ±0.3 89.0% ±0.4 82.4% ±0.4 19.0% ±0.3
Ensemble + Verifier + Fuser 12 N/A 54.7% ±0.3 85.0% ±0.6 70.5% ±0.2 89.3% ±0.3 84.1% ±0.6 21.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 N/A 53.9% ±0.6 82.1% ±0.5 68.2% ±0.4 89.2% ±0.2 82.0% ±0.5 23.5% ±0.6
Ensemble + Critic + Verifier + Fuser 13 N/A 56.0% ±0.4 85.0% ±0.3 71.0% ±0.3 89.4% ±0.4 83.1% ±0.3 21.4% ±0.4
Ensemble + Critic + Ranker + Fuser 13 N/A 58.3% ±0.5 86.7% ±0.7 73.0% ±0.2 89.7% ±0.3 85.3% ±0.7 19.1% ±0.5

Table 21: ARCHON Component Compositions with Claude 3.5 Sonnet: The ensemble uses
generates 10 samples for the given query. The standard error numbers were calculated from 10
independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 35.0% ±0.5 42.0% ±0.6 36.8% ±0.7 64.6% ±0.2 73.2% ±0.3 74.3% ±0.4 10.0% ±0.5

Ensemble + Fuser 11 48.2% ±0.3 47.0% ±0.4 44.2% ±0.5 66.5% ±0.3 77.0% ±0.2 75.1% ±0.7 10.8% ±0.3
Ensemble + Critic + Fuser 12 50.6% ±0.7 48.2% ±0.5 48.4% ±0.3 68.1% ±0.4 77.0% ±0.4 76.3% ±0.5 11.5% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 42.1% ±0.4 44.2% ±0.7 40.0% ±0.6 58.8% ±0.3 76.1% ±0.2 71.8% ±0.6 11.9% ±0.4
Ensemble + Verifier 11 42.9% ±0.6 45.7% ±0.3 42.2% ±0.8 57.9% ±0.2 75.0% ±0.3 70.5% ±0.4 12.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 41.3% ±0.8 43.8% ±0.6 35.7% ±0.4 55.7% ±0.4 75.2% ±0.2 74.1% ±0.8 13.0% ±0.3
Ensemble + Ranker + Fuser 12 52.0% ±0.2 49.6% ±0.5 46.7% ±0.7 60.0% ±0.3 77.0% ±0.4 75.0% ±0.5 12.0% ±0.6
Ensemble + Verifier + Fuser 12 50.3% ±0.5 48.7% ±0.4 48.7% ±0.5 67.5% ±0.2 77.0% ±0.3 77.4% ±0.3 10.5% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 51.0% ±0.3 47.9% ±0.7 46.1% ±0.6 64.2% ±0.4 76.2% ±0.2 78.3% ±0.6 14.3% ±0.4
Ensemble + Critic + Verifier + Fuser 13 51.1% ±0.7 50.0% ±0.3 49.0% ±0.4 68.0% ±0.3 77.2% ±0.4 77.8% ±0.3 10.0% ±0.7
Ensemble + Critic + Ranker + Fuser 13 54.5% ±0.4 52.3% ±0.6 50.7% ±0.3 70.4% ±0.2 77.7% ±0.3 80.5% ±0.5 11.5% ±0.5

Table 22: ARCHON Component Compositions with Claude-3-Haiku: The ensemble uses generates
10 samples for the given query. The standard error numbers were calculated from 10 independent
evaluation runs.

Component Interactions: As noted in Section A.4.2, the Verifier augmented the performance of
the Critic and Fuser on reasoning tasks (e.g. Arena-Hard-Auto, MixEval, MixEval-Hard), boosting
performance by 3.7 percentage points, on average, when combined together with these modules.
Overall, the Verifier is most powerful when augmenting additional components for tasks requiring
verification of intermediate steps and the final response (Table 18). Therefore, the Verifier was
less helpful for instruction-following tasks (e.g. MT Bench and AlpacaEval) but more effective for
reasoning tasks (e.g. Arena-Hard-Auto and MixEval).

A.4.6 UNIT TEST GENERATOR AND EVALUATOR

Utility: The Unit Test Generator and Evaluator were most effective on reasoning and coding tasks,
improving performance on benchmarks that required more verification steps, such as Arena-Hard-Auto,
MixEval, MixEval-Hard, MATH, and CodeContests (Table 18). For the reasoning tasks, we found
the unit test generator and evaluator to be most effective when combined with other components. When
the 70B+ ensemble of Generators was only combined with unit tests, it was less effective for reasoning
tasks like Arena-Hard-Auto and MixEval, lagging behind the ensemble and fuser configuration by 3.1
percentage points. This inspired us to look into other inference-time techniques combinations for unit
test generation, such as increased sampling and fusion. When we increased generation sampling and
added unit test generation/evaluation for CodeContests, we see a 56% boost in Pass@1 performance
(Table 1), increasing from 17.9 to 29.3 Pass@1.

27

Published as a SSI-FM Workshop paper at ICLR 2025

Component Interactions: When combined with the Fuser module, the Unit Test Generator and
Evaluator improved performance by 2.1 percentage points across the benchmarks explored (Table 18).
The combined ensemble, Unit Test Generator/Evaluator, and Fuser ARCHON configuration was most
effective on the reasoning benchmarks, leading to a 2.5 percentage point boost, on average. For coding,
the unit test generator and evaluator was most effective when combined with the best performing
Generator (using large sample counts) and a final Fuser (subsection 3.2).

28

Published as a SSI-FM Workshop paper at ICLR 2025

MT Bench Alpaca Eval 2.0 Arena Hard Auto MixEval MixEval Hard MATH CodeContests

Models Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion

GPT-4o 44.7% 61.9% 57.5% 64.5% 48.1% 69.2% 88.0% 89.4% 63.6% 65.4% 82.0% 81.0% 17.9% 19.4%

GPT-4-Turbo 42.2% 63.1% 55.0% 65.8% 48.1% 61.9% 88.9% 89.0% 64.1% 64.4% 79.5% 73.5% 9.3% 14.2%

Claude 3
Opus 30.9% 57.2% 40.5% N/A 27.0% 47.9% 88.3% 88.2% 63.6% 64.0% 74.5% 74.0% 10.0% 12.5%

Claude 3.5
Sonnet N/A 71.9% 52.37% 63.6% N/A 73.2% 89.7% 89.3% 68.9% 69.5% 83.5% 86.5% 12.1% 15.5%

Qwen 2
72B Instruct 35.0% 59.7% 37.48% 56.0% 14.5% 49.5% 86.5% 87.5% 58.7% 61.1% 81.0% 78.5% 3.6% 5.2%

DeepSeek LLM
67B Instruct 18.4% 20.0% 17.8% 17.1% N/A N/A 79.2% N/A 42.5% N/A 57.0% N/A 5.7% N/A

Qwen 1.5
72B Chat 24.7% 46.3% 36.6% 55.7% 14.4% 36.4% 84.5% 82.5% 50.3% 52.2% 71.5% 67.5% 15.0% 13.9%

Qwen 1.5
110B Chat 34.4% 50.3% 43.6% 55.9% 21.9% 39.7% 85.3% 86.5% 51.8% 55.6% 67.0% 75.5% 3.6% 7.8%

Wizard 8x22B 53.8% 57.2% 44.7% 50.6% 45.6% 51.2% 83% 78.1% 54.3% 50.4% 76.0% 60.5% 7.1% 10.4%

Llama 3.1
8B Instruct 33.1% 45.9% 25.6% 34.9% 11.9% 28.6% 75.0% 57.5% 41.3% 46.5% 65.5% 60.5% 8.6% 7.8%

Llama 3.1
70B Instruct 45.0% 51.9% 35.6% 40.2% 23.8% 37.2% 85.7% 83.5% 61.1% 65.5% 74.0% 73.5% 20.7% 23.4%

Llama 3.1
405B Instruct 44.7% N/A 40.3% N/A 28.4% N/A 88.9% N/A 66.2% N/A 78.0% N/A 27.1% N/A

Table 24: ARCHON Generation and Fusion Performances for Single Models: For Alpaca Eval
2.0, we use the length-controlled win rate (LC WR). For fusion, we gather one candidate from each
of the top-10 generator models.

A.5 ARCHON LLM ANALYSIS

Model Source Code Parameter
Count

Max Sequence
Length

GPT-4o (OpenAI et al., 2024) Closed-Source — 128K
GPT-4-Turbo (OpenAI et al., 2024) Closed-Source — 128K
Claude-3-Opus (Anthropic, 2024) Closed-Source — 200K

Claude-3.5-Sonnet (Anthropic, 2024) Closed-Source — 200K
Claude-3-Haiku (Anthropic, 2024) Closed-Source — 200K

Llama-3.1-70B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
Llama-3.1-405B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
DeepSeek LLM 67B Chat (Guo et al., 2024) Open-Source 67B 32k

Qwen2 72B Instruct (Qwen, 2024) Open-Source 72B 32k
Qwen1.5 110B Chat (Bai et al., 2023) Open-Source 110B 32k
Qwen1.5 72B Chat (Bai et al., 2023) Open-Source 72B 32k

Mixtral 8x22B v0.1 (Jiang et al., 2024) Open-Source 176B 32k
WizardLM 8x22B (Xu et al., 2024) Open-Source 176B 32k

dbrx-instruct (Databricks, 2024) Open-Source 132B 32k

princeton-nlp/Llama-3-Instruct-8B-SimPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-DPO (Meng et al., 2024) Open-Source 8B 8k

princeton-nlp/Llama-3-Instruct-8B-RDPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-IPO (Meng et al., 2024) Open-Source 8B 8k

Llama-3.1-8B-Instruct (Dubey et al., 2024) Open-Source 8B 8k
Qwen2-7B-Instruct (Qwen, 2024) Open-Source 7B 32k

Qwen/Qwen1.5-7B-Chat (Bai et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) Open-Source 7B 32k

cognitivecomputations/dolphin-2.2.1-mistral-7b (Hartford, 2024) Open-Source 7B 32k
microsoft/Phi-3-mini-4k-instruct (Abdin et al., 2024) Open-Source 4B 4k

HuggingFaceH4/zephyr-7b-beta (Tunstall et al., 2023) Open-Source 7B 32k
microsoft/Phi-3-small-8k-instruct (Abdin et al., 2024) Open-Source 7B 8k

snorkelai/Snorkel-Mistral-PairRM-DPO (Tran et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) Open-Source 7B 32k

Table 23: Models Tested with ARCHON.

29

Published as a SSI-FM Workshop paper at ICLR 2025

Jaccard Similarity (%)

Inference-Time
Architecture MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Best Open-Source 70B+ Model,
Sampled 8 Times + Fuser 45.3% 52.1% 48.4% 55.2% 58.9% 65.2% 63.7%

Ensemble (8 Top Models),
Sampled Once Each + Fuser 31.6% 34.1% 28.9% 38.6% 40.9% 57.1% 53.4%

Table 25: Jaccard Similarities between Candidates Responses and Fused Response by
Benchmark: For the fuser, we use the best-performing 70B+ model for each benchmark.

Figure 8: Fusion Layer Efficacy by Benchmark: From solely scaling the fusion layers, we see limited
benefits across the benchmarks explored but when we add other inference-time techniques, such as
Critic and Ranker, we see increased downstream performance as we continue scaling inference-time
compute (Figure 2.2). We use an 8-model ensemble of the top Generator models for each benchmark
(Table 24). For our Fuser layers, we use the best Fuser model for the final fuser layer (Table 24). For
the intermediate layers, we use the top-8 Fuser models for each benchmark.

A.6 ARCHON ARCHITECTURES

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72BPrompt Output

Generator

GPT-4o

Generator

Llama 3.1 405B

Generator

Claude 3.5 Sonnet

Generator

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 9: All-Source Generalizable ARCHON Architecture: Using ARCHON’s architecture search,
we found this all-source ARCHON configuration to be effective across the benchmarks explored
(except for CodeContests). In the diagram above, we use 10 SOTA all-source LLMs to create multiple
successive layers of critic, ranker, and fusers, with each successive fuser layer having less fusers to
produce a "funneling" effect as the candidate generations are processed. The layers of critic, ranker,
and fuser led to better candidate generations through iterative critique and rewriting. Each of the initial
Generator models were sampled once.

30

Published as a SSI-FM Workshop paper at ICLR 2025

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405BPrompt Output

Generator

Llama 3.1 405B

Generator

Qwen1.5-110B

Generator

DRBX Instruct

Generator

WizardLM2

8x22B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Mixtral 8x7B

Fuser

Llama 3.1 405B

Fuser

DRBX-Instruct

Fuser

Qwen2-72B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen2-72B

Fuser

Llama 3.1 405B

Fuser

Mixtral 8x22B

Fuser

Qwen2-72B

Fuser

Qwen1.5-110B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen1.5-110B

Fuser

Mixtral 8x22B

Fuser

Llama 3.1 70B

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 10: All-Source ARCHON Architecture for Instruction-Following and Reasoning: Using
ARCHON’s architecture search, we found this all-source ARCHON configuration to be effective across
the instruction-following benchmarks explored (MT Bench, AlpacaEval 2.0, ArenaHardAuto).

Generator

GPT-4o

Generator

Llama 3.1 405B

Generator

Qwen 2.5 72B

Generator

Wizard 8x22B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Qwen 2.5 72B

Fuser

Wizard 8x22B

Critic

Claude 3.5 Sonnet

Ranker

Claude 3.5 Sonnet

Fuser

Claude 3.5 Sonnet

Prompt OutputVerifier

GPT-4o

n = 5 samples each

Figure 11: All-Source ARCHON Architecture for Math: Using ARCHON’s architecture search, we
found this all-source ARCHON configuration to be effective across the math benchmarks explored
(MATH).

Claude 3.5

Critic

Critic

GPT-4o

Critic

Model[i]

Unit Test
Evaluator

GPT -4o

Unit Tester
Generator

GPT-4o

Generator

GPT-4o

Prompt Output

Generator

GPT-4o

Generator

GPT-4o

1

5

Generator

GPT-4o

3

Fuser

Model[i]

1

Fuser

Model[i] 5

Model Used Per Round

 Claude 3.5 Sonne
 Llama 405
 GPT-4
 Claude 3.5 Sonnet

4 Rounds

Figure 12: All-Source ARCHON Architecture for Coding: Using ARCHON’s architecture search,
we found this all-source ARCHON configuration to be effective across the coding benchmarks explored
(CodeContests).

A.7 ARCHON BY INFERENCE COMPUTE BUDGET, MODEL SIZE, AND COST

Datasets

Number of
Inference Calls

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

70
B

+
M

od
el

s

1 55.0% 44.7% 45.6% 86.5% 61.1%
10 52.5% 50.6% 45.6% 86.5% 63.9%
20 65.3% 60.4% 59.4% 89.0% 65.0%
30 69.2% 64.5% 69.0% 89.5% 67.5%
40 69.5% 66.7% 69.0% 89.5% 67.5%
50 71.6% 66.7% 69.0% 89.5% 67.5%

C
lo

se
d

M
od

el
s

1 45.0% 57.5% 48.1% 88.9% 68.9%
10 57.1% 63.2% 68.4% 90.0% 70.1%
20 59.4% 66.5% 75.5% 90.6% 70.5%
30 70.2% 68.8% 77.4% 90.6% 72.9%
40 75.5% 68.8% 77.4% 90.6% 72.9%
50 80.4% 68.8% 77.4% 90.6% 72.9%

Table 26: ARCHON with Different Inference Budgets: For AlpacaEval 2.0, we use the length-
controlled win rate (LC WR).

31

Published as a SSI-FM Workshop paper at ICLR 2025

Datasets

Models / LLM Systems MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

Best 7B Model, 1-Sample 15.7% 41.0% 18.3% 76.2% 46.1%

Best 7B Model - 10-Sample + Ranking 16.5% 43.2% 18.9% 78.4% 48.5%

10-Model, 1-Sample Ensemble + Ranking 22.4% 48.2% 25.6% 81.5% 52.9%

10-Model, 1-Sample Ensemble + Fusion 14.3% 39.4% 17.5% 73.2% 45.2%

10-Model, 1-Sample Ensemble
+ Top-5 Ranking + Fusion 15.9% 41.2% 18.0% 75.1% 46.9%

10-Model, 1-Sample Ensemble
+ Critic + Fusion 10.5% 38.4% 16.5% 71.4% 42.5%

Table 27: ARCHON with 7B Open-Source Models: For AlpacaEval 2.0, we use the length-controlled
win rate (LC WR). We use open-source 7B models for testing from Table 23.

Models Cost ($) per
Million Input Tokens

Cost ($) per
Million Output Tokens

Claude 3.5 Sonnet $3 $15

Claude 3.0 Opus $15 $75

GPT-4o $5 $15

GPT-4-Turbo $10 $30

TogetherAI - Llama 3.1 405B Instruct $5 $5

TogetherAI - Llama 3.1 70B Instruct $0.88 $0.88

TogetherAI - Other Models $0.90 $0.90

Table 28: Model API Costs as of November 2024

Cost ($) per Query for Benchmark

Model /
LLM System MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Claude 3.5 Sonnet 0.0305 0.0171 0.0212 0.0231 0.0226 0.0325 0.384

GPT-4o 0.0481 0.0236 0.0324 0.0357 0.0361 0.514 0.562

Llama 3.1 405B Instruct 0.0281 0.0174 0.0185 0.0212 0.0205 0.305 0.372

General Purpose
ARCHON Architecture 0.364 0.189 0.195 0.284 0.252 0.375 0.461

Task Specific
ARCHON Architecture 0.401 0.210 0.221 0.295 0.265 0.425 0.448

Table 29: ARCHON Costs per Query by Benchmark

A.8 BAYESIAN OPTIMIZATION FOR ARCHON

A.8.1 ARCHON SEARCH SPACE AND OBJECTIVE

The ARCHON configuration space can be defined asX ={xg,xs,xf ,xr,xc,xv}where:

• xg∈ [1,10] : Number of generator models
• xs∈ [1,5] : Samples per generator (extends to [1,1000] for CodeContests)
• xf ∈ [1,4] : Number of fusion layers, including the final fusion layer at the end
• xr∈ [2,10] : Number of models per fusion layer, ranging from 2 to 10 increments of 2
• xc∈{0,1} : Whether to use critic and ranker layers before each fuser
• xv∈{0,1} : Whether to use verification layer before final fusion

32

Published as a SSI-FM Workshop paper at ICLR 2025

The total search space initially contains 18,750 configurations (10·5·5(4−1) ·3=18,750), reduced to
9,576 after removing invalid configurations where: 1) initial generations exceed fuser context window
(24 candidates); and 2) single fuser layer contains multiple fusers (xf =1 while xr≥2).

Let f(x) be the objective function evaluating an ARCHON configuration x∈X , defined as:

f(x)=Performance(x)−λ·Cost(x) (1)

where Performance(x) is the accuracy on a 20% sample of target tasks and Cost(x) represents
inference compute usage.

A.8.2 OPTIMIZATION PROCESS

We describe the components of the Bayesian optimization search approach for ARCHON.

First, defineH as a history of architectures and their resulting objective values, which we accumulate
throughout the optimization process. We use Expected Improvement (EI) as the acquisition function
for determining how to select the next architecture configuration to search:

EI(x;H)=E[max(0,f(x)−f(x+))], (2)

where f(x+) is the best-observed value of our objective so far for (x+,f(x+)) ∈ H. We use a
Gaussian Process model as a surrogate model for approximating f(x).

We now describe the Bayesian optimization process. We first initialize the observation historyH=∅.
For timestep t=1,...,T , where T is the maximum number of iterations parameter, we do the following:

1. An architecture xt is selected using the acquisition function, xt=argmaxx∈X EI(x;H).
2. This architecture xt is evaluated, and we obtain f(xt).
3. We use f(xt) to update our acquisition function and the surrogate model usingH←H∪(xt,f(xt)).

The process continues until either:

• A maximum number of iterations is reached, T
• Performance convergence: |f(xn+1)−f(xn)|<ϵ
• Budget exhaustion: Cost(x1,...,xn)>B

For ARCHON’s implementation, we initialize with 230-240 random configurations, as this was found
to be optimal through empirical testing. Additional samples beyond this point provide diminishing
returns and are better allocated to configuration search. For our implementation, we utilize the
Bayesian Optimization python package for global optimization with Gaussian processes.

This formulation allows ARCHON to efficiently explore the configuration space, requiring 88.5%
fewer evaluations than greedy search and 90.4% fewer than random search, with Bayesian optimization
finding the best architectures in 96.0% of iterations. Traditional greedy search methods may perform
comparably for limited inference budgets (<20 calls), but Bayesian optimization becomes increasingly
effective as the search space and compute budget grow.

A.9 BAYES OPTIMIZATION VS. ALTERNATIVE APPROACHES

Search Techniques: Within the hyperparameter space, we explored three search algorithms for
automating the development of inference-time architectures:

1. Random Search: Randomly selects a combination of hyperparameters for our ARCHON
architecture.

2. Greedy Search: Starting with a base ARCHON configuration, marginally changes each hyperpa-
rameter and test if it improves performance or not. If it does, incorporate the change. If not, move
on to the next hyperparameter.

3. Bayesian Optimization: Efficiently selects the most promising hyperparameter configurations
for ARCHON by building a probabilistic surrogate model and leveraging an acquisition function
for hyperparameter selection (Snoek et al., 2012; Nardi et al., 2019) (Section A.8).

To get our model ranking for the benchmark, we calculate the model ranking by testing each model
individually on a 20% sample of each dataset benchmark in the first stage of the search. To get our
fusion model ranking for the benchmark, we use the same approach, testing each model’s fusion

33

https://github.com/bayesian-optimization/BayesianOptimization

Published as a SSI-FM Workshop paper at ICLR 2025

Figure 13: Impact of Different Optimization Algorithms on ARCHON’s Architecture Search:
On the benchmarks MT Bench and Arena-Hard-Auto, we compare four approaches for finding the
optimal inference-time architecture: random search, greedy search, and Bayes Optimization. Bayes
Optimization finds the optimal architecture in 88.5% less iterations compared to greedy search and
90.4% less iterations compared to random search.

performance with an ensemble of 10 randomly selected models from the available set. From our
experiments, we found that the best generator and fusion models could vary widely dataset to dataset,
making it beneficial to perform these rankings for new datasets (Table 24). For search, we use the same
20% sample of each dataset that was used for evaluating generation and fusion, allowing us to guide
architecture search with improved evaluation speed while getting meaningful development signal.

Comparing Search Algorithms: In Figure 13, we compare the effectiveness of each search algorithm
on our explored benchmarks. While random search guarantees the optimal ARCHON configuration,
we found Bayesian optimization to be most effective in terms of tradeoff between finding the optimal
configurations and minimizing the number of configurations tested. For 96.0% percent of the search
iterations tested in Figure 13, we found that Bayesian optimization had the optimal configuration
amongst the four explored search algorithms. We use 230 initial samples for our Bayes Optimization
architecture search (Section A.8). Bayesian optimization also found the best architecture configuration
in 88.5% less evaluations than greedy search and 90.4% less evaluations than random search.

Bayesian Optimization Analysis: In Table 32, we explore how the number of initial testing points,
the number of exploration iterations, and the ARCHON inference call budget impacts the effectiveness
of Bayesian optimization. Additional initial testing points continue improving search efficacy up
until 230-240 samples, where testing would be better delegated towards configuration search. For
lower inference call budgets with ARCHON (e.g. <20 inference calls), Bayesian optimization proved
less effective, performing more similarly to greedy search or random search given the limited search
space (Table 33). Therefore, Bayesian optimization is more effective for more open-ended ARCHON
architecture search with larger inference call budgets (e.g. >20 inference calls) whereas traditional
component engineering might be better for more limited inference call budgets.

34

Published as a SSI-FM Workshop paper at ICLR 2025

A.10 ARCHON ARCHITECTURE ALGORITHMS COMPARISONS

of Init.
Points

% of Total
Configs

Iter. till
Max. Config. Comb. Iter.

200 2.18% 353 553
210 2.29% 324 534
220 2.40% 301 521
230 2.51% 284 514
240 2.61% 261 501
250 2.72% 265 515
260 2.83% 256 516
270 2.94% 252 522

Table 30: MT Bench

of Init.
Points

% of Total
Configs

Iter. till
Max. Config.

Comb.
Iter.

200 2.18% 478 678
210 2.29% 431 641
220 2.40% 415 635
230 2.51% 382 612
240 2.61% 389 629
250 2.72% 385 635
260 2.83% 372 632
270 2.94% 368 638

Table 31: Arena-Hard-Auto

Table 32: Bayesian Optimization Hyperparameter Comparisons: On MT Bench and Arena-Hard-
Auto, we compare Bayesian optimization configurations for the number of initial sample points. We
find that 230 to 240 initial sample points minimizes the combined number of iterations (both initial
sampling and exploring) to find the optimal configuration. For the configurations explored, the total
number of hyperparameter choices is 9,576.

Iterations to Convergence

Inference Budget 10 20 30 40 50

Random Selection 387 1152 2731 4359 5843
Greedy Search 343 984 2153 3045 4895

Bayes Optimization 254 386 452 515 589

Table 33: ARCHON Architecture Search Algorithms Comparison by Inference Call Budget: For
our comparison, we evaluate on MT Bench.

35

	Introduction
	Inference-Time Techniques for Archon
	LLM Components of Archon
	Combining the LLM Components
	Architecture Search Algorithms

	Experiments
	Benchmarks and Models
	Archon vs. Closed-Source LLMs and Other Inference-Time Architectures
	Archon by Task
	Discussion

	Acknowledgements
	Appendix
	Related Work
	Archon Benchmarks and Results
	Archon LLM Components
	Utilities and Interactions of LLM Components
	Generator
	Fuser
	Critic
	Ranker
	Verifier
	Unit Test Generator and Evaluator

	Archon LLM Analysis
	Archon Architectures
	Archon by Inference Compute Budget, Model Size, and Cost
	Bayesian Optimization for Archon
	Archon Search Space and Objective
	Optimization Process

	Bayes Optimization vs. Alternative Approaches
	Archon Architecture Algorithms Comparisons

