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ABSTRACT

Recently, SO(3)-equivariant methods have been explored for 3D reconstruction
via Scan-to-CAD. Despite significant advancements attributed to the unique char-
acteristics of 3D data, existing SO(3)-equivariant approaches often fall short in
seamlessly integrating local and global contextual information in a widely gen-
eralizable manner. Our contributions in this paper are threefold. First, we intro-
duce Spherical Patch Fields, a representation technique designed for patch-wise,
SO(3)-equivariant 3D point clouds, anchored theoretically on the principles of
Spherical Gaussians. Second, we present the Patch Gaussian Layer, designed for
the adaptive extraction of local and global contextual information from resizable
point cloud patches. Culminating our contributions, we present Learnable Spher-
ical Patch Fields (DeepSPF) – a versatile and easily integrable backbone suitable
for instance-based point networks. Through rigorous evaluations, we demonstrate
significant enhancements in Scan-to-CAD performance for point cloud registra-
tion, retrieval, and completion: a significant reduction in the rotation error of ex-
isting registration methods, an improvement of up to 17% in the Top-1 error for
retrieval tasks, and a notable reduction of up to 30% in the Chamfer Distance for
completion models, all attributable to the incorporation of DeepSPF.

1 INTRODUCTION

Many 3D applications, such as virtual reality (VR) and augmented reality (AR), rely on manually
designed 3D indoor environments. Recently, 3D point clouds have been considered as a replacement
due to the large amount of work involved in manually designing 3D environments. With the prolifer-
ation of 3D vision sensors (e.g., Stereolabs ZED, Azure Kinect DK), the quality of point clouds has
increased significantly. However, due to the lack of explicit surface information, the improvements
in scanning are not necessarily applicable to 3D content applications.

In this work, we target the subtask of reconstructing indoor environments through point clouds by
Scan-to-CAD (S2C) methods (Avetisyan et al., 2019a;b; 2020; Hampali et al., 2021; Salihu & Stein-
bach, 2023). By retrieving existing CAD models from a public database, such as ShapeNet (Chang
et al., 2015), we can align those to scanned models to achieve a high-quality reconstruction of
scanned objects or scenes. Therefore, the tasks we try to solve in the context of high-quality S2C
reconstruction include registration, retrieval, and completion.

To address these tasks, networks such as PointNet (Qi et al., 2016) enable learning features from
3D data. However, we address three issues that hinder the learning capabilities in the current
state of the art. First, most networks do not consider different poses of point clouds in the latent
space. This is considered a major problem, especially in registration and retrieval tasks (Deng et al.,
2021). To avoid extensive data augmentation, the recent introduction of equivariant networks (Deng
et al., 2021; Esteves et al., 2018; Klee et al., 2023; Fuchs et al., 2020) has enabled the extraction of
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SO(3)-equivariant features from point clouds. These methods often equate local and global SO(3)-
equivariance, which leads to an insufficient investigation of SO(3)-equivariance between global and
local structures. Second, when local structures are defined, they are usually based on fixed, prede-
fined patches that cannot be adjusted when learning from point clouds (Rao et al., 2022). Third,
we consider zero point-to-point correspondence between point clouds acquired by different sens-
ing devices. Representation methods such as Salihu & Steinbach (2023), while neglecting local
information, have shown that spherical representations can help to improve registration tasks.

In this work, we address these three issues by introducing a novel point network for instance-based
applications such as registration, retrieval, and completion. To extract local and global information,
we propose Spherical Patch Fields (SPF), a point cloud representation based on Spherical Gaussian
(SG) to generate many spherical patches that each produce a rotation-equivariant representation.
To improve the learnable representation, we introduce a Patch Gaussian Layer (PG-Layer) that can
adapt the size of spherical patches to continuously obtain and correlate information from learnable
local and global structures. Our contributions can be summarized as follows:

• We introduce SPF, a new representation that maps one 3D point cloud to many spherical
patches represented by SGs. In addition, SPF learns inter- (spherical to point patch) and
intra-relations (spherical to spherical patches) in a graph-based manner.

• We introduce PG-Layer, a convolutional layer based on Spherical Gaussians. PG-Layer
retains the original mathematical description of SGs, allowing for deeper networks and
thus improving learning capacity. Further, PG-Layer introduces low-frequency analysis
to improve shape recognition. Finally, PG-Layer learns the size of each spherical patch,
providing either local or global information depending on the optimization goal.

• We provide DeepSPF as an easily integrable backbone to demonstrate improvements in
S2C and the corresponding subtasks of point cloud registration, retrieval, and completion
through our extensive evaluation.

2 RELATED WORK

Spherical Gaussian Representations Salihu & Steinbach (2023) introduced the concept of SGs
to the 3D point cloud domain with SGPCR and SGConv. SGPCR is a global rotation-equivariant
representation for point clouds, and SGConv is a rotation-invariant convolution for registration and
retrieval. While SGPCR significantly improves registration between point clouds, local informa-
tion is lost due to global positional encoding. In contrast, we introduce SPF, a spherical patch-wise
graph-based representation. SPF enables extracting local and global information and exchanging
information between different parts of the point cloud through a learnable graph. Further, we intro-
duce PG-Layer, which relies on a differentiable radial component to adaptively control the size of
SPF spherical patches. In addition, PG-Layer introduces low-frequency analysis into the latent en-
coding. Finally, compared to SGConv, PG-Layer retains the original form of SGs, allowing deeper
network structures and resulting in higher accuracy for various S2C-related applications.

Rotation-Equivariant Point Networks Recently, a large body of rotation-equivariant methods has
been introduced due to the impact rotation can have on the learning process. Similar to our approach,
much previous work has aimed to construct an SO(3) representation (Esteves et al., 2018; Sun & Blu,
2023; Chatzipantazis et al., 2023; Klee et al., 2023; Liu et al., 2023). In contrast, we introduce an
adaptive patch-wise SO(3)-based representation. Deng et al. (2021) provides vector-based convo-
lutions that allow the mapping of SO(3) actions to the latent space, enabling rotation equivariance
in 3D point networks. In comparison, we show improvements over VN due to acquiring local and
global information. In addition, our rotation-equivariant method significantly improves the registra-
tion performance compared to rotation-invariant approaches (Yuan et al., 2020; Chen et al., 2019).

Scan-to-CAD Applications Many methods have been introduced for S2C (Avetisyan et al., 2019a;b;
2020; Misik et al., 2023; Hampali et al., 2021; Salihu & Steinbach, 2023; Zhao et al., 2021). In
our method, we mainly focus on the registration and retrieval of CAD objects to real-world scans.
As such, we are similar to the works introduced by Zhao et al. (2021) and Salihu & Steinbach
(2023). In contrast, DeepSPF adaptively learns global and local information, allowing for a tighter
latent space between scan and CAD objects. We inspect three related methods for point cloud
registration: DeepGMR (Yuan et al., 2020), DeepUME (Lang & Francos, 2021), and SPGCR (Salihu
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& Steinbach, 2023). DeepGMR considers a PointNet-based network to extract rotation-invariant
features, which are used to obtain a corresponding Gaussian Mixture Model (GMM). DeepUME is
a Transformer (Vaswani et al., 2017)-based registration network that improves registration between
noisy point clouds. Compared to these approaches, our method is not only rotation-equivariant
but also generalizes well over different data distributions and improves the results compared to
previous works. Finally, many methods for completing point clouds exist, but to provide a fair
comparison between encoder structures, we restrict ourselves to PointNet (Qi et al., 2016)-based
networks. Unlike DeepGMR, which uses PointNet, our encoder network significantly improves
completion performance without further adaptations.

Figure 1: We propose DeepSPF, an encoder for the SO(3)-equivariant representation of point clouds.
Given an instance-based point cloud p (a), our preprocessing (b) obtains fno samples using furthest
point sampling (b.1). At each sampled point, we generate spheres (b.2) using the spherical sampling
method presented in Vogel (1979). We visualize the spherical samples ν in (b.3) for fno = 3 and
C = 32. In (c) from ν and p, we derive SPF using Eq. (2). Finally, in (d), the PG-Layer introduced
in Eq. (13) improves the latent encoding. Our PG-Layer learns the size of the spherical patches and
adjusts each one according to the information density of the point cloud.

3 DEEPSPF: LEARNABLE SPHERICAL PATCH FIELDS

In this section, we introduce the core components of SPF and convolutional PG-Layer, shown in Fig-
ure 1. In Section 3.4, we provide DeepSPF, an example backbone using SPF and PG-Layer. First,
we provide an overview of SGs (G) that are based on the definition of Wang et al. (2009):

G(ν;a, λ,p) = aeλ(ν
Tp−1). (1)

Salihu & Steinbach (2023) extended the definition of Wang et al. (2009) by assuming that the lobe
axis p ∈ RN×3 is equivalent to the set of N unordered points of the point cloud X = {xi}Ni=0. In
addition, it was assumed that the lobe sharpness λ ∈ (0,+∞) could be a learnable parameter. The
lobe amplitude a ∈ R3 is the distance from p to the spherical direction parameter ν ∈ S2. One
global pre-defined sphere ν is used to calculate a through the k-nearest neighbor algorithm. For
more information, we refer to the original work done by Salihu & Steinbach (2023).

In the following, we show how to adapt a SG to obtain the proposed SPF presentation and how to
further improve the representation using PG-Layer.

3.1 SPF: SPHERICAL PATCH FIELDS

We consider the previously shown representation from Eq. (1) as a simplification and thus to be
incomplete. This assumption is based on the definition of a SGs first proposed by Narcowich & Ward
(1996). For more information on Narcowich & Ward (1996) we refer the reader to the appendix. In
the context of representing a point cloud p, we propose to encode p to the latent vector z

z = SPF(p;λ,ν, r) = E(ν,p)V(r)U(P (ν,p))eλ(ν
Tp−1), p ∈ RN×3 7−→ z ∈ R|ν|×3, (2)

where E(ν,p) is the asymmetric edge function, first defined in Wang et al. (2018), and adapted to
our problem following Eq. (3), with K as the max number of nearest neighbors.

E(ν,p) = max
{j,i,o}∈K

[φ(xo − xi) + θ(xj − xi)] (ν,p) (3)
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To define the edge function, which generates the graph, we consider two learnable parameters θ and
φ, which provide a trade-off between xo(ν,p), and xj(ν,p). The term xi(ν,p), shown in Eq. (4),
represents the center of the patch generated by the sample spheres. xj(ν,p), seen in Eq. (5), cor-
responds to the inter-relationships between the points and spheres that we establish by limiting the
distance through radius r of each spherical patch. xo(ν,p), defined in Eq. (6), corresponds to the
intra-relationships between the individual spherical patches.

xi(ν,p) = |µ (ν)− µ (p)| s.t. µ(t) =
1

|t|

|t|∑
z=0

tz (4)

xj(ν,p) = arg max
|ν|

‖ν − p‖22 s.t. ‖ν − p‖22 < r (5)

xo(ν,p) = arg max
|ν|

‖ν − p‖22 (6)

V(r) is the volume of the sphere S2 obtained by the spherical sampling ν proposed in Vogel (1979),
extended by an adaptive differentiable radial component r. We consider the spherical volume due
to Narcowich & Ward (1996), which states that a SG is constrained by the spherical volume. For
simplicity, we denote V(r) by the volume equation of a sphere:

V(r) =
4

3
πr3. (7)

By simplifying V (r), we obtain information about the radius of each sphere. By adjusting this
parameter in a differentiable manner, the size of the initial spherical sampling can be increased or
decreased, moving from local to global information depending on the information density of each
area.

U is a fully connected layer (fψ : Rl → RA) that upscales the dimension l of the Legendre Polyno-
mial P calculated through the Spherical Harmonics coefficients Y and its complex conjugate Y to
a latent dimension A:

U(P (ν,p)) = fψ(P (ν,p)) , (8)

P (ν,p) = Y (ν)Y (p). (9)

By applying Eq. (8) we add the Legendre polynomial to the estimation process. This allows the
network to derive low-frequency information from the point cloud. For point cloud data, Hu et al.
(2022) showed that low-frequency components contribute to the shape of the object, improving
subsequent tasks depending on the point cloud.

3.2 ROTATION-EQUIVARIANCE OF SPF

Given the inherent rotation-equivariant representation of SPF, we show that for Eq. (2) assuming a
random rotation Rp on the point cloud p, we obtain information in respect to the inverse rotation
Rν ≈ Rp on the sphere. For this purpose, parts of Eq. (2) are examined individually. First, we show
that the low-frequency part of Eq. (9) is rotation-equivariant under the introduced assumptions:

P (Rνν ·Rpp) = Y (Rνν)Ȳ (Rpp)

= RνR
T
pY (ν)Ȳ (p)

Rν≈Rp
= Y (ν)Ȳ (p). (10)

Since Spherical Harmonics are basis functions for SO(3)-equivariant representations, we follow
previous work such as Esteves et al. (2018).

Moreover, for the edge-based function E(ν,p), we show rotation-equivariance by Eq. (11). As the
mean is not affected by the rotation, for µ(ν) ≈ µ(p), we only show the rotation-equivariance for
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Eq. (5). Here we obtain:

xj = arg max
|ν|

‖Rνν −Rpp‖22

= arg max
|ν|

tr
{

(Rνν −Rpp)(Rνν −Rpp)T
}

Rν≈Rp
= arg max

|ν|
‖ν − p‖22 (11)

with tr denoting the trace operation.

3.3 PG-LAYER: PATCH GAUSSIAN LAYER

In addition to our proposed SPF, we also introduce a SG-based convolution layer. A major problem
with previous work (Salihu & Steinbach, 2023) is that the convolution of SGs deforms the original
SG representation, which means that only one iteration of learnable encoding is commonly applied.
This results in the inability to learn a relevant latent encoding from larger objects or for tasks that do
not rely solely on position-based coding. In contrast to conventional convolutions, we leverage the
inherent benefit of SG and its parametric nature to simplify the convolution to a limited number of
multiplications.

The conventional convolution between SG-based point cloud representation G and SG kernel H
results in GR. The convolution between two SGs is defined as:

GR = (G ∗H)(ν;pG · pH) =
4πaGaH
eλG+λH

sinh (‖λGpG + λHpH‖)
(‖λGpG + λHpH‖)

6= aRe
λR(νT

RpR−1) (12)

here, in Eq. (12), previous work considered the simplification made by Tsai & Shih (2006) which
results in the deformation of the original SG description. While this does not affect the rotation-
equivariant representation, it does affect the possibility for multiple iterative convolutions. To retain
the original mathematical description, we formulate the convolution as

ẑ = (z ∗ SPF(H))(pG,pH ;λH , λG,ν, rG)

= E(ν,pG)E(ν,pH)V(rG)U(P (ν,pG))U(P (ν,pH))e(λG(νTpG−1))+(λH(νTpH−1)). (13)

Notably, we introduce V (r), which allows us to adjust the radius of the initial spheres in a differen-
tiable manner. We further assume that λG ≈ λH ≈ 2λR and obtain

ẑ = E(ν,pR)V(rG)U(P (ν,pR))eλG(νT (pGpH)−1) = SPF(pR) , (14)

where Eq. (14) matches the original definition of Eq. (2) and subsequently Eq. (1), allowing for mul-
tiple successive PG-Layer while learning and adjusting the size of the spherical patches depending
on the objective goal.

3.4 ARCHITECTURE OF DEEPSPF

Although many different backbone structures could be created with the presented combination of
SPF and PG-Layer, we focus on one backbone structure that we use throughout all experiments.
In Figure 2, we show our presented architecture, which follows the structure of PointNet (Qi et al.,
2016). The DeepSPF backbone contains three Set Abstraction (SA) layers, each of which converts
the point cloud into a SPF representation, with each SA layer containing m PG-Layer modules.
For each SA layer, we set a different, decreasing radius for the initial patch generation. The final
output ẑn ∈ Rfno×C×An of the n-th layer is the latent vector, encoded from SPF and the PG-Layers.
The latent dimension of each output is denoted as An. Before the latent vector can be encoded, we
sample the point cloud fno times by Furthest Point Sampling (FPS). We sample the corresponding
sampling spheres with C points by the method presented in Vogel (1979), with |ν| = fno × C.

5



Published as a conference paper at ICLR 2024

4 EVALUATION

Figure 2: Example backbone of our proposed
DeepSPF network. We consider a point cloud and
a sampled sphere as input to each set abstraction
layer. Each abstraction layer uses the latent vec-
tor ẑn obtained by the previous layer but always
re-uses the original inputs. Each sampled sphere
is initialized with a different decreasing radius at
each layer.

In this section, we show a qualitative and quan-
titative evaluation of our architecture for vari-
ous tasks related to S2C. First, we show results
for point cloud registration and retrieval on real
and synthetic data. In addition, we provide an
ablation on each component of SPF. We then
show results for point cloud completion com-
pared to comparable rotation-equivariant meth-
ods.

4.1 DATASETS

For registration, we evaluate on Model-
Net40 (Wu et al., 2015), with 1024 points uni-
formly sampled from each model in the dataset.
The dataset consists of 40 object categories
with 9843 point clouds in the training set and
2468 for the test set. Here, we consider two
evaluation cases. First, we show significant
improvements in registration compared to net-
works trained with clean data and tested on
noisy point clouds with random rotation be-
tween 0 and 180◦ and random translation up to 5cm, as evaluated in Yuan et al. (2020). Second,
we test zero-intersection noise introduced in Lang & Francos (2021). For this, we uniformly sample
2048 points from each ModelNet object. Then, 1024 points are randomly selected for the source
point cloud, and all remaining points are assigned to the target point cloud. This results in regis-
tration between point clouds with zero point-to-point correspondences that simulate real-world data
from different acquisition devices.

The ShapeNet (Chang et al., 2015) dataset consists of 30,974 models from eight varying categories.
We use the ShapeNet models to evaluate point cloud retrieval and completion. For retrieval, we
follow the approach of Zhao et al. (2021) and uniformly sample 2048 points from the surface of
each object in the dataset. For point cloud completion, we use the ShapeNet variation proposed
by Yuan et al. (2018) with 2048 points for both partial and complete point clouds.

Finally, we evaluate on the real-world Scan2CAD (Avetisyan et al., 2019a) dataset. The Scan2CAD
dataset consists of RGB-D scans of indoor environments from the ScanNet (Dai et al., 2017) dataset
manually aligned with CAD objects chosen from ShapeNet. Similar to Salihu & Steinbach (2023),
we initially use VoteNet (Qi et al., 2019) to generate bounding boxes and crop the points of the
scanned environment intersecting with the predicted boxes. We then use the predicted class and our
retrieval and registration method on ShapeNet to reconstruct the 3D environment.

4.2 IMPLEMENTATION DETAILS

All results are either taken directly from the respective work or re-trained with the preferred con-
figurations. We train DeepSPF using the ADAM optimizer with a learning rate of 0.001. For the
scheduler and the number of training epochs, we are guided by the configurations of the respective
works. Each of our models is trained on one NVIDIA RTX A6000. For each state-of-the-art ap-
proach, we replace the baseline encoder with our proposed DeepSPF backbone. Each method we
evaluate uses the originally proposed decoder and loss functions.

4.3 METRICS

For registration, we evaluate on Chamfer Distance dC , translation root mean square error (RMSE(t)),
and root rotation mean square error (RRMSE). The dC , introduced in Barrow et al. (1977), denotes
the average Euclidean distance between the nearest points of two point clouds. The RRMSE that
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computes the rotation error was first used in Lang & Francos (2021) for the case of point cloud
registration under zero intersection noise. Additionally, we evaluate the inference time R.

For point cloud retrieval, we evaluate using the Precision@M and the Top-1 dC following Zhao et al.
(2021). Top-1 dC is the dC of the Top-1 retrieved model, and Precision@M shows that in a dataset
of n models, the correct model is among the M = 0.1n number of retrieved models.

In S2C, we evaluate on the Scan2CAD benchmark (Avetisyan et al., 2019a), which evaluates if the
registered objects fulfill the condition 1Rerr≤20◦∧terr<20cm∧serr<20%.

Finally, for point cloud completion, we consider the evaluation metrics shown in Yuan et al. (2018)
and consider dC and F-score. The F-score indicates the number of points reconstructed within a
bounded distance df , which we define following Yuan et al. (2018) as df = 0.01 divided by all
reconstructed points. Therefore, the F-score is expressed as a percentage.

4.4 REGISTRATION

For registration, we compare three different test cases. First, in Table 1, we follow the evaluation
scheme of Lang & Francos (2021) and Salihu & Steinbach (2023). Here, we compare our method
with state-of-the-art methods for registration under the use case of zero-intersection noise. We fur-
ther adopt an evaluation in an ablation style for this use case by evaluating DeepSPF using the same
decoder as Salihu & Steinbach (2023) under three different conditions. The first condition E is the
registration using only the proposed patch-based graph network seen in Eq. (3). From this, we can
see that the combination of patch-wise SG representation and graph relations can already improve
the rotation error by a great margin. Condition U further considers the Legendre Polynomial, fol-
lowing Eq. (8), and shows that the impact of low-frequency components is not only useful for shape
recognition but also for the registration of point clouds. Lastly, V shows that our adaptive resizable
patches further improve the results, especially for the rotation error. In addition, we also show re-
sults by improving an already existing method, such as DeepGMR (Yuan et al., 2020). Here, we
show that using our backbone instead of PointNet can significantly improve results by creating a
more generalizable encoding. We append a qualitative evaluation in Figure 3.

Second, in Table 2, we follow the evaluation method of Yuan et al. (2020) extended with the results
shown in Lang & Francos (2021). In this evaluation, we consider testing on point cloud data with
additive Gaussian noise. We show that by using DeepSPF instead of PointNet, with the decoder of
DeepGMR, we can significantly improve the results compared to the original DeepGMR approach.
We assume that this is due to the combination of patch-wise and rotation-equivariant representation.

Finally, in Table 3, we evaluate on the Scan2CAD dataset following Avetisyan et al. (2020). Here,
even though SceneCAD (Avetisyan et al., 2020) learns object-to-object and object-to-layout relation-
ships, our method results in significant improvements overall. We assume that due to the captured
scene relationships of SceneCAD, our improvements are not as significant as for the synthetic case.

Table 1: Registration results on ModelNet40 with zero-intersection noise show improvements for
approaches using DeepSPF encoding. Our encoder can also be used to improve existing PointNet-
based networks, such as DeepGMR, to boost registration results.

Model dC ↓ RRMSE ↓ RMSE(t) ↓
DCP (Wang & Solomon, 2019) 0.059 93.221 0.014
RGM (Fu et al., 2021) 0.254 100.97 0.388
RoITr (Yu et al., 2023) - 81.14 0.1353
DeepGMR (Yuan et al., 2020) 0.026 67.282 0.010
DeepUME (Lang & Francos, 2021) 0.011 70.818 0.009
SGPCR (Salihu & Steinbach, 2023) 0.0010 8.57 0.0034

Ours (E) 0.0007 7.45 0.0031
Ours (E+U) 0.0006 6.49 0.0029
Ours (E+U+V) 0.0004 5.17 0.0022
Ours + DeepGMR (Yuan et al., 2020) 0.0016 5.32 0.0210
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(a) Input (b) DeepGMR (c) DeepUME (d) SGPCR (e) Ours

Figure 3: Qualitative evaluation results for zero-intersection-based registration on ModelNet40. Red
represents the target point cloud, while blue represents the source point cloud that is transformed.

Table 2: Our encoder can improve existing methods for registration on ModelNet40 data with addi-
tive Gaussian noise.

Model dC ↓ RRMSE ↓ RMSE(t) ↓ R(ms) ↓
PointNetLK (Aoki et al., 2019) 0.026 81.843 1.037 -
DCP (Wang & Solomon, 2019) 0.055 90.715 0.014 -
RGM (Fu et al., 2021) 0.254 100.11 0.389 -
DeepGMR (Yuan et al., 2020) 0.011 42.515 0.004 0.0148
DeepUME (Lang & Francos, 2021) 0.002 2.425 0.001 0.0617

Ours + DeepGMR (Yuan et al., 2020) 0.0001 0.40 0.0068 0.0085

4.5 RETRIEVAL

In Table 3, we have shown improvements in querying shapes implicitly for the Scan2CAD dataset
by evaluating the Scan2CAD benchmark. To show these improvements explicitly, we perform a
distance-based retrieval on the synthetic ShapeNet dataset, similar to Zhao et al. (2021) and Salihu
& Steinbach (2023). To retrieve objects from the dataset, we first train DeepSPF using point cloud
registration between point clouds generated from ShapeNet. Then, we pre-compute all latent vectors
for all point clouds in the ShapeNet dataset. Using this, we can compute the cross-covariance matrix
between the latent vector of the query point cloud and all computed latent vectors. We apply a
singular value decomposition to obtain the transformation matrix. We use the dC to obtain the
closest point cloud between the query and ShapeNet point clouds.

Table 3: Evaluation with the Scan2CAD benchmark on the Scan2CAD dataset shows overall im-
provements. We follow the training schematic of Salihu & Steinbach (2023) by generating class-
distinct cropped point clouds from VoteNet (Qi et al., 2019) bounding boxes.

Class Avetisyan et al. (2019a) Avetisyan et al. (2019b) Avetisyan et al. (2020) Ours
Bathtub 36.20 38.89 42.42 56.66
Cabinet 34.00 51.52 58.33 56.22
Chair 44.26 73.04 81.23 78.39
Sofa 30.66 76.92 82.86 73.56
Table 30.11 48.15 45.60 61.64
Bin 20.60 18.18 32.26 36.99

Avg. ↑ 38.17 51.11 57.11 60.57
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Table 4: Following the results and approach of Zhao et al. (2021) and Salihu & Steinbach (2023),
we show improvements in the retrieval process on ShapeNet. We observe significant improvements
for the Top-1 error.

Model Zhao et al. (2021) Salihu & Steinbach (2023) Ours

Chair
Top-1 ↑ - 60.23 70.84
P@M ↑ 51.47 76.20 76.99
Top-1 dC ↓ 0.115 0.014 0.008

Table
Top-1 ↑ - 63.39 69.44
P@M ↑ 57.77 75.15 78.32
Top-1 dC ↓ 0.112 0.016 0.012

Table 5: Point cloud completion results compared to the original Yuan et al. (2018) PointNet-based
approach. We see significant improvements for seen and unseen data. Seen data refers to test classes,
which are also contained in the training set, while unseen data are classes not in the training set.

Model Average
dC ↓ F-score ↑

PCN (Yuan et al., 2018)
Seen

8.99 29.9
VN (Deng et al., 2021) + PCN (Yuan et al., 2018) 12.4 25.0
Ours + PCN (Yuan et al., 2018) 6.34 39.4

PCN (Yuan et al., 2018)
Unseen

17.1 23.0
VN (Deng et al., 2021) + PCN (Yuan et al., 2018) 18.9 22.6
Ours + PCN (Yuan et al., 2018) 11.9 33.0

4.6 POINT CLOUD COMPLETION

In the final evaluation, we show that our model improves point cloud completion on the ShapeNet
dataset compared to other models. In Figure 7, we provide a qualitative evaluation, which shows
major improvements in point could completion quality, and a quantitative evaluation in Table 5. We
compare to PCN (Yuan et al., 2018) and VN-based version of PCN, where we replace the PointNet
backbone with the official VN-PointNet. We see large improvements in the F-score compared to the
original PointNet and VN-based approach, as local details are better captured by our patch-wise ap-
proach. This evaluation highlights the effectiveness of employing DeepSPF as a rotation-equivariant
encoder in point cloud completion networks. Noteworthy advancements, like those presented by Yu
et al. (2021), may benefit from integrating DeepSPF.

5 CONCLUSION

In this work, we introduced DeepSPF, a network that represents a point cloud through a patch-wise
rotation-equivariant radial representation termed SPF. To encode a relevant latent vector, we pro-
posed PG-Layer to improve the learnable SPF representation using low-frequency information and
adaptive resizable patches. We have shown that our approach can improve tasks such as registration,
retrieval, and completion for instance-based point clouds. We also show that DeepSPF can replace
existing encoders in point networks to improve registration and completion results. Further, in an
ablation study, we show that our model is capable of doing this without increasing the number of
parameters compared to similar state-of-the-art methods. While we improve on current methods,
our method is limited by the initial sampling through FPS. Thus, complexity increases for larger
point clouds, similar to other encoder networks. Based on the improvements, we hope that SPF will
serve as a basis for more complex point networks.
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A APPENDIX

A.1 OVERVIEW

Figure 4: Our proposed DeepSPF learns a patch-wise rotation-equivariant representation from
instance-based 3D point cloud data. Based on PG-Layer, DeepSPF adapts the size of the patches
depending on the information density in the respective area. This enables improvements for 3D
point cloud registration, retrieval, and completion.

We want to start the appendix with a small overview of the whole structure, for which we visualize
the structure in Figure 4. The inputs to our DeepSPF architecture are commonly instance-based point
clouds. Instance point clouds are either sampled from meshes, scanned from real-world objects, or
obtained by 3D object detection or instance segmentation techniques from large 3D scans. Then
DeepSPF converts the instance point cloud from 3D points to the SPF representation from Eq. (2),
resulting in latent z. Then multiple PG-Layer are used to improve the latent encoding to obtain
the latent vector ẑ by adapting the size of the spherical patches and introducing low-frequency
components in the representation of SPF.

DeepSPF acts as an encoder and is combined with existing decoder models to achieve higher ac-
curacy in point cloud registration, retrieval and completion. Two hyperparameters must be con-
sidered for the initialization of DeepSPF. Those two choose the number of initial patches fno
and the number of spherical points C. While the radius r considerably affects the representa-
tion learning through V(r), as seen in Table 1, the initialization for small models does not im-
pact the final result significantly. We choose r to be decreasing for each of the three SA of
DeepSPF, as such r = [1.0, 0.5, 0.25]. Notably similar results with minor deviations are achieved
for r = [1.0, 1.0, 1.0]. We find that the radius converges to similar values for both initializations.

A.2 RELATED WORK

In this section of the appendix, we would like to summarize the main elements of the work already
carried out and used in the main manuscript.

A.3 SPHERICAL GAUSSIANS

In contrast to Salihu & Steinbach (2023), we define our point cloud representation based on the
non-simplified version of SG from Narcowich & Ward (1996).

Narcowich & Ward (1996) defined a SG as

G(ν;a, λ,p) =

∞∑
l=0

aeλ(ν
Tp−1) wm

dm,l
Pl(ν · p), (15)
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with Pl defined as the normalized Legendre polynomial of degree l, ωm defines the volume of a
sphere on Sm and dm,l denotes the dimension of order-l Spherical Harmonics. Based on each
component we develop our representation in Eq. (2).

In addition, we employ the defnition of the convolution originally discretized by Eq. (16).

GR = (G ∗H)(ν;pG · pH) =

∞∑
l=0

aGe
λ(νT

GpG−1)aHe
λ(νT

HpH−1) wm
dm,l

Pl(pG · pH) (16)

Using our representation from Eq. (2), we obtain the definition of the PG-Layer as defined by
Eq. (13). Notably, we simplified wm

dm,l
by Eq. (7) to V(r), which allows us to adjust the radius

of the initial spheres in a differentiable manner.

A.3.1 SPHERICAL SAMPLING

For the generation of spheres, we follow the approach of Vogel (1979). To sample a sphere, Vogel
(1979) first samples point as a sunflower structure in cartesian coordinate space and then convert
these points into the spherical coordinates. For the notation of the sampling procedure, we follow
the work of Salihu & Steinbach (2023).

A sample point ν is generated by

νi = (cos (i · δ) · sinφ, sin (i · δ) · sinφ, cosφ) (17)

with δ = π(3−
√

5).

A.3.2 SPHERICAL GAUSSIAN POINT CLOUD REPRESENTATION

Spherical Gaussian Point Cloud Representation (SGPCR) is a method developed by Salihu & Stein-
bach (2023) for precisely the task of point cloud registration. SGPCR is the first method to apply
concepts of Spherical Gaussian (SG) into the point cloud domain.

As defined in Section 3.4, SGPCR represents a point cloud p by SG representation zg

zg = G(ν;a, λ,p) = aeλ(ν
Tp−1). (18)

Noticeably, it consists of three parameters: an amplitude a, which is defined by the distance to the
spherical sample ν, and a learnable parameter λ.

Due to its limitations, the representation introduced by Salihu & Steinbach (2023) incorporates a
novel convolution to enhance the representation via a trainable process This convolution, based on
the previous work by Tsai & Shih (2006) and Wang et al. (2009), is defined as

zyg = (zxg ∗ zhg )(ν) =
4πaxah
eλx+λh

sinh (dxh)

dxh
. (19)

Eq. (19) shows the convolution between the representation zxg and a random kernel zhg . Here, Salihu
& Steinbach (2023) denotes dxh = ‖λxpx + λhph‖.
Despite the substantial reduction in computational complexity achieved through the convolution,
characterized by a constrained number of multiplications and additions, this approach distorts the
original representation of the latent vector zg . Consequently, it deviates from the original represen-
tation by SG, making consecutive convolutions using Eq. (19) impossible.

Although SGPCR demonstrates efficacy with a limited parameter set, its applicability is constrained,
rendering it unsuitable for numerous point cloud analysis tasks, including completion, classification,
and segmentation. It performs exceptionally well in registering instance point clouds afflicted by
zero-intersection noise. However, its performance is noticeably compromised on larger 3D scenes,
as it relies on applying only one sphere across the entire object. Moreover, as indicated in the orig-
inal manuscript of Salihu & Steinbach (2023), the proposed method does not achieve performance
comparable to state-of-the-art approaches (Yuan et al. (2020); Lang & Francos (2021)) in situations
involving point-to-point correspondences.
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A.3.3 DYNAMIC GRAPH CONVOLUTIONAL NEURAL NETWORK

We apply the work of Wang et al. (2018) (DGCNN) for the estimation of our edge function E(ν,p).
DGCNN comprises multiple convolutions augmented by a dynamic graph akin to its 2D equivalent,
facilitating the transmission of messages in the form of edges. The edges of DGCNN are not fixed to
R3, which is an advantage for general point cloud analysis tasks. We use this advantage to improve
our spherical application, as we can apply it seamlessly to our spherical display. In the case of
DGCNN, an asymmetric edge e(i, j) between two features fi and fj , which are estimated by a
convolutional layer, is described as:

e(i, j) = h(φ(fi − fj) + θfj) , (20)

with h denoting the activation function, with φ and θ being a set of learnable parameters. DGCNN is
particularly useful for obtaining local geometric information without losing permutation invariance.

A.4 REGISTRATION

A.4.1 DECODER HEAD

To obtain the rotation matrixRp, translation vector tp, and scaling vector s we follow the approach
of Salihu & Steinbach (2023). Following their work, we estimate the cross-covariance matrixM ∈
R3×3 between the estimation of the target point cloud ẑT and source point cloud ẑS using DeepSPF

M =
[
ẑ1T . . . ẑ

|fno×C|
T

] [
ẑ1S . . . ẑ

|fno×C|
S

]T
. (21)

We estimate Rp from M by the method of Umeyama (1991), using this estimation we can obtain
tp from source and target point cloud pS/pT :

tp = µ(pT )−Rpµ(pS). (22)

Finally, scaling sp is estimated by estimating the difference between the oriented bounding box of
the target oT ∈ R8×3 and source oS ∈ R8×3, multiplied with a differentiable component ξ:

sp =
|µ(oT )|
|µ(oS)|

ξ . (23)

A.4.2 REGISTRATION LOSS

Four components give the 9 degrees of freedom registration loss from Salihu & Steinbach (2023).
First, the loss between the estimated rotation matrixRp and the ground truth rotation matrixRg

LR = MIE(Rg,Rp) +
∥∥RT

gRp − I3×3
∥∥2
2

(24)

where the mean isotropic error (MIE) of Yew & Lee (2020) is added. With the addition of the
chamfer distance dc, we summarize the losses of Salihu & Steinbach (2023) to:

L = LR + dc(pT ,RpSppS + tp) + µ((tg − tp)2) + µ(|sg − sp|) (25)

where Sp is the diagonal matrix converted from the estimated scaling vector sp.

For the registration loss of 6 degrees of freedom, we omit the scaling loss but keep rotation, distance,
and translation loss the same.

A.5 POINT CLOUD COMPLETION - LOSS

We train the two baselines, PCN (Yuan et al., 2018) and the rotation-equivariant VN-based (Deng
et al., 2021), and our DeepSPF-based version using the chamfer distance dC . As we obtain a coarse
result Yc and a detailed result Yd, the resulting loss function is compared with the ground truth Yg
by

L = dC(Yc, Yg) + αdC(Yd, Yg). (26)

where α is a hyperparameter that we kept the same for all evaluations. For decoding, we use the
exact method introduced by PCN without any adaptation made by us.
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A.6 EVALUATION METRICS

To give a holistic overview of our evaluations, we show the definitions of the metrics used in our
work.

For two point clouds pS ∈ RN×3 and pT ∈ RN×3 we estimate dC through the notation of Barrow
et al. (1977):

dC(pS ,pT ) =
1

|pS |
∑
x∈pS

min
y∈pT

‖x− y‖22 +
1

|pT |
∑
y∈pT

min
x∈pS

‖x− y‖22 . (27)

The translation root mean square error is denoted as between prediction tp ∈ R3 and ground truth
trasnlation tg ∈ R3:

RMSE(t)(tp, tg) =

√√√√1

3

3∑
i=1

(tg,i − tp,i)2 . (28)

For root rotation mean square error, we first compute the Euler angles ep ∈ R3 and eg ∈ R3 form
the rotation matricesRp andRg . Then we calculate the root rotation mean square error as follows:

RRMSE(ep, eg) =

√√√√1

3

3∑
i=1

(
180eg,i
π

− 180ep,i
π

)2 . (29)

For S2C methods, we evaluated based on the Scan2CAD benchmark. This benchmark considers the
rotation error Rerr, translation error terr, and scaling error serr, to generate the Scan2CAD bench-
mark following the condition 1Rerr≤20◦∧terr<20cm∧serr<20%. The rotation error Rerr is estimated
by

Rerr =

180 ·min

(
1,max

[
−1, cos−1

(
tr(RT

pRg)−1
2

)])
π

(30)

with tr denoting the trace operation. The translation error terr is expressed by:

terr = ‖tp − tg‖2 , (31)

and the scaling error serr between predicted scaling sp ∈ R3 and ground truth scaling sg ∈ R3 by:

serr = 100

∣∣∣∣∣13
3∑
i=1

(
sp
sg
− 1

)∣∣∣∣∣ . (32)

The F-score calculation follows Knapitsch et al. (2017), and as such, we need to first calculate the
precision and recall for a certain threshold df = 0.01. The precision Prec(pS ,pT ) follows:

Prec(pS ,pT ) =
1

|pS |
∑
x∈pS

[
min
y∈pT

‖x− y‖1 < df

]
, (33)

while the recall Recall(pS ,pT ) is:

Recall(pS ,pT ) =
1

|pT |
∑
y∈pT

[
min
x∈pS

‖x− y‖1 < df

]
. (34)

In cumulation, precision and recall are used to calculate the F-score F(pS ,pT ):

F(pS ,pT ) =
2 · Prec(pS ,pT ) · Recall(pS ,pT )

Prec(pS ,pT ) + Recall(pS ,pT )
(35)
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Model Rotation Error Translation Error #Flops

Car DeepGMR (Yuan et al., 2020) 113.88 45.92 3.133G
Instances DeepGMR + Ours 5.64 3.97 0.232G

Odometry DeepGMR (Yuan et al., 2020) 63.77 4.6132 -
DeepGMR + Ours 1.10 2.34 -

Table 6: Registration evaluation on Kitti (Geiger et al., 2013) with training on ModelNet40 data.

A.7 KITTI & FLOPS ANALYSIS

We evaluate our work on the Kitti (Geiger et al., 2013) dataset. In Table 6, we show results for
DeepGMR (Yuan et al., 2020) with rotation-invariant features against our rotation-equivariant latent
representation. We take the decoder head and losses from DeepGMR and replace the encoder from
DeepGMR with our DeepSPF model. To obtain Table 6, we trained on synthetic ModelNet40 data
and tested it on Kitti.

A.8 ABLATION STUDY

We ablate, in Table 7 and Table 8, different numbers of spherical samples |v| = C × fno with the
corresponding number of furthest point samples fno with number of spherical samples per patch C.
For all results, we initialize the radius r for each layer of DeepSPF with r = [1.0, 0.5, 0.25] and use
K = 20 for the Edge function E(ν,p) of SPF.

Table 7: Ablation study on ModelNet40 using zero intersection noise for |ν| = 1024.

|ν| fno C dC ↓ RRMSE ↓ #Params ↓ R(ms) ↓

1024

64 16 0.00052 5.63 906435 0.0117
32 32 0.00052 5.61 906339 0.0096
16 64 0.00048 5.17 906291 0.0085
8 128 0.00049 5.28 906267 0.0083
4 256 0.00051 5.43 906255 0.0082
2 512 0.00053 5.68 906249 0.0079
1 1024 0.00053 5.67 906246 0.0077

Table 8: Ablation study on ModelNet40 using zero intersection noise for |ν| = 512.

|ν| fno C dC ↓ RRMSE ↓ #Params ↓ R(ms) ↓

512

64 8 0.00056 6.23 505539 0.0099
32 16 0.00052 5.69 505443 0.0085
16 32 0.0005 5.36 505395 0.0076
8 64 0.0005 5.37 505371 0.0071
4 128 0.00051 5.44 505359 0.0069
2 256 0.00052 5.68 505353 0.0068
1 512 0.00053 5.79 505350 0.0069

Lastly, we evaluate the number of parameters compared to all the works we have addressed in the
main part of the publication. In Table 11, we evaluate each model we used in our evaluation and
the number of parameters. In Table 11, we refer to the model with no publicly available code as
”Replica” and try to estimate the minimum number of parameters. Noticeably, only SGPCR has
significantly fewer parameters, but it is not usable for different applications outside of registration
compared to our method.

17



Published as a conference paper at ICLR 2024

Table 9: Ablation study on ModelNet40 using zero intersection noise for different |ν|with fno = 16.

|ν| fno C dC ↓ RRMSE ↓ #Params ↓ R(ms) ↓
128

16

8 0.00064 7.02 204723 0.0071
256 16 0.00055 6.00 304947 0.0071
512 32 0.0005 5.36 505395 0.0076
1024 64 0.00048 5.17 906291 0.0085
2048 128 0.00049 5.19 1708083 0.0111

Table 10: Ablation study on ModelNet40 using zero intersection noise for different |ν|withC = 64.

|ν| fno C dC ↓ RRMSE ↓ #Params ↓ R(ms) ↓
128 2

64

0.00070 7.26 204681 0.0062
256 4 0.00068 7.09 304911 0.0065
512 8 0.00056 6.23 505371 0.0071
1024 16 0.00048 5.17 906291 0.0085
2048 32 0.00049 5.22 1708131 0.0120

A.9 SCAN-TO-CAD

In the section, we further analyze the results in Table 3. Specifically, we address i) the discrepancy
of the results between the individual classes in our method and ii) the comparison with SceneCAD.

A.9.1 RESULT DISCREPANCY BETWEEN CLASSES

Two factors contribute significantly to the substantial variations in results among individual classes.

First, the misalignment and lower retrieval quality in Scan2CAD data can be attributed primarily to
the point cloud density and representation. Larger objects are easily recognized during 3D scanning
and thus generate more points. Conversely, smaller objects like the ”bin” class pose challenges in
scanning, leading to points with substantial occlusion. Although beyond the scope of our work, we
believe that an investigation into the Scan2CAD dataset could benefit the broader research commu-
nity in the field of scan-to-CAD.

Second, we use VoteNet proposed by Qi et al. (2019) as our object detection method. As such, every
error created by the detection of VoteNet is propagated in our approach. When comparing the results
of VoteNet directly to ours, as shown in Table 12, it becomes evident that this constitutes a notable
source of error.

A.9.2 COMPARISON TO SCENECAD

Additionally, the varying degree to which our method surpasses the previous work (Avetisyan et al.,
2020) in specific classes is intricately linked to the primary contribution of Avetisyan et al. (2020).
Avetisyan et al. (2020) presents an end-to-end pipeline that considers both object-to-object and
object-to-layout relationships.

The notable reduction in the quality of our work is particularly evident in the chair and sofa classes.
An intuitive explanation for Avetisyan et al. (2020) superiority in these classes is its ability to lever-
age information across different chair objects, thereby enhancing the registration quality for the
chair class. We assume that, especially for the sofa class, knowing the layout is crucial. This is
particularly significant because, in the ScanNet dataset, the backside of most sofas is absent, often
due to sofas being aligned against walls.

In Table 13, we show our method compared to Avetisyan et al. (2020) without object and layout re-
lations (I) and Avetisyan et al. (2020) with object and layout relations (II). Now, it becomes apparent
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Table 11: Summary of all models used in the evaluation and the number of parameters each model
uses. Replica refers to all models that do not have a public implementation and for which we estimate
the minimum number of parameters following the original work

Model #Params Replica

PointNet (Qi et al., 2017) 3471473 no
DGCNN (Wang et al., 2018) 5385432 no
E2E (Avetisyan et al., 2019b) 2498972 yes
PointNetLK (Aoki et al., 2019) 151680 no
DCP (Wang & Solomon, 2019) 5343040 no
RGM (Fu et al., 2021) 17360074 no
DeepGMR (Yuan et al., 2020) 1522512 no
DeepUME (Lang & Francos, 2021) 310720 no
VN-PointNet (Deng et al., 2021) 1972745 no
CORSAIR (Zhao et al., 2021) - FCGF Backbone 8749232 yes
SGPCR (Salihu & Steinbach, 2023) 8195 yes
RoITr (Yu et al., 2023) 40259075 no

Ours (|ν| = 1024) 906291 no
Ours (|ν| = 128) 204681 no

Table 12: Direct comparison with VoteNet results, evaluated through mean average precision (mAP)
and obtained from the manuscript of Yu et al. (2022).

Method Bathtub Cabinet Chair Sofa Table Bin Avg
VoteNet [6] - mAP 40.1 47.5 84.1 67.4 72.3 27.4 56,46

that our model outperforms SceneCAD in every class except for the sofa class. The error in the sofa
class is presumed to come from the 3D object detection results obtained from VoteNet.

Table 13: Comparison with Avetisyan et al. (2020), using not object and layout relations I) and with
object and layout relations II).

Class I) Avetisyan et al. (2020) II) Avetisyan et al. (2020) Ours
Bathtub 42.42 42.42 56.66
Cabinet 51.67 58.33 56.22
Chair 77.28 81.23 78.39
Sofa 77.14 82.86 73.56
Table 37.91 45.60 61.64
Bin 25.81 32.26 36.99

Avg. ↑ 52.03 57.11 60.57
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A.10 EXTENDED QUALITATIVE RESULTS

Figure 5: Qualitative results for retrieval on ShapeNet.

(a) Query (b) SGPCR (c) DeepSPF (d) GT

Figure 6: Extended qualitative results for registration on ModelNet40 with zero-intersection noise,
such as in Figure 3.

(a) Input (b) DeepUME (c) SGPCR (d) DeepSPF
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(a) Partial Inputs (b) PCN (c) VN+PCN (d) DeepSPF (e) GT

Figure 7: We show a comparison of point cloud completion methods for networks trained with 2048
points from data of Yuan et al. (2018) derived from ShapeNet. Our model improves the encoding of
fine local structures due to the patch-based approach.
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