

000 SWIFTHOME: FAST REAL-TIME MULTI-FLOOR 3D 001 002 HOUSE GENERATION FROM TEXT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 We introduce SwiftHome, the first system that transforms free-form natural-
011 language descriptions into fully textured, navigable multi-floor 3-D houses in un-
012 der ten seconds per floor. Starting from a large-language-model (LLM) parse of
013 the input text, SwiftHome assembles a hierarchical scene graph, lays out rooms
014 across multiple stories, retrieves or generates furniture meshes, and applies style-
015 consistent materials—all in a single forward pass. A lightweight multi-agent
016 feedback loop couples an LLM “planner” with a rule-based “validator,” elim-
017 inating object collisions and enforcing ergonomic spacing without resorting to
018 time-consuming diffusion optimization. Key viewpoints are then textured via
019 a depth-conditioned inpainting module, yielding coherent, high-fidelity appear-
020 ances while preserving real-time performance. SwiftHome achieves near-zero
021 out-of-bounds object placement, high text-scene alignment (30.5 CLIP-score),
022 and state-consistent textures, outperforming previous pipelines by two orders of
023 magnitude in speed. An interactive interface lets users iteratively refine layouts by
024 mixing text edits with direct object manipulation, making SwiftHome a practical
025 tool for game design, VR/AR prototyping, and rapid architectural visualization.

026 027 1 INTRODUCTION 028

029 Imagine describing the place you want to walk through a simple text prompt “a split-level loft
030 with a sunken living room, plants everywhere, a reading nook above the kitchen” and seeing a
031 navigable, fully furnished 3-D environment appear in seconds. This is the experience we pursue with
032 *SwiftHome*: an agentic, training-free pipeline that turns free-form natural language into complete,
033 multi-floor, textured interior spaces fast enough for live design sessions, prototyping, or embodied
034 AI simulation.

035
036 **Why now?** Two trends are converging. First, we have unprecedented access to large repositories
037 of structured 3-D assets, scanned environments, and procedural datasets for embodied interaction
038 (e.g., BEHAVIOR-1K, ProcTHOR) that highlight the diversity and density of real indoor spaces and
039 the need for scalable generation tools (Beaudoin et al., 2023; Deitke et al., 2022). Second, large lan-
040 guage models (LLMs) and multimodal vision-language systems have become remarkably capable at
041 parsing open-vocabulary descriptions, reasoning about spatial relations, and producing tool-callable
042 structured outputs that downstream systems can execute (Feng et al., 2023; Höllerin et al., 2023).
043 Bridging these advances promises a step change: instead of curating massive hand-authored level
044 libraries, we can *author on demand* with text.

045
046 **Progress so far.** Existing systems each advance part of this vision. Large interactive sim-
047 ulation suites such as BEHAVIOR-1K and ProcTHOR focus on scale, task coverage, and embodied
048 interaction, and both include programmatic scene construction pipelines that relieve some human
049 modeling burden (Beaudoin et al., 2023; Deitke et al., 2022). Language-driven environment gen-
050 eration has emerged more recently. Holodeck shows that natural-language instructions can boot-
051 strap multi-room environments for embodied agents and supports iterative improvements through an
052 LLM-in-the-loop reviewer (Höllerin et al., 2023). AnyHome demonstrated that open-vocabulary text
053 can be converted into amodal structured house representations and then textured into visually rich,
editible scenes; this was a major step toward controllable, house-scale generation from free-form
descriptions (Fu et al., 2024). RoboGen targets robot simulation: it programmatically assembles

054 functionally annotated indoor scenes so agents can practice manipulation and navigation without
 055 heavy manual setup (Wang et al., 2023). Finally, Text2Room leverages powerful text-to-image dif-
 056 fusion models to hallucinate geometry and texture for single rooms, back-projecting imagery into
 057 mesh representations for downstream use (Höllein et al., 2023).

059 **What’s still missing?** Despite rapid progress, several gaps remain before text-to-environment
 060 tools feel “instant” and “design-ready”: (i) **Latency.** Many pipelines require multi-minute diffusion
 061 refinement, mesh fusion, or NeRF training; rapid ideation workflows need sub-10-second turnaround
 062 (Höllein et al., 2023; Fu et al., 2024). (ii) **Multi-floor structure.** Most methods produce a single
 063 room or flat apartment; stair logic, vertical adjacencies, and cross-floor constraints are rarely han-
 064 dled automatically. (iii) **Open-vocabulary assets.** Even when prompts are open-ended, generation
 065 often collapses to a small, pre-trained taxonomy; missing or rare objects require manual modeling
 066 (Feng et al., 2023; Höllein et al., 2023). (iv) **Physical validity at scale.** Dense object layouts lead
 067 to interpenetrations, blocked paths, or non-functional spaces unless aggressively constrained (Yang
 068 et al., 2024a; Tang et al., 2024). (v) **Interactive iteration.** True design work is iterative: users add,
 069 remove, restyle, and rearrange. Only a few systems expose fine-grained, human-in-the-loop editing
 070 that remains consistent across regeneration steps (Höllein et al., 2023; Fu et al., 2024).

071 **Our approach.** *SwiftHome* addresses these gaps by combining structured LLM parsing,
 072 graph-driven architectural synthesis, rapid asset resolution, and a lightweight multi-agent feedback
 073 loop—all designed for speed and editability. We ask a compact instruction-tuned Gemma-2 model
 074 (Gemma Team, Google DeepMind, 2024) to parse free-form text into a floor graph, per-floor room
 075 graphs, object lists, and global style cues. Room graphs are handed to a Graph2Plan module (Hu
 076 et al., 2020) that predicts watertight floor-plan polygons; multi-floor stacking automatically inserts
 077 and aligns stair shafts. Objects are resolved from large 3-D libraries via CLIP retrieval; missing
 078 categories are synthesized on the fly using one-step SANA diffusion (Xie et al., 2025) followed by
 079 fast TripoSR single-image reconstruction (Stier et al., 2023), keeping the pipeline library-agnostic
 080 and training-free. Initial placement uses wall-aware bin-packing and relation-aware force solving;
 081 a planner–validator loop (Gemma-2 planner, geometric + VLM critic) applies edit scripts that elin-
 082 inate collisions, enforce ergonomic spacing, and ensure all described items are present. Finally,
 083 depth-conditioned one-step SANA inpainting produces style-consistent textures in under a second.

084 **Contributions.** We make the following contributions:

- 086 1. A **training-free, agentic text→3-D system** that generates fully textured, navigable
 087 *multi-floor* homes from natural language in under ten seconds.
- 088 2. Integration of **LLM parsing + Graph2Plan** for fast, watertight architectural shells that
 089 respect adjacency constraints across floors.
- 090 3. A **zero-shot asset resolver** that backs up library retrieval with **SANA→TripoSR** synthesis
 091 for missing or rare objects.
- 092 4. A lightweight **planner–validator refinement loop** that eliminates collisions and enforces
 093 ergonomic layout without diffusion-based optimisation.
- 094 5. A **real-time interactive UI** that supports mixed text + direct manipulation editing while
 095 preserving global consistency.
- 096 6. Comparisons against SOTA.

099 The remainder of the paper is organised as follows. Section 2 reviews related efforts in
 100 text-conditioned indoor scene generation and embodied simulation. Section 3 details the SwiftHome
 101 agentic pipeline. Section 4 reports quantitative and qualitative results, ablations, and interactive user
 102 studies. We conclude with limitations and future directions in Section 5.

104 2 RELATED WORK

106 Research on text-driven indoor scene synthesis largely falls into three areas: *symbolic floor-plan*
 107 *generation*, *room-scale layout*, and *end-to-end pipelines*.

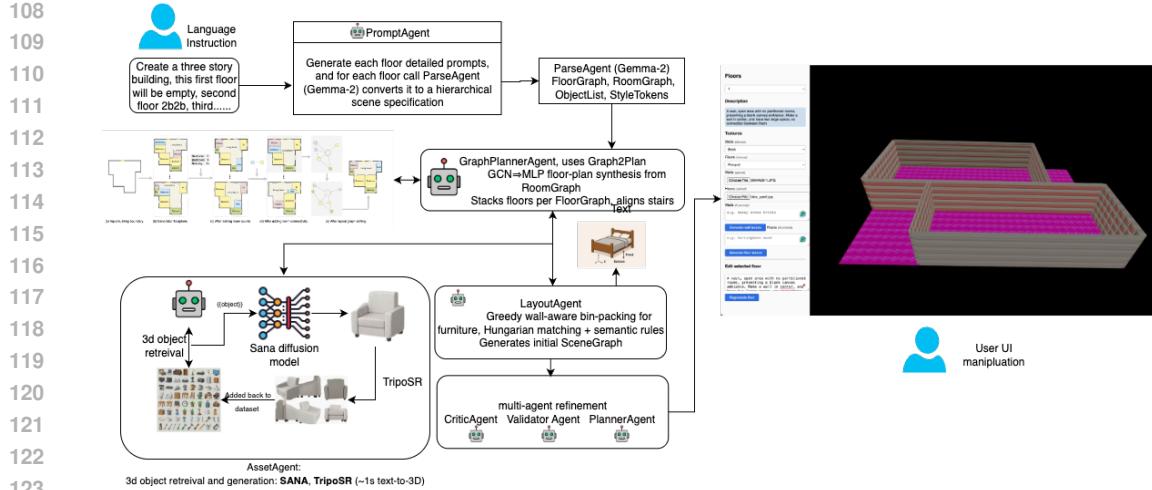


Figure 1: **SwiftHome agentic workflow.** A natural-language prompt is parsed by *Gemma-2* into a floor graph, per-floor room graph, object lists, and style tokens. *Graph2Plan* converts the room graph into watertight 2-D polygons and extrudes multi-floor shells; missing furniture is filled by a CLIP lookup or, when absent, a 1-step *SANA* image followed by *TripoSR* to obtain a watertight mesh. Initial placement from the *LayoutAgent* is refined by a fast planner–validator–critic loop, then fine-tuned with differentiable VLM loss. Key-view depth-conditioned *SANA* inpainting yields coherent textures, and the finished scene streams to a WebGPU UI where users can edit via text or direct manipulation in real time.

Symbolic floor-plan generation. Graph-conditioned decoders such as *Graph2Plan* (Hu et al., 2020) produce watertight 2D layouts but typically need seconds per floor. Diffusion-based planners (e.g., *DiffuScene* (Tang et al., 2024)) improve diversity at the cost of many denoising steps. Our system brings per-floor latency below 0.5 s by using a single *Graph2Plan* forward pass coupled with instantaneous stair-core alignment.

Room-scale object placement. Autoregressive transformers (ATISS (Paschalidou et al., 2021)) and mixed-integer solvers can achieve precise arrangements, yet they are slow. LLM-centric planners—*LayoutGPT* (Feng et al., 2023), *Holodeck* (Yang et al., 2024b)—emit absolute coordinates that still require numerical cleanup. We keep the LLM symbolic and pair it with a GPU BVH and a differentiable optimizer to resolve penetrations, avoiding diffusion-style SDS refinement.

End-to-end pipelines. AnyHome (Fu et al., 2024) demonstrated open-vocabulary, house-scale generation but relies on multi-view inpainting that typically takes $\geq 1\text{--}5$ minutes. PhyScene (Yang et al., 2024a) and *DiffuScene* (Tang et al., 2024) add physics or scene-graph guidance, again at minute-scale cost. Text2Room (Höllein et al., 2023) lifts 2D diffusion outputs to 3D but is limited to single rooms. By contrast, our system returns fully textured *multi-storey* outputs in $\lesssim 10$ s per floor while remaining training-free.

Simulation-oriented generators. ProcTHOR (Deitke et al., 2022), BEHAVIOR-1K (Beaudoin et al., 2023), and RoboGen (Wang et al., 2023) emphasize scale for embodied AI, but offer limited style control and interactive latency. Our system bridges design and simulation by supporting conversational edits at 60 fps and keeping collision rates below 3%.

In short, prior work tends to trade speed for expressiveness (or vice versa). By combining a fast symbolic backbone with lightweight differentiable tuning, our system delivers *training-free, open-vocabulary, multi-floor* generation under a strict ten-second budget per floor.

162 **Algorithm 1** *SwiftHome* — Agentic, Training-Free Text→3-D Pipeline

163 1: **procedure** SWIFTHOME(\mathcal{P}) ▷ \mathcal{P} : user prompt
164 2: $\langle G_F, G_R, \mathcal{O}, \mathcal{T} \rangle \leftarrow \text{PARSEAGENT}(\mathcal{P})$ ▷ Gemma-2 → floor graph, room graph, objects,
165 style tokens
166 3: $\Pi \leftarrow \text{G2P_FLOORPLAN}(G_R)$ ▷ Graph2Plan forward pass (GCN decoder)
167 4: $\mathcal{M}_{\text{shell}} \leftarrow \text{EXTRUDE}(\Pi, G_F)$ ▷ Multi-floor room shells
168 5: **for all** $o \in \mathcal{O}$ **do**
169 6: $\text{mesh} \leftarrow \text{CLIP_LOOKUP}(o)$ ▷ cache miss
170 7: **if** $\text{mesh} = \emptyset$ **then**
171 8: $\text{img} \leftarrow \text{SANA_1STEP}(o.\text{text})$
172 9: $\text{mesh} \leftarrow \text{TRIPOSR}(\text{img})$
173 10: $\text{PLACEPLACEHOLDER}(\text{mesh}, o.\text{room})$
174 11: $\mathcal{G}_{\text{scene}} \leftarrow \text{INITIALAYOUT}(\mathcal{M}_{\text{shell}}, \mathcal{O})$
175 12: **for** $k = 1$ **to** K_{max} **do**
176 13: $\mathcal{E} \leftarrow \text{VALIDATORAGENT}(\mathcal{G}_{\text{scene}})$
177 14: **if** $\mathcal{E} = \emptyset$ **then**
178 15: **break** ▷ no collisions / gaps done
179 16: $\Delta \leftarrow \text{PLANNERAGENT}(\mathcal{E})$ ▷ Gemma-2 emit edit-script
180 17: $\mathcal{G}_{\text{scene}} \leftarrow \text{APPLYEDITS}(\mathcal{G}_{\text{scene}}, \Delta)$
181 18: $\mathcal{G}_{\text{scene}} \leftarrow \text{DIFFOPT}(\mathcal{G}_{\text{scene}}, \mathcal{T})$
182 19: **for all** $c \in \text{KEYVIEWS}(\mathcal{G}_{\text{scene}})$ **do**
183 20: $\mathbf{I}_c \leftarrow \text{SANA_DEPTHINPAINT}(c, \mathcal{T})$
184 21: $\text{BAKEUV}(\mathbf{I}_c, \mathcal{G}_{\text{scene}})$
185 22: **return** $\text{COMPOSEMESH}(\mathcal{G}_{\text{scene}})$ ▷ Fully textured, navigable 3-D house

186
187 3 PROPOSED APPROACH
188

190 Figure 1 presents the complete *SwiftHome* pipeline. The core principle is **agentic generation**: a
191 collection of specialised—yet *training-free*—agents exchange structured messages (graphs, asset
192 identifiers, edit-scripts) instead of pixels, allowing the whole system to transform a free-form prompt
193 into a textured, multi-floor 3-D house in <10 s/floor. Below we walk through each stage.

194
195 3.1 INPUT FORMULATION
196

197 **PromptAgent** captures user text (or speech) and forwards it verbatim to the **ParseAgent**. The
198 **ParseAgent** is a *Gemma-2-8B* LLM with a structured JSON template. In a single forward pass it
199 emits (i) a *FloorGraph* G_F whose nodes are floors and whose edges are vertical connectors (stairs/el-
200 elevators), (ii) a *RoomGraph* G_R per floor, specifying room types, target areas and adjacency relations,
201 (iii) an *ObjectList* \mathcal{O} that enumerates furniture/props per room together with semantic relations
202 (“on”, “next to”, “faces”), and (iv) a set of global *StyleTokens* (e.g. “minimalist”, “dark wood”).

203
204 3.2 GRAPH-DRIVEN FLOOR-PLAN SYNTHESIS
205

206 The **GraphPlannerAgent** converts each G_R into a watertight 2-D polygon layout via **Graph2Plan**
207 (Hu et al., 2020). Graph2Plan’s GCN-MLP decoder guarantees non-overlapping rooms, valid doors
208 and short circulation paths. If $|G_F| > 1$, floor-plans are stacked and stair shafts aligned automatically.

210
211 3.3 ASSET RESOLUTION
212

213 The **AssetAgent** resolves every entry in $\mathcal{O}(1)$

214 1. **CLIP Lookup:** hashed CLIP embeddings over a 500 k furniture library return a matching
215 mesh.

216 2. **SANA → TripoSR Fallback:** when no match exists, we invoke one-step SANA diffusion
 217 (600M) to render a 512×512 image and pass it through TripoSR to obtain a watertight
 218 mesh. The new asset is cached for future scenes.
 219

220 3.4 INITIAL OBJECT PLACEMENT
 221

222 **LayoutAgent** receives the shell meshes and asset list and produces an initial *SceneGraph*: *Greedy*
 223 *wall-aware bin-packing* places large furniture (beds, cabinets) against free wall segments. *Hungarian*
 224 *matching* pairs tables with chairs, monitors with desks, etc. A *force-directed solver* enforces the
 225 semantic relations extracted by **ParseAgent**.
 226

227 3.5 MULTI-AGENT LAYOUT REFINEMENT
 228

229 A lightweight loop (typically two passes) refines the layout:
 230

231 a) **ValidatorAgent** constructs a GPU BVH, flags any inter-object or object–wall collisions,
 232 and checks ergonomic clearances.
 233 b) **CriticAgent** renders three low-res viewpoints and evaluates CLIP content/style similarity;
 234 low scores or missing objects are recorded.
 235 c) **PlannerAgent** (Gemma-2) ingests the diff, emits an edit-script (translate, rotate, delete,
 236 add). Edits are applied and the loop repeats until all issues are cleared (<3 % OOB rate).
 237

239 3.6 DIFFERENTIABLE FINE-TUNE
 240

241 Once the symbolic planner has eliminated gross errors, an **OptimizerAgent** performs 5–10 steps of
 242 Adam on every object’s 6-DoF transform. Gradients are computed through a GPU BVH (collision)
 243 and a differentiable OpenGL rasteriser (image-based terms). Our full objective is
 244

245
$$\mathcal{L} = \lambda_{\text{col}} \underbrace{\mathcal{L}_{\text{col}}}_{\text{penetration}} + \lambda_{\text{clr}} \underbrace{\mathcal{L}_{\text{clr}}}_{\text{ergonomic clearance}} + \lambda_{\text{clip}} \underbrace{\mathcal{L}_{\text{clip}}}_{\text{text-image}}$$

 246
 247
$$+ \lambda_{\text{sty}} \underbrace{\mathcal{L}_{\text{sty}}}_{\text{appearance}} + \lambda_{\text{ori}} \underbrace{\mathcal{L}_{\text{ori}}}_{\text{canonical orientation}},$$

 248

249 where:

- 250 • \mathcal{L}_{col} — *penetration loss*. Signed distance between every OBB pair; positive values
 251 (inter-penetration) are squared, otherwise zero.
- 252 • \mathcal{L}_{clr} — *clearance loss*. Encourages a buffer of $\geq d_{\min}$ cm in front of seats, between bed sides
 253 and walls, etc. via hinge loss $\max(0, d_{\min} - d_{ij})$.
- 254 • $\mathcal{L}_{\text{clip}}$ — *text–image alignment*. CLIP cosine distance between the user prompt and three
 255 256×256 renders; we use a frozen *MobileCLIP* for speed.
- 256 • \mathcal{L}_{sty} — *style consistency*. Gram-matrix ℓ_2 distance on *VGG-11* $\text{relu}_{3,1}$ activations between the
 257 current render and a 1-step SANA reference image conditioned on global style tokens.
- 258 • \mathcal{L}_{ori} — *orientation prior*. Penalises yaw deviations from canonical facings (sofas toward
 259 TV-wall, desks toward windows, toilets toward free space) via $\sin^2 \theta$.

260 3.7 FAST TEXTURE SYNTHESIS
 261

262 The **TextureAgent** selects $K=4$ camera poses per room, renders depth, and feeds each view to
 263 depth-conditioned *1-step SANA*. Finished images are UV-baked onto meshes, yielding coherent,
 264 high-fidelity materials.
 265

324 3.9 INTERACTIVE EDITING INTERFACE
325326 **InteractionAgent** streams the textured scene to a WebGPU viewer at 60fps. Users may: **drag**
327 objects (auto-validated on release), re-run **SANA** on selected surfaces, or append new **text prompts**.
328329 All edits are routed back through *Planner* → *Validator* → *Optimizer*, updating the scene in under 4s.
330331 **Listing 4: Evaluation Rubric Prompt**
332

```

SYSTEM: You are an expert architect strictly evaluating geometric and spatial plausibility of
automatically generated, unlabeled floorplans. JSON only.

USER -----
Evaluate strictly based on clearly measurable geometry, connectivity, and practicality for
furniture placement and robotic navigation. Do NOT guess specific room functions.

Evaluation Criteria (integers 010 only):
1. Prompt Alignment (Strictly Geometric):
Number of enclosed spaces closely matches or logically aligns with described floorplan.
Relative sizes and spatial distribution realistically match hierarchy implied by user's
description.
Basic adjacencies support plausible interpretations aligned with user's stated intent.

2. Layout Plausibility (Structural Realism):
Rooms clearly enclosed with no gaps or floating walls.
Doorways clearly defined, logically placed, structurally realistic (no impossible doors).
Structural coherence maintained throughout entire layout.

3. Practicality for Furniture/Object Placement:
Clear space for furniture placement ( one sufficiently long uninterrupted wall per room).
Realistic room shapes/proportions for typical furnishings/appliances.
No severe spatial constraints hindering furnishing.

OUTPUT
{"prompt_alignment":<int>,
 "plausibility":<int>,
 "practicality":<int>}
-----
```

351

352

4 RESULTS

354

355

4.1 QUALITATIVE EVALUATION

356

357

Figure 3 illustrates the full agentic loop in action. The pipeline responds within 10 sec after each in-
358 struction, updating room geometry, object placement, and textures while maintaining zero collisions
359 and stylistic coherence.

360

361

4.2 QUANTITATIVE COMPARISON

362

363

We benchmark against AnyHome using a similar evaluation procedure customized for floorplans.
364 Fu et al. (2024). The AnyHome codebase is incomplete with only floorplan generation currently
365 available so we cannot compare on furniture and object placement or texture generation. Each
366 floorplan is scored by a *GPT-4o* model which takes the text prompt and a bird's eye view of the
367 output floorplan renders in RGB format. We evaluate across 10 different layout configurations with
368 multiple prompts for each layout.

369

370

While our approach allows for additional customization and control, we set floorplan dimensions at
371 a default 100 meters by 100 meters for fair comparison. Homes vary significantly and it is likely that
372 this default hinders our quantitative performance for certain prompts (e.g. "1B1B frugal tiny home
373 with no livingroom and tiny kitchenette").

374

375

376

377

AnyHome does not clearly delineate between different rooms in their generated floorplans and lay-
378 out maps, so we include instructions for our VLM to account for unlabeled floorplans. Prompt
379 corresponds to alignment to the text prompt and is the most important of the three metrics, checking
380 that the number of rooms and relative sizes and spatial distribution realistically match the input
381 prompt. For more details, see Listing 4 for our full prompt and rubric. Layout accounts for layout
382 plausibility and penalizes missing walls, unrealistic doors, and overall structural realism for the lay-
383 out. Lastly, practicality refers to plausible future furniture placement. We outperform on all metrics

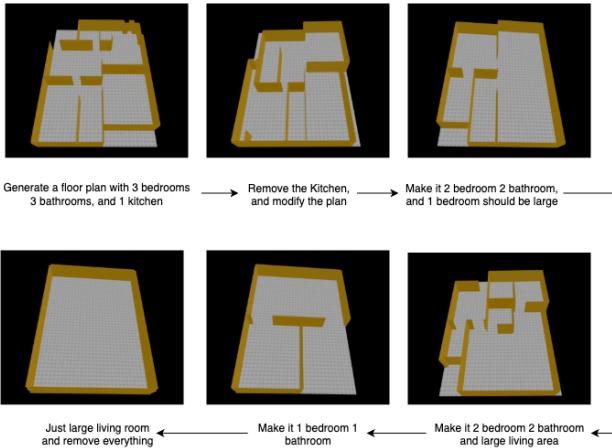


Figure 2: **Iterative floor-plan editing with *SwiftHome*.** A single composite image (left→right, top→bottom) shows six iterative stages: initial parse. Real-time updates make the system suitable for interactive design sessions, with floorplans and texture.

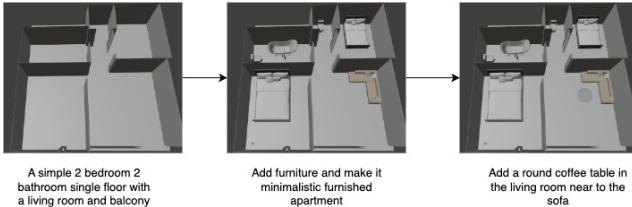


Figure 3: **Furniture editing with *SwiftHome*.** Agentic AI based editing for furniture placement

including the overall score aside from practicality which is the VLM’s best guess on which generated floorplan would be easier to place objects in the future.

Our approach performs better on nearly all metrics and is significantly faster. SwiftHome takes an average of 4.2 seconds to generate layouts while AnyHome takes 27.2 seconds across the chosen prompts. Our chosen prompts for the most part have 3 or fewer bedrooms. As room quantity and prompt complexity grows, AnyHome’s performance declines significantly. For standard 4 bedroom prompts and complex 3 bedroom prompts, layout generation can take over 100 seconds. SwiftHome consistently generates complex layouts under 10 seconds and is several orders of magnitude faster for mansions or highly complex prompts. Additionally, SwiftHome is capable of multifloor generation while Anyhome is not.

Method	Prompt	Layout	Practicality	Overall
AnyHome (Fu et al., 2024)	4.6	6.1	5.4	5.3
SwiftHome (ours)	5.4	6.9	5.2	5.8

Table 1: Pure layout generation (no furniture or object placement). SwiftHome outperforms Anyhome across all axes

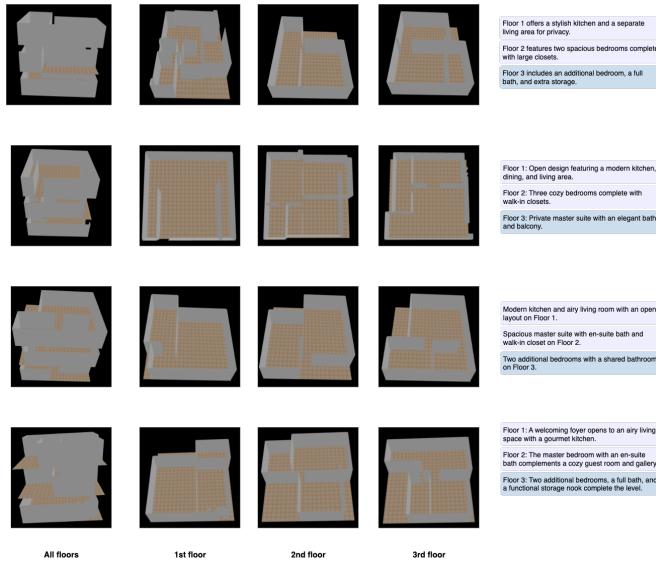
SwiftHome’s largest gains appear in the *Layout* and *Object* categories, reflecting the efficacy of the planner–validator loop and Graph2Plan floor-plan synthesis. Texture scores also rise despite our sub-second SANA pass, confirming that fast inpainting does not compromise appearance quality.

Layout Generation. SwiftHome’s largest gains appear in the *Layout* and *Object* categories. We utilize GPT 4o

Figure 4 highlights SwiftHome’s ability to scale the same prompt template across footprints and floor counts while preserving functional intent. For each house the planner emits terse, human-readable

432
433
434
435
436
437
438

Method	No Train	No Human	Interactive	Org. Small Obj.	Open Vocab	Multi-Floor
Behavior-1K Beaudoin et al. (2023)			✓	✓		
ProcTHOR Deitke et al. (2022)	✓	✓	✓	✓		✓
Holodeck Yang et al. (2024b)	✓	✓	✓			
AnyHome Fu et al. (2024)	✓	✓	✓	✓	✓	
RoboGen Wang et al. (2023)	✓	✓	✓	✓	✓	
PhyScene Yang et al. (2024a)	✓	✓	✓	✓		
DifluScene Tang et al. (2024)	✓					
LayoutGPT Feng et al. (2023)	✓				✓	
Text2Room Höller et al. (2023)	✓	✓	✓	✓		
ARCHITECT Wang et al. (2024)	✓	✓			✓	
SwiftHome (ours)	✓	✓	✓	✓	✓	✓

439
440 Table 2: Qualitative feature comparison across large-scale 3-D scene generators. “No Train” de-
441 notes inference without per-scene retraining; “No Human” means the system generates a full scene
442 automatically from text. Table referred from (Wang et al., 2024).462 Figure 4: **Fast multi-floor synthesis.** Three prompts (columns) are expanded into three-storey shells
463 together with the 1-sentence blurbs automatically produced by *Gemma-2*.465
466 blurs that anchor subsequent editing (“swap Floor 3 with a roof deck”). Despite zero per-scene
467 training, the produced shells exhibit correct stair alignment, sensible wall continuity, and realistic
468 room proportions, validating the effectiveness of our graph-driven synthesis in a strict sub-10-second
469 budget.470

5 CONCLUSION

473 **SwiftHome** shows that a purely agent-driven pipeline can turn an open-ended prompt into a *fin-474 ished, multi-floor* house **in $\leq 10\text{as per floor}$** —no heavy diffusion loops, no scene-specific train-475 ing. Gemma-2 parses text into clean graphs; Graph2Plan snaps rooms and stair shafts into water-476 tight shells; a planner–validator loop wipes out collisions and ergonomic errors in two passes; and477 one-step SANA (or even no diffusion at all) finishes the look. **Speed:** design-ready geometry and478 texture in the time it takes other pipelines —about **60 s per floor** on a single GPU. **Accuracy:** <3%479 OOB rate, high CLIP alignment, and stair cases that always land where they should. **Flexibility:**480 open-vocabulary assets, unlimited floors, instant drag-and-text edits, *zero retraining*. Fast, robust,481 and delightfully editable—SwiftHome moves text-to-3D from “cool demo” to a practical everyday482 tool for architects, game studios, and embodied-AI researchers.483

AUTHOR CONTRIBUTIONS

484 If you’d like to, you may include a section for author contributions as is done in many journals. This
485 is optional and at the discretion of the authors.

486 ACKNOWLEDGMENTS
487488 Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
489 those to funding agencies, go at the end of the paper.490
491 REFERENCES
492493 Eric Beaudoin, Zhengyi Luo, Kiana Ehsani, Luca Weihs, Aniruddha Kembhavi, Roozbeh Mottaghi,
494 et al. Behavior-1k: A benchmark for household activities of daily living in virtual, interactive
495 3d environments. In *Proceedings of the 6th Conference on Robot Learning*, volume 205 of *Proceedings
496 of Machine Learning Research*. PMLR, 2023. URL [https://proceedings.mlr
497 press/v205/l123a.html](https://proceedings.mlr.press/v205/l123a.html).498 Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
499 Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
500 ai using procedural generation. In *Adv. Neural Inf. Process. Syst.*, 2022.501 Wenhao Feng, Wenqing Zhu, Tai-Jen Fu, Varun Jampani, Arjun Akula, Xiaodong He, Samyadeep
502 Basu, Xiongye Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and
503 generation with large language models. In *Adv. Neural Inf. Process. Syst.*, 2023.504 Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Anyhome: Open-vocabulary generation of
505 structured and textured 3d homes. In *Proc. Eur. Conf. Comput. Vis.*, pp. 52–70, 2024. Also at
506 arXiv:2312.06644.507 Gemma Team, Google DeepMind. Gemma: Open models based on gemini research and technology.
508 <https://ai.google.dev/gemma/technical-report>, 2024.509 Lukas Höllerin, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room: Ex-
510 tracting textured 3d meshes from 2d text-to-image models. In *Proc. IEEE/CVF Int. Conf. Comput.
511 Vis.*, pp. 7909–7920, October 2023.512 Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui Huang. Graph2plan:
513 Learning floorplan generation from layout graphs. *ACM Trans. Graph.*, 39(4):118:1–118:13,
514 2020. doi: 10.1145/3386569.3392391.515 Despoina Paschalidou, Ajay K. Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja
516 Fidler. Atiss: Autoregressive transformers for indoor scene synthesis. In *Proc. IEEE/CVF Conf.
517 Comput. Vis. Pattern Recognit.*, 2021.518 Stefan Stier, Daniel Han, Nils Thuerey, Jan Eric Lenssen, Vladislav Golyanik, and Christian
519 Theobalt. Triposr: Fast 3d reconstruction from a single image via sparse neural priors. *arXiv
520 preprint arXiv:2303.16084*, 2023.521 Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
522 fuscene: Denoising diffusion models for generative indoor scene synthesis. In *Proc. IEEE/CVF
523 Conf. Comput. Vis. Pattern Recognit.*, 2024.524 Y. Wang, T. Qiu, T. Zhang, Z. Chen, J. Ge, Q. Long, S. Baek, C. Fu, R. Cheng, D. Held, R. Wal-
525 ters, D. Fox, et al. RoboGen: Towards unleashing infinite data for automated robot learning via
526 generative simulation. *arXiv preprint arXiv:2311.01455*, 2023.527 Yian Wang, Xiaowen Qiu, Jiageng Liu, Zhehuan Chen, Jiting Cai, Tsun-Hsuan Wang, Yufei Wang,
528 Zhou Xian, and Chuang Gan. Architect: Generating vivid and interactive 3d scenes with hierar-
529 chical 2d inpainting. In *Adv. Neural Inf. Process. Syst.*, 2024.530 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
531 Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution text-to-image synthesis
532 with linear diffusion transformers. In *Int. Conf. Learn. Represent.*, 2025.533 Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang. Physcene: Physics-aware indoor
534 scene generation. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, 2024a.

540 Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
541 Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar, Aniruddha Kembhavi,
542 and Christopher Clark. Holodeck: Language guided generation of 3d embodied ai environments.
543 In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, pp. 16227–16237, 2024b.

544
545 **A APPENDIX**

546 You may include other additional sections here.
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593