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ABSTRACT

This paper presents a novel formulation for capturing the continuous disparity in
stereo matching networks. In contrast to previous approaches that regress the final
output as the expectation of discretized disparity values, we derive a continuous
modeling formulation by treating the predicted disparity as an optimal solution to
the risk minimization problem. We demonstrate that the commonly used disparity
expectation represents an L2 special case within the proposed risk formulation,
and transitioning to an L1 formulation notably enhances stereo matching robust-
ness, particularly for disparities with multi-modal probability distributions. More-
over, to enable the end-to-end network training with the non-differentiable L1 risk
optimization, we explored the well-known implicit function theorem and proposed
a differentiable scheme for both network forward prediction and backward prop-
agation. A comprehensive analysis of our proposed formulation demonstrates its
theoretical soundness and superior performance over current state-of-the-art meth-
ods across various benchmarks, including KITTI 2012, KITTI 2015, ETH3D,
SceneFlow, and Middlebury 2014. We believe our work not only advances the
field of stereo matching but also holds promise for broader applications, spanning
computer vision, robotics, and control engineering.

1 INTRODUCTION

Stereo Matching is one of the most important and fundamental problems in computer vision (Hoff &
Ahuja, 1989; Kang et al., 1995; Scharstein & Szeliski, 2002; Szeliski, 2022). Given a rectified stereo
image pair captured at the same timestamp, the goal of stereo matching is to estimate the per-pixel
displacement from left to right images, popularly known as a disparity map. Under the rectified
image pair setup, the stereo matching problem boils down to a well-structured 1D search problem
in the image space (Szeliski, 2022). Due to its effectiveness and affordability, stereo camera rigs
have been widely adopted in commercial and industrial applications, including autonomous driving
cars (Fan et al., 2020; Bimbraw, 2015), smartphones (Meuleman et al., 2022; Luo et al., 2020; Pang
et al., 2018), and other robotic automation systems (Kim et al., 2021; Hsieh & Lin, 2020).

Classical well-known stereo matching methods—often categorized as local methods, use a prede-
fined support window to find suitable matches between stereo image pair (Scharstein & Szeliski,
2002; Hirschmuller, 2007). Yet, approaches that optimize for all disparity values using a global cost
function were observed to provide better results (Kolmogorov & Zabih, 2001; Klaus et al., 2006;
Bleyer et al., 2011; Yamaguchi et al., 2014). In recent years, with the surge in high-quality, large-
scale synthetic ground-truth data, availability of high-end GPUs’ and advancements in deep-learning
architecture, the neural network-based stereo matching models trained under supervised setting has
outperformed classical methods accuracy by a significant margin (Kendall et al., 2017a; Chang &
Chen, 2018; Zhang et al., 2019; Lipson et al., 2021). Nevertheless, one fundamental challenge
still remains, i.e. how to model continuous scene disparity values given only a limited number of
candidate pixels to match? After all, the scene is continuous in nature.

Many recent works have attempted to overcome the above challenge of predicting continuous scene
disparities, which can be broadly divided into two categories. (i) Regression-based approaches
predict a real-valued offset by neural networks for each hypothesis of discrete disparity. The offset
is then added to the discrete disparity hypothesis as the final continuous prediction. Typical exam-
ples include RAFT-Stereo (Lipson et al., 2021), CDN (Garg et al., 2020), and more recent IGEV
(Xu et al., 2023) and DLNR (Zhao et al., 2023). (ii) Classification-based approaches first esti-
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Figure 1: Qualitative Comparison. We compare our method with recent state-of-the-art methods such as
IGEV (Xu et al., 2023), DLNR (Zhao et al., 2023) on Middlebury (Scharstein & Szeliski, 2002). All methods
are trained only on SceneFlow (Mayer et al., 2016), and evaluated at quarter resolution. It can be observed that
our method generalizes and predicts high-frequency details better than other recent methods.

mate the categorical distribution1 for the discrete disparity hypotheses and then take the expectation
value of the distribution as the final disparity, which can be any arbitrary real value even though the
categorical distribution is discrete (Kendall et al., 2017a; Chang & Chen, 2018; Zhang et al., 2019).

In this paper, we aim to address the importance of continuous disparity modeling in stereo match-
ing, given the categorical distribution of disparity hypotheses. We introduce a radically different
perspective on the disparity prediction problem by framing it as a search problem of finding the
minimum risk (Lehmann & Casella, 1998; Vapnik, 1991; Berger, 2013) of disparity values. Specif-
ically, the risk is defined by averaging the prediction error with respect to all possible values of the
ground-truth disparity. At the time of making the prediction, the ground truth is unavailable, which
is therefore approximated by the disparity hypotheses with a categorical distribution. We search for
a disparity value as our prediction that achieves minimal overall risk involved with it. Moreover, we
demonstrate that the commonly used disparity expectation (Kendall et al., 2017a) is a special case
of L2 error function within the proposed risk formulation, which is sensitive to multi-modal distri-
bution and may result in the over-smooth solution (Chen et al., 2019; Tosi et al., 2021). In contrast,
we advocate the use of the L1 error function during risk minimization.

Despite the theoretical soundness of the L1 risk minimization, there is no closed-form solution to L1

formulation. To that end, in this paper, we search for the solution by computing derivatives of our
proposed risk function and performing its continuous optimization. By interpolating the disparity
categorical distribution, we define our continuous probability density function. Then, we propose
a binary search algorithm to find the optimal disparity that minimizes the proposed risk efficiently.
To enable the end-to-end network training, we compute the backward gradient of the final disparity
with respect to the categorical distribution by the implicit function theorem (Krantz & Parks, 2002).

We have extensively evaluated the proposed method on a variety of stereo matching datasets. Our
approach demonstrates superior performance compared to many state-of-the-art methods on bench-
marks such as SceneFlow (Mayer et al., 2016), KITTI 2012 (Geiger et al., 2012), and KITTI 2015
(Menze & Geiger, 2015). Moreover, our approach achieves significantly better cross-domain gener-
alization, as observed on Middlebury (Scharstein & Szeliski, 2002), ETH 3D (Schöps et al., 2017),
KITTI 2012 & 2015. An example of qualitative comparison is given in Fig. 1. Ablation studies
confirm the effectiveness of risk minimization, not only within the proposed network but also in the
context of general stereo matching networks, such as ACVNet (Xu et al., 2022) and PCWNet (Shen
et al., 2022).

2 RELATED WORK

2.1 DEEP NEURAL NETWORK FOR STEREO MATCHING

In recent years, the deep-learning based approaches have improved the accuracy of stereo matching
by a significant margin. Designing powerful and efficient network architectures for stereo matching
is a popular research topic. Zbontar & LeCun (2015) apply deep convolutional networks (LeCun

1A categorical distribution is a discrete probability distribution that describes the possible results of a ran-
dom variable that can take on the K possible categories, with the probability of each category separately speci-
fied.
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et al., 1995) to learn discriminative features for image patches. DispNetCorr (Mayer et al., 2016)
designs explicit correlation in networks to construct cost volume. GCNet (Kendall et al., 2017a)
constructs volume by concatenation and refines by 3D convolution. PSM-Net (Chang & Chen,
2018) exploits spatial pyramid pooling (Zhao et al., 2017) and stacked hourglass (Newell et al.,
2016) to learn context information. STTR (Li et al., 2021) applies transformers (Vaswani et al.,
2017; Dosovitskiy et al., 2021) to relax the limitation of a fixed disparity range. Moreover, the
uniqueness constraint is considered by optimal transport (Cuturi, 2013). ACVNet (Xu et al., 2022)
weights the matching costs by attention.

Another line of research is to improve efficiency. In GANet (Zhang et al., 2019) the computationally
costly 3D convolutions are replaced by the differentiable semi-global aggregation (Hirschmuller,
2007). GWCNet (Guo et al., 2019) constructs the cost volume by group-wise correlation. AANet
(Xu & Zhang, 2020) proposes the adaptive cost aggregation to replace the 3D convolution for
efficiency. AnyNet (Wang et al., 2019), DeepPruner (Duggal et al., 2019), HITNet (Tankovich
et al., 2021), CasMVSNet (Gu et al., 2020), PCWNet (Shen et al., 2022) and Bi3D (Badki et al.,
2020) prune the range of disparity in the iterative manner. RAFT-Stereo (Lipson et al., 2021),
CREStereo(Li et al., 2022), IGEV (Xu et al., 2023) and DLNR (Zhao et al., 2023) use recurrent
neural networks (Cho et al., 2014) to predict and refine the disparity iteratively.

In this paper, our network structure is inspired by CasMVSNet (Gu et al., 2020), and consists of two
stages to predict and refine the disparity map. The hierarchical design reduces the time and memory
cost, while keeping the matching accuracy.

2.2 CONTINUOUS DISPARITY BY CLASSIFICATION

In deep networks that have cost volumes, the most popular way to predict the disparity from the vol-
ume is the weighted average operation, i.e. expectation. Chen et al. (2019) find the average operation
suffers from the over-smoothing problem, especially at the boundaries of objects. Therefore they
propose the single-modal weighted average. Garg et al. (2020) propose to predict a continuous off-
set to shift the distribution modes of disparity. Furthermore, they generate multi-modal ground truth
disparity distributions and supervise the network to learn the distribution by Wasserstein distance
(Villani, 2008). SMD-Net (Tosi et al., 2021) exploit bimodal mixture densities as output representa-
tion for disparities. UniMVSNet (Peng et al., 2022) attempts to unify the advantages of classification
and regression by designing a novel representation, and further proposes a unified focal loss. Yang
et al. (2022) use top-K hypotheses for the disparity to alleviate the multi-modal problem. In this
paper, we propose to minimize the risk under L1 norm to capture continuous disparity and solve the
multi-modal problem. Moreover, our approach can be trained in an end-to-end manner.

2.3 CROSS-DOMAIN GENERALIZATION

Existing real-world stereo datasets are small and insufficient to train neural networks from scratch,
therefore exploiting synthetic images to pre-train networks and reducing the domain gap play an
important role. Tonioni et al. (2017; 2019a;b) fine tune the stereo matching networks on the target
domain using unsupervised loss. Liu et al. (2020) jointly optimize networks for domain translation
and stereo matching during training. Zhang et al. (2020); Song et al. (2021) normalize features to
reduce domain shifts. Cai et al. (2020); Liu et al. (2022a) design robust features for stereo matching.
Liu et al. (2022b) find the cost volume built by cosine similarity generalizes better to different
image features. Zhang et al. (2022) apply the stereo contrastive loss and selective whitening loss
to improve feature consistency. Chang et al. (2023) proposed the hierarchical visual transformation
to learn shortcut-invariant robust representation from synthetic images. In this paper, we present a
novel perspective to improve robustness by L1 risk minimization. We also show that our approach
can be combined with above methods to further improve the robustness.

3 METHOD

3.1 PROBABILITY DENSITY OF CONTINUOUS DISPARITY

For each pixel in the left image, suppose the possible disparities are in the range of [dmin, dmax].
Typical stereo matching algorithms will compute a cost that merely can be described as a probabil-
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Figure 2: Illustration of the difference between the expectation and our method. In (a) the pixel in the red
circle is located at the boundary of the chair, thereby the distribution of the disparity has multiple modes. We
plot the discrete distribution of disparity hypotheses by orange bars in (b) and (c). In (b) the prediction obtained
by averaging is blurred and far from any of the modes. In (c) we find the optimal solution under L1 norm,
which is more robust and closer to the ground truth. The green curve is the interpolated probability density.

ity mass function (PMF) with a finite set of disparities d = [d1, ..., dN ]T and compute a discrete
distribution pm = [pm1 , ..., pmN ]T , where di ∈ [dmin, dmax] and pmi is the probability that the ground
truth disparity is di. The pm is required to satisfy the conditions pmi ≥ 0 and

∑
i p

m
i = 1.

The discrete formulation reasons the probability only at a finite set of disparities. However, in real-
world applications, the ground-truth disparity is continuous. Therefore we propose to interpolate the
discrete distribution by the Laplacian kernel, and the probability density function of disparity x ∈ R
is computed by

p(x;pm) =

N∑
i

k(x, di)p
m
i (1)

where k(x, di) is defined as 1
2σ exp− |x−di|

σ , and σ is the hyper-parameter for bandwidth. The
above density function is valid because p(x;pm) ≥ 0 for ∀x ∈ R and

∫
p(x;pm)dx = 1. An

illustration of the interpolation is shown in Fig. 2 (c). The orange bars represent the given discrete
distribution pm, and the green curve is the interpolated density function. In the following we show
the continuous formulation enables us to compute the derivative of the risk function.

3.2 RISK OF DISPARITY

To choose a value as the final prediction, we propose to minimize the following risk:

argminyF (y,pm) = argminy

∫
L(y, x)p(x;pm)dx (2)

where F (y,pm) is called as the risk at y, and L(y, x) is the error function between y and x. By risk
we mean that if we take y as predicted disparity, how much error there shall be with respect to the
ground truth. Since the exact ground truth is unavailable at the time of making the prediction, we
average the error across all possible ground-truth disparities with the distribution p(x;pm).

Previous methods usually compute the expectation value of x as the final prediction for the disparity:

y =

∫
xp(x;pm)dx. (3)

In our framework, we can derive the same prediction when using the squared L2 norm as the error
function. More specifically, argminyF (y,pm) =

∫
xp(x;pm)dx when L(y, x) = (y − x)2.

However, it is well known that the L2 norm is not robust, and prones to outliers. As shown in Fig.
2 (b), the expectation is inaccurate when there are multiple modes in the distribution. Instead, we
select the L1 norm in our risk function:

argminyF (y,pm) = argminy

∫
|y − x|p(x;pm)dx. (4)

Given the distribution p(x;pm) of the disparity, the optimal y will minimize the L1 error with
respect to all possible disparities weighted by the corresponding probability density. As shown in
Fig. 2 (c), our final prediction is more robust to the incorrect modes and closer to the ground truth.
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3.3 DIFFERENTIABLE RISK MINIMIZATION

One challenge of the L1 norm is that there is no closed-form solution to the minimal risk in Eq.(4).
To search for the optimal solution and enable end-to-end training, we introduce the details for the
forward prediction and backward propagation below.

Forward Prediction. Given the discrete distribution pm, we find the optimal y of Eq.(4) efficiently
based on the following two observations. Firstly, the target function F (y,pm) is convex with respect
to y, thereby we find the optimal solution at where ∂F/∂y = 0.

G(y,pm) ≜
∂F (y,pm)

∂y
=

∑
i

pmi Sign(y − di)(1− exp−|y − di|
σ

) = 0 (5)

where Sign() is the sign function, which a slight abuse of notation. Sign() can be thought of as an
indicator function, where it is 1 if y > di and −1 otherwise. Secondly, the second-order derivative
∂2F/∂2y ≥ 0, so the first-order derivative is a non-decreasing function. We find the optimal dis-
parity, i.e. the zero point of G(y,pm), by binary search, as shown in Alg. 1 in the Appendix. In all
experiments, we set the σ and τ as 1.1 and 0.1 respectively. For N disparity hypotheses, the binary
search algorithm can find the optimal solution with time complexity of O(logN) (Cormen et al.,
2009).

Backward Propagation. As alluded to above, the procedure of the forward prediction (Alg. 1)
to solve Eq.(4) contains non-differentiable operations. However, to enable end-to-end training, we
have to compute dy/dpm to backward propagate the gradient. Our method is inspired by the Implicit
Function Theorem (Krantz & Parks, 2002). More specifically, because G(y,pm) ≡ 0 at the optimal
y, we obtain

dG(y,pm) =
∂G

∂y
dy +

∂G

∂pm
dpm = 0. (6)

By organizing the terms, we obtain

dy

dpm
= −∂G/∂pm

∂G/∂y
= [. . . ,

σSign(di − y)(1− exp− |y−di|
σ )∑

j p
m
j exp− |y−dj |

σ

, . . .]T . (7)

We clip the denominator, i.e.
∑

j p
m
j exp− |y−dj |

σ in the above equation to be no less than 0.1 to
avoid large gradients.

3.4 NETWORK ARCHITECTURE

To find the disparity value, we match the image patches of left and right images by constructing
stereo cost volumes, as in Kendall et al. (2017b) and Chang & Chen (2018). However, an exhaustive
matching requires extensive memory and computation. For efficiency, we adopt a cascade struc-
ture following Gu et al. (2020). Specifically, we first sample the disparity hypothesis by a coarse
matching, which is performed on low-resolution image features. The sampled hypothesis reduce
the search space for matching to a large extent. Then we refine the sampled hypothesis at high-
resolution image features. The overall pipeline is shown in Fig. 3, and includes 5 parts: (a) feature
extraction (b) disparity hypotheses sampling (c) matching (d) cost aggregation (e) risk minimization.
We introduce the details of each part below. More details are provided in the Appendix.
(a) Feature Extraction. Given an input image, the module aims to output multi-scale 2D feature
maps. More specifically, we first use a ResNet (He et al., 2016) to extract 2D feature maps of reso-
lution 1/4 and 1/2 with respect to the input image. The ResNet contains 4 stages of transformation
with 3, 16, 3, 3 residual blocks respectively. And the spatial resolution is downsampled before the
beginning of the first and third stages of transformation. Then we apply the spatial pyramid pooling
(Zhao et al., 2017) on the 1/4-resolution feature map from the fourth stage to enlarge the receptive
field. In the end, we upsample the enhanced feature map from 1/4 to 1/2 and fuse it with the 1/2-
resolution feature map from ResNet. The final outputs are the feature maps of 1/4 and 1/2 resolution.
We apply the same network and weights to extract features from left and right images.
(b) Disparity Hypotheses Sampling. The disparity hypotheses provide the candidates of pixel pairs
to match. In the coarse stage, we sample 192 hypotheses uniformly within the range from 0 to the
maximum possible disparity. In the refined stage, we reduce the sampling space according to the
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Multi-Scale Features 

(c) Matching (d) Cost Aggregation (e) Risk Minimization

Refined Disparity

Coarse DisparityUniform 

Coarse Stage

Refined Stage

Non-uniform 

Figure 3: Overall pipeline (Left to Right). We first extract multi-scale features from left and right images
respectively. The subsequent procedures are divided into two stages. In the coarse stage —shown in orange
arrow, we sample disparity hypotheses uniformly and match on 1/4-resolution features. While in the refined
stage—shown in green arrow, to match 1/2-resolution features efficiently. Disparity hypotheses are sampled
centering around the disparity predicted from the coarse stage. In both stages, we first construct cost volumes
by concatenation, and then apply the stacked hourglass networks to aggregate the matching cost, and finally
search for the disparity that minimizes the proposed L1 risk in Eq.(4).

predicted disparity from the coarse stage. Specifically, for each pixel we sample 16 hypotheses be-
tween the maximum and minimum disparity in the local window of size 12× 12.
(c) Matching. We match the 2D feature maps from the left and right images according to the
sampled disparity hypothesis. The features at each pair of candidates pixels for matching will
be concatenated along the channel dimension, which forms a 4D stereo cost volume (feature×
disparity×height×width). In the coarse stage, we match the feature map of 1/4 resolution for effi-
ciency. To capture high-frequency details, we match the 1/2-resolution feature map in the refined
stage.
(d) Cost Aggregation. We use the stacked hourglass architecture (Newell et al., 2016) to transform
the stereo cost volume and aggregate the matching cost. For the coarse and refined stages, the struc-
tures are the same except for the number of feature channels. Specifically, the network consists of
three 3D hourglasss as in Chang & Chen (2018). Each hourglass first downsamples the volume hier-
archically to 1/2 and 1/4 resolution with respect to the input volume, and then upsample in sequence
to recover the resolution. The procedure helps aggregate information across various scales. The
final output is a volume that represents the discrete distribution of disparity hypotheses.
(e) Risk Minimization. The module applies Alg. 1 to compute the optimal continuous disparity for
each pixel given the discrete distribution of disparity hypotheses. During training, we additionally
compute the gradient according to Eq.(7) to enable backward propagation.

3.5 LOSS FUNCTION

Given the predicted disparity xpred ∈ R and the ground-truth disparity xgt ∈ R, we compute the
smooth L1 loss (Girshick, 2015):

L(xgt, xpred) =
{
0.5(xgt − xpred)2 if |xgt − xpred| < 1.0

|xgt − xpred| − 0.5 otherwise
(8)

We apply the above loss function to the predicted disparities from both the coarse and refined stages,
and obtain Lcoarse and Lrefined respectively. The total loss L = 0.1Lcoarse + 1.0Lrefined.

4 EXPERIMENTS AND RESULTS

Implementation Details. We implement our method in PyTorch 2.0.1 (Python 3.11.2) with CUDA
11.8. The software is evaluated on a computing machine with GeForce-RTX-3090 GPU.
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Table 1: Comparison with state-of-the-art methods on SceneFlow test set. The first and second bests are in red
and blue respectively. Our method in bold.

Method Param (M) Time (s) EPE ↓ > 0.5px ↓ > 1px ↓ > 2px ↓
CFNet (Shen et al., 2021) 21.98 0.13 1.04 15.91 10.30 6.89
PCWNet (Shen et al., 2022) 34.27 0.25 0.90 17.59 8.08 4.57
ACVNet (Xu et al., 2022) 6.84 0.16 0.47 9.70 5.00 2.74
DLNR (Zhao et al., 2023) 54.72 0.44 0.53 8.75 5.44 3.44
IGEV (Xu et al., 2023) 12.60 0.36 0.47 8.51 5.21 3.26
Ours 11.96 0.35 0.43 8.10 4.22 2.34

Table 2: Comparison with state-of-the-art methods on KITTI 2012 Benchmark. † denotes using extra data for
pre-training. The first and second bests are in red and blue respectively. Our method in bold. The results are
obtained from KITTI official website.

Method Param (M) Time (s) > 2px > 3px
Noc All Noc All

LEAStereo (Cheng et al., 2020) 1.81 1.90 2.39 1.13 1.45
CFNet (Shen et al., 2021) 21.98 0.12 1.90 2.43 1.23 1.58
ACVNet (Xu et al., 2022) 6.84 0.15 1.83 2.34 1.13 1.47
ACFNet (Chen et al., 2021) 1.83 2.35 1.17 1.54
NLCA-Net v2 (Rao et al., 2022) 1.83 2.34 1.11 1.46
CAL-Net (Chen et al., 2021) 1.74 2.24 1.19 1.53
CREStereo (Li et al., 2022) † 1.72 2.18 1.14 1.46
LaC+GANet (Liu et al., 2022a) 9.43 1.72 2.26 1.05 1.42
IGEV (Xu et al., 2023)† 12.60 0.32 1.71 2.17 1.12 1.44
PCWNet (Shen et al., 2022) 34.27 0.23 1.69 2.18 1.04 1.37
Ours 11.96 0.32 1.58 2.20 1.00 1.44

Datasets. We perform experiments on four datasets namely SceneFlow (Mayer et al., 2016), KITTI
2012 & 2015 (Geiger et al., 2012; Menze & Geiger, 2015), Middlebury 2014 (Scharstein & Szeliski,
2002), and ETH 3D (Schöps et al., 2017). (a) SceneFlow is a synthetic dataset containing 35,454
image pairs for training, and 4,370 image pairs for test. (b) KITTI 2012 & 2015 are captured for
autonomous driving. There are 194 training image pairs and 195 test image pairs in KITTI 2012.
And there are 200 training image pairs and 200 test image pairs in KITTI 2015. (c) Middlebury
2014 is an indoor dataset including 15 image pairs for training. (d) ETH 3D is a gray-scale dataset
providing 27 image pairs for training.
Training Details. We train our network on SceneFlow. The weight is initialized randomly. We
use AdamW optimizer (Loshchilov & Hutter, 2019) with weight decay 10−5. The learning rate
decreases from 2 × 10−4 to 2 × 10−8 according to the one cycle learning rate policy. We train the
network for 2 × 105 iterations. The images will be randomly cropped to 320 × 736. For KITTI
2012 & 2015 benchmarks, we further fine tune the network on the training image pairs for 2.5×103

iterations. The learning rate starts from 5 × 10−5 to 5 × 10−9. More details are provided in the
Appendix.

4.1 IN-DOMAIN EVALUATION

Tab.(1), Tab.(2) and Tab.(3) provide statistical comparison results with the competing methods on
SceneFlow, KITTI 2012 & 2015 bechmarks, respectively. All the methods have been trained or
fine-tuned on the corresponding training set. In SceneFlow test set, our proposed approach shows
the best results for all the evaluation metrics. Particularly, we reduce the > 1px error from 5.00 to
4.22, and the > 0.5px error from 8.51 to 8.10. In KITTI 2012 & 2015 benchmarks, the matching
accuracy of our approach in the non-occluded regions rank the first among the published methods.
Especially, in KITTI 2012, we reduce the > 2px error in non-occluded regions by 0.11.

4.2 CROSS-DOMAIN GENERALIZATION

In this part, we compare the methods when dealing with environments never seen in the training
set. Specifically, all methods are trained only on SceneFlow training set, and then evaluated on the
training set of Middlebury, ETH 3D and KITTI 2012 & 2015 without fine-tuning.

The statistical comparison results are shown in Tab.(4), Tab.(5), Tab.(6) and Tab.(7), respectively.
Our proposed approach achieves the first or the second best accuracies under all the evaluation
metrics on the four real-world datasets. Particularly, for Middlebury we reduce the > 1px error
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Table 3: Comparison with state-of-the-art methods on KITTI 2015 Benchmark. † denotes using extra data for
pre-training. The first and second bests are in red and blue respectively. Our method in bold. The results are
obtained from KITTI official website.

Method Param (M) Time (s) All Noc
D1 bg D1 fg D1 all D1 bg D1 fg D1 all

LEAStereo (Cheng et al., 2020) 1.81 1.40 2.91 1.65 1.29 2.65 1.51
CFNet (Shen et al., 2021) 21.98 0.12 1.54 3.56 1.88 1.43 3.25 1.73
ACVNet (Xu et al., 2022) 6.84 0.15 1.37 3.07 1.65 1.26 2.84 1.52
ACFNet (Chen et al., 2021) 1.51 3.80 1.89 1.36 3.49 1.72
NLCA-Net v2 (Rao et al., 2022) 1.41 3.56 1.77 1.28 3.22 1.60
CAL-Net (Chen et al., 2021) 1.59 3.76 1.95 1.45 3.42 1.77
CREStereo (Li et al., 2022) † 1.45 2.86 1.69 1.33 2.60 1.54
LaC+GANet (Liu et al., 2022a) 9.43 1.44 2.83 1.67 1.26 2.64 1.49
IGEV (Xu et al., 2023) † 12.60 0.32 1.38 2.67 1.59 1.27 2.62 1.49
DLNR (Zhao et al., 2023) 54.72 0.39 1.60 2.59 1.76 1.45 2.39 1.61
PCWNet (Shen et al., 2022) 34.27 0.23 1.37 3.16 1.67 1.26 2.93 1.53
CroCo-Stereo (Weinzaepfel et al., 2023)† 417.15 1.38 2.65 1.59 1.30 2.56 1.51
Ours 11.96 0.32 1.40 2.76 1.63 1.25 2.62 1.48

Table 4: Cross-domain evaluation on Middlebury training set of quarter resolution. † denotes using extra data
for pre-training. The first and second bests are in red and blue respectively. Our method in bold. All methods
are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Method Param (M) Time (s) > 0.5px > 1px
Noc All Noc All

CFNet (Shen et al., 2021) 21.98 0.11 29.50 34.30 17.85 22.16
ACVNet (Xu et al., 2022) 6.84 0.12 39.04 42.97 22.68 26.49
DLNR (Zhao et al., 2023) 12.60 0.63 19.43 23.75 10.16 13.76
IGEV (Xu et al., 2023)† 12.60 0.34 19.05 23.33 10.44 14.05
PCWNet (Shen et al., 2022) 34.27 0.19 33.33 38.00 16.80 21.36
Ours 11.96 0.25 19.22 23.33 9.32 12.63

from 13.76 to 12.63. Further more, on ETH 3D we reduce the > 0.5px error from 10.39 to 8.59,
and > 1px error from 4.05 to 2.71. It can be observed our approach is more robust and generalizes
better than recent state of the arts on the cross-domain setting.

The qualitative comparison is presented in the Appendix.

4.3 ABLATION STUDIES

In this subsection, we perform ablation studies to analyze the effects of the risk minimization method
for disparity prediction. All the models are trained on SceneFlow and then tested on Middlebury
without fine-tuning.

(a) Effect of Risk Minimization. We compare the expectation and the L1-norm risk minimization
for disparity prediction during training and test. We present the comparison results in Tab.(8). Even
using the expectation to predict disparities during training, we still slightly improve the accuracy
by changing to the L1-norm risk minimization during test. Moreover, if we use the L1-norm risk
minimization in both training and test, the best accuracy is achieved under all metrics.

(b) Performance with Different Networks. We replace the disparity prediction method in ACVNet
(Xu et al., 2022) and PCWNet (Shen et al., 2022) from expectation to L1-norm risk minimization

Table 5: Cross-domain evaluation on ETH 3D training set. † denotes using extra data for pre-training. The first
and second bests are in red and blue respectively. Our method in bold. All methods are trained on SceneFlow
and evaluated on ETH 3D training set without fine-tuning.

Method Param (M) Time (s) > 0.5px > 1px
Noc All Noc All

CFNet (Shen et al., 2021) 21.98 0.11 15.57 16.24 5.30 5.59
ACVNet (Xu et al., 2022) 6.84 0.12 21.83 22.64 8.13 8.81
DLNR (Zhao et al., 2023) 12.60 0.34 18.66 19.07 13.11 13.39
IGEV (Xu et al., 2023)† 12.60 0.29 9.83 10.39 3.60 4.05
PCWNet (Shen et al., 2022) 34.27 0.20 18.25 18.88 5.17 5.43
Ours 11.96 0.26 7.90 8.59 2.41 2.71
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Table 6: Cross-domain evaluation on KITTI 2012 training set. † denotes using extra data for pre-training.
The first and second bests are in red and blue respectively. Our method in bold. All methods are trained on
SceneFlow and evaluated on KITTI 2012 training set without fine-tuning.

Method Param (M) Time (s) > 2px > 3px
Noc All Noc All

CFNet (Shen et al., 2021) 21.98 0.12 7.08 7.97 4.66 5.31
ACVNet (Xu et al., 2022) 6.84 0.15 20.34 21.44 14.22 15.18
DLNR (Zhao et al., 2023) 12.60 0.39 12.01 12.81 8.83 9.46
IGEV (Xu et al., 2023)† 12.60 0.32 7.55 8.44 5.03 5.70
PCWNet (Shen et al., 2022) 34.27 0.23 6.63 7.49 4.08 4.68
Ours 11.96 0.32 5.82 6.70 3.84 4.43

Table 7: Cross-domain evaluation on KITTI 2015 training set. † denotes using extra data for pre-training.
The first and second bests are in red and blue respectively. Our method in bold. All methods are trained on
SceneFlow and evaluated on KITTI 2015 training set without fine-tuning.

Method Param (M) Time (s) All Noc
D1 bg D1 fg D1 all D1 bg D1 fg D1 all

CFNet (Shen et al., 2021) 21.98 0.12 4.77 13.26 6.07 4.64 12.88 5.88
ACVNet (Xu et al., 2022) 6.84 0.15 12.35 19.97 13.52 12.04 18.82 13.06
DLNR (Zhao et al., 2023) 9.43 0.39 18.67 14.86 18.08 18.42 14.18 17.78
IGEV (Xu et al., 2023) † 12.60 0.32 4.01 15.58 5.79 3.88 14.94 5.55
PCWNet (Shen et al., 2022) 34.27 0.23 4.25 14.40 5.81 4.11 13.95 5.60
Ours 11.96 0.32 3.68 13.52 5.19 3.57 13.05 5.00

only during test. The results are shown in Tab.(8). Our proposed method improves the accuracy
under all metrics without re-training.

4.4 NETWORK PROCESSING TIME & PAREMETERS

We present the networks’ inference time and number of parameters in Tab.(1), Tab.(2), Tab.(4), and
Tab.(5). For a fair comparison, all networks are evalutated on the same machine with a GeForce-
RTX-3090 GPU. Our network outperforms many state of the arts on inference time, including IGEV
and DLNR. Moreover, our network has fewer learnable parameters than PCWNet, IGEV and DLNR.

In addition, our proposed L1-norm risk minimization module doesn’t require extra learnable param-
eters. The running time is shown in Tab.(8). By changing the disparity prediction method from
expectation to our proposed approach, the running time is slightly increased.

Table 8: Ablation studies on Middlebury training set of quarter resolution. The first and second bests are
in red and blue respectively. Our method in bold. All methods are trained on SceneFlow and evaluated on
Middlebury training set without fine-tuning.

Backbone Training Test Param (M) Time (s) > 1px > 2px
Noc All Noc All

ACVNet(Xu et al., 2022) Expectation Expectation 6.84 0.12 22.68 26.49 13.54 16.49
Expectation L1-Risk 6.84 0.18 22.32 26.14 13.13 16.05

PCWNet(Shen et al., 2022) Expectation Expectation 34.27 0.19 16.80 21.36 8.93 12.62
Expectation L1-Risk 34.27 0.26 16.53 21.08 8.65 12.30

Ours

Expectation Expectation 11.96 0.17 9.88 13.27 4.92 7.29
Expectation L1-Risk 11.96 0.25 9.83 13.22 4.90 7.27

L1-Risk Expectation 11.96 0.17 9.83 13.19 4.79 7.06
L1-Risk L1-Risk 11.96 0.25 9.32 12.63 4.49 6.70

4.5 CONCLUSION

Our work provides a novel way of thinking and solving stereo-matching problems in computer vision
via the principle of risk minimization (Vapnik, 1991). The paper provides in-depth theoretical and
practical benefits of using our proposed formulation. It is shown that the presented approach is
more robust to multi-modal distributions and outliers, and generalizes better on cross-domain stereo
images. Furthermore, a new mathematical fabric to research stereo-matching problems is presented,
enabling adaptations from fields such as robotics and control engineering.
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A APPENDIX

A.1 TRAINING DETAILS

We train our network on SceneFlow. The weight is initialized randomly. We use AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay 10−5. The learning rate decreases from 2× 10−4 to
2×10−8 according to the one cycle learning rate policy. We train the network for 2×105 iterations.
The images will be randomly cropped to 320 × 736. For KITTI 2012 & 2015 benchmarks, we
further fine tune the network on the training image pairs for 2.5 × 103 iterations. The learning rate
starts from 5× 10−5 to 5× 10−9.

Following RAFT-Stereo (Lipson et al., 2021), we apply various image augmentations during training
to avoid the over-fitting problem. Specifically, the augmentations include (a) color transformation,
(b) occlusion, and (c) spatial transformation. In (a) color transformation, we randomly change the
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Table 9: Network structure for feature extraction.
Name Layer Setting Output Dimension

ResNet
Input H × W × 3
Stem-1 3 × 3, 32 H × W × 32
Stem-2 3 × 3, 32 H × W × 32
Stem-3 3 × 3, 32 1

2H × 1
2W × 32

Stage-1
[

3 × 3, 32
3 × 3, 32

]
× 3 1

2H × 1
2W × 32

Stage-2
[

3 × 3, 64
3 × 3, 64

]
× 16 1

4H × 1
4W × 64

Stage-3
[

3 × 3, 128
3 × 3, 128

]
× 3 1

4H × 1
4W × 128

Stage-4
[

3 × 3, 128
3 × 3, 128

]
× 3, dila = 2 1

4H × 1
4W × 128

Spatial Pyramid Pooling

Branch-1
64 × 64 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-2
32 × 32 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-3
16 × 16 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-4
8 × 8 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Concat [Stage-2, Stage-4, Branch-1, Branch-2, Branch-3, Branch-4] 1
4H × 1

4W × 32

Fusion-1 3 × 3, 128 1
4H × 1

4W × 32
1 × 1, 32

UpSample
Up-1 nearest interpolation 1

2H × 1
2W × 32

Add [Stage-1, Up-0] 1
2H × 1

2W × 32
Fusion-2 3 × 3, 16 1

2H × 1
2W × 16

brightness, contrast, saturation and hue of the left and right images independently. The brightness
and contrast factors are uniformly chosen from [0.6, 1.4]. The saturation factor is uniformly chosen
from [0.0, 1.4]. The hue factor is uniformly chosen from [-0.16, 0.16]. In (b) occlusion, we randomly
select a few rectangular regions in the right image, and set the pixels inside the regions as the mean
color of the right image. The number of regions is chosen from {0, 1, 2, 3} with probabilities {0.5,
0.166, 0.166, 0.166}. The position of the region is uniformly chosen in the right image, and the
width and height are uniformly chosen from [50, 100]. In (c) spatial transformation, we randomly
crop the left and right images to the resolution 320×736.

A.2 NETWORK STRUCTURE DETAILS

In this part, we present more details for the (i) feature extraction and (ii) cost aggregation.

(i) Feature Extraction. Given an input image, the module aims to output multi-scale 2D feature
maps. More specifically, we first use a ResNet (He et al., 2016) to extract 2D feature maps of
resolution 1/4 and 1/2 with respect to the input image. The ResNet contains 4 stages of non-linear
transformation with 3, 16, 3, 3 residual blocks respectively, where each block is composed of
convolutional layers and skip connections. And the spatial resolution is downsampled before the
beginning of the first and third stages of transformation. Then we apply the spatial pyramid pooling
(Zhao et al., 2017) on the 1/4-resolution feature map from the fourth stage of transformation to
enlarge the receptive field. In the end, we upsample the enhanced feature map from 1/4 to 1/2 and
fuse it with the 1/2-resolution feature map from the first stage of transformation in ResNet. The
final outputs are the feature maps of 1/4 and 1/2 resolution. We apply the same network and weights
to extract features from left and right images. The details of the network structure and the resolution
of the feature maps are shown in Tab.(9).
(ii) Cost Aggregation. We use the stacked hourglass architecture (Newell et al., 2016) to transform

the stereo cost volume and aggregate the matching cost. For the coarse and refined stages, the
structures are the same except for the number of feature channels. Specifically, the network consists
of three 3D hourglasss as in Chang & Chen (2018). Each hourglass first downsamples the volume
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Table 10: Network structure for 3D hourglass.
Name Layer Setting Output Dimension
Input D × H × W × C
Conv-1 3 × 3 × 3, 2C 1

2D × 1
2H × 1

2W × 2C
Conv-2 3 × 3 × 3, 2C 1

2D × 1
2H × 1

2W × 2C
Conv-3 3 × 3 × 3, 4C 1

4D × 1
4H × 1

4W × 4C
Conv-4 3 × 3 × 3, 4C 1

4D × 1
4H × 1

4W × 4C

Atte-4

3 × 3 × 3, C

1
4D × 1

4H × 1
4W × 4C

3 × 3 × 3, 4C
sigmoid

prod Conv-4

Conv-5 deconv 3 × 3 × 3, 2C 1
2D × 1

2H × 1
2W × 2C

add Conv-2

Atte-5

3 × 3 × 3, C

1
2D × 1

2H × 1
2W × 2C

3 × 3 × 3, 2C
sigmoid

prod Conv-5

Conv-6 deconv 3 × 3 × 3, C
D × H × W × C

add Input

Atte-6

3 × 3 × 3, C

D × H × W × C
3 × 3 × 3, C

sigmoid
prod Conv-6

Algorithm 1 Forward Prediction
Require: τ > 0, σ > 0, d = [d1, ..., dN ], d1 < d2 < · · · < dN , and pm = [pm1 , ..., pmN ]
dl ← d1 ▷ Initialize search boundaries
dr ← dN
g ← τ + 1 ▷ Initialize the derivative
while |g| > τ do

dm ← (dl + dr)/2.0 ▷ Compute the mid point
g ←

∑
i p

m
i Sign(dm − di)(1− exp− |dm−di|

σ ) ▷ Compute the derivative by Eq.(5)
if g > 0 then ▷ Update search boundaries

dr ← dm

else
dl ← dm

end if
end while
return dm ▷ Return the mid point

hierarchically to 1/2 and 1/4 resolution with respect to the input volume, and then upsamples in
sequence to recover the resolution. The above procedure helps aggregate the matching information
across various scales. The final output is a volume that represents the discrete distribution of
disparity hypotheses. We present the details of a single hourglass structure in Tab.(10). For an input
image with resolution h × w, the D, H , W , C are 192, h/4, w/4, 32 respectively in the coarse
stage. In the refined stage, we set D, H , W , C to be 16, h/2, w/2, 16 respectively.

A.3 FORWARD PREDICTION ALGORITHM

In this section, we introduce the details of the forward prediction. As shown in Alg. 1, we adopt
the binary search algorithm to search for the optimal disparity for each pixel. The inputs to the
algorithm include the tolerance τ , the bandwidth σ of the Laplacian kernel, the disparity hypotheses
d, and the discrete distribution pm. The output is the optimal disparity.

A.4 EXPERIMENTS

A.4.1 ABLATION STUDY FOR TOLERANCE

In this part, we change the value of the tolerance τ in the binary search algorithm and observe its
effects. As shown in Tab.(11), when decreasing the value of τ , the search algorithm will iterate for
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more times to search for the optimal solution. And the error of the predicted disparity is reduced.
When τ ≥ 0.1, the algorithm achieves the best accuracy.

Table 11: Ablation studies for tolerance τ on Middlebury training set of quarter resolution. The first and
second bests are in red and blue respectively. Our method in bold. All settings are trained on SceneFlow and
evaluated on Middlebury training set without fine-tuning.

Tolerance τ Number of Iterations > 1px > 2px
Noc All Noc All

0.3 9 9.36 12.67 4.50 6.71
0.1 11 9.32 12.63 4.49 6.70
0.01 14 9.32 12.63 4.49 6.70

A.4.2 ABLATION STUDIES FOR HUBER LOSS

In this part, we evaluate the effects of different loss functions. In Tab.(12), we evaluate the L2 loss,
the L1 loss, and the Huber loss, i.e. a combination of L1 and L2 norm depending on the thresholding
value β. The table clearly shows the benefit of using risk minimization loss under L1.

Table 12: Ablation studies for loss function on Middlebury training set of quarter resolution. The first and
second bests are in red and blue respectively. Our method in bold. All settings are trained on SceneFlow and
evaluated on Middlebury training set without fine-tuning.

Loss > 1px > 2px
Noc All Noc All

L2 9.83 13.19 4.79 7.06
β = 10.0 9.41 12.73 4.55 6.76
β = 4.0 9.36 12.68 4.51 6.72
β = 1.0 9.33 12.64 4.50 6.70

L1 9.32 12.63 4.49 6.70

A.4.3 ABLATION STUDIES FOR NETWORK ARCHITECTURES

In this part, we apply our method to the IGEV (Xu et al., 2023) framework. Specifically, we use
our method to compute the initial disparities from the geometry encoding volume. The results are
shown in Tab.(13). Our method improves the accuracy of IGEV.

Table 13: Ablation studies for IGEV on Middlebury training set of quarter resolution. The first and second
bests are in red and blue respectively. Our method in bold. All methods are trained on SceneFlow and
evaluated on Middlebury training set without fine-tuning.

Backbone Training Test Param (M) Time (s) > 3px > 4px
Noc All Noc All

IGEV(Xu et al., 2023) Expectation Expectation 12.60 0.34 4.47 6.64 3.46 5.32
Expectation L1-Risk 12.60 0.38 4.37 6.63 3.40 5.32

A.4.4 ABLATION STUDIES FOR INTERPOLATION KERNEL

In this part, we change the interpolation kernel from Laplacian to Gaussian and observe the effects.
As shown in Tab.(14), we find the Laplacian kernel has better accuracy.

A.4.5 CROSS-DOMAIN GENERALIZATION

In this part, we apply our method to ITSA (Chuah et al., 2022) only at inference time. We use the pre-
trained model provided by ITSA, which is trained on synthetic images. As shown in Tab.(15), when
evaluated on real-world datasets, our method can improve the performance on various networks and
benchmarks.
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Table 14: Ablation studies for interpolation kernel on Middlebury training set of quarter resolution. The first
and second bests are in red and blue respectively. Our method in bold. All settings are trained on SceneFlow
and evaluated on Middlebury training set without fine-tuning.

Kernel Param (M) Time (s) > 1px > 2px
Noc All Noc All

Gaussian 11.96 0.25 9.35 12.66 4.50 6.71
Laplacian 11.96 0.25 9.32 12.63 4.49 6.70

Table 15: Cross-domain evaluation with ITSA. The first and second bests are in red and blue respectively. All
methods are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Backbone Training Test KITTI 2012 KITTI 2015 Middlebury ETH3D

ITSA-PSMNet Expectation Expectation 5.2 5.8 9.6 9.8
Expectation L1-Risk 5.0 5.6 9.0 9.7

ITSA-GwcNet Expectation Expectation 4.9 5.4 9.3 7.1
Expectation L1-Risk 4.6 5.2 8.8 7.1

ITSA-CFNet Expectation Expectation 4.2 4.7 8.5 5.1
Expectation L1-Risk 4.1 4.7 8.4 5.0

A.5 QUALITATIVE RESULTS

In this section, we present more qualitative results on real-world datasets in Fig. 4, Fig. 5 and Fig. 6.
It can be observed that in general our method generalizes and predicts high-frequency details better
than other recent methods.
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(a) Image (b) IGEV (c) DLNR (d) Ours

Figure 4: Qualitative Comparison. We compare our method with recent state-of-the-art methods such as
IGEV (Xu et al., 2023), DLNR (Zhao et al., 2023) on Middlebury (Scharstein & Szeliski, 2002). All methods
are trained only on SceneFlow (Mayer et al., 2016), and evaluated at quarter resolution.
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(a) Image (b) IGEV (c) PCWNet (d) Ours

Figure 5: Qualitative Comparison. We compare our method with recent state-of-the-art methods such as
IGEV (Xu et al., 2023), PCWNet (Shen et al., 2022) on ETH 3D (Schöps et al., 2017). All methods are trained
only on SceneFlow (Mayer et al., 2016).

(a) Image (b) IGEV (c) PCWNet (d) Ours

Figure 6: Qualitative Comparison. We compare our method with recent state-of-the-art methods such as
IGEV (Xu et al., 2023), PCWNet (Shen et al., 2022) on KITTI 2012 (Geiger et al., 2012). All methods are
trained only on SceneFlow (Mayer et al., 2016).
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