
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWIFTHOME: FAST REAL-TIME MULTI-FLOOR 3D
HOUSE GENERATION FROM TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SwiftHome, the first system that transforms free-form natural-
language descriptions into fully textured, navigable multi-floor 3-D houses in un-
der ten seconds per floor. Starting from a large-language-model (LLM) parse of
the input text, SwiftHome assembles a hierarchical scene graph, lays out rooms
across multiple stories, retrieves or generates furniture meshes, and applies style-
consistent materials—all in a single forward pass. A lightweight multi-agent
feedback loop couples an LLM “planner” with a rule-based “validator,” elim-
inating object collisions and enforcing ergonomic spacing without resorting to
time-consuming diffusion optimization. Key viewpoints are then textured via
a depth-conditioned inpainting module, yielding coherent, high-fidelity appear-
ances while preserving real-time performance. SwiftHome achieves near-zero
out-of-bounds object placement, high text-scene alignment (30.5 CLIP-score),
and state-consistent textures, outperforming previous pipelines by two orders of
magnitude in speed. An interactive interface lets users iteratively refine layouts by
mixing text edits with direct object manipulation, making SwiftHome a practical
tool for game design, VR/AR prototyping, and rapid architectural visualization.

1 INTRODUCTION

Imagine describing the place you want to walk through a simple text prompt “a split-level loft
with a sunken living room, plants everywhere, a reading nook above the kitchen” and seeing a
navigable, fully furnished 3-D environment appear in seconds. This is the experience we pursue with
SwiftHome: an agentic, training-free pipeline that turns free-form natural language into complete,
multi-floor, textured interior spaces fast enough for live design sessions, prototyping, or embodied
AI simulation.

Why now? Two trends are converging. First, we have unprecedented access to large repositories
of structured 3-D assets, scanned environments, and procedural datasets for embodied interaction
(e.g., BEHAVIOR-1K, ProcTHOR) that highlight the diversity and density of real indoor spaces and
the need for scalable generation tools (Beaudoin et al., 2023; Deitke et al., 2022). Second, large lan-
guage models (LLMs) and multimodal vision-language systems have become remarkably capable at
parsing open-vocabulary descriptions, reasoning about spatial relations, and producing tool-callable
structured outputs that downstream systems can execute (Feng et al., 2023; Höllein et al., 2023).
Bridging these advances promises a step change: instead of curating massive hand-authored level
libraries, we can author on demand with text.

Progress so far. Existing systems each advance part of this vision. Large interactive simula-
tion suites such as BEHAVIOR-1K and ProcTHOR focus on scale, task coverage, and embodied
interaction, and both include programmatic scene construction pipelines that relieve some human
modeling burden (Beaudoin et al., 2023; Deitke et al., 2022). Language-driven environment gen-
eration has emerged more recently. Holodeck shows that natural-language instructions can boot-
strap multi-room environments for embodied agents and supports iterative improvements through an
LLM-in-the-loop reviewer (Höllein et al., 2023). AnyHome demonstrated that open-vocabulary text
can be converted into amodal structured house representations and then textured into visually rich,
editable scenes; this was a major step toward controllable, house-scale generation from free-form
descriptions (Fu et al., 2024). RoboGen targets robot simulation: it programmatically assembles

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

functionally annotated indoor scenes so agents can practice manipulation and navigation without
heavy manual setup (Wang et al., 2023). Finally, Text2Room leverages powerful text-to-image dif-
fusion models to hallucinate geometry and texture for single rooms, back-projecting imagery into
mesh representations for downstream use (Höllein et al., 2023).

What’s still missing? Despite rapid progress, several gaps remain before text-to-environment
tools feel “instant” and “design-ready”: (i) Latency. Many pipelines require multi-minute diffusion
refinement, mesh fusion, or NeRF training; rapid ideation workflows need sub-10-second turnaround
(Höllein et al., 2023; Fu et al., 2024). (ii) Multi-floor structure. Most methods produce a single
room or flat apartment; stair logic, vertical adjacencies, and cross-floor constraints are rarely han-
dled automaticallyt. (iii) Open-vocabulary assets. Even when prompts are open-ended, generation
often collapses to a small, pre-trained taxonomy; missing or rare objects require manual modeling
(Feng et al., 2023; Höllein et al., 2023). (iv) Physical validity at scale. Dense object layouts lead
to interpenetrations, blocked paths, or non-functional spaces unless aggressively constrained (Yang
et al., 2024a; Tang et al., 2024). (v) Interactive iteration. True design work is iterative: users add,
remove, restyle, and rearrange. Only a few systems expose fine-grained, human-in-the-loop editing
that remains consistent across regeneration steps (Höllein et al., 2023; Fu et al., 2024).

Our approach. SwiftHome addresses these gaps by combining structured LLM parsing,
graph-driven architectural synthesis, rapid asset resolution, and a lightweight multi-agent feedback
loop—all designed for speed and editability. We ask a compact instruction-tuned Gemma-2 model
(Gemma Team, Google DeepMind, 2024) to parse free-form text into a floor graph, per-floor room
graphs, object lists, and global style cues. Room graphs are handed to a Graph2Plan module (Hu
et al., 2020) that predicts watertight floor-plan polygons; multi-floor stacking automatically inserts
and aligns stair shafts. Objects are resolved from large 3-D libraries via CLIP retrieval; missing
categories are synthesized on the fly using one-step SANA diffusion (Xie et al., 2025) followed by
fast TripoSR single-image reconstruction (Stier et al., 2023), keeping the pipeline library-agnostic
and training-free. Initial placement uses wall-aware bin-packing and relation-aware force solving;
a planner–validator loop (Gemma-2 planner, geometric + VLM critic) applies edit scripts that elim-
inate collisions, enforce ergonomic spacing, and ensure all described items are present. Finally,
depth-conditioned one-step SANA inpainting produces style-consistent textures in under a second.

Contributions. We make the following contributions:

1. A training-free, agentic text→3-D system that generates fully textured, navigable
multi-floor homes from natural language in under ten seconds.

2. Integration of LLM parsing + Graph2Plan for fast, watertight architectural shells that
respect adjacency constraints across floors.

3. A zero-shot asset resolver that backs up library retrieval with SANA→TripoSR synthesis
for missing or rare objects.

4. A lightweight planner–validator refinement loop that eliminates collisions and enforces
ergonomic layout without diffusion-based optimisation.

5. A real-time interactive UI that supports mixed text + direct manipulation editing while
preserving global consistency.

6. Comparisons against SOTA.

The remainder of the paper is organised as follows. Section 2 reviews related efforts in
text-conditioned indoor scene generation and embodied simulation. Section 3 details the SwiftHome
agentic pipeline. Section 4 reports quantitative and qualitative results, ablations, and interactive user
studies. We conclude with limitations and future directions in Section 5.

2 RELATED WORK

Research on text-driven indoor scene synthesis largely falls into three areas: symbolic floor-plan
generation, room-scale layout, and end-to-end pipelines.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: SwiftHome agentic workflow. A natural-language prompt is parsed by Gemma-2 into
a floor graph, per-floor room graph, object lists, and style tokens. Graph2Plan converts the room
graph into watertight 2-D polygons and extrudes multi-floor shells; missing furniture is filled by
a CLIP lookup or, when absent, a 1-step SANA image followed by TripoSR to obtain a watertight
mesh. Initial placement from the LayoutAgent is refined by a fast planner–validator–critic loop,
then fine-tuned with differentiable VLM loss. Key-view depth-conditioned SANA inpainting yields
coherent textures, and the finished scene streams to a WebGPU UI where users can edit via text or
direct manipulation in real time.

Symbolic floor-plan generation. Graph-conditioned decoders such as Graph2Plan (Hu et al.,
2020) produce watertight 2D layouts but typically need seconds per floor. Diffusion-based plan-
ners (e.g., DiffuScene (Tang et al., 2024)) improve diversity at the cost of many denoising steps.
Our system brings per-floor latency below 0.5 s by using a single Graph2Plan forward pass coupled
with instantaneous stair-core alignment.

Room-scale object placement. Autoregressive transformers (ATISS (Paschalidou et al., 2021))
and mixed-integer solvers can achieve precise arrangements, yet they are slow. LLM-centric plan-
ners—LayoutGPT (Feng et al., 2023), Holodeck (Yang et al., 2024b)—emit absolute coordinates
that still require numerical cleanup. We keep the LLM symbolic and pair it with a GPU BVH and a
differentiable optimizer to resolve penetrations, avoiding diffusion-style SDS refinement.

End-to-end pipelines. AnyHome (Fu et al., 2024) demonstrated open-vocabulary, house-scale
generation but relies on multi-view inpainting that typically takes ≥1–5 minutes. PhyScene (Yang
et al., 2024a) and DiffuScene (Tang et al., 2024) add physics or scene-graph guidance, again at
minute-scale cost. Text2Room (Höllein et al., 2023) lifts 2D diffusion outputs to 3D but is limited to
single rooms. By contrast, our system returns fully textured multi-storey outputs in ≲ 10 s per floor
while remaining training-free.

Simulation-oriented generators. ProcTHOR (Deitke et al., 2022), BEHAVIOR-1K (Beaudoin
et al., 2023), and RoboGen (Wang et al., 2023) emphasize scale for embodied AI, but offer lim-
ited style control and interactive latency. Our system bridges design and simulation by supporting
conversational edits at 60 fps and keeping collision rates below 3%.

In short, prior work tends to trade speed for expressiveness (or vice versa). By combining a fast
symbolic backbone with lightweight differentiable tuning, our system delivers training-free, open-
vocabulary, multi-floor generation under a strict ten-second budget per floor.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 SwiftHome — Agentic, Training-Free Text→3-D Pipeline
1: procedure SWIFTHOME(P) ▷ P: user prompt
2: ⟨GF , GR,O, T ⟩ ← PARSEAGENT(P) ▷ Gemma-2 → floor graph, room graph, objects,

style tokens
3: Π← G2P FLOORPLAN(GR) ▷ Graph2Plan forward pass (GCN decoder)
4: Mshell ← EXTRUDE(Π, GF) ▷ Multi-floor room shells
5: for all o ∈ O do
6: mesh← CLIP LOOKUP(o)
7: if mesh = ∅ then ▷ cache miss
8: img← SANA 1STEP(o.text)
9: mesh← TRIPOSR(img)

10: PLACEPLACEHOLDER(mesh, o.room)

11: Gscene ← INITIALLAYOUT(Mshell,O)
12: for k = 1 to Kmax do
13: E ← VALIDATORAGENT(Gscene)
14: if E = ∅ then
15: break ▷ no collisions / gaps done
16: ∆← PLANNERAGENT(E) ▷ Gemma-2 emit edit-script
17: Gscene ← APPLYEDITS(Gscene,∆)

18: Gscene ← DIFFOPT(Gscene, T)
19: for all c ∈ KEYVIEWS(Gscene) do
20: Ic ← SANA DEPTHINPAINT(c, T)
21: BAKEUV

(
Ic, Gscene

)
22: return COMPOSEMESH(Gscene) ▷ Fully textured, navigable 3-D house

3 PROPOSED APPROACH

Figure 1 presents the complete SwiftHome pipeline. The core principle is agentic generation: a
collection of specialised —yet training-free—agents exchange structured messages (graphs, asset
identifiers, edit-scripts) instead of pixels, allowing the whole system to transform a free-form prompt
into a textured, multi-floor 3-D house in <10 s/floor. Below we walk through each stage.

3.1 INPUT FORMULATION

PromptAgent captures user text (or speech) and forwards it verbatim to the ParseAgent. The
ParseAgent is a Gemma-2-8B LLM with a structured JSON template. In a single forward pass it
emits (i) a FloorGraph GF whose nodes are floors and whose edges are vertical connectors (stairs/el-
evators), (ii) a RoomGraph GR per floor, specifying room types, target areas and adjacency relations,
(iii) an ObjectList O that enumerates furniture/props per room together with semantic relations
(“on”, “next to”, “faces”), and (iv) a set of global StyleTokens (e.g. “minimalist”, “dark wood”).

3.2 GRAPH-DRIVEN FLOOR-PLAN SYNTHESIS

The GraphPlannerAgent converts each GR into a watertight 2-D polygon layout via Graph2Plan
(Hu et al., 2020). Graph2Plan’s GCN–MLP decoder guarantees non-overlapping rooms, valid doors
and short circulation paths. If |GF| > 1, floor-plans are stacked and stair shafts aligned automati-
cally.

3.3 ASSET RESOLUTION

The AssetAgent resolves every entry in O(1)

1. CLIP Lookup: hashed CLIP embeddings over a 500 k furniture library return a matching
mesh.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2. SANA→TripoSR Fallback: when no match exists, we invoke one-step SANA diffusion
(600M) to render a 512×512 image and pass it through TripoSR to obtain a watertight
mesh. The new asset is cached for future scenes.

3.4 INITIAL OBJECT PLACEMENT

LayoutAgent receives the shell meshes and asset list and produces an initial SceneGraph: Greedy
wall-aware bin-packing places large furniture (beds, cabinets) against free wall segments. Hungar-
ian matching pairs tables with chairs, monitors with desks, etc. A force-directed solver enforces the
semantic relations extracted by ParseAgent.

3.5 MULTI-AGENT LAYOUT REFINEMENT

A lightweight loop (typically two passes) refines the layout:

a) ValidatorAgent constructs a GPU BVH, flags any inter-object or object–wall collisions,
and checks ergonomic clearances.

b) CriticAgent renders three low-res viewpoints and evaluates CLIP content/style similarity;
low scores or missing objects are recorded.

c) PlannerAgent (Gemma-2) ingests the diff, emits an edit-script (translate, rotate, delete,
add). Edits are applied and the loop repeats until all issues are cleared (<3 % OOB rate).

3.6 DIFFERENTIABLE FINE-TUNE

Once the symbolic planner has eliminated gross errors, an OptimizerAgent performs 5−10 steps of
Adam on every object’s 6-DoF transform. Gradients are computed through a GPU BVH (collision)
and a differentiable OpenGL rasteriser (image-based terms). Our full objective is

L = λcol Lcol︸︷︷︸
penetration

+λclr Lclr︸︷︷︸
ergonomic clearance

+λclip Lclip︸︷︷︸
text–image

+λsty Lsty︸︷︷︸
appearance

+λori Lori︸︷︷︸
canonical orientation

,

where:

• Lcol — penetration loss. Signed distance between every OBB pair; positive values
(inter-penetration) are squared, otherwise zero.

• Lclr — clearance loss. Encourages a buffer of ≥ dmin cm in front of seats, between bed sides
and walls, etc. via hinge loss max(0, dmin − dij).

• Lclip — text–image alignment. CLIP cosine distance between the user prompt and three
256×256 renders; we use a frozen MobileCLIP for speed.

• Lsty — style consistency. Gram-matrix ℓ2 distance on VGG-11 relu3 1 activations between the
current render and a 1-step SANA reference image conditioned on global style tokens.

• Lori — orientation prior. Penalises yaw deviations from canonical facings (sofas toward
TV-wall, desks toward windows, toilets toward free space) via sin2θ.

3.7 FAST TEXTURE SYNTHESIS

The TextureAgent selects K=4 camera poses per room, renders depth, and feeds each view to
depth-conditioned 1-step SANA. Finished images are UV-baked onto meshes, yielding coherent,
high-fidelity materials.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.8 PROMPT ENGINEERING

Every agent call to Gemma-2 is preceded by an explicit JSON-only instruction set. Using strongly
typed prompts prevents hallucinated prose from leaking into downstream parsers and keeps infer-
ence deterministic. The three core prompts—floor-plan, furniture, and ornament—are shown below
for reproducibility (shorten prompts for the sake of papers length).

Listing 1: Floor-Plan prompt (Gemma-2)
SYSTEM: You are an elite architectural planner. Output MINIFIED JSON only.

USER ---------------------------------------
HOUSE DESCRIPTION ${PROMPT}

TASKS
T0 complete_room_list (free vocabulary)
T1 modified_room_list {kitchen, storage, , unknown}
T2 connection unordered pairs [A,B] T0
T3 front_door subset of T0

OUTPUT (no spaces)
{"complete_room_list":[],
"modified_room_list":[],
"connection":[[A,B],],
"front_door":[]}

Listing 2: Furniture prompt (Gemma-2)
SYSTEM: You are a concise 3D scene designer. JSON only.

USER --
ROOM = ${ROOM} AREA ${AREA} m
HOUSE STYLE = ${HOUSE}

TASKS
F0 furniture_list choose MANY from whitelist
F1 furniture_desc 12 words
F2 furniture_sizes [L,W,H] m
F3 groups_and_rules

first item per group is ANCHOR
ANCHOR rules: place_center | place_wall | place_corner |

place_next_wall | place_next(anchor,d)
OTHER rules: place_front(d) | place_beside(d) | place_around(d)

OUTPUT
{"furniture_list":[],
"furniture_desc":{name:sent,},
"furniture_sizes":{name:[L,W,H],},
"groups_and_rules":[[[anchor,rule],],]}

Listing 3: Ornament prompt (Gemma-2)
SYSTEM: You are a creative ornament stylist. JSON only.

USER ---
ROOM = ${ROOM} AREA ${AREA} m
EXISTING FURNITURE = ${FURNITURE_LIST}

TASKS
O0 ornament_list anything NOT in furniture whitelist
O1 ornament_desc 14 words
O2 ornament_sizes [L,W,H] m
O3 ornament_placements

place_center | place_wall | place_corner | place_next_wall |
place_front(d,anchor) | place_beside(d,anchor) |
place_around(d,anchor) | place_top(d,anchor) | place_on_wall(h)

OUTPUT
{"ornament_list":[],
"ornament_desc":{name:sent,},
"ornament_sizes":{name:[L,W,H],},
"ornament_placements":{name:rule,}}
--

The following prompt is used in evaluation and is run on GPT4o.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.9 INTERACTIVE EDITING INTERFACE

InteractionAgent streams the textured scene to a WebGPU viewer at 60fps. Users may: drag
objects (auto-validated on release), re-run SANA on selected surfaces, or append new text prompts.

All edits are routed back through Planner→Validator→Optimizer, updating the scene in under 4s.

Listing 4: Evaluation Rubric Prompt
SYSTEM: You are an expert architect strictly evaluating geometric and spatial plausibility of

automatically generated, unlabeled floorplans. JSON only.

USER --
Evaluate strictly based on clearly measurable geometry, connectivity, and practicality for

furniture placement and robotic navigation. Do NOT guess specific room functions.

Evaluation Criteria (integers 010 only):
1. Prompt Alignment (Strictly Geometric):
Number of enclosed spaces closely matches or logically aligns with described floorplan.
Relative sizes and spatial distribution realistically match hierarchy implied by user’s

description.
Basic adjacencies support plausible interpretations aligned with user’s stated intent.

2. Layout Plausibility (Structural Realism):
Rooms clearly enclosed with no gaps or floating walls.
Doorways clearly defined, logically placed, structurally realistic (no impossible doors).
Structural coherence maintained throughout entire layout.

3. Practicality for Furniture/Object Placement:
Clear space for furniture placement (one sufficiently long uninterrupted wall per room).
Realistic room shapes/proportions for typical furnishings/appliances.
No severe spatial constraints hindering furnishing.

OUTPUT
{"prompt_alignment":<int>,
"plausibility":<int>,
"practicality":<int>}
--

4 RESULTS

4.1 QUALITATIVE EVALUATION

Figure 3 illustrates the full agentic loop in action. The pipeline responds within 10 sec after each in-
struction, updating room geometry, object placement, and textures while maintaining zero collisions
and stylistic coherence.

4.2 QUANTITATIVE COMPARISON

We benchmark against AnyHome using a similar evaluation procedure customized for floorplans.
Fu et al. (2024). The AnyHome codebase is incomplete with only floorplan generation currently
available so we cannot compare on furniture and object placement or texture generation. Each
floorplan is scored by a GPT-4o model which takes the text prompt and a bird’s eye view of the
output floorplan renders in RGB format. We evaluate across 10 different layout configurations with
multiple prompts for each layout.

While our approach allows for additional customization and control, we set floorplan dimensions at
a default 100 meters by 100 meters for fair comparison. Homes vary significantly and it is likely that
this default hinders our quantitative performance for certain prompts (e.g. ”1B1B frugal tiny home
with no livingroom and tiny kitchenette”).

AnyHome does not clearly delineate between different rooms in their generated floorplans and lay-
out maps, so we include instructions for our VLM to account for unlabeled floorplans. Prompt
corresponds to alignment to the text prompt and is the most important of the three metrics, checking
that the number of rooms and relative sizes and spatial distrubution realistically match the input
prompt. For more details, see Listing 4 for our full prompt and rubric. Layout accounts for layout
plausibility and penalizes missing walls, unrealistic doors, and overall structural realism for the lay-
out. Lastly, practicality refers to plausible future furniture placement. We outperform on all metrics

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Iterative floor-plan editing with SwiftHome. A single composite image (left→right,
top→bottom) shows six iterative stages: initial parse. Real-time updates make the system suitable
for interactive design sessions, with floorplans and texture.

Figure 3: Furniture editing with SwiftHome. Agentic AI based editing for furniture placement

including the overall score aside from practicality which is the VLM’s best guess on which generated
floorplan would be easier to place objects in the future.

Our approach performs better on nearly all metrics and is significantly faster. SwiftHome takes an
average of 4.2 seconds to generate layouts while AnyHome takes 27.2 seconds across the chosen
prompts. Our chosen prompts for the most part have 3 or fewer bedrooms. As room quantity and
prompt complexity grows, AnyHome’s performance declines significantly. For standard 4 bedroom
prompts and complex 3 bedroom promps, layout generation can take over 100 seconds. SwiftHome
consistently generates complex layouts under 10 seconds and is several orders of magnitude faster
for mansions or highly complex prompts. Additionally, SwiftHome is capable of multifloor genera-
tion while Anyhome is not.

Method Prompt Layout Practicality Overall

AnyHome (Fu et al., 2024) 4.6 6.1 5.4 5.3
SwiftHome (ours) 5.4 6.9 5.2 5.8

Table 1: Pure layout generation (no furniture or object placement). SwiftHome outperforms Any-
home across all axes

SwiftHome’s largest gains appear in the Layout and Object categories, reflecting the efficacy of the
planner–validator loop and Graph2Plan floor-plan synthesis. Texture scores also rise despite our
sub-second SANA pass, confirming that fast inpainting does not compromise appearance quality.

Layout Generation. SwiftHome’s largest gains appear in the Layout and Object categories. We
utilize GPT 4o

Figure 4 highlights SwiftHome’s ability to scale the same prompt template across footprints and floor
counts while preserving functional intent. For each house the planner emits terse, human-readable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method No Train No Human Interactive Org. Small Obj. Open Vocab Multi-Floor

Behavior-1K Beaudoin et al. (2023) ✓ ✓
ProcTHOR Deitke et al. (2022) ✓ ✓ ✓ ✓ ✓
Holodeck Yang et al. (2024b) ✓ ✓ ✓ ✓
AnyHome Fu et al. (2024) ✓ ✓ ✓ ✓ ✓
RoboGen Wang et al. (2023) ✓ ✓ ✓ ✓ ✓
PhyScene Yang et al. (2024a) ✓ ✓ ✓
DiffuScene Tang et al. (2024) ✓
LayoutGPT Feng et al. (2023) ✓ ✓
Text2Room Höllein et al. (2023) ✓ ✓
ARCHITECT Wang et al. (2024) ✓ ✓ ✓ ✓ ✓

SwiftHome (ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Qualitative feature comparison across large-scale 3-D scene generators. “No Train” de-
notes inference without per-scene retraining; “No Human” means the system generates a full scene
automatically from text. Table referred from (Wang et al., 2024).

Figure 4: Fast multi-floor synthesis. Three prompts (columns) are expanded into three-storey shells
together with the 1-sentence blurbs automatically produced by Gemma-2.

blurbs that anchor subsequent editing (“swap Floor 3 with a roof deck”). Despite zero per-scene
training, the produced shells exhibit correct stair alignment, sensible wall continuity, and realistic
room proportions, validating the effectiveness of our graph-driven synthesis in a strict sub-10-second
budget.

5 CONCLUSION

SwiftHome shows that a purely agent-driven pipeline can turn an open-ended prompt into a fin-
ished, multi-floor house in ≤10ås per floor— no heavy diffusion loops, no scene-specific train-
ing. Gemma-2 parses text into clean graphs; Graph2Plan snaps rooms and stair shafts into water-
tight shells; a planner–validator loop wipes out collisions and ergonomic errors in two passes; and
one-step SANA (or even no diffusion at all) finishes the look. Speed: design-ready geometry and
texture in the time it takes other pipelines —about 60 s per floor on a single GPU. Accuracy: <3%
OOB rate, high CLIP alignment, and stair cases that always land where they should. Flexibility:
open-vocabulary assets, unlimited floors, instant drag-and-text edits, zero retraining. Fast, robust,
and delightfully editable—SwiftHome moves text-to-3D from “cool demo” to a practical everyday
tool for architects, game studios, and embodied-AI researchers.

AUTHOR CONTRIBUTIONS

If you’d like to, you may include a section for author contributions as is done in many journals. This
is optional and at the discretion of the authors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

Eric Beaudoin, Zhengyi Luo, Kiana Ehsani, Luca Weihs, Aniruddha Kembhavi, Roozbeh Mottaghi,
et al. Behavior-1k: A benchmark for household activities of daily living in virtual, interactive
3d environments. In Proceedings of the 6th Conference on Robot Learning, volume 205 of Pro-
ceedings of Machine Learning Research. PMLR, 2023. URL https://proceedings.mlr.
press/v205/li23a.html.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
ai using procedural generation. In Adv. Neural Inf. Process. Syst., 2022.

Wenhan Feng, Wenqing Zhu, Tai-Jen Fu, Varun Jampani, Arjun Akula, Xiaodong He, Samyadeep
Basu, Xiongye Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and
generation with large language models. In Adv. Neural Inf. Process. Syst., 2023.

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Anyhome: Open-vocabulary generation of
structured and textured 3d homes. In Proc. Eur. Conf. Comput. Vis., pp. 52–70, 2024. Also at
arXiv:2312.06644.

Gemma Team, Google DeepMind. Gemma: Open models based on gemini research and technology.
https://ai.google.dev/gemma/technical-report, 2024.

Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room: Ex-
tracting textured 3d meshes from 2d text-to-image models. In Proc. IEEE/CVF Int. Conf. Comput.
Vis., pp. 7909–7920, October 2023.

Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui Huang. Graph2plan:
Learning floorplan generation from layout graphs. ACM Trans. Graph., 39(4):118:1–118:13,
2020. doi: 10.1145/3386569.3392391.

Despoina Paschalidou, Ajay K. Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja
Fidler. Atiss: Autoregressive transformers for indoor scene synthesis. In Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021.

Stefan Stier, Daniel Han, Nils Thuerey, Jan Eric Lenssen, Vladislav Golyanik, and Christian
Theobalt. Triposr: Fast 3d reconstruction from a single image via sparse neural priors. arXiv
preprint arXiv:2303.16084, 2023.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
fuscene: Denoising diffusion models for generative indoor scene synthesis. In Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2024.

Y. Wang, T. Qiu, T. Zhang, Z. Chen, J. Ge, Q. Long, S. Baek, C. Fu, R. Cheng, D. Held, R. Wal-
ters, D. Fox, et al. RoboGen: Towards unleashing infinite data for automated robot learning via
generative simulation. arXiv preprint arXiv:2311.01455, 2023.

Yian Wang, Xiaowen Qiu, Jiageng Liu, Zhehuan Chen, Jiting Cai, Tsun-Hsuan Wang, Yufei Wang,
Zhou Xian, and Chuang Gan. Architect: Generating vivid and interactive 3d scenes with hierar-
chical 2d inpainting. In Adv. Neural Inf. Process. Syst., 2024.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution text-to-image synthesis
with linear diffusion transformers. In Int. Conf. Learn. Represent., 2025.

Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang. Physcene: Physics-aware indoor
scene generation. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024a.

10

https://proceedings.mlr.press/v205/li23a.html
https://proceedings.mlr.press/v205/li23a.html
https://ai.google.dev/gemma/technical-report

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar, Aniruddha Kembhavi,
and Christopher Clark. Holodeck: Language guided generation of 3d embodied ai environments.
In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 16227–16237, 2024b.

A APPENDIX

You may include other additional sections here.

11

	Introduction
	Related Work
	Proposed Approach
	Input Formulation
	Graph-Driven Floor-Plan Synthesis
	Asset Resolution
	Initial Object Placement
	Multi-Agent Layout Refinement
	Differentiable Fine‑Tune
	Fast Texture Synthesis
	Prompt Engineering
	Interactive Editing Interface

	Results
	Qualitative Evaluation
	Quantitative Comparison

	Conclusion
	Appendix

