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ABSTRACT

Information in speech can be divided into two categories: “what is being said”
(content) and “how it is expressed” (other). Current state-of-the-art (SOTA) tech-
niques model speech at fixed segments, usually 10-25 ms, using a single embed-
ding. Given the orthogonal nature of other and content information, attempting
to optimize both within a single embedding results in suboptimal solutions. This
approach divides the model’s capacity, limiting its ability to build complex hi-
erarchical features effectively. In this work, we present an end-to-end speech
representation learning framework designed to jointly optimize the “other” and
“content” information (JOOCI) in speech. By using separate learnable parame-
ters, JOOCI addresses this optimization challenge by modeling other and content
information independently. Our results show that JOOCI consistently outperforms
other SOTA models of similar size (100 million parameters) and pre-training data
used (960 hours) by a significant margin when evaluated on a range of speech
downstream tasks in the SUPERB benchmark, as shown in Table 1. Code and
models are available at TBA.

1 INTRODUCTION

Self-supervised learning (SSL) has played a significant role in learning high-level representations of
text (Brown et al., 2020), vision (Alexey, 2020), and audio (Baevski et al., 2020; Mohamed et al.,
2022; Défossez et al., 2022) data. In this work, we focus on learning high-level representations
from raw speech. These learned representations are used as input features for various downstream
tasks that require effective modeling of the “content” (what is being said) and “other” information
(closely related to how it is expressed) present in speech (Yang et al., 2024; Borsos et al., 2023; Wang
et al., 2023). The SUPERB (Yang et al., 2021) benchmark is designed to evaluate the generalization
capabilities of different methods by evaluating the learned representations on a range of downstream
tasks such as automatic speech recognition (ASR), phoneme recognition (PR), speaker identification
(SID), emotion recognition (ER), and voice conversion (VC). ASR and PR performance depends on
effective modeling of content information, while SID and ER rely on effective modeling of other
information. The VC task requires the model to not only learn both information but also disentangle
them.

Current state-of-the-art SSL methods, such as WavLM (Chen et al., 2022), on the SUPERB bench-
mark share two key similarities. First, these methods first downsample and embed raw speech into
fixed segments, typically 25 ms, using a CNN encoder followed by a powerful transformer encoder
1 to learn contextual embeddings for each segment. Second, masked prediction loss (MPL) (Hsu
et al., 2021; Chen et al., 2022) is used during pre-training.

However, two key limitations exist in current SOTA methods:

• Firstly, using a single embedding to learn other and content information results in sub-
optimal representations for both, due to the orthogonal nature of content and other infor-
mation, which makes it difficult for the optimization algorithm to jointly learn both within
a single embedding 2.

1Transformer encoder and model are used interchangeably.
2Perfect features for an ASR system should only encode content information i.e., what is being said and

forget about everything other i.e., how it is expressed.

1

https://github.com/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our proposed JOOCI Method. A raw audio is passed through a shared encoder. The output
is passed to the two separate encoders to model the other and content information. Other encoder
can attend to the content encoder embeddings but the gradients do not flow from other encoder to
content encoder. Better viewed in color.

• The second limitation is the MPL loss. (Yadav et al., 2023) showed that it maximizes
content information learned during pre-training, which inadvertently minimizes the other
information, particularly speaker-related information. This indicates that MPL alone is
not enough for learning other information. Additionally, (Feng et al., 2022) demonstrated
that models pre-trained with MPL encode speaker (other) information in the silent parts of
audio, further corroborating this issue.

For example, WavLM uses data augmentation for learning other (speaker) information. The authors
observed that the model divides its total modelling capacity/layers in two, with later layers learn-
ing content and earlier layers learning other information. This ultimately prevents the model from
fully leveraging all layers to build the complex, hierarchical representations characteristic of deep
learning.

Furthermore, when a method maximizes content information to the extreme to enhance the perfor-
mance of ASR and PR tasks, such as MS-HuBERT (Yadav et al., 2024), the strategy of dividing
layers to encode content and other information, as used in WavLM, becomes ineffective. There-
fore, there is a need for a better framework capable of jointly learning other and content information
in speech by utilizing all layers to build complex, hierarchical representations. In this paper, we
present a framework to jointly optimize the “other” and “content” information (JOOCI). JOOCI
models other and content information using separate learnable parameters and distinct loss func-
tions, differentiating it from the previous SOTA method, WavLM (Chen et al., 2022), for learning
comprehensive speech representations.

Our contributions can be summarized as follows:

1. We present JOOCI, a framework designed to jointly learn other and content information
using separate learnable parameters and distinct loss functions. We achieve SOTA perfor-
mance on the SUPERB benchmark, as shown in Table 1.

2. Adapters are one way to adapt the behavior of the pre-trained model (Chen et al., 2023b;c)
for new tasks. In Section 3.2, we discuss in detail how JOOCI differentiates itself from
adapters and why it is a more efficient choice.

2 JOOCI

In this section, we explain the proposed JOOCI framework in detail, covering its various components
and the training criteria used. The complete JOOCI framework is illustrated in Figure 1.

2
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2.1 COMPONENTS

Shared Encoder (ES) : The shared encoder serves a dual purpose i.e., it downsamples the raw
speech and provides an embedding layer for both the content and other encoders. Inspired by pre-
vious work (Baevski et al., 2020; Hsu et al., 2021), we use seven blocks of temporal convolution
layers which results in a down-sampling factor of 320x 3. For more details of shared encoder please
refer to the original work (Hsu et al., 2021; Yadav et al., 2024) that we have followed.

Content Encoder (EC) : The content encoder models “what is being said”, i.e., the content present
in speech. Following prior studies (Hsu et al., 2021; Yadav et al., 2024), the output from the shared
encoder is randomly masked and passed through a series of n self-attention based transformer en-
coder layers to model the content information. For more details related to the content encoder please
refer to the original work (Yadav et al., 2024) that we follow.

Other Encoder (EO) : The other encoder models non-linguistic information present in speech.
First, the shared encoder output is further downsampled using 1D average pooling layer with a kernel
size and stride set to DF, where DF is the downsampling factor. The updated downsampled output is
then passed through n other encoder blocks, each of which consists of the following transformations:

• 1D Res2Net block (Gao et al., 2019) with a kernel size, stride and dilation all equal to 1.
To increase the overall non-linearity of the module.

• A split and append layer.
• A depthwise 1D CNN layer 4 with a kernel size, stride and dilation equal to DF+1, DF+1,

and 1 respectively.
• Another 1D Res2Net block with a kernel size, stride and dilation equal to 3, 1, and 4

respectively.
• A residual connection, followed by a 1D batch normalization (BN) layer

The split and append layer enables information from the content encoder to flow into the other
encoder during the forward pass. No gradients flow from other encoder to content encoder during
the backward pass. Therefore the other encoder can extract useful information, if any, from the
powerful transformer content encoder. Specifically, content encoder embeddings are split into m
groups of size DF, and one embedding from the other encoder is appended at the end of each group
sequentially. Finally, all groups are concatenated, increasing the total length, as shown in Figure 1.
To reduce the input back to its original length, a depthwise CNN layer is applied with a kernel size
and stride equal to DF+1.

Post Network (PN) : The post network performs three main functions crucial for training the other
encoder using the student-teacher framework. 512D embeddings are extracted from the RDINO
(Chen et al., 2023a) model acting as a teacher, for each utterance.

• An attentive statistical pooling (ASP) layer, similar to (Okabe et al., 2018), which aggre-
gates variable-length inputs.

• A 1D BN layer.
• A fully connected (FC) layer with an output dimension of 512. Used only during the pre-

training stage.

Content Decoder : Similar to (Ao et al., 2022), we train a single layer decoder using pseudo targets
as ground truth. A gradient reversal layer (GRL) is applied before passing the gradients to the other
encoder during back-propagation. The role of content decoder is to discourage the other encoder
from learning features necessary for solving tasks that require content information. The content
decoder and the GRL is used during the pre-training stage only.

2.2 TRAINING

During pre-training, an audio utterance X = x1, x2, . . . , xt is transformed using the shared encoder
to produce embeddings (E). These embeddings serve as inputs to both the content and other en-

3Each embedding represents 20ms of audio
4The number of groups equal to the other embedding dimension.
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coders, which transforms them even further separately. (i) Before passing the embeddings to the
content encoder, approximately 50% of the embeddings are masked and replaced with the masked
embedding [M ]. (ii) And before passing the embeddings to the other encoder, they are transformed
using a 1D average pooling layer with kernel size and stride equal to the DF, reducing the embed-
dings again by a factor of DF 5.

Content Loss (CL): The Multicluster Masked Prediction Loss (MMPL), inspired by (Yadav et al.,
2024), calculates the masked prediction loss (MPL) across multiple layers of the content encoder
using six sets of different pseudo labels. These layers are selected at regular intervals between the
last and an intermediate layer. MMPL is the sum of MPL over a set 6 = ( layer number, number of
pseudo labels ) as shown in Equation 1.

LCL =
∑
d

(MPL) (1)

where d is a dictionary indicating which pseudo label set corresponds to which transformer layer.
And MPL is computed only at the masked indices, as shown in Equation 2.

LMPL =
1

M

M∑
i=1

exp (sim(Ahi, ec)/τ)∑C−1
c′=0 exp (sim(Ahi, ec′)/τ)

(2)

Here, M is the masked indices, A is the projection matrix, hi is the content encoder embedding,
ec and ec′ represent the correct and incorrect embeddings for the pseudo labels, sim(, ) computes
cosine similarity between two vectors, and τ is a scaling factor for the logits. For further details,
refer to (Yadav et al., 2024; Hsu et al., 2021).

Other Loss (OL) : The other encoder is trained using a student-teacher framework, where RDINO
(Chen et al., 2023a), a self-supervised model trained to learn speaker-discriminative embeddings,
serves as the teacher. RDINO has 22.74 million parameters, significantly more than the 3.52 million
parameters in the other encoder. We maximize the cosine similarity between the output of the PN
(Student) module and RDINO (Teacher) embeddings for a given utterance. Similar to the BYOL
approach (Grill et al., 2020) we only use the positive pairs for loss calculation. The full objective is
shown in Equation 3.

LOL = 1− sim(StudentPN , T eacherRDINO) (3)

Regularization Loss (RL) : Following (Ao et al., 2022), we train a transformer decoder to predict
pseudo labels, using cross-entropy loss as defined in Equation 4. The GRL scale the gradients during
backpropagation by a factor of 1/10, preventing interference with the other loss.

L(RL) = −
T∑

t=1

V∑
i=1

yt,i log ŷt,i (4)

Where T is the total number of time steps , V is the size of the vocabulary, yt,i and ŷt,i are the true
one-hot encoded pseudo labels and predicted probability for the tth time step and ith word in the
vocabulary respectively.

Total Loss : The overall training objective is the sum of all previous losses, as defined in Equation 5.
Since JOOCI uses separate learnable parameters, the losses are summed directly without requiring
additional hyperparameter tuning.

LTotal = LCL + LOL + LRL (5)

5Each embedding now represents DF times 20ms of audio for e.g., if DF is set to 10 then the other encoder
is processing 200ms of audio.

6The set is of size 6, similar to the MS-HuBERT (Yadav et al., 2024).
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Method #Params Corpus
Speaker Content Semantics ParaL

SID ASV PR ASR IC SF ER
Acc ↑ EER ↓ PER ↓ WER ↓ Acc ↑ F1 ↑ CER ↓ Acc ↑

FBANK 0 - 8.5e-4 82.01 9.56 23.18 9.10 69.64 52.94 35.39

modified CPC 1.84M LL 60k hr 39.63 12.86 42.54 20.18 64.09 71.19 49.91 60.96
HuBERT 94.68M LS 960 hr 81.42 5.11 5.41 6.42 98.34 88.53 25.20 64.92
WavLM 94.70M LS 960 hr 84.51 4.69 4.84 6.21 98.63 89.38 22.86 65.94
JOOCI (Ours) 109M LS 960 hr 90.79 4.15 4.25 5.35 98.42 88.77 23.74 65.24

WavLM + 94.70M Mix 94k hr 89.42 4.07 3.92 5.59 99.0 90.58 21.20 68.65

Table 1: UNIVERSAL SPEECH REPRESENTATION EVALUATION ON SUPERB BENCH-
MARK. The performance on the content and semantic tasks can be further increased as shown
in Table 4. To provide readers with a broader understanding of how performance scales with data
size, we also include results for WavLM+, which has been trained on 100 times more data. How-
ever, WavLM+ should not be directly compared to JOOCI, as the pre-training data disparity
makes such comparisons inappropriate.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Pre-training Dataset : We use the LibriSpeech 960-hour dataset (Panayotov et al., 2015), excluding
transcriptions, for pre-training JOOCI consistent with other studies focusing on speech representa-
tion learning (Schneider et al., 2019; Chung et al., 2021; Hsu et al., 2021).

Data Augmentation: Given that (i) LibriSpeech is a read speech dataset recorded in clean environ-
ment free from real world noises and (ii) the amount of dataset is under 1000 hours. We augment the
data very lightly, so not to interfere with the content encoder a lot, which would result in the model
dividing its capacity simliar to WavLM (Chen et al., 2022). We augment only 12.5% of the audio
samples using the MUSAN corpus (Snyder et al., 2015) with a high signal-to-noise ratio (SNR) in
the ranges of [5, 15] for noise, [13, 20] for speech, and [5, 15] for music. For comparison, WavLM
augments 50% of the audio with a SNR value in between [-5, 5]. Lastly, we also add Room Impulse
Response (RIR) for reverberation to the selected audios similar to RDINO (Chen et al., 2023a).

Pre-training : We use 12 layers for the other and content encoder. For the decoder, we use one
transformer decoder layer with 8 heads and 768 dimension. It is trained with a vocabulary size of
1005. Other encoder is trained using the student-teacher framework. Content encoder is trained
exactly to MS-HuBERT (Yadav et al., 2024). A detailed description is provided in the Appendix.

Shared Encoder and Content Encoder Initialization : The shared encoder and content encoder
of JOOCI are initialized with the pre-trained MS-HuBERT model weights (Yadav et al., 2024).
This choice is based on MS-HuBERT’s superior performance in modeling content information us-
ing the Multicluster Masked Prediction Loss (MMPL), which has been shown to achieve SOTA
performance on content-based tasks.

SUPERB : To comprehensively analyze both the content and other types of information learned by
JOOCI, we evaluated several tasks from the SUPERB (Yang et al., 2021) benchmark and compared
our method with other SOTA methods of similar model size. The SUPERB benchmark is designed
to compare models on their ability to learn comprehensive audio characteristics across a variety of
downstream tasks including speaker recognition, content analysis, semantics, para-linguistics, and
generation. For more details, see Yang et al. (2021). In short, SUPERB freezes the encoder and
learns a weighted sum of all the layers to produce features for different downstream tasks.

Fine-tuning : No fine-tuning was performed. After pre-training, we discarded the content decoder
and the fully connected (FC) layer from the post-network (PN) module and froze the parameters of
JOOCI for all evaluation purposes in this work.

5
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3.2 MAIN RESULTS

Evaluating JOOCI on the SUPERB Benchmark : Table 1 summarizes the performance of JOOCI
on a range of downstream tasks from SUPERB benchmark. The results clearly indicate that JOOCI
outperforms the current state-of-the-art (SOTA) models on the majority of tasks, except few where
the margin is very less 7. In particular, JOOCI maximizes the performance on speaker-related tasks
such as speaker identification (SID) and speaker verification (ASV), and exhibits the lowest er-
ror rates in content-related tasks like phoneme recognition (PR) and automatic speech recognition
(ASR). Overall, JOOCI’s performance on the SUPERB benchmark reinforces our initial claim of it
being a comprehensive framework for learning speech representations.

Comparison with Adapters : Instead of fine-tuning pre-trained models for every new downstream
task, adapters (Chen et al., 2023b;c) offer a lightweight solution to adapt these models for new tasks.
Adapters introduce a small number of additional parameters tailored for each specific task. Table
2 compares JOOCI with HuBERT fine-tuned using various adapters. A key limitation of adapters,
however, is that for every new task, it requires a new forward pass through the pre-trained model.
JOOCI stands out by overcoming this limitation, as both the other and content embeddings are
extracted in parallel in a single forward pass. With (i) comparable performance to adapters and (ii)
the advantage of requiring only one forward pass, JOOCI stands as a more efficient framework for
learning comprehensive speech representations. Lastly, Adapters can be applied to JOOCI also.

Method Params SID ↑ ASV ↓ ASR ↓ PR ↓
HuBERT

FT 94.68M 64.56 5.15 6.35 2.45
Weighted-sum 13 81.42 5.11 6.42 5.41

HuBERT + Adapter (Chen et al., 2023c)
Houlsby 0.60M 87.71 5.29 5.88 3.00
CHAPTER 4.67M 91.56 4.95 6.22 2.95

JOOCI (Ours)
Weighted-sum 13 90.79 4.15 5.35 4.25

Table 2: Comparison of JOOCI with HuBERT us-
ing adapters. FT stands for finetuning. Here 13 is
not a mistake and the weighted-sum only uses 13
parameters for each of the 13 layers.

Figure 2: Studying the effect of data aug-
mentation on the content encoder using CCA
word label similarity. Higher the CCA sim-
ilarity for more number of layers better the
method is. Better viewed in color.

Effect of Data Augmentation on the Content Encoder : We studied the extent to which data
augmentation alters the learned representations in the content encoder. Following the approach of
(Pasad et al., 2021; 2023), we plotted Canonical Correlation Analysis (CCA) versus word label sim-
ilarity, as shown in Figure 2. Interestingly, the similarity in the later layers increased, suggesting that
even a small amount of data augmentation aids in learning more robust features. We hypothesize
that this is due to the small size of the pre-training dataset. Based on these insights and the findings
from Section 4.3, we selected layers 6 to 11 (six layers) that exhibited very high CCA word label
similarity and re-ran the experiments on ASR, PR, SF, and IC tasks. This selection resulted in a per-
formance boost on the content tasks, either outperforming or matching WavLM on semantic tasks,
as shown in Table 4. Therefore, taking a weighted sum of layers that encode similar information is
a more robust choice than using all layers.

6
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Layers Acc ↑ Importance of other encoder layers

Weighted Sum
13 88.84 (89.20*)
6 89.10 (89.32*)
3 88.87 (90.07)

Single Layer
LastLayer 90.24

Not Applicable+ ASP 89.49
+ BN 90.79
+ FC 88.80

Table 3: Ablation results. Performance of the SID task for different configurations. Better viewed
in color.

Method PR ASR SF IC
PER WER F1 CER Acc

WavLM 4.84 6.21 89.38 22.86 98.63
JOOCI 4.25 5.35 88.77 23.74 98.42

JOOCI (6 - 11) 4.19 5.20 89.61 23.32 98.61

Table 4: Ablation results. Performance of JOOCI when only using layers with high CCA similarity
score.

4 ABLATION STUDY

4.1 INFORMATION ENCODED AT DIFFERENT LAYERS IN THE OTHER ENCODER FOR THE
SID TASK

The expectation is that JOOCI’s other encoder SHOULD build complex hierarchical features, with
later layers being more important for solving tasks such as speaker recognition 8. Table 3 shows
the accuracy for the SID task across different configurations corroborating our claim for JOOCI
leveraging all the layers to build hierarchical features for other information also. Surprisingly, When
using a weighted sum of the other encoder’s all the layers, the layers towards end (6-9) are assigned
higher weight and not the last layer. To investigate this further, we use only the last six layers,
without any performance drop, yet the same trend persisted. Next, we tried using only the last three
layers, without any performance decline, which again showed the same pattern. Finally, using only
the last layer results gives the best result. We hypothesize that this could be because of the softmax
property used in the SUPERB benchmark for assigning weights to all the layers, which gives a uni-
modal distribution. Using a setup similar to multi-head attention might give a clearer picture. We
leave this for future work.

Next, applying an ASP layer followed by Batch Normalization (BN) layer to the output of the last
layer boosts the performance even further. On the other hand, using the last fully connected (FC)
layer resulted in a performance drop of approximately 2%. This performance decline when using
the last layer, closest to the loss function, has been observed in vision model trained using SSL,
where it is often recommended to drop the last layer after pre-training (Chen et al., 2020).

Based on these findings, we conclude that the model effectively constructs complex, high-level
features by utilizing all layers for tasks requiring other (speaker) information. And in turn, JOOCI
is able to jointly learn other and content information utilizing all the layers.

7WavLM used very big batch sizes and this could be the reason for the little margin gains compared to
HuBERT and JOOCI.

8It has been shown in the literature that models using MPL encodes content information in the later layers
and other (speaker) information in the earlier layers.

7
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Method Corpus SID PR ASR ER
Acc ↑ PER ↓ WER ↓ Acc ↑

Teacher model (22.74 million)
RDINO VC2 2,442hr 96.68 - - 53.21
Keeping Shared and Content Encoder Frozen + NO Data Augmentation
JOOCI-C LS 960hr 75.40 4.17 5.32 62.05
JOOCI-O LS 960hr 88.94 - - 61.86
JOOCI-O-DGRL LS 960hr 88.50 - - 62.72

Finetuning complete JOOCI setup + Data Augmentation
JOOCI-C LS 960hr - 4.25 5.35 65.27
JOOCI-O-DGRL LS 960hr 90.79 99.02 - 64.38

Table 5: Ablation results. Data augmentation helps on the ER task as a lot. Surprisingly, for the
ER task content encoder embeddings with data augmentation performs better than the other encoder
embeddings. JOOCI-C means using the content encoder embeddings, JOOCI-O means using other
encoder embeddings and JOOCI-O-DGRL means using other embeddings trained with the decoder
and GRL layer.

4.2 FROZEN SHARED AND CONTENT ENCODER VS FINE-TUNED SHARED AND CONTENT
ENCODER WITH DATA AUGMENTATION.

JOOCI consists of three major components: (i) content encoder (C), (ii) other encoder (O), and
(iii) content decoder with GRL (DGRL). We explore different combinations of these components
across four downstream tasks, which tests effective modeling of both content and other information.
Table 5 presents our ablation results. First, we pre-train JOOCI by training only the other encoder
(O) and keeping the shared and content encoder frozen, either with or without the DGRL module.
Incorporating the DGRL module significantly boosts ER performance, although it slightly degrades
SID performance. Overall, the inclusion of DGRL increases robustness, and thus we employ the
DGRL in all subsequent JOOCI experiments.

Next, we study the effect of data augmentation during pre-training, when all parameters of JOOCI
are trained. Data augmentation results in substantial performance gains on the SID and ER tasks.
These improvements are likely due to the characteristics of the LibriSpeech pre-training dataset,
consisting of read speech with minimal background noise. For the PR and ASR task, data augmen-
tation leads to very minimal degradation, which is negligible when considering the significant gains
on other tasks. Our hypothesis is that with larger and more diverse datasets, the dependence on data
augmentation will diminish.

4.3 DISENTANGLEMENT PROPERTY OF JOOCI

Disentanglement is the ability of the model to represent multiple factors of variation in data as sepa-
rate and independent latent variables or embeddings. These embeddings encode different aspects of
the data without influencing each other.

Solving the voice conversion from any to any (VC-a2a) speaker requires effective disentanglement
of the current speaker from the content information in speech. Our findings indicate that either using
one layer or the layers with high CCA similarity results in improved performance compared to using
all the layers, as demonstrated in Table 6. This shows that JOOCI is able to disentangle content from
the other information in the layers with high CCA scores. Furthermore, Table 5 shows that the other
encoder also is not encoding content information as the performance on the PR task is 100%. Both
these observations prove that JOOCI is able to disentangle content and other information success-
fully.

8
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Figure 3: Ablation results. ASP layers uses attention weights, between 0 and 1, to create one
embedding for a variable sequence length. Sorting the weights, we see that majority of weights
were given to few indices. Each histogram plots the attention weight values for different percentage
of indices used. As we can see 50% of the total attention weight is given to only the top 20%
indices. Better viewed in color.

Method Speaker-Embedding VC-a2a
MCD ↓ WER ↓ ASV ↑

All the layers
HuBERT d-vector 9.19 3.4 23.25
JOOCI 9.34 3 22

one layer
HuBERT d-vector 8.49 3.3 66
JOOCI 8.31 2.9 86.5

Using later layers
HuBERT (8 - 9) d-vector 8.52 3.5 65.5
JOOCI (6 - 11) 8.40 3.1 91.5
JOOCI (6 - 11) JOOCI 8.12 3.1 83.00

Table 6: Ablation results. Using layers with high CCA scores (layer 6 to 11) is able to disentangle
content information from the other information. We also use JOOCI other ASP output as speaker
embeddings and find lower MCD, which shows more natural audio but lower speaker metric. In
contrast, d-vector is a supervised trained system and (Wan et al., 2018) has 1.48 million parameters.
Using JOOCI’s other encoder as speaker embedding results in better MCD. But lower ASV could
be because of small pre-training data used.

5 CONCLUSION

This paper presents JOOCI, a novel framework for learning comprehensive speech representations
by jointly optimizing other and content information. JOOCI addresses the limitations of existing
methods that struggle to encode both types of information effectively. By employing separate en-
coders and distinct training criteria for other and content information, JOOCI achieves state-of-the-
art performance on the SUPERB benchmark, outperforming existing models across a range of down-
stream speech tasks, including speaker identification, speaker verification, phoneme recognition, and
automatic speech recognition. The efficiency of JOOCI is also emphasized, as it extracts both other
and content embeddings in a single forward pass, in contrast to adapter-based methods that require
multiple forward passes. The ablation study highlights the significance of the DGRL module in
enhancing the robustness and performance of JOOCI, particularly for the emotion recognition task.
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Encoder SD (DER ↓)

label frame shift = 320
HuBERT 5.88
WavLM 4.55
JOOCI-C 5.97
JOOCI-O 6.26

Encoder SD (DER ↓)
label frame shift = 3200

JOOCI-C 7.18
JOOCI-O 7.23

Table 7: Limitations. Performance on the SD task. We can not compare it with HuBERT or WavLM
because other encoder’s resolution is 10 times of them. We copy the other encoder 10 times for each
index to decrease the label frame shift (320). And we increase the content encoder’s label frame
shift (3200) by a factor of 10 using mean pooling for comparison.

Additionally, data augmentation during pre-training proves beneficial for speaker identification and
emotion recognition tasks, likely due to the size of the LibriSpeech dataset.

6 LIMITATIONS AND FUTURE WORK

Speaker Diarization (SD) Task : The SD task involves determining who spoke when in an audio
recording. It requires the system to segment the audio and assign speaker labels to each segment, ef-
fectively separating multiple speakers within a conversation or audio stream. Unexpectedly, despite
the other encoder’s strong performance on tasks like SID and ASV, it falters in the SD task compared
to the content encoder. The results are shown in Table 7. The degradation maybe because of using
the one embedding, during pre-training other encoder, for the entire utterance. On the other hand,
data augmentation proves to be highly effective for learning fine-grained, discriminative features as
shown by better performance from the content encoder.

Better Pre-training Methodology : (i) Employing a different pre-training methodology to learn
fine-grained, discriminative features for the other encoder, such as using neural codec latent variables
as training targets (Défossez et al., 2022). (ii) To improve content modeling, utilizing the content
decoder to also train the content encoder.

Multi-Talker ASR : JOOCI is well-suited for multi-talker ASR without requiring any external
modules. It can be easily adapted by (i) using other embeddings to classify similar speakers using
unsupervised clustering, and (ii) applying the resulting classification as a mask to segment content
embeddings, which can then be used for the ASR task.
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A APPENDIX

A.1 PRE-TRAINING

Parameter count comparison : Table 8 shows the parameter count of different components of
JOOCI during pre-training and inference.

Pre-training : Pre-training involves either a frozen content encoder or an unfrozen content encoder.

In the frozen content encoder case, JOOCI is trained for 50,000 iterations on 4 GPUs, with each GPU
processing up to 375 seconds of audio, resulting in a total of 1500 seconds of audio per iteration. The
learning rate is set to 5e-4, using the first 5,000 steps for warm-up. All other settings are consistent
with those used in MS-HuBERT Yadav et al. (2024).

In the second case, pre-training continues from the first case 9 for an additional 100,000 iterations,
using a learning rate of 5e-5 across 6 GPUs, with each GPU handling up to 200 seconds of audio,
yielding a total of 1200 seconds of audio per iteration. The first 1,000 steps are used for warm-up
updates. All other settings are consistent with those used in MS-HuBERT Yadav et al. (2024).

Training Inference
HuBERT 94.70M 94.70M

Shared encoder & Content encoder 96.18M 94.70M
Other encoder & PN 3.52M 3.12M

Content decoder 9.3M -
JOOCI (Ours) 109M 97.82 M

Table 8: Parameter count for different components of the JOOCI framework compared to HuBERT
millions.

A.2 SUPERB BATCH SIZE COMPARISON

Table 9 shows the comparison of batch sizes used by WavLM and JOOCI. And what is used in the
SUPERB benchmark.

Task WavLM JOOCI SUPERB
SID 512 32 32
ASR 128 32 32
IC 128 32 32
SF 128 32 32
ER 32 32 32

Table 9: Batchsize used by WavLM and JOOCI and the SUPERB benchmark default.

9Using the data augmentation.

13


	Introduction
	JOOCI
	Components
	Training

	Experiments
	Experimental setup
	Main Results

	Ablation Study
	Information Encoded at Different Layers in the Other Encoder for the SID Task
	Frozen Shared and Content Encoder vs Fine-tuned Shared and Content Encoder with Data Augmentation.
	Disentanglement property of JOOCI

	Conclusion
	Limitations and Future work
	Appendix
	Pre-training
	SUPERB batch size comparison


