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ABSTRACT

Game theory is a powerful paradigm to describe the interplay between participants
in interactive multi-agent scenarios, and relies on the knowledge of player objec-
tives or payoff structures for game optimal decision making. However, designing
such objectives for games is challenging as it requires evaluating the impact of an
agent’s actions on the behavior of others, and understanding the effect of changes
in one’s policy on the behavior of others. Indeed, aligning objective representa-
tions with a desired multi-agent behavior is achieved via tedious and impractical
heuristics or human trial-and-error. This work aims to ease this process and pro-
poses a multi-agent planning architecture that relies on a large language model
(LLM) as the game formulation designer. First, we exhibit the zero-shot profi-
ciency of the more capable LLMs (such as GPT-4) in tuning continuous objective
function parameters in accordance with a specified high-level goal for autonomous
driving examples. We then develop a planner which uses an LLM as a matrix game
designer, for scenarios with discrete and finite action spaces. Given a scene his-
tory, the actions available to each agent, and high-level objectives (expressed in
natural language), the LLM evaluates the payoffs associated with each combina-
tion of actions. From the game structure obtained, agents execute Nash optimal
actions, the scene is re-evaluated, and the process is repeated. We evaluate our ap-
proach on a heterogeneous robot planning task inspired by wildlife conservation,
as well as a household multi-humanoid transport task, and show the superiority of
our LLM-based approach to other baselines 1.

1 INTRODUCTION

The game-theoretic approach to multi-agent planning delves into the intricate dynamics that arise
when multiple autonomous agents interact within a shared environment. In this framework, each
agent is assumed to be a rational decision-maker, striving to maximize its own utility or benefit. It
provides a formalized and mathematical foundation for predicting and understanding the behavior of
multiple agents. By modeling their interactions using game theory, one can analyze the potential out-
comes, equilibria, and strategies that agents might employ. The significance of this approach is un-
derscored by its applications in diverse fields like economics (Samuelson, 2016), robotics (LaValle,
2000), transportation (Fisk, 1984), and artificial intelligence (Shoham et al., 2007).

The contemporary landscape of multi-agent systems demands innovative, adaptive, and scalable
solutions. The integration of large language models (LLMs) into game-theoretic approaches presents
a compelling answer to this request. Here’s why:

Automated Game Design and Harnessing Domain Expertise: Traditional game-theoretic re-
search often focuses on solving games with predefined structures and objectives, yet the crux of
real-world utility lies in designing these very frameworks. Current methods, reliant on iterative
human input, often requires meticulous manual efforts and fails to scale. LLMs can revolutionize
this, offering automation in design and ensuring that domain-specific expertise is seamlessly in-
corporated with minimal human efforts, leading to outcomes that resonate more profoundly with
real-world scenarios in an efficient and scalable manner.

1Videos can be found at the anonymous website: https://sites.google.com/view/game-llm
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Figure 1: Game LLM: a game-theoretic objective designer. Our framework is amenable to both
assisting human tuning as well as designing payoffs for planning in dynamic scenarios.

Tackling Computational Challenges: Some games, even with known game structures, by virtue of
their complexity, resist optimal solutions through conventional methods and limited computations.
In such cases, heuristics or approximations offer a way out, often driven by the nuanced intuition that
human bring to the table. LLMs bridge the gap by emulating human-like problem-solving strategies,
providing high-level guidelines toward solving complex and intractable games.

Addressing the Unexpected and Promoting Adaptability: No model, however sophisticated, can
operate flawlessly in every possible scenarios, and unexpected situations are inevitable. LLMs can
offer dynamic solutions based on their vast knowledge and common sense reasoning capabilities,
and augment human interventions in navigating these uncharted regimes. Furthermore, just as hu-
mans evolve strategies based on experiences, LLMs can mimic this adaptability, refining strategies
and enhancing the overarching game-theoretic model on the fly through trial-and-error without ac-
tual human efforts.

Building Trust in Decision-making: Trustworthiness is a cornerstone for the widespread accep-
tance of any system. Stakeholders and users seek control, transparency, and interactability. LLMs,
adept at facilitating human-like interactions and explanations, enhance perceived trust with their
inherently human-comprehensible interfaces that allow seamless and natural interaction with users.

Using the scenario of rangers protecting rhinos from poachers, intelligently using LLM can ef-
ficiently craft game-theoretic objectives, drawing from domain insights such as rhino movement
patterns and past poaching incidents. It narrows the vast search space of the park using seasoned
rangers’ insights. As the ever-changing park landscape presents challenges, such as new poaching
tactics or rhino migrations, the LLM dynamically refines strategies, learning and adapting with min-
imal manual oversight. Crucially, by articulating decisions in accessible terms, LLMs build trust
with rangers, ensuring the devised strategies are both trusted and implemented.

To this end, we develop a comprehensive framework that harnesses the capabilities of LLMs to craft
game-theoretic objectives tailored for multi-agent planning. Our approach centers around General-
ized Nash Equilibrium Problems (GNEPs), a versatile game formulation that encompasses various
conventional games, including dynamic games and normal form games. Bridging the gap between
the LLM’s natural language reasoning and structured game constructs like optimization problems
or payoff matrices, we introduce a cost translation module. This module educates the LLM on in-
terpreting agent behaviors through the lens of game theory, guiding it to suggest game formulations
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that align closely with specified objectives. Once the LLM proposes a game, it is then processed
by game solvers, such as nonlinear programming solvers, to determine the agents’ actions. To com-
plete the loop, we simulate the game’s outcomes, using the results as feedback signals for the LLM,
continuously refining and optimizing the proposed game structures.

We evaluate our framework in three benchmarks: (i) multi-agent motion planning for autonomous
driving (ii) heterogeneous cooperative/competitive strategic reasoning for protecting rhino from
poachers (iii) ThreeDWorld Multi-Agent Transport (TDW-MAT). In our autonomous vehicle ex-
periments with non-cooperative quadratic costs, we seamlessly convert high-level descriptions to
cost parameters for multi-agent behaviors. Our solution adeptly tunes intertwined parameters effi-
ciently based on human feedback. Furthermore, we demonstrate our method can perform superior
strategic planning comparing to other baselines in heterogeneous cooperative/competitive games in
both the Stop-The-Poacher task and the TDW-MAT Challenge. To summarize, we contribute to:
(i) A comprehensive framework with LLM integration to automate game-theoretic objectives de-
sign for multi-agent planning (ii) extensive evaluation across diverse benchmarks to demonstrate the
capability to convert high-level descriptions into cost parameters and superior strategic planning in
homogeneous/heterogeneous cooperative/competitive game scenarios.

2 RELATED WORK

Game-theoretic planning. A game-theoretic setting allows to model both adversarial and coopera-
tive agents. In fact, scenarios such as autonomous driving, where robots need to interact with other
intelligent agents, are fundamentally game-theoretic (Fisac et al., 2018; Trautman & Krause, 2010),
(Dreves & Gerdts, 2018). Formalizing such interactions as a game, robots can weigh the impact of
their decisions on the actions of other agents (Sadigh et al., 2016), even in competitive settings such
as drone or car racing (Spica et al., 2018; Wang et al., 2021). Most game-theoretic works do not
assume availability of a communication network among the agents and model the interactions as a
game formulation. In (Peters et al., 2021; Laine et al., 2021; Le Cleac’h et al., 2021) data-driven
methods are presented to infer objective functions of other agents online in game theoretic planning
without communication. On the other hand distributed optimization approaches assume the exis-
tence of a communication network and solve the optimization based on the received communicated
predictions (Rey et al., 2018), (Ferranti et al., 2018). They devise a communication and planning
protocol in which all the agents share their predicted planned trajectories. One drawback of the for-
mer approach is that in an uncertain and dynamic environment such as autonomous driving setting,
solving a game with a fixed structure may not be robust with respect to adversarial agents’ behav-
ior. Moreover, when there are adversarial agents involved in the game, communication is usually
disabled, and the objectives of adversarial agents are usually hard to obtain. In this work, we show
how we may infer objectives for multi-agent planning using large language models, in which case
the planning is more robust and intelligent compared to existing data-driven methods.

Large Language Models for Planning. Large language models (LLMs), such as ChatGPT (Stien-
non et al., 2020) (Gao et al., 2023), GPT-4 (OpenAI, 2023) (Katz et al., 2023), are powerful models
for natural language understanding and inference. Recently, LLMs have been widely used in vari-
ous robotic tasks, such as design (Singh et al., 2023), (Stella et al., 2023), (Vemprala et al., 2023),
navigation (Shah et al., 2023a) (Shah et al., 2023b) (Dorbala et al., 2023), and planning (Chen et al.,
2023) (Huang et al., 2022). Traditional planning methods require lengthy mapping and exploration,
which is a major challenge since it may take a considerably long time to find a planning trajectory,
especially in unfamiliar environments. However, humans can quickly navigate and plan in unfamil-
iar environments, which motivates the employment of LLMs for planning (Shah et al., 2023a) due
to their human-level capability in scene understanding. LLMs planning in embodied environments
requires planning skills, as well as the logic of planning. The solutions change over time in re-
sponse to the agent’s own and other agents’ decisions (Huang et al., 2022). This problem is usually
referred as a game. However, one obvious problem in planning using LLMs is that they generally
struggle to understand the agent interactions that play a critical role in the performance one can
achieve on a specific task in a multi-agent environment. In this work, we address this challenge by
combining LLMs with game-theoretic optimization. Instead of directly planning actions, the LLM
designs objectives for a game describing the interplay between agents. As a result, we can ensure the
plans obtained do not neglect the interactive nature of the problem while harnessing the reasonning
capabilities of LLMs.
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3 LLMS AS GAME OBJECTIVE DESIGNERS

The framework we proposed does is not restricted to specific types of game formulations. It is a
general approach that relies on the assistance of LLMs for the design of game objective parameters,
which can be cost function parameters or simply payoff matrix entries. The applications we exhibit
where such an architecture is useful include tuning game structures to obtain desired human behav-
iors in autonomous driving scenarios, as well as multi-agent planning where the LLM successively
evaluates the payoff of actions available to agents in environments where the action space depends
on the state of the system. The proposed architecture is depicted in Figure 1.

Given a multi-agent simulation environment, we observe the state of the system (or start from known
initial conditions). The translation of the state of the system, the structure of the objectives of agents
in the scene (available actions in normal form games, parameterized functions for continuous costs)
can be done via an engineered prompt interfacing with the simulation environment, but can also
accommodate a human in the loop for additional information or expressing human preferences. The
LLM tunes objective parameters specified in the prompt, thus completing the information required
to completely specify the game setup at a current time. The game can be solved with a suitable
solver, generating the actions for each agent to execute. The simulator is then run until a new game
structure is to be designed, and the process is repeated.

3.1 GENERALIZED NASH EQUILIBRIUM PROBLEMS

We consider Generalized Nash Equilibrium Problems (GNEPs) involving N players i ∈ {1, . . . ,N}
over a horizon of H time steps. An agent i’s state at time step index t is denoted xi

t ∈ Rni

and control input ui
t ∈ Rmi

, with dimensions of agent i’s state and control ni and mi. Let xt =

[x1,⊤
t , . . . ,xN,⊤

t ]⊤ ∈ Rn denote the joint state and ut = [u1,⊤
t , . . . ,uN,⊤

t ]⊤ ∈ Rm denote the joint con-
trol of all agents at time t, with joint dimensions n = ∑i ni and m = ∑i mi. We define player i’s
policy as π i = [ui,⊤

1 , . . . ,ui,⊤
H−1]

⊤ ∈ Rm̃i
where m̃i = mi(H − 1) denotes the dimension of the entire

trajectory of agent i’s control inputs. The notation ¬i indicates all agents except i, for instance π¬i

represents the vector of the agents’ policies except that of i. Also, let X = [x⊤2 , . . . ,x
⊤
H ]

⊤ ∈ Rñ, with
ñ = n(H −1), denote the trajectory of joint state variables resulting from the application of the joint
control inputs to the dynamical system defined by f : Rn ×Rm → Rn such that,

xt+1 = f (xt ,ut) (1)

Over the whole trajectory we can express the above kinodynamic constraints with ñ equality con-
straints,

D(X ,π1, . . . ,πN) = D(X ,π) = 0 ∈ Rñ (2)

The cost function of each player i can be parameterized by θi, which determines its structure. The
cost function depends on the agent i’s policy π i as well as on the joint state trajectory X , which is
common to all players, such that ∀i ∈ {1, . . . ,N},

Jθi(X ,π i) = cθi
H (xH)+

H−1

∑
t=1

cθi
t (xt ,ui

t) (3)

Notice that as player i minimizes Jθi with respect to X and π i, the selection of X is constrained by the
other players’ strategies π¬i and the dynamics of the joint system via (2). In addition, the strategy
π i could be required to satisfy constraints that depend on the joint state trajectory X as well as on
the other players strategies π¬i . This can be expressed with a set of g inequality constraints,

C(X ,π)≤ 0 ∈ Rg (4)

where C : Rñ ×Rm̃ → Rg. The GNEP we form is the problem of minimizing (3) for all players
i ∈ {1, . . . ,N} with respect to (2) and (4). More specifically,

min
X ,π i

Jθi(X ,π i) ∀i ∈ {1, . . . ,N}

subject to D(X ,π) = 0 (5)
C(X ,π)≤ 0
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The solution to such a dynamic game is a generalized Nash equilibrium, i.e. a policy π such that,
∀i ∈ {1, . . . ,N}, π i is a solution to (5) with the other players’ policies given by π¬i that is also solved
by (5) for all ¬i. As a consequence, at a Nash equilibrium point solution, no player can improve
their strategy by unilaterally modifying their policy.

Many familiar types of games fall under special cases of the GNEP formulation. Notably, matrix
games can be seen as a special case of GNEPs, with a unit horizon, two players, and a cost structure
dependency that can be described by a payoff matrix M. We can, thus, similarly parameterize the
payoff matrix in a normal form game. In this case, asking the LLM to design the game parameters
can be seen as having it fill in the entries of the payoff matrix. Achieving both tuning of continuous
cost functions, as well as tabular cost evaluation, requires a capability to reason about actions and
reactions.

3.1.1 GAME TRANSLATOR

We address the mechanism involved with obtaining LLM outputs that are amenable to conversion
into games that can be directly handled by solvers.

The human assistant tuner setup we devise relies on a two-stage prompt architecture consisting of
a motion descriptor followed by a cost function tuner. The method is an extension of the proposed
single agent setup proposed by Yu et al. (2023). First, the motion descriptor instructs the LLM to
interpret and translate the desired high-level user input behavior into a pre-defined template natural
language description of the agents’ behavior that is clearer for the LLM to decipher. Next, the cost
function tuner prompts the LLM to turn the motion description into tuned cost functions in code
form, which is subsequently inserted as is into the game definition code. We do not suggest any
values or orders of magnitude.

When using our architecture for decision making in environments with dynamically changing dis-
crete action options, prompting is designed to require the LLM to output payoffs for each combi-
nation of actions available to the agents at a specific planning step. This occurs in one prompting
step, after which we parse the output to construct a normal form game. In two player scenarios this
comes down to parsing the output into a matrix which is then solved to output the next Nash optimal
action to be taken.

3.1.2 SIMULATOR FEEDBACK

In the tuning setup we assume the human operator provides short explanations of the behavior of
agents in the simulator to the LLM. New parameters are then designed via the pipeline to be run
again. When running the framework for decision making, we design a perception module, i.e. state
to text scripts that take information from the simulator, such as agent positions and observations,
current actions and so on, and maintain a history of the behavior, updating a prompt template. This
ensures that all information required to assess options for a next planning step is made available to
the LLM at evaluation time.

4 EXPERIMENTS

4.1 COST TUNING WITH LLMS FOR MULTI-AGENT MOTION PLANNING

In this section, we exploit the zero-shot reasoning capabilities of LLMs to ease the design of desired
behavior in multi-agent motion planning. The coupling of optimisation problems in game-theoretic
decision making makes it difficult to tune the cost parameters of different agents involved in the
scene to achieve a desired collective behaviour. Using LLMs as desired motion descriptors and then
cost function translators can significantly improve this tuning procedure. We use autonomous driv-
ing examples to illustrate the ease with which LLMs can help tune parameters to achieved desired
road scenarios. Details on dynamics, constraints, cost functions and solver are provided in section
A.0.1 of the Appendix.
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4.1.1 NO OVERTAKE

We set two vehicles on the left side of a two lane highway. We wish to design a solution in which
overtaking is only allowed from the left. Vehicle Green (going at 0.9 m/s) is 0.5 m behind Vehicle
Red (going at 0.6 m/s). We wish for both vehicles to maintain their driving speed. Vehicle Red has
to be reluctant to switch lanes. We desire to design a scenario where vehicle Green is forced to slow
down to avoid crashing into vehicle Red. Figure 2 depicts the trajectories of the agents obtained by
solving the game designed by our Game LLM architecture.

Figure 2: No overtake: Vehicle trajectories obtained by solving the dynamic game with the LLM
generated cost parameters. Vehicle Green is in green and vehicle Red is in red. Marker size and
color increase with time.

The LLM provides a set of parameters that achieve the desired behavior from the first attempt in
zero-shot prompting fashion. Our architecture shows signs of multi-agent reasoning to tune these
parameters from scratch, as it has no access to initial proposed values or orders of magnitude for the
different parameters.

4.1.2 FORCE OVERTAKE

We set the two vehicles on a two lane highway. They are both on the driving on the left lane.
Vehicle Green (going at 0.9 m/s) is 0.5 m behind Vehicle Red (going at 0.6 m/s). Both vehicles want
to maintain their driving speed. Vehicle Red is reluctant to switch lanes. We prompt the LLM to
design a scenario where vehicle Green overtakes vehicle Red via the right lane. Figure 3 depicts
the trajectories of the agents obtained by solving the succession of games designed by our Game
LLM architecture. After each execution, a human user gives a short description of the motion of the
vehicles and asks the LLM to modify the parameters to get to the desired behavior.

Figure 3: No overtake: Vehicle trajectories obtained by solving the dynamic game with the LLM
generated cost parameters. Vehicle Green is in green and vehicle Red is in red. Marker size and
color increase with time (vehicles driving from left to right). The trajectories are the iterations from
earliest (top) to final (bottom) with user feedback to LLM as it tunes the objective parameters.

It takes our proposed architecture four attempts to get to the described scenario, which we argue is
no more than what it would take a human to design such an experiment from scratch. Furthermore,
we analyse the choice of parameters the LLM selects to tune and the value evolution with each
iteration. In fact, the LLM pinpoints only two parameters that it modifies between runs; the cost
parameters associated with deviations from the desired lane. Indeed, since the description suggests
both agents wish to remain on the left lane and that overtakes should usually only occur from the
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left, the desired lane for both agents is selected to be the left. The evolution of these parameters for
both agents is depicted in the right bar plot in Figure 3.

An interesting observation is that in addition to both reducing the Green vehicles cost associated
with staying on the left lane, and increasing that of the Red vehicle, it appears the tuner proceeds
in exponential steps (the bar plot is in log scale, the lane cost for Green is successively 0.2, 0.05,
0.01, 0.01 whereas the lane cost for Red is 0.9, 1.0, 2.0, 5.0). Our LLM tuner thus exhibits an
efficient tuning approach while showing correct understanding of human feedback and identifying
parameters of significance. It is also notable that the tuner is capable of tuning multiple values
simultaneously without resorting to a complete decoupling approach.

Our LLM-based architecture designed to reason about multi-agent behavior proves to be a useful
assistant for the design of objectives in game-theoretic motion planning scenarios.

4.2 STOP-THE-POACHER

Stop-the-Poacher is a task that involves heterogeneous robot agents in a cooperative/competitive
environment. The task is designed to require coordinated team planning of agents with different
attributes to contain an adversary. The simulation is set up in TDW (Gan et al., 2021a), where a
team consisting of a Responder 4x4 SUV and a Drone are tasked with protecting a Rhino from a
Poacher (humanoid).

4.2.1 TASK DESIGN

The environment consists of an open square simulation area. The Poacher is given privileged infor-
mation about the location of the Rhino and heads directly towards it. The locations of the Rhino and
Poacher are unknown to the Responder and Drone who have to first coordinate the exploration of
the area to locate other agents that enter their perception radius. The mission is considered a success
if the Responder can secure the Rhino (by reaching it before the Poacher) or if it can intercept the
Poacher before it gets to the Rhino. The Drone cannot physically intercept or secure, but can only
gather information. The Rhino and Poacher are initially spawned at random positions on the map.
The Drone and Responder both start at the center of the map in each simulation run. They both
move at the same speed and are faster than the Poacher. We assume the Responder and Drone share
information about their positions and the positions of agents they perceive.

We calibrate the map size and agent moving speeds for the success rates to be reasonable using a
baseline heuristic. We segment the map into 9 equal areas in a 3x3 square grid pattern. We reference
the different areas by their cardinal direction with respect to the central region, which we denote
capital C (for center). For example, the region to the east of C is denoted E.

Although the decision agents do not share the same physical capabilities, they share the same action
space in our setup. Both the Responder and the Drone can explore one of the 9 regions available.
Upon detection of the Poacher or the Rhino, they can also move towards either.

The LLM is tasked with evaluating the payoff value of each pair of actions at each given time, and
the pair maximising the team’s chances of success is executed. A new decision is triggered in two
scenarios: if an area has been completely searched or if a new agent is perceived.

4.2.2 PERFORMANCE METRIC

The metric by which we evaluate a simulation run is the mission success rate. Indeed, all runs that
end with an unintercepted Poacher reaching the Rhino before the Responder are mission failures. In
the opposite case, if the Rhino is secured or if the Poacher is caught we consider the mission to be a
success. Policies are evaluated over a sample of initial simulation conditions.

4.2.3 RESULTS

Four different planners are evaluated on the Stop-the-Poacher task. We first let the agents take a
uniformly randomized action from the list of available actions at the current state. We also develop
a heuristic that reasons as follows: while neither of the Poacher or the Rhino are spotted, the agents
explore opposite directions of the area (in order: S, SW, W, NW for the Responder, and N, NE, E,
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SE for the Drone). When one of the Rhino or Poacher are spotted, both the Drone and Responder
begin to make their way towards it. If the second agent is perceived, the response team make their
way towards the closest of the two.

We also propose a Direct LLM decision planner. With knowledge of the positions of the Drone
and Responder, past actions and explored areas, and presence or not of the Rhino and Poacher in
the perception field, the LLM is asked to select a pair of admissible actions in a zero-shot manner,
without any reasoning artifacts or additional design.

We compare these baselines to our Game LLM architecture, which prompts the LLM to output a
score for each pair of actions available to the agents at a given state. The scores can then be combined
to constitute a matrix, the argmax of which is the optimal action as evaluated by the LLM in our
cooperative setting.

Both LLM architectures are instantiated with GPT-4. We access GPT-4 from the OpenAI Python
API and with temperature equal to 0.0, top-p set to 1, and a max number of tokens of 1024.

The results, in terms of number of runs ending in a poach, in an interception of the Poacher, or in a
secured Rhino as well as the total success rates achieved by the different planners are presented in
Table 1.

Table 1: Results for the Stop The Poacher task. (N=64).

ALGORITHM POACHES INTERCEPTIONS SECURED SUCCESS RATE

Random action 55 3 6 14 %
Heuristic 12 33 19 81.25 %
Direct LLM 20 26 18 68.7 %
Game LLM 9 30 25 85.94 %

The heuristic planner that serves as a principled baseline achieves a success rate of just over 80%.
We present a random action planner to exhibit the amount of reasoning required to achieve the task
in a successful way. It completes the task on about 14% of runs. The Direct LLM architecture
can achieve the task just under 70% of the time. Thus, it does exhibit some reasoning capability
to decide simultaneous actions for coupled agents. However, its performance is below that of a
simple hand designed human heuristic. Our proposed architecture improves the multi-agent planning
performance of the LLM, completing the task for close to 86% of runs, a higher return than that of
the baseline heuristic. By design, the Game LLM formulation is better adapted to this type of
problem, as it encourages the LLM to reason about outcomes of combinations of actions instead of
solely predicting a next decision.

4.3 MULTI-AGENT TRANSPORT CHALLENGE

We test our framework on the ThreeDWorld Transport Challenge (Gan et al., 2021b), more specif-
ically on a multi-agent extension with additional objects and containers, and more realistic objects
placements. The experiment is named ThreeDWorld Multi-Agent Transport (TDW-MAT) (Zhang
et al., 2023). The simulation is also built on top of the general-purpose virtual world simulation
platform TDW (Gan et al., 2021a).

4.3.1 TASK DESIGN

The agents are tasked with transporting the largest number of target objects possible to goal po-
sitions, using containers as tools (otherwise agents can transport only two objects at a time). The
actions available to agents include exploring a room, moving to an other room, manipulating objects
(pick up, drop), and using containers. The task is simplified from the setup presented in Zhang et al.
(2023). Indeed, we assume centralized information and decision making, and thus remove the need
for communication actions.

We select 6 scenes from the TDW-House dataset and run 2 samples of each of the 2 types of tasks in
each of the scenes, thus building a test set of 24 episodes. Every scene has 6 to 8 rooms, 10 objects,
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and 4 containers. An episode is terminated if all the target objects have been transported to the goal
position or the maximum number of frames (3000) is reached.

4.3.2 PERFORMANCE METRICS

We first define the Transport Rate (TR) as the fraction of the target objects successfully transported
to the goal position. This will serve as our metric for the task. We can also reinterpret the metric in
terms of Efficiency Improvement (EI), that being with respect to a single agent attempting the task,
which is computed according to EI= 1

N ∑
N
i=1(TRmulti,i−TRsingle,i)/TRmulti,i, with TRsingle,i denoting

the single agent’s transport rate for episode i, and TRmulti,i denoting the two-agent transport rate for
episode i.

4.3.3 RESULTS

We test our Game LLM setup against a Direct LLM planner that has to pick the next pair of actions
directly from the list of available actions to each player. Designing a heuristic for this setup is far
from straighforward so we only compare our approach to a non-game reasoning LLM. The results
are presented in Table 2.

Table 2: Transport Rates and Efficiency Improvements of the Direct LLM method vs our Game
LLM on the TDW-MAT task.

ALGORITHM TRANSPORT RATE EI

Direct LLM 0.64 19%
Game LLM 0.67 22%

The Direct LLM approach achieves a Transport Rate of 0.64 and is outperformed by our Game LLM
planner (0.67). We believe the expected improvement with respect to the direct method is mitigated
by the migration of the task from a decentralized setup (may need additional adaptation to truly
capture the mecanisms we seek to act upon). However, this remains in line with the remarks made
above about the more explicit reasoning about interaction that our architecture imposes on the LLM.

5 DISCUSSION

In this work, we propose a general framework to automate the design of game objectives for multi-
agent planning that capitalizes on Large Language Models’ reasoning capabilities without compro-
mising on the interactive dimension of the problem.

Our methodology shows promise as a human assistant for the design of scenarios with desired inter-
active behavior. We experiment with designing autonomous vehicle scenarios with non-cooperative
quadratic cost structures and show the ease with which high-level descriptions can be converted into
cost parameters that achieve the sought multi-agent conduct. We also notice that through simple
human exchange, our solution proves to be an efficient tuning aide, understanding brief feedback
and efficiently adjusting coupled parameters.

The proposed architecture also proves effective as a planner in dynamical multi-agent environments
where players are faced with a succession of decisions. Evaluating it in two such simulation settings,
our proposed planner surpasses both the hand designed heuristic and the direct action selection
approach on the Stop-The-Poacher task, as well as exceeding the latter approach in the TDW-MAT
Challenge.

One major limitation of our approach is scalability. Although one can instruct the LLM to reduce its
search space by only considering a subset of actions that are the most sensible for each agent before
evaluating combinations, it is clear that for large systems the number of action combinations grows
exponentially with the number of agents. However we argue that in most robotics scenarios, it is
seldom the case that more than a handful of agents interact at once.

Extensions to such scenarios beyond two agents and competitive settings with partial observations
of the decision adversary are directions of future work.
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A APPENDIX

A.0.1 DETAILS: AUTONOMOUS DRIVING EXAMPLE

The dynamic game solver we use is ALGAMES (Cleac’h et al., 2019), which handles trajectory
optimization problems with multiple actors and general nonlinear state and input constraints. The
vehicles obey nonlinear unicycle dynamics. The state of a vehicle xi

t comprises of its 2D position
(px horizontal, py vertical), its heading angle and scalar velocity. The control input ui

t comprises of
the angular velocity and scalar acceleration.

The dynamics constraints at time t consist in following the system dynamics given by equation 1,
with f being unicycle dynamics in our driving simulations. We also enforce collision-avoidance
constraints on the trajectories, by modelling collision zones of the vehicles by circles or radius
r, such that, at any time step t, ∥pi

t −p j
t ∥2

2 ≥ r2, ∀i, j ∈ {1, . . . ,N}. In addition, we require the
vehicles to remain on the road, by constraining the distance between each vehicle and the closest
point q on each boundary b to remain larger than the collision radius r, ∥pi

t −qb∥2
2 ≥ r2, ∀b,∀i ∈

{1, . . . ,N} where pi
t = [pxi

t , pyi
t ] contains the plane coordinates of the agent i at time t extracted from

the complete state vector xi
t . Thus, the autonomous driving problem is formalized via non-convex

and non-linear coupled constraints.

The cost structure considered is quadratic, penalizing the distance to the desired final state x f and
the use of controls,

Jθi(X ,π i) =
H−1

∑
t−1

1
2
(xt −xθi

f )
⊤Qθi(xt −xθi

f )+
1
2

u⊤
t Rθiut +

1
2
(xH −xθi

f )
⊤Qθi

f (xH −xθi
f ), (6)

where Qθi , Rθi and Qθi
f represent state, input and final state penalization weight matrices, respec-

tively. They can all be parameterized such that the LLM decides what values to encode in them. The
same applies to the final desired state xθi

f . This cost function depends only on the decision variables
of vehicle i, as players’ behaviors are only coupled through collision constraints. Thus, although
knowledge of other agents’ intentions does not intervene in the individual cost agent i is optimizing
for, it does however determine the trajectories of others, and subsequently the collision constraints
agent i has to satisfy.

The parameters we ask the LLM (GPT-4) to select are the target driving speed, the target lane to drive
in (both in xθi

f ), the cost associated with deviations from the desired speed, the cost associated with
deviations from the desired lane, and the cost associated with deviations from the desired driving
angle, which is set to be parallel to the road (part of Qθi ).
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