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ABSTRACT

While protein language models (PLMs) are one of the most promising avenues
of research for future de novo protein design, the way in which they transform
sequences to hidden representations, as well as the information encoded in such
representations is yet to be fully understood. Several works have attempted to
propose interpretability tools for PLMs, but they have focused on understanding
how individual sequences are transformed by such models. Therefore, the way in
which PLMs transform the whole space of sequences along with their relations
is still unknown. In this work we attempt to understand this transformed space
of sequences by identifying protein structure and representation with square-root
velocity (SRV) representations and graph filtrations. Both approaches naturally
lead to a metric space in which pairs of proteins or protein representations can be
compared with each other.
We analyze different types of proteins from the SCOP dataset and show that the
Karcher mean and effective dimension of the SRV shape space follow a non-linear
pattern as a function of the layers in ESM2 models of different sizes. Furthermore,
we use graph filtrations as a tool to study the context lengths at which models
encode the structural features of proteins. We find that PLMs preferentially encode
immediate as well as local relations between residues, but start to degrade for
larger context lengths. The most structurally faithful encoding tends to occur close
to, but before the last layer of the models, indicating that training a folding model
ontop of these layers might lead to improved folding performance.

1 INTRODUCTION

Protein language models (PLMs) are a novel and powerful approach for the modeling and design of
new proteins with desired structural or functional features (Ferruz & Höcker, 2022). Using PLMs
one can predict the folding of proteins in 3D space (Lin et al., 2023), generate new candidate se-
quences for viral vectors (Lyu et al., 2024), enzymes (Madani et al., 2023), biosensors (Hayes et al.,
2025) and functional binders (Chen et al., 2025; Bryant & Elofsson, 2023). A particular setting in
which PLMs have been found to be useful is in finding high-dimensional representations of protein
sequences that are thought to reflect the physical, evolutionary or functional properties of a protein.
This is especially useful since it allows one to efficiently evaluate and compare newly generated
proteins without the need for expensive modeling or experiments. One of the most widespread mod-
els of this type are the Evolutionary Scale Modeling (ESM) models (Lin et al., 2023; Hayes et al.,
2025), which we will analyze in this work.

It is empirically understood that the representations in these models form a good initialization for
folding models (Lin et al., 2023) and can also be used as a reward function to guide other generative
approaches (Wang et al., 2025). However, the precise features that these representations encode are
still not fully understood. In a previous work by Zhang et al. (2024), the authors develop a categorical
Jacobian approach to suggest that PLMs encode the pairwise statistics of coevolving residues. In
another work by Simon & Zou (2024), the authors use sparse autoencoders to suggest that PLMs
encode human-interpretable features such as binding, structural motifs and functional domains. In
yet another work that leverages the power of sparse autoencoders (Gujral et al., 2025), the authors
show that PLMs and the individual neurons in them also encode features related to biologically
relevant terms within the Gene Ontology hierarchy (Aleksander et al., 2023).
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What all of these works study is the transformation of individual sequences to high-dimensional
latent representations. However, such approaches ignore how different proteins or their representa-
tions relate to each other in the latent space of a PLM. If structure determines function, then it is
reasonable to assume that similar structure determines similar function. Furthermore, if protein rep-
resentations in PLMs characterize structural, evolutionary and functional features, then one might
expect that similar representations share such features. In addition, the representation of a protein
in a PLM is a tensor of shape amino acids×model dimension, however for many applications it is
standard to take the average over the first dimension, which ignores the shape of the representation,
thereby missing the full richness of the information present in PLM representations.

To state our motivation more formally, it is important to understand how the metric space of proteins
compares to the metric space of complete shape representations in PLMs. Metric space approaches
for the structural analysis of proteins have previously been considered within the rich field of shape
analysis (Liu et al., 2010). The essential realization of these approaches is that two proteins can
be structurally compared by finding the optimal way to superimpose them, allowing different types
of transformations. This is the backbone for many standard tools in the field of rigid and flexible
structural alignment such as root mean square deviation (RMSD), TM score (Zhang & Skolnick,
2004) and FATCAT (Li et al., 2020) among others. Despite their popularity, to our knowledge, such
methods have yet to be applied to study the hidden representations of PLMs.

In this work, we adapt and extend the shape-analysis framework to study the layerwise metric rep-
resentation spaces of eight different classes in the SCOP (Chandonia et al., 2022) dataset pushed
through several ESM2 models. We consider different features such as the Fréchet radius and the
effective dimensionality of these spaces and show that they follow a peculiar pattern as a function of
layer, which is especially prominent for larger models. Furthermore, we introduce a graph-filtration
method that allows us to separate and study the scale at which PLMs best maintain the structure of
proteins. Using this analysis, we show that while structure is always encoded better than chance in
deep PLM representations, it is optimally encoded at very short context lengths of 2 or at slightly
longer context lengths at ∼ 8 amino-acid neighbors.

2 BACKGROUND

In this section, we fix our notation and introduce the mathematical machinery necessary for com-
paring proteins and their corresponding representations in protein language models. We define two
different ways to compare proteins with PLM representations. In the first one, each protein is a
point in a high-dimensional (sometimes infinite-dimensional) space, and we define a metric that can
be consistently applied to proteins made up of different numbers of amino acids. In the second ap-
proach, we define a filtration of metric spaces that only allows us to compare proteins of the same
size. As we will argue, this is useful for understanding the context length that current PLMs are
sensitive to, as well as the degree to which protein structure is encoded in PLMs.

We start by outlining several ways to mathematically formulate what proteins are. For each such
definition of a ”protein” we also propose a metric space in which such proteins can be sensibly
embedded in.

1. Proteins as sequences: In this case, we define a protein P by its amino acid sequence. So,
a protein of length L will live in a space AL, where A is an alphabet of the 20 canonical
amino acids. Given that we want to compare proteins with different numbers of amino

acids, we can define the space of all possible amino acid sequences as A∗ =
∞⋃
L=0

AL. An

edit distance, such as the Levenshtein distance for example, can be used to define a metric
on this space. Thus, the metric space defined by amino acid sequences will be the pair
(A∗, dlev).

2. Proteins as three dimensional point clouds: If we consider the actual physical structure of a
protein, we can define a protein as an ordered point cloud of size L in R3 equipped with the
Euclidean metric. However, R3 contains points rather than point clouds, so point clouds

of arbitrary sizes live in a different space, namely P∗
3 =

∞⊔
n=0

(R3)n. While it is possible to

define a metric on this space, such metrics (for example, Hausdorff or Wasserstein) often
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Figure 1: A) Depiction of a single sequence (1kr1) mapped to a 3d structure and a PLM represen-
tation. B) Illustration of how the space of sequences is first transformed into a space of curves and
afterwards into a shape space. The lines sticking out of the sphere show the fibers of the map ρ.

ignore the ordering of the point cloud, which matters when studying proteins. Note that
each protein can be described through a map ψ : A∗ → P∗

3 from the sequence space to L
points in R3.

3. Proteins as curves: Instead, we can study structure by identifying proteins with curves in
R3. This is done by identifying the space of proteins with the space of continuous curves
Γ3 = {γ : γ : [0, 1] → R3}. We further require that for every protein of length L and
coordinates ψl(P ) ∈ R3 we have γ(tL) = ψl(P ) if l = tL ∈ N. As we will discuss later,
this definition of a protein treats proteins of any length as the same object and makes it
easier to define a metric that compares them.

4. Proteins as graphs: Finally, proteins can also often be though of as graphs. This usually
requires a contact map, which is a binary matrix that encodes whether two residues are
closer than a specified threshold (6-12Å being a standard choice). We define this approach
more rigorously in subsection 2.2.

Notice that while we have defined different ways to think of proteins, the second and third definitions
can also be generalized to any ordered point cloud. Therefore, we can use them to study 3d protein
structure as well as the embeddings of sequences in protein language models. We will denote the
map from an amino acid sequence to the embedding space of a language model by the function
ϕ : A∗ → P∗

m, where m >> 3 is the embedding dimension of the model. Thus, our approach can
be summarized by Figure 1 and the following diagram,

A∗ P∗
m

P∗
3 Γm

ϕ

ψ π

π

(1)

where π is a map that sends point clouds in different spaces to a shared metric space of curves in
Rm. Practically, one can think of π as a choice of how to interpolate ordered point clouds so that
they become curves in Rm.

2.1 SHAPE SPACES AND THE SQUARE-ROOT VELOCITY REPRESENTATION

A fundamental feature of protein structure is invariance to rotations and translations. What this
implies is that protein structure is invariant under isometries of R3 or the special Euclidean group
SE(3). This is the principle behind models such as the SE(3)-transformer (Fuchs et al., 2020),
which is equivariant to transformations from this group and is thought to play an important role in
the success in folding models such as AlphaFold2 (Jumper et al., 2021) and RoseTTAFold (Baek
et al., 2021).

In the present work we use the square-root velocity (SRV) framework introduced in (Srivastava
et al., 2010) to enforce invariance to translation. For any ordered point cloud, we interpolate the
points with quadratic splines, thereby generating a curve γ which has the same length independently
of the number of amino-acids in a protein sequence. Following the interpolation step, the SRV
representation is defined as,
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q(t) = γ̇(t)/
√

||γ̇(t)||. (2)

From the norm in the denominator one can see that this approach projects curves to an infinite-
dimensional sphere S∞, which makes computing geodesics, and thereby measuring distances,
straightforward. Since translations are already accounted for, we quotient out the remaining ac-
tions of the SE(m) group, namely the rotations generated by SO(m). This is done using SVD to
solve the optimization problem for any two SRV curves q1 and q2,

R̂ = argmin
R∈SO(n)

||q1 −Rq2||. (3)

Given this, the distance between any two curves is defined in terms of the L2 norm as d(q1, q2) =
||q1 − R̂q2||2. It is often the case that one also removes different reparameterizations of curves,
but we have avoided that step given that interpolating between residues forms a consistent way of
parameterizing proteins, and this additional step is not worth the computational cost.

In summary, we map sequences to their 3d structure and to their representations in a PLM. These
form point clouds which we interpolate to map to curves that are then transformed to their SRV
representation. Finally, we quotient out rotations to form the shape space, which inherits a Rieman-
nian structure and allows for the efficient computation of distances. We denote this procedure by a
quotient map ρ : Γm → Γm/SE(m). Notice that the space of protein curves under this map form
a submanifold of the quotient space H = S∞/SO(m) as illustrated in panel B of Figure 1. All
curves that are the same up to actions of SE(m) end up at a single point y on this submanifold. The
set of these curves is called a fiber and is defined by ρ−1(y) = {γ|ρ(γ) = y}.

2.2 GRAPH FILTRATIONS

When making predictions, language models have to consider the context within which a token exists.
The context length to which a model is sensitive is unknown apriori. Furthermore, while using a
contact map with a threshold of 6-12Å makes sense in real 3d protein structure, it is less clear how
to choose such a threshold in PLM representations where such a unit is not defined. For this reason,
one needs to work with methods that are capable of considering many possible context lengths. One
such example is the concept of a filtration, which is fundamental in the topological data analysis
literature (Edelsbrunner & Harer, 2010) and has been extended to graphs within the field of graph
learning (Hofer et al., 2020; O’Bray et al., 2021).

In a filtration, one defines a parameter t and a family of objects St ⊂ St′ whenever t < t′. In this
specific case, we consider filtrations of graphs composed of a set of vertices V = {v1, v2, ..., vN}
with coordinates vi ∈ Rm and edges whenever d2(vi, vj) < t, with d2 being the Euclidean metric
enforced by the ambient space. This induces a filtration on their adjacency matrices At, since
Ati,j ≤ At

′

i,j for all i, j when t < t′.

Comparing the coordinates of real proteins in R3 to those of a PLM in Rm is not a well-defined
procedure. However, for the same protein P of length L, both adjacency matrices live in {0, 1}L×L.
This allows us to compare the structure of a protein with the structure of its embedding in a PLM. A
natural choice of a metric in this space is the entry-wise 1-norm of the difference between the two
adjacency matrices or dA(ψ(P ), ϕ(P )) = ||ψ(At) − ϕ(At)||1, where by abuse of notation ψ(At)
and ϕ(At) respectively indicate the flattened adjacency matrix of the three-dimensional structure
and the PLM representation at the t-th filtration value.

For our analysis we construct the k nearest neighbor graphs of the true protein structure and PLM
representation as shown in Figure 2. For small k, the graphs can only differ at a few locations,
and the distance between their adjacency matrices is small. On the other hand, as one increases the
number of neighbors, the graphs converge to cliques, and therefore this distance converges to 0. In
general, these distances tend to follow a hypergeometric distribution over k. To counteract this, we
normalize the distance by the empirical distribution of distances between real proteins and random
point clouds Ri ⊂ Rm. Therefore, for a family of proteins P = {P1, P2, ..., PN}, we get a filtration
of distance histograms {dA(Pi, ϕ(Pi))}ki . At each level of the filtration we study the normalized
first moment, which we will refer to as the graph filtration moment. It is given by the equation
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Figure 2: Illustration of how each protein or PLM representation is transformed to a filtration of
graphs with a different number of neighbors. The connectivity in the PLM representation is super-
imposed over the 3d protein graph for clarity.

EPi∈P[d(Pi, ϕ(Pi))]norm =
EPi∈P[dA(Pi, ϕ(Pi))]

EPi∈P,Ri∈R[dA(Pi, Ri)]
. (4)

3 RESULTS

All of the following analysis is based on 1098 randomly sampled protein structures from the SCOP
dataset (Chandonia et al., 2022). We sampled up to 200 proteins (some proteins were excluded
due to missing a pdb file) from each of the following protein classes – [Alpha, Beta, Alpha/Beta,
Alpha+Beta, Alpha and Beta, Membrane and cell surface proteins and peptides, Small proteins and
Designed proteins]. More information about these protein classes can be found on the SCOP website
https://scop.berkeley.edu/ or in Chandonia et al. (2022).

3.1 GEOMETRY OF PLM SHAPE SPACES

In section 2.1 we defined a notion of a shape space which inherits a Riemannian structure that allows
us to compute distances and also carry out computations in the tangent space of each fiber. With
this in hand, we can define and estimate statistics of curves on the shape space as well as make
use of tools such as tangent PCA. We therefore track two measures of PLM shape space geometry,
namely effective dimension and Fréchet radius. For all computations we use the Geomstats package
(Miolane et al., 2020).

For a set of proteins P = {P1, P2, ..., PN}, we first interpolate them at 1000 equally spaced
points with quadratic splines and then project them to the SRV shape space giving us the set
Y = {y1, y2, ..., yN}. There is no a priori correct choice of spline order, but quadratic splines are the
simplest option that is still differentiable as required by the SRV framework. Very high order splines
are expected to add a lot of additional structure to the PLM point clouds and could thus bias the
results. For an evaluation of the robustness of our results to spline order and interpolation samples
see Figure 6. We compute the Fréchet radius by finding the Fréchet mean pF = argmin

x∈H

∑
d(x, yi)

through gradient descent after which the Fréchet radius is defined as,

rF = E
yi∈Y

[d(yi, pF )]. (5)

An intuitive way to think of this object is as a measure for how spread out PLM representations
are with respect to each other on the shape space. Therefore, a small value indicates that different
proteins are represented by similar shapes, whereas a larger value indicates the opposite. As one
can see in Figure 3 the Fréchet radius tends to decrease with depth and is much smaller for PLM
representations than for real 3d protein structures. Surprisingly enough, it does not seem to vary
with model size, indicating that the variability among shapes is low for all models.

5
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Figure 3: Effective dimension and Fréchet radius for each of the four models as a function of the
layers. The black line indicates the value of each metric for the 3d protein structure. As one can see
larger models exhibit dimension expansion in the initial layers and contraction later on.

Another measure describing the geometry of shape spaces in PLMs is the dimension of the sub-
manifold on which they live. In Euclidean data this is usually measured by the effective dimension
defined through the eigenvalues {λ1, λ2, ..} of the covariance matrix of the data or

λeff =
(
∑
λk)

2∑
λ2k

. (6)

This procedure can be extended to curved data through tangent PCA (Abboud et al., 2020) where
one first uses the log map to project all data to the tangent space of the Fréchet mean by zi =

logpF (yi) =
d(yi,pF )

sin[d(yi,pF )] (yi − cos[d(yi, pF )]pF ) and afterwards applies PCA in this tangent space.
A large effective dimension implies that PLM representations explore many different variations in
shape, whereas a small effective dimension implies that a few specific variations are enough to de-
scribe the differences in PLM representation shapes. Judging by Figure 3, it seems like PLMs go
through two regimes – a dimension expansion in the first layers followed by dimension contraction
towards the end. Larger models expand the dimension more than the 3d structure baseline, whereas
the smaller models stay below it. The largest models even show a second peak in dimension expan-
sion.

It is also worth pointing out that, especially in later layers, this dimensionality is very low and
severely different from the dimensionality found through standard PCA on the flattened PLM rep-
resentation (see Figure 5 in the Appendix). We interpret this to mean that while shapes are encoded
in a high-dimensional ambient space, the differences in shapes of PLM representations can be de-
scribed by just a few shape descriptors. In other words, PLMs encode proteins by similar shapes
while spanning many different directions within their ambient space. To see if this trend only occurs
in the ESM2 models, we also ran the same analysis on the general purpose Ankh model Elnaggar
et al. (2023). As one can see in Figure 7, a similar pattern, though with a more extreme initial
dimension expansion phase, can be seen in that model.

3.2 CONTEXT LENGTH SENSITIVITY OF PLMS

While it is interesting to understand the global geometric features of PLM representation shape
spaces, language models are known to encode contextual features of text which are hard to relate
to the aforementioned measures. In order to better understand how structural context is encoded
in PLMs, we use the graph filtration moment defined in Equation 4. This measure indicates how

6
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Figure 4: Graph filtration moments for all models and all layers evaluated on different protein classes
from the SCOP database. Curves increase in transparency with increasing layer number. The right-
most plots show the minimal value of the filtration as a function of the layer. Each curve is color-
coded for protein class in correspondence with the other plots.

similar the shapes of PLM representations are to their 3d protein structure counterparts. A value of
1 or above means that the PLM arranges all residues in a random point cloud, whereas lower values
imply that 3d protein structure is encoded in the PLM representation.

In Figure 4 we show the graph filtration moments across all layers of the different ESM2 models
on the SCOP protein classes. The curves for shallow layers are more transparent than deep layers
and the rightmost plot shows the minimum value across the filtration as a function of depth. Several
peculiar patters arise throughout the filtration. The first thing to note is that larger models have a
better similarity to 3d protein structure in their intermediate layers, but model size seems to have
less of an impact at the last layer. This implies that while encoding protein structure emerges as an
important intermediate processing step for unmasking, it is not as important at the last classification
step.

The second striking observation is that in all models many of the curves have a bimodal shape
throughout the filtration. This implies that PLM representations encode 3d protein structure at both
a very local level, at about 2 neighbors, as well as at a slightly less local level, at about 8 neighbors.
The improved encoding at 2 neighborhoods has a simple interpretation as PLM representations
having similar immediate neighbors to 3d protein structure. However, the second valley at around 8
neighbors is harder to interpret. Given the fact that it is less pronounced in the Beta class, one might
speculate that it might be related to representations of Alpha helices, but more work is needed to
understand the precise meaning of this feature.
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Finally, it is also clear that certain protein classes like Alpha/Beta are represented by shapes that
are much more structurally similar to their 3d structure compared to other classes such as small and
designed proteins. Furthermore, while initial layers showed a correlation between protein length
and the minimum graph filtration moment, later layers did not show such a pattern (see Figure 9).
This indicates that local context structure is represented independently of protein length. The results
for the Ankh model show a similar pattern as can be seen in Figure 8.

4 DISCUSSION

We have applied two approaches in order to better understand the geometry of shape spaces gen-
erated by PLM representations. The first uses SRV representations and quotients out rotations to
create a space with Riemannian structure, which allows us to define a metric and generalize statisti-
cal methods such as PCA to shapes. The second uses graph filtrations to study how protein structure
is encoded in the layers of a PLM at as many levels of resolution as one desires. Given the abstract
nature of our results, here we provide a discussion of how they can be understood more intuitively
and propose several future directions that would be exciting to pursue.

4.1 EXPANSION AND CONTRACTION IN PLM REPRESENTATION SHAPE SPACES

As shown in Figure 3, the initial layers in PLMs exhibit an expansion in effective dimensionality,
whereas later layers contract the shape space to a very low dimensional subspace. Previous work
on traditional language models has used the notion of intrinsic dimensionality (Li et al., 2018) and
has shown that language models have a remarkably low intrinsic dimensionality relative to model
size (Aghajanyan et al., 2020). Similar measures of dimensionality are also thought to relate to task
performance (Marbut et al., 2024), training convergence and generalization (Ruppik et al., 2025).

The specific expansion-contraction pattern observed in our estimate of dimensionality is very similar
to the behavior seen in Cheng et al. (2024) and Valeriani et al. (2023). The universal appearance of
this pattern is thought to correspond to a general high-abstraction regime in the dimension-expansion
phase and a specific semantically rich regime in the contraction phase. These properties of language
model layers can be effectively used to solve any task.

Our approach looks at the dimensionality of the data within the shape space manifold rather than
directly looking at all residue representations in the embedding space. This leads to an arguably
more clear interpretation, the initial layers of a PLM represent proteins by shapes that can be flex-
ibly deformed to each other by combining many different non-linear shape transformations. The
higher the dimensionality, the more such transformations there are. Therefore, the sharp reduction
in dimensionality in later layers means that there are remarkably few transformations (less than in
the space of 3d protein shapes) that are needed to efficiently navigate PLM representation shape
spaces. Understanding the precise nature of these transformations would be an exciting direction for
future work.

4.2 STRUCTURAL ENCODING IN PLM REPRESENTATIONS

In addition to studying the geometry of PLM representation shape spaces, we also looked at how 3d
protein structure is encoded in the layers of a PLM by using graph filtrations. We observe a bimodal
pattern in which protein structure is optimally encoded at the resolution of very short context lengths
of about 2 residues as well as at slightly longer context lengths of around 8 residues. The PLM
representations of Alpha/Beta proteins showed by far the highest similarity to their 3d structure,
whereas small and designed proteins were represented by more distinct shapes. While outside of the
scope of this work, understanding what features of these protein classes determine how much of the
structure is encoded by PLMs is an exciting direction for future research.

The finding that PLMs encode 3d protein structure at all is surprising given that PLMs are given
masked sequences and are then trained to predict the most likely missing amino acids. There is no
point at which PLM representations are incentivized to encode protein structure. Therefore, either
learning protein structure is beneficial for the unmasking process or the function learned during
unmasking shares some properties (one might say ”correlates”) with the function used in the folding
of a sequence to its 3d structure.
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Finally, our findings further explain why folding models such as ESMFold benefit from starting with
a pretrained PLM that has already partially learned protein structure. Our observation that structure
is not optimally encoded in the last layer, but rather in the layers that immediately precede it, can be
used to improve initializations for protein models. Given our results, we expect that better folding
performance can be achieved if one uses the layers with the optimal structural PLM representation
rather than the whole model. Initial attempts to show this with linear models or small networks
failed to generalize (data not shown) and verifying this hypothesis would require training and testing
larger models. The way in which layerwise representations can be used for folding, along with other
functional tasks, is another avenue of future research that would be exciting to explore.
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A APPENDIX

A.1 ADDITIONAL FIGURES

Figure 5: Effective dimension esimated using PCA directly on PLM representations. Each PLM
representation is first interpolated at 1000 points. Afterwards each tensor of shape 1000×PLM
dimension at a layer is flattened, meaning that the maximum dimension of this space is 1000 times
the dimension at the layer.
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Figure 6: Robustness with respect to interpolation order (indicated by p) and number of sampled
points (indicated by n) evaluated on the ESM2 - 35M model.

Figure 7: Effective dimension and Fréchet radius for the base Ankh model as a function of the layers.

Figure 8: Graph filtration moments for the base Ankh model.
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Figure 9: Protein length vs minimum graph filtration moment for several layers of the Ankh model.
Values above the plots indicate the Spearman correlation values.

14


	Introduction
	Background
	Shape spaces and the square-root velocity representation
	Graph filtrations

	Results
	Geometry of PLM shape spaces
	Context length sensitivity of PLMs

	Discussion
	Expansion and contraction in PLM representation shape spaces
	Structural encoding in PLM representations

	Appendix
	Additional figures


