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Abstract
People nowadays use smartphones to capture photos from multi-
media platforms. The presence of moiré patterns resulting from
spectral aliasing can significantly degrade the visual quality of im-
ages, particularly in ultra-high-definition (UHD) images. However,
existing demoiréing methods have mostly been designed for low-
definition images, making them unsuitable for handling moiré pat-
terns in UHD images due to their substantial memory requirements.
In this paper, we propose a novel patch bilateral compensation
network (P-BiC) for the demoiré pattern removal in UHD images,
which is memory-efficient and prior-knowledge-based. Specifically,
we divide the UHD images into small patches and perform patch-
level demoiréing to maintain the low memory cost even for ultra-
large image sizes. Moreover, a pivotal insight, namely that the
green channel of an image remains relatively less affected by moiré
patterns, while the tone information in moiré images is still well-
retained despite color shifts, is directly harnessed for the purpose of
bilateral compensation. The bilateral compensation is achieved by
two key components in our P-BiC, i.e., a green-guided detail trans-
fer (G2DT) module that complements distorted features with the
intact content, and a style-aware tone adjustment (STA) module for
the color adjustment. We quantitatively and qualitatively evaluate
the effectiveness of P-BiC with extensive experiments. The code is
publicly available at: https://github.com/zeyuxiao1997/P-BiC.
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1 Introduction
Moiré patterns often arise when a camera captures a subject with
a patterned texture or a repetitive structure that has a similar fre-
quency to the camera’s sensor, resulting in visual distortion and a
loss of detail in the captured image. To eliminate moiré patterns
and restore high-quality images, image demoiréing has been pro-
posed and drawn increasing attention in both academia and indus-
try. Recent works have made remarkable progress in improving
the performance of image demoiréing by introducing advanced
neural network architectures [6, 7, 14, 16, 19–21, 24, 26, 34, 39–
42, 44, 46, 52, 53, 55]. However, those methods are primarily de-
signed for removing the moiré patterns in low-definition (LD) im-
ages, often resulting in intense computational cost and poor perfor-
mance due to more complex and pronounced moiré patterns when
applied to high-definition (HD) images, e.g., photographs acquired
by present smartphones.

Recent works have been proposed to eliminate moiré patterns
in HD and even ultra-HD (UHD) images [12, 18], which are becom-
ing more popular in current imaging systems. Compared with LD
images, the moiré patterns in HD and UHD images are more com-
plicated because of the severe interference between the much finer
patterns, such as the individual pixels on an HD display and the
sampling grid of image sensors [7]. In addition to the complexity
of moiré patterns in HD and UHD images, an HD/UHD demoiréing
method also needs to consider the large amount of memory cost
with the increasing image size. FHDe2Net [7] is a pioneer work for
the removal of moiré patterns in HD images, in which the moiré
patterns are first erased at the low-resolution stage, and the textures
are then refined at the high-resolution stage. However, FHDe2Net
generates artifacts when performing demoiréing for UHD images,
which are more susceptible to moiré patterns due to the higher spa-
tial frequency. In contrast, ESDNet [46] has been proposed recently
for the demoiréing in UHD images with promising performance,
where a semantic-aligned scale-aware module is designed for the
scale variation of moiré patterns. Despite the high performance, two
limitations exist in ESDNet: (i) it neglects the internal moiré-specific
properties, leading to sub-optimal results with unrealistic artifacts
and incorrect tones (see Figure 1 (left)); (ii) when attempting to
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Figure 1: Left: Examples of ultra-high-definition image demoiréing. (a)-(b) The degraded image with a resolution of 3840 × 2160
from the UHDM dataset [46]. (c) Results generated by ESDNet-L [46]. (d) Results generated by our proposed P-BiC. (e) Ground-
truth images. The presented results effectively highlight the superior capability of P-BiC in eliminating undesired moiré
patterns and preserving intricate textures. Right: Comparison of GPU memory utilization among distinct image demoiréing
techniques. Missing data points indicate that moiré images at these resolutions cannot be reconstructed on an 80GB GPU
(NVIDIA A100) due to memory limitations. P-BiC stands out by not only restoring moiré images up to a resolution of 7168× 7168,
but also achieving a remarkable 4-fold reduction in memory utilization when restoring an image of 3072 × 3072, as compared to
the method presented in [46]. Notably, these values are derived from feeding the entire image into the GPU for demoiréing.

directly input the entire image without cropping into the network,
the issue of “out of memory” arises, particularly when processing
images of higher resolutions. For instance, on a high-performance
GPU like the NVIDIA A100 with 80GB of memory, the ESDNet
method can handle a maximum resolution of 3072 × 3072 before
encountering this limitation.

To address the above problems, in this paper, we introduce a
novel method named the Patch Bilateral Compensation Network
(P-BiC) for UHD image demoiréing. This novel method offers mem-
ory efficiency and leverages prior knowledge to guide the process.
The key to memory efficiency lies in partitioning a full-resolution
feature map into several smaller patches, a technique that enables
processing UHD moiré images within the constraints of limited
memory resources. To illustrate, P-BiC can conduct demoiréing on
a 7168 × 7168 resolution image while staying within the memory
limits of a single NVIDIA A100 GPU, as depicted in Figure 1 (right).

Furthermore, we leverage a fundamental observation as the guid-
ing principle for our bilateral compensation approach. Specifically,
we exploit the fact that the green channel of an image is less affected
by moiré patterns, which can be attributed to the red and blue chan-
nels having half the sampling frequency of the green channel in the
color filter array [1, 6]. This inherent property allows the moiré im-
age to retain well-preserved color information despite the presence
of moiré artifacts. Building upon this observation, we disentangle
the UHD demoiréing task into two distinct sub-tasks, which are
facilitated by the core components of P-BiC: the Green-Guided De-
tail Transfer (G2DT) module and the Style-Aware Tone Adjustment
(STA) module. The G2DT module effectively employs the features
of the green channel to complement distorted features with intact
content information. Conversely, the STA module undertakes color
representation adjustments for the features of the green channels,
which might otherwise lose significant tone details. The synergistic
integration of these components empowers P-BiC to deliver both ef-
ficient GPU memory usage and high-quality demoiréing outcomes,
as showcased in Figure 1. These achievements stem from the design

of a patch-level processing strategy and the strategic utilization of
prior observations to guide bilateral compensation.

We summarize our contributions as follows. (1) We identify the
limitations of existing UHD image demoiréing methods, i.e., the
intense memory cost, and the poor-quality results. Inspired by that,
a novel network is specifically designed in this work for UHD image
demoiréing, achieving both memory efficiency and higher quality
results. (2) We propose a novel patch bilateral compensation net-
work (P-BiC) that operates at the patch level to restore UHD moiré
images with limited memory use and utilizes a prior observation
for bilateral compensation. In particular, two key modules of P-BiC,
namely the G2DT module and the STA module, serve for the bi-
lateral compensation. (3) We validate the effectiveness of P-BiC
through comprehensive experiments on benchmark datasets. It sig-
nificantly outperforms existing methods while maintaining lower
computational costs, thus highlighting the efficacy and practicality
of our proposed method.

2 Related Work
Conventional image demoiréing. To suppress moiré patterns,
Kim et al. [9] place an optical low-pass filter in front of the lens
to avoid aliasing. However, it cannot eliminate moiré artifacts
while reserving the image details. Similarly, it is time-consuming
to capture a moiré-free image by selecting an optimal angle of
lens [10, 22]. Later methods have relied on various filtering or
image decomposition techniques. Wei et al. [33] propose a median-
Gaussian filtering method for eliminating moiré patterns in X-ray
microscopy images. Liu et al. [13] utilize a low-rank and sparse
matrix decomposition-based method to remove moiré patterns
from texture images. Yang et al. [42] utilize layer decomposition on
polyphase components for demoiréing.
Deep image demoiréing. Sun et al. [26] propose a multi-scale
demoiréing network with the first benchmark dataset that cap-
tures real LCD screens for training and evaluating demoiréing
models. He et al. [6] add annotations of different types of moiré
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Figure 2: Overview of our proposed P-BiC. P-BiC can generate a moiré-free image 𝐼 from the moiré-degraded observation 𝐼𝑀 .
After extracting green-channel image 𝐺𝑀 from 𝐼𝑀 , both of them are converted into the feature domain, denoted as 𝐹𝑀 and
𝐹𝐺 . These rescaled features are then divided into patches, followed by the bilateral compensation, which consists of the G2DT
module and the STA module. The outputs of both modules are then fused and assembled to 𝐹 . Finally, 𝐹 is fed to the feature
decoder for moiré-free image reconstruction.

patterns to the dataset in [26] and propose MopNet for demoiréing.
Yue et al. [48] propose a multiplicative operation-based network
that simultaneously removes moiré patterns and improves image
brightness. Zheng et al. [52, 53] and He et al. [7] further exploit
DCT domain priors for demoiréing, while Liu et al. [16] utilize
wavelet domain features to separate the frequencies of moiré pat-
terns. Liu et al. [17] introduce an additional input of a focused-
defocused image pair for demoiréingwith a self-supervision scheme.
Wang et al. [29] propose a coarse-to-fine disentangling framework
for demoiréing. Zhang et al. [51] propose a patch-based frame-
work for efficient demoiréing based on existing methods. Recently,
Yu et al. [46] propose ESDNet, achieving promising performance
on image demoiréing.
High-definition image restoration. With the rapid advance-
ment of mobile devices, modern smartphones are now capable of
capturing HD and UHD images, underscoring the importance of re-
search in HD and UHD image restoration for practical applications.
For instance, Zheng et al. [54] introduce a dehazing method tai-
lored for UHD images, employing a multi-guided bilateral learning
framework. This approach integrates both global and local guid-
ance information to produce more accurate and visually appealing
dehazed images. Deng et al. [4] propose a multi-scale separable net-
work designed for UHD video deblurring, harnessing both spatial
and temporal cues to generate sharp and clear video frames. Yi et
al. [43] introduce a contextual residual aggregation mechanism by
learning the change of image resolution for UHD image inpainting.
Feng et al. [5] propose GLSGN for UHD image restoration. The
GLSGN adopts both local and global pathways to restore images
in a step-wise manner, and is effective in deraining, dehazing, and
reflection removal. In the realm of image demoiréing, FHDe2Net [7]
and ESDNet [46] have been developed to address moiré patterns in
HD and UHD images.
Green channel prior. As discussed in [28], the CMOS sensor has
different sensitivity to light of different wavelengths or colors, and

in most illumination conditions, green channels are brighter than
red and blue channels in Bayer pattern CFA images. As a result,
the green channel has more texture information than red/blue
channels in most natural images. While previous works, such as
MopNet [6], have acknowledged that the green channel is less
affected by moiré interference, they have not fully exploited this
inherent characteristic. Some existing methods [8, 15, 27, 49] utilize
the green channel to reconstruct the other color channels. However,
they do not delve into the specific details of the green channel or
explore its complementary nature with RGB images. In contrast
to these approaches, our motivation stems from the observation
that the green channel is less impacted by moiré but lacks color
information. Additionally, the tone information in moiré images
remains largely intact despite color shifts.

3 Method
3.1 Overview
As shown in Figure 2, given a moiré-degraded image 𝐼𝑀 ∈ R3×𝐻×𝑊 ,
P-BiC can generate a moiré-free image 𝐼 , which should be close to
the ground-truth image 𝐼𝐺𝑇 . To fully exploit the internal moiré-
specific property, we extract the green-channel moiré image 𝐺𝑀

from 𝐼𝑀 , which is less affected by moiré patterns. We first feed 𝐼𝑀
and 𝐺𝑀 to pre-processing heads to enlarge the receptive field [46],
followed by the feature encoders to extract multi-scale features
{𝐹𝑀1 , 𝐹

𝑀
2 , 𝐹

𝑀
3 } and {𝐹

𝐺
1 , 𝐹

𝐺
2 , 𝐹

𝐺
3 }. The sizes of 𝐹

𝑀
3 and 𝐹𝐺3 are 𝑐×ℎ×𝑤 .

The encoders consist of three building blocks (convolutional layers
and residual blocks), and the second and third blocks halve the
size of the feature maps with stride 2. Both encoders do not share
weights. To save the memory costs, we divide 𝐹𝑀3 and 𝐹𝐺3 into se-
quences of small feature patches {𝐹𝑀3,𝑖 |𝑖 = 1, 2, . . . , 𝑁 } and {𝐹𝐺3,𝑖 |𝑖 =
1, 2, . . . , 𝑁 }, and we also divide the rescaled images 𝐼𝑀↓ and 𝐺𝑀↓

into sequences of small image patches {𝐼𝑀↓
𝑖
|𝑖 = 1, 2, . . . , 𝑁 } and

{𝐺𝑀↓
𝑖
|𝑖 = 1, 2, . . . , 𝑁 }. We then feed {𝐹𝑀3,𝑖 , 𝐹

𝐺
3,𝑖 , 𝐼

𝑀↓
𝑖

, 𝐼
𝐺↓
𝑖
} to the
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Figure 3: Four patch-dividing strategies toward memory-
efficient image demoiréing. See Section 3.2 for details.

G2DTmodule and the STAmodule for bilateral compensation. Next,
the output feature patches from the G2DT module and the STA
module are fused and assembled into a high-resolution feature 𝐹 ,
which shares the same size as 𝐹𝑀3 and 𝐹𝐺3 . Finally, 𝐹 is fed to the fea-
ture decoder, followed by the pixel-shuffle upsampling operation,
to obtain the reconstructed moiré-free image 𝐼 . The feature en-
coders and the feature decoder are connected via skip-connections,
allowing features containing rich high-resolution information to
facilitate the reconstruction of moiré-free images.

3.2 Memory-Efficient UHD Image Demoiréing
Image demoiréing methods face significant challenges when deal-
ing with UHD images due to high memory requirements, which
can limit their practicality and scalability. We propose a memory-
efficient strategy for UHD image demoiréing that centers on re-
ducing the resolution of the processed feature 𝐹 . To this end, we
present four possible methods, each with multiple design choices,
for achieving memory saving in UHD demoiréing.
Cropping non-overlapped patches. Given a high-resolution fea-
ture, the reflect padding operation is first adopted, and we then crop
𝐹 intomultiple non-overlapping patches {𝐹𝑖 |𝑖 = 1, 2, . . . , 𝑁𝑛𝑜 }. Each
divided patch share the same size 𝐹𝑖 ∈ R𝑐×(ℎ/

√
𝑁𝑛𝑜 )×(𝑊 /

√
𝑁𝑛𝑜 ) . Af-

ter we process each divided patch separately with the bilateral
compensation, we combine them in their original order.
Cropping overlapped patches.We first utilize the reflect padding
operation, and we then crop 𝐹 into multiple overlapped patches
{𝐹𝑖 |𝑖 = 1, 2, . . . , 𝑁𝑜 } using a 𝐾 × 𝐾 pixels sliding window with a
stride of 𝑆 . After the loop of patch-level bilateral compensation,
we discard the overlapping regions on the processed patches and
assemble them into a complete feature.
Unlearnable rescaling.We feed a pooled small-sized feature in-
stead of feeding the full-resolution one to the bilateral compensation
part. We then upsample the processed feature to the original size.
Learnable rescaling.We utilize convolutional layers with different
strides for learnable rescaling, and we feed the compact feature to
the bilateral compensation stage.

Further experiments demonstrate that cropping non-overlapped
patches with 𝑁𝑛𝑜 = 4 is an effective strategy that can achieve a
favorable balance between performance and computational costs.

3.3 Bilateral Compensation
The presence of moiré patterns introduces a challenging task of
demoiréing, as they exhibit a wide-ranging frequency spectrum

that intertwines with the underlying images. This complexity is
further amplified when dealing with UHD images due to height-
ened interference. Consequently, it becomes imperative to fully
harness the intrinsic moiré-specific characteristics to achieve ef-
fective UHD demoiréing. A fundamental insight emerges from the
structure of a typical Bayer color filter array: the green channel’s
sampling frequency is twice that of the red and blue channels. This
property results in the green channel being less affected by moiré
patterns, with the tone information in the moiré image remaining
relatively intact. Our proposed P-BiC capitalizes on this observation
by introducing the G2DT and STA modules. These modules operate
at the patch level and engage in bilateral compensation to exploit
the moiré-specific properties, ultimately contributing to improved
UHD demoiréing results.
Green-guided detail transfer. As shown in Figure 4, the G2DT
module is designed to transfer the details contained in green-channel
images to the moiré images. We first concatenate the moiré image
feature 𝐹𝑀3,𝑖 and the moiré feature 𝐼𝑀↓3,𝑖 , followed by a convolutional
layer to generate the enhanced moiré feature 𝑭𝑀

𝑖
. The enhanced

green image feature 𝑭𝐺3,𝑖 can be obtained in the same way

𝑭𝑀3,𝑖 = Conv( [𝐹𝑀3,𝑖 , 𝐼
𝑀↓
𝑖
]), 𝑭𝐺3,𝑖 = Conv( [𝐹𝐺3,𝑖 , 𝐼

𝐺↓
𝑖
]), (1)

where [·, ·] denotes the concatenate operation. Such a process com-
bines the complementary advantages of the feature domain and
the image domain, which promote the enrichment of feature repre-
sentation [25]. 𝑭𝑀3,𝑖 and 𝑭𝐺3,𝑖 are then fed to the simple yet effective
green-channel branch and the moiré branch. The green-channel
branch aims to refine and enhance the details of the green image
feature. It first convolves the green channel feature 𝑭𝐺3,𝑖 , and the
residual 𝑅𝐺3,𝑖 between the convolved green-channel feature and the
moiré feature 𝑭𝑀

𝑖
is then convolved as

𝑅𝐺3,𝑖 = Conv(𝑭𝐺3,𝑖 ) − 𝑭
𝑀
3,𝑖 ,

𝑭𝐺
′

3,𝑖 = 𝑭𝐺3,𝑖 + Conv(𝑅
𝐺
3,𝑖 ).

(2)

Similarly, the details in the moiré image feature are refined and
enhanced as

𝑅𝑀3,𝑖 = 𝑭𝑀3,𝑖 − Conv(𝑭
𝑀
3,𝑖 ),

𝑭𝑀
′

3,𝑖 = Conv(𝑅𝑀3,𝑖 + 𝑭
𝐺
3,𝑖 ).

(3)

The outputs of both branches are then concatenated and aggre-
gated, obtaining 𝑭

′
3,𝑖 . In practice, however, we find feed 𝑭

′
3,𝑖 to the

following part in P-BiC tends to generate artifacts since the G2DT
module is performed at the patch level, ignoring global information
contained in high-resolution input. We therefore feed the rescaled
green-channel image 𝐼𝐺↓ with 𝑭

′
3,𝑖 to the fusion operation for fur-

ther aggregation. Please refer to the supplementary for the details
of the fusion operation.
Style-aware tone adjustment. The green-channel image and the
moiré image share the same content and texture, but their color
distributions differ. To address this, we introduce the STA module,
which aims to map the distribution of the green-channel image
feature to that of the moiré image feature for tone adjustment.

As shown in Figure 5, we first obtain the enhanced green image
feature 𝑭𝐺3,𝑖 and moiré feature 𝑭𝑀3,𝑖 , which is similar to what we have
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Figure 4: Left: Structure of the G2DT module. Right: Archi-
tecture diagram of the fusion process.

done in the G2DT module. We then obtain the style feature 𝐹𝑀3,𝑖 via

𝐹𝑀3,𝑖 = ResB( [𝑭𝐺3,𝑖 , 𝑭
𝑀
3,𝑖 ]) − 𝑭

𝑀
3,𝑖 , (4)

where ResB(·) denotes the residual block. The green channel feature
and the style feature are initially concatenated before being fed into
a convolutional layer, resulting in the generation of two parameters,
denoted as 𝛼 and 𝛽 . Both 𝛼 and 𝛽 possess the same dimensions as
the style feature. Then, instance normalization is applied to the
green-channel feature as

𝑭𝐺,𝑐
3,𝑖 ←

(𝑭𝐺,𝑐
3,𝑖 − 𝜇

𝐺,𝑐
3,𝑖 )

𝜎
𝐺,𝑐
3,𝑖

, (5)

where 𝜇𝐺,𝑐
3,𝑖 and 𝜎𝐺,𝑐

3,𝑖 are the mean and standard deviation of 𝑭𝐺3,𝑖
in channel 𝑐 . We then update 𝛼 and 𝛽 with the mean and standard
deviation of the style feature as

𝛼 ← 𝛼 + 𝜇
𝐹𝑀
3,𝑖
, 𝛽 ← 𝛽 + 𝜎

𝐹𝑀
3,𝑖
. (6)

Finally, 𝛼 and 𝛽 are multiplied and added to the normalized green
channel feature in an element-wise manner as

𝑭𝑆𝑇𝐴3,𝑖 = 𝛼 · 𝑭𝐺,𝑐
3,𝑖 + 𝛽. (7)

This process ensures a style-aware adjustment of the tone of the
green channel feature.

The STA module draws inspiration from [23]. However, it differ-
entiates itself from [23]. While [23] utilizes segmentation maps to
generate two parameters, the convolutions within our STA module
accept both the green channel image/feature and the style feature
as inputs, enabling them to learn the differences between them.
Furthermore, after obtaining the parameters 𝛽 and 𝛾 from these
convolutions, we combine them with the mean and standard devia-
tion of the green channel feature. Such design contributes to the
style-aware adjustment of the green channel feature.

Upon obtaining the processed patch features, 𝑭𝐺
2𝐷𝑇

3,𝑖 and 𝑭𝑆𝑇𝐴3,𝑖
are combined through concatenation, followed by a convolutional
layer. These aggregated features are then fed into the feature de-
coder for further reconstruction. It is noteworthy that, akin to
ESDNet [46], P-BiC generates three hierarchical moiré-free predic-
tions 𝐼3, 𝐼2, 𝐼 , with 𝐼3 and 𝐼2 being employed and supervised during
the training phase.
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Figure 5: Structure of the STA module.

3.4 Loss Functions
Reconstruction loss. We adopt 𝐿1 loss as the reconstruction loss
to supervise hierarchical moiré-free predictions as

L𝑟𝑒𝑐 = | |𝐼𝐺𝑇 − 𝐼 | |1 + ||𝐼𝐺𝑇𝑖 − 𝐼𝑖 | |1, 𝑖 = 2, 3, (8)

where 𝐼𝐺𝑇
𝑖

is the rescaled ground-truth image, which has the same
size as 𝐼𝑖 .
Perceptual loss. The perceptual loss is expressed as

L𝑝𝑒𝑟 = | |𝜙 𝑗 (𝐼𝐺𝑇 ) − 𝜙 𝑗 (𝐼 ) | |1 + ||𝜙 𝑗 (𝐼𝐺𝑇𝑖 ) − 𝜙 𝑗 (𝐼𝑖 ) | |1, 𝑖 = 2, 3, (9)

where𝜙 𝑗 (·) denotes the 𝑗-th layer of the pretrained VGG16 network.
Here, we use conv3_3 (after ReLU).
Full objective. Our full objective is defined as

L = L𝑟𝑒𝑐 + 𝜆L𝑝𝑒𝑟 , (10)

where 𝜆 is the weighting factor to balance two loss terms.

4 Experiments
4.1 Experimental Setting
Datasets.We conduct experiments on four public image demoiréing
datasets: TIP2018 [26], LCDMoiré [47], FHDMi [7], and UHDM [46].
The TIP2018 dataset comprises 150,000 real image pairs, with 135,000
images used for training and the remaining images for testing. The
dataset is constructed by capturing photographs of the ImageNet
dataset displayed on computer screens with different hardware con-
figurations. The LCDMoiré dataset comprises 10,200 image pairs
that are synthetically generated, consisting of 10,000 images for
training and 100 images each for validation and testing. The FHDMi
dataset contains 9,981 image pairs for training and 2,019 for test-
ing with the resolution of 1920 × 1080 for HD image demoiréing.
UHDM is a new benchmark dataset, with 5,000 image pairs specifi-
cally designed for UHD image demoiréing. It features diverse moiré
patterns commonly found in UHD images.
Training and testing settings. For the TIP2018 dataset, we ini-
tially resize the images to a resolution of 286 × 286, followed by
a central cropping step to generate 256 × 256 resolution images
for both training and testing purposes. Concerning the FHDMi
and LCDmoiré datasets, we perform random cropping of 512 × 512
patches from HD images for training, while maintaining the origi-
nal resolution images for testing. Regarding the UHDM dataset, our
training of P-BiC utilizes cropped patches. For testing, we perform
center cropping on the original images to generate test pairs with
a resolution of 3840 × 2160, consistent with [46].
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Table 1: Quantitative comparisons in terms of PSNR, SSIM, and LPIPS between P-BiC and state-of-the-art demoiréing methods
on benchmark datasets. The best results are marked in bold while the second ones are marked with underlines.

Dataset Metrics Input DMCNN [26] MDDM [2] WDNet [16] MopNet [6] MBCNN [52] FHDe2Net [7] ESDNet [46] ESDNet-L [46] Wang [29] P-BiC

TIP2018 PSNR↑ 20.30 26.77 - 28.08 27.75 30.03 27.78 29.81 30.11 28.87 30.56
SSIM↑ 0.7380 0.8710 - 0.9040 0.8950 0.8930 0.8960 0.9160 0.9200 0.9840 0.9250

LCDMoiré PSNR↑ 10.44 35.48 42.49 29.66 - 44.04 41.40 44.83 45.34 - 45.55
SSIM↑ 0.5717 0.9785 0.9940 0.9670 - 0.9948 - 0.9963 0.9966 - 0.9972

FHDMi
PSNR↑ 17.97 21.54 20.83 - 22.76 22.31 22.93 24.50 24.88 - 25.45
SSIM↑ 0.7033 0.7727 0.7343 - 0.7958 0.8095 0.7885 0.8351 0.8440 - 0.8473
LPIPS↓ 0.2837 0.2477 0.2515 - 0.1794 0.1980 0.1688 0.1354 0.1301 - 0.1493

UHDM
PSNR↑ 17.12 19.91 20.09 20.36 19.49 21.41 20.34 22.12 22.42 - 23.30
SSIM↑ 0.5089 0.7575 0.7441 0.6497 0.7572 0.7932 0.7496 0.7956 0.7985 - 0.8007
LPIPS↓ 0.5314 0.3764 0.3409 0.4882 0.3857 0.3318 0.3519 0.2551 0.2454 - 0.2324

- Params (M) - 1.426 7.637 3.360 58.565 14.192 13.571 5.934 10.623 15.400 4.922

Clear image Moiré image MBCNN MDDM ESD ESD-L P-BiC Ground-truth

Figure 6: Qualitative comparisons of different image demoiréing methods on the UHDM dataset.

Evaluationmetrics. For our evaluation, we employwidely-accepted
image quality assessment metrics, including PSNR, SSIM [32], and
LPIPS [50]. Past studies have indicated that LPIPS offers greater con-
sistency with human perception, making it particularly suitable for
assessing demoiréing results [7, 46]. It is crucial to emphasize that
in line with established conventions in the field, existing methods
have typically used only PSNR and SSIMmetrics on the TIP2018 and
LCDmoiré datasets. In order to ensure fairness and comparability,
we follow this convention in our evaluations.
Implementation details. We implement our algorithm using Py-
Torch on a single NVIDIA RTX 3090 GPU. We utilize the Adam
optimizer with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. The learn-
ing rate is initially set to 0.0002 and scheduled by cyclic cosine
annealing. We set 𝜆 = 1 to balance different loss terms. Our P-
BiC is trained with different configurations depending on different
datasets. For TIP2018, we train for 100 epochs with a batch size of
4. For FHDMi and LCDMoiré, we train for 200 epochs with a batch
size of 2. Similarly, for UHDM, we train for 200 epochs with a batch
size of 2.

4.2 Quantitative and Qualitative Comparisons
We conduct a comprehensive comparison between our P-BiC and
several state-of-the-art image demoiréing methods that have pub-
licly available source code. These methods include DMCNN [26],
MDDM [2], WDNet [16], MopNet [6], MBCNN [52], FHDe2Net [7],
Wang [29], ESDNet, and its larger variant ESDNet-L [46]. It is worth
noting that DDA [51] is designed specifically for low-resolution
moiré images and aims to enhance the performance and efficiency

Table 2: Computational cost comparisons measured on
an NVIDIA A100 GPU between P-BiC and UHD image
demoiréing methods on UHDM. In our evaluations, we feed
the entire UHD moiré image as the input. The PSNR results
of ESDNet and ESDNet-L are extracted from [46]. The unit
of runtime is second, and memory here denotes the peak
memory (GB).

Method Runtime Memory PSNR
ESDNet 0.140 24.58 22.12
ESDNet-L - - 22.95
P-BiC 0.268 19.77 23.21

of existing networks. Therefore, we do not include it in the com-
parison, as its design philosophy is not directly applicable to the
UHD image demoiréing task addressed in this paper.
Quantitative comparison. Table 1 provides a quantitative com-
parison across four benchmark testsets, highlighting the consis-
tently superior performance of P-BiC. Notably, P-BiC demonstrates
significant outperformance compared to the state-of-the-art UHD
image demoiréing method, ESDNet-L. Specifically, P-BiC achieves
improvements of 0.45dB, 0.21dB, 0.57dB, and 0.88dB in terms of
PSNR on the TIP2018, LCDmoiré, FHDMi, and UHDM datasets,
respectively. An important observation is that P-BiC attains these
remarkable results while utilizing only 4.922M parameters, in stark
contrast to ESDNet-L’s utilization of 10.623M parameters. This
emphasizes P-BiC’s efficiency in UHD image demoiréing.
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Table 3: Comparisons of different methods towards memory-
efficient UHD image demoiréing.

Method Detail Runtime Memory PSNR

Non-overlap

𝑁𝑛𝑜 = 4 0.268 19.77 23.21
𝑁𝑛𝑜 = 16 0.361 20.05 23.22
𝑁𝑛𝑜 = 64 0.575 19.81 23.17
𝑁𝑛𝑜 = 256 1.773 19.73 23.06

Overlap
𝐾 = 16, 𝑆 = 8 1.218 21.97 22.22
𝐾 = 32, 𝑆 = 8 2.568 51.15 22.58
𝐾 = 64, 𝑆 = 16 1.783 44.80 22.77

Unlearnable

Maxpool=2 0.145 11.88 21.47
Maxpool=4 0.131 11.31 20.05
Maxpool=8 0.129 11.17 17.29
Avgpool=2 0.136 11.83 19.92
Avgpool=4 0.134 11.29 19.47
Avgpool=8 0.130 11.17 13.23

Learnable

Stride=2 0.142 11.83 21.65
Stride=4 0.105 11.29 21.23
Stride=8 0.131 11.17 21.27
Stride=16 0.129 11.04 21.16

The computational costs are detailed in Table 2. It is worth not-
ing that, for our comparison, we input the entire UHD moiré image
into the network for inference. While existing methods can employ
patch-wise inference followed by the merging operation, this ap-
proach often leads to artifacts at the borders and suboptimal results.
Additionally, border pixels may not fully benefit from neighboring
pixels outside the patch for image restoration [3]. To address these
issues, we perform a comprehensive evaluation by conducting infer-
ence on the entire image. Conclusively, P-BiC distinctly surpasses
ESDNet in terms of both performance and computational efficiency.
Another illustration of computational efficiency can be observed
in Figure 1. It is evident that our P-BiC is capable of operating at
higher resolutions, whereas ESDNet and ESDNet-L struggle in this
aspect.
Qualitative comparison. Exemplar visual results for variousmeth-
ods are presented in Figure 1 and Figure 6. In Figure 1, it is notable
that only P-BiC is able to generate color-accurate results, whereas
other methods fail to reconstruct the colors accurately. Shifting our
focus to Figure 6, the comparison becomes even more compelling.
In this context, it becomes exceedingly clear that P-BiC consistently
generates results of a superior nature, characterized by enhanced
details and precise color rendering. This, in turn, contributes to the
generation of more perceptually pleasing and visually captivating
moiré-free results.

4.3 Further Analysis
Memory-efficient UHD image demoiréing. Table 3 presents a
comprehensive comparison of four distinct patch-dividing strate-
gies, all geared towards achievingmemory-efficient UHDdemoiréing.
These strategies encompass non-overlapping patch cropping with
varying quantities, overlapping patch cropping characterized by dif-
ferent window sizes (𝐾 ) and strides (𝑆), unlearnable methodologies
grounded in maxpooling and avgpooling operations, and the learn-
able approach which relies on convolutional layers with diverse
strides. It is evident from the results that the unlearnable strategy
yields the least favorable reconstruction outcomes. This is attributed

Table 4: Analysis on the bilateral compensation in P-BiC.

Method TIP2018 FHDMi UHDM
P-BiC-w/o-G2DT 30.18 25.08 23.04
P-BiC-w/o-STA 30.06 24.85 22.95
P-BiC-w/o-fusion 30.49 25.40 23.21
P-BiC 30.56 25.45 23.30

Table 5: Analysis on the G2DT module in P-BiC.

Method TIP2018 FHDMi UHDM
G2DT-Cat 30.21 25.18 23.11
G2DT-Resblock 30.36 25.25 23.22
G2DT-w/o-green 30.40 25.33 23.23
G2DT-w/o-moiré 30.46 25.32 23.19
G2DT 30.56 25.45 23.30

Table 6: Analysis on the STA module in P-BiC.

Method TIP2018 FHDMi UHDM
STA-Cat 30.16 25.06 23.01
STA-Resblock 30.18 25.17 23.17
STA-w/o-Adjustment 30.20 25.23 23.21
STA 30.56 25.45 23.30

to the inherent limitations of utilizing pooling operations for di-
rect resolution reduction, which results in irreversible information
loss and consequently, suboptimal results. In contrast, the strategy
centered around cropping patches exhibits improved performance.
Additionally, a trade-off between the number of non-overlapping
patches and reconstruction performance becomes apparent. While
increasing the count of cropped patches aids in curbing memory
usage, it simultaneously elongates runtime and dampens PSNR
values. This stems from the fact that an upsurge in the number of
cropped patches leads to a decrease in the resolution of individual
patches, thereby constraining the extent of global information avail-
able for moiré pattern removal. Given these findings, we opt for the
non-overlapping strategy, setting the number of cropped patches
at 4. This choice ensures a judicious balance between performance
and computational efficiency, corroborated by empirical evidence.
Effectiveness of bilateral compensation. Bilateral compensa-
tion, leveraging the intrinsic moiré-specific characteristics, is a
key component of our approach. To showcase its effectiveness, we
design and analyze several variants: (1) BiC-w/o-G2DT: in this vari-
ant, we directly remove the G2DT module. (2) BiC-w/o-STA: this
variant involves the direct removal of the STA module. (3) BiC-
w/o-fusion: we replace the fusion operation with a simple addition
operation. When removing the G2DT module and STA module,
we utilize residual blocks to maintain the same parameters. We
present the quantitative results of these variants in Table 4. Notably,
upon removing the G2DT module and the STA module, the PSNR
values on the UHDM dataset experience reductions of 0.26dB and
0.35dB, respectively. This indicates the pivotal role played by these
two modules in the bilateral compensation process. Additionally,
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Figure 7: Comparison of red, green, and blue channel images along with grayscale images for moiré and clear images.

upon incorporating the fusion operation, we observe a 0.09dB PSNR
enhancement on the UHDM dataset.
Effectiveness of the G2DT module. We design the following
variants to demonstrate the effectiveness of the G2DT module. (1)
G2DT-Cat: we concatenate all inputs directly and feed them to
the following processes. (2) G2DT-Resblock: we feed all the inputs
to several residual blocks. (3) G2DT-w/o-green: we remove the
green-channel branch. (4) G2DT-w/o-moiré: we remove the moiré
branch. Quantitative results are presented in Table 5. As is evident,
the G2DT module outperforms G2DT-Cat and G2DT-Resblock by
0.19dB and 0.08dB, respectively. Moreover, removing either branch
leads to a decline in performance, highlighting the crucial role of
our dual-branch design.
Effectiveness of the STA module. To effectively showcase the
significance of the STA module, we have designed the following
variants: (1) STA-Cat: in this variant, all inputs are directly concate-
nated and then fed into subsequent processes. (2) STA-Resblock: all
inputs are passed through several residual blocks in this variant.
(3) STA-w/o-Adjustment: here, we remove the style-aware tone ad-
justment operation from the original STA module. The quantitative
results are presented in Table 6. Notably, a significant performance
drop is observed when the tone adjustment operation is removed.
Specifically, on TIP2018, FHDMi, and UHDM datasets, the perfor-
mance decreases by 0.36dB, 0.22dB, and 0.09 dB, underlining the
critical importance of the tone adjustment operation.
Effectiveness of the green channel. As analyzed earlier, the
green channel contains crucial information that can be effectively
utilized for UHD demoiréing. To visually illustrate this, we visualize
the red, green, blue, and grayscale versions of both moiré-distorted
and clear images in Figure 7. The visualization indeed confirms that
the green channel is less impacted by moiré patterns compared to
the other channels.

4.4 Limitations and Discussions
Despite the promising performance showcased above, P-BiC does
have certain limitations that warrant further investigation. In real-
world scenarios, especially when image texture and moiré patterns
are intricately intertwined, P-BiC might encounter challenges in
effectively discriminating between these elements. Please refer to
the supplementary material.

In light of these limitations, our future research direction will
encompass various areas to enhance P-BiC’s capabilities and appli-
cability: (1) Real-time processing:. One crucial avenue for future
research involves bridging the gap towards real-time performance.
To achieve this, we plan to design more efficient and lightweight
architectures tailored for real-time UHD demoiré processing. This
will contribute to making P-BiC a more practical solution for appli-
cations requiring instant processing. (1) Advanced patch cropping.
While our exploration into patch cropping strategies is valuable,
future work can delve into more sophisticated techniques, such
as irregular patch cropping. These methods can adapt to diverse
moiré pattern shapes and distributions, enhancing the versatility
of P-BiC across a wider range of scenarios. (3) Extension to other
tasks. Beyond UHD demoiréing, we intend to extend the utility
of P-BiC to other UHD image reconstruction tasks [11, 30, 31, 45].
(4) Video demoiréing. Given the success of P-BiC in UHD image
demoiréing, an exciting avenue involves its expansion to video
demoiréing tasks [35–38]. Extending P-BiC’s capabilities to handle
video sequences with moiréing patterns would further amplify its
practical relevance and applicability.

5 Conclusion
In this paper, we address the limitations of existing UHD image
demoiréing methods by proposing a novel patch bilateral compen-
sation network (P-BiC) that achieves both the memory efficiency
and the high-quality UHD image demoiréing. Specifically, P-BiC
performs UHDmoiré pattern removal at the patch level to maintain
the low memory cost, and leverages an internal moiré-specific prop-
erty to enable bilateral compensation via two key modules, namely
the G2DT module and the STA module. The G2DT module supple-
ments moiré-distorted features with the intact content and the STA
module performs style-aware tone adjustment for color correction.
P-BiC achieves state-of-the-art performance on diverse datasets,
surpassing previous methods by significant margins. Moreover, P-
BiC achieves these results while maintaining low computational
costs, making it a practical solution for UHDmoiré pattern removal.
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