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Abstract
Machine unlearning addresses the problem of up-
dating a machine learning model/system trained
on a dataset S so that the influence of a set of
deletion requests U ⊆ S on the unlearned model
is minimized. The gold standard definition of un-
learning demands that the updated model, after
deletion, be nearly identical to the model obtained
by retraining. This definition is designed for a
worst-case attacker (one who can recover not only
the unlearned model but also the remaining data
samples, i.e., S ∖U ). Such a stringent definition
has made developing efficient unlearning algo-
rithms challenging. However, such strong attack-
ers are also unrealistic. In this work, we propose
a new definition, system-aware unlearning, which
aims to provide unlearning guarantees against an
attacker that can at best only gain access to the
data stored in the system for learning/unlearning
requests and not all of S ∖ U . With this new
definition, we use the simple intuition that if a sys-
tem can store less to make its learning/unlearning
updates, it can be more secure and update more
efficiently against a system-aware attacker. To-
wards that end, we present an exact system-aware
unlearning algorithm for linear classification us-
ing a selective sampling-based approach, and we
generalize the method for classification with gen-
eral function classes. We theoretically analyze
the tradeoffs between deletion capacity, accuracy,
memory, and computation time.

1. Introduction
Today’s large-scale Machine Learning (ML) models are
often trained on extensive datasets containing sensitive or
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personal information. Thus, concerns surrounding privacy
and data protection have become increasingly prominent
(Yao et al., 2024). These models, due to their high capac-
ity to memorize patterns in the training data, may inadver-
tently retain and expose information about individual data
points (Carlini et al., 2021). This presents significant chal-
lenges in the context of privacy regulations such as the Eu-
ropean Union’s General Data Protection Regulation (2016)
(GDPR), California Consumer Privacy Act (2018) (CCPA),
and Canada’s proposed Consumer Privacy Protection Act,
all of which emphasize the “right to be forgotten”. As a
result, there is a growing need for methods that enable the
selective removal of specific training data from models that
have already been trained, a process commonly referred to
as machine unlearning (Cao & Yang, 2015). Beyond pri-
vacy, unlearning can be used to combat undesirable model
behavior after deployment, such as copyright violations
(Dou et al., 2024).

Machine unlearning addresses the need to remove data from
a model’s knowledge base without the need to retrain the
model from scratch each time there is a deletion request,
since this can be computationally expensive and often im-
practical for large-scale systems. The overarching objective
is to ensure that, post-unlearning, a model “acts” as if the
removed data were never part of the training process. Tra-
ditionally, this has been defined through notions of exact
(or approximate) unlearning, wherein the model’s hypothe-
sis after unlearning should be identical (or probabilistically
equivalent) to the model obtained by retraining from scratch
on the entire dataset after removing only the deleted points
(Sekhari et al., 2021; Ghazi et al., 2023; Guo et al., 2019).
While such definitions offer rigorous guarantees even in
the most pessimistic scenarios, they often impose stringent
requirements, limiting the practical applicability of machine
unlearning. This is evidenced by the lack of efficient certi-
fied exact or approximate unlearning algorithms beyond the
simple case of convex loss functions. Furthermore, Cher-
apanamjeri et al. (2025) proved that under the traditional
definition of unlearning, there exist simple model classes
with finite VC dimension, such as linear classifiers, where
traditional exact unlearning requires the storage of the entire
dataset in order to unlearn. For large datasets, this makes
unlearning under the traditional definitions impractical.
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Figure 1. Consider a deletion on a hard margin SVM where the state-of-system IA(S,U) is the set of support vectors (in dark blue) and
the unlearned model A(S,U). Let S′ be the set of support vectors . Thus, we have A(S,∅) = A(S′,∅). Under traditional unlearning
definitions, when a support vector is deleted, we need to recover the hypothesis from training a new hard margin SVM on the remaining
data points A(S ∖U,∅) (Figure 1(b)). This can lead to new support vectors being selected (ie. the green point in Figure 1(b)), which can
drastically change the decision boundary. Under system-aware unlearning, since the support vectors are the only points in the sample that
affect the decision boundary, we can treat the remaining support vectors after deletion as a plausible starting sample S′ ∖U and train a
new hard margin SVM on the remaining support vectors A(S′ ∖U,∅) (Figure 1(c)), as if the other points in the sample never existed.

At the core unlearning lies a fundamental question: What
does it truly mean to “remove” a data point from a trained
model? And more importantly, when we provide privacy
guarantees for deleted points against an outside observer
or attacker, what information can this attacker reasonably
possess? The current definitions of exact and approximate
unlearning take a worst-case perspective here and focus
on the output hypothesis being indistinguishable from a
retrained model (Sekhari et al., 2021; Ghazi et al., 2023;
Guo et al., 2019). However, this approach overlooks a key
aspect of the unlearning problem: the observer and their
knowledge of the system. In the real world, the feasibility
and complexity of unlearning should depend on what the
observer can reasonably access, such as model parameters,
data retained by the ML system in its memory, data ever
encountered by the ML system, etc. For instance, consider
a learning algorithm that relies on only a fraction of its
training dataset to generate its hypothesis and hence the ML
system only stores this data. In such cases, unlearning a data
point should intuitively be more straightforward. Even if the
entire memory of the system is compromised at some point,
only the privacy of the stored points is in jeopardy as long
as the learned model does not reveal much about points that
the model did not use. Even if the observer has access to
larger public datasets that might include parts of the training
data, we can expect privacy for data that the system does
not use directly for building the model to be preserved. Con-
versely, if the algorithm utilizes the entire dataset and retains
all information in memory, unlearning becomes far more
challenging, potentially requiring retraining from scratch,
and this is the scenario the current definitions aim to cover.

Contributions. Our main contributions are:

• We propose a new, system-aware formulation of ma-

chine unlearning, which provides unlearning guarantees
against an attacker who can observe the entire state of the
system after unlearning (including anything the learning
system stores or uses internally). If the system stores the
entire remaining dataset, then system-aware unlearning
definition becomes as stringent as traditional unlearning,
but otherwise relaxes it. Thus, we prove that system-
aware unlearning generalizes traditional unlearning.

• We present a general framework for system-aware un-
learning using sample compression based or core set
based algorithms. These algorithms leverage the fact
that when an algorithm relies on less information, less
information can be exposed to an attacker.

• We present an exact system-aware unlearning algorithm
for linear classification using selective sampling for sam-
ple compression, thus resulting in the first exact un-
learning algorithm for linear classification requiring
memory sublinear in the number of samples. We estab-
lish theoretical bounds on its computation time, memory
requirements, deletion capacity, and excess risk.

• We generalize our approach from linear classification to
classification with general functions. Thus, providing
a novel reduction from (monotonic) selective sampling
for general function classes to system-aware unlearning.

The third bullet is particularly interesting because Chera-
panamjeri et al. (2025) proved that under traditional unlearn-
ing, any exact unlearning algorithm for linear classification
must store the entire dataset.

2. Setup and Unlearning Definition
Let X be the space of inputs, Y be the space of outputs, D
be a distribution over an instance space Z = X ×Y , F ⊆ XY
be a model class, and ℓ ∶ Y ×Y → R be a loss function. The

2



System-Aware Unlearning Algorithms

goal of a learning algorithm is to take in a dataset S ∈ Z∗
over the instance space and output a predictor f̂ ∈ F which
minimizes the excess risk compared to the best predictor
f∗ ∈ F in the model class, where the excess risk is

E(f̂) ∶= E
(x,y)∼D

[ℓ(f̂(x), y)] − min
f∗∈F

E
(x,y)∼D

[ℓ(f∗(x), y)].

Our goal in machine unlearning is to provide a privacy guar-
antee for data samples that request to be deleted, while
ensuring that the updated hypothesis post-unlearning still
has small excess risk. We first present the standard def-
inition of machine unlearning, as stated in Sekhari et al.
(2021); Guo et al. (2019), often referred to as certified ma-
chine learning, which generalizes the commonly used data
deletion guarantee from Ginart et al. (2019).

Definition 2.1 ((ε, δ)-unlearning). For a dataset S ∈ Z∗, and
deletions requests U ⊆ S, a learning algorithm A ∶ Z∗ ↦
∆(F) and an unlearning algorithm Ā ∶ Z∗×F×T ↦∆(F)
is (ε, δ)-unlearning if for any F ⊆ F ,

Pr(Ā(U,A(S), T (S)) ∈ F )
≤ eε⋅Pr (Ā(∅,A(S ∖U), T (S ∖U)) ∈ F) + δ,

and

Pr(Ā(∅,A(S ∖U), T (S ∖U)) ∈ F )
≤ eε ⋅Pr (Ā(U,A(S), T (S)) ∈ F) + δ,

where T (S) denotes any intermediate auxiliary information
that is available to Ā for unlearning.

Sekhari et al. (2021) also defined a notion of deletion ca-
pacity, which controls the number of samples that can be
deleted while satisfying the above definition, and simultane-
ously ensuring good excess risk performance. We defer a
discussion of other related work on unlearning definitions
and algorithms to Appendix A.

The above definition implicitly assumes that the attacker, in
the worst case, has knowledge of S ∖ U and can execute
the unlearning algorithm on S ∖U . Although this provides
privacy against the most knowledgeable attacker, we argue
with a very simple motivating example that the above defi-
nition may, unfortunately, be an overkill even in some toy
scenarios where we want to unlearn. Consider an algorithm
that learns by first randomly sampling a small subset C ⊆ S
of size m and then uses C to train a model and discards
the rest of the samples in S ∖C. Now, consider an unlearn-
ing algorithm that, when given some deletion requests U ,
simply retrains from scratch on C ∖ U . This unlearning
algorithm is not equivalent to rerunning the algorithm from
scratch on S ∖U which would involve sampling a different
subset C ′ of m samples from S ∖ U and then training a
model on C ′. Since C ′ contains m samples whereas C ∖U
contains m − ∣U ∣ samples, the corresponding hypotheses

will not be statistically indistinguishable from each other.
Thus, under Definition 2.1, this is not a valid unlearning
algorithm. However, this is a valid unlearning algorithm
from the perspective of an attacker who only observes the
model after unlearning and (in the best case) stored samples
C ∖U ; here neither of these reveals any information about
the deleted samples U . Furthermore, an attacker has no
ability to gain access to S ∖ U and compare what would
have happened had the algorithm been trained on S ∖U .

The crucial thing to note is that Definition 2.1 considers
a worst-case scenario where every point encountered by
the unlearning algorithm except for the deletion requests,
regardless of whether those points were actually used or
stored, are known to the attacker. However, this is unreal-
istic; samples that were never used for learning or stored
in memory can never be leaked to the attacker. Towards
this end, we develop an alternative definition of unlearning.
However, we first need to formalize the information that an
adversary can compromise from the system post-unlearning.
Definition 2.2 (State-of-System). Let I denote some arbi-
trary set of all possible states. For an unlearning algorithm
A, we use the mapping IA ∶ Z∗ × Z∗ ↦ ∆(I) to denote
what is saved in the system by A after unlearning (e.g. the
model, any stored samples, auxiliary data statistics, etc.).
That is, IA(S,U) denotes the state-of-system (what is stored
in the system) after learning from sample S and performing
the update for unlearning request U .

For the system to be useful, it is natural to assume that
the state-of-system IA(S,U) either contains the unlearned
model A(S,U), or more generally, the unlearned model
A(S,U) can be computed as a function of IA(S,U). If
algorithm A requires the storage of samples, intermediate
models, or auxiliary information in order to learn or unlearn
in the future, then those must also be contained in IA(S,U).
Whenever clear from the context, we will drop the subscript
A from IA to simplify the notation. Using the state-of-
system IA(S,U), we present a system-aware definition of
unlearning.
Definition 2.3 (System-Aware-(ε, δ)-Unlearning). Let A
be a (possibly randomized) learning-unlearning algorithm,
that first learns on dataset S ∈ Z∗, then processes a set of
deletion requests U ⊆ S, and after unlearning, has state-of-
system IA(S,U). We say that A is a system-aware-(ε, δ)-
unlearning algorithm if for all S, there exists a S′ ⊆ S, such
that for all U ⊆ S, for all measurable sets F ,

Pr(IA(S,U) ∈ F ) ≤ eε ⋅Pr(IA(S′ ∖U,∅) ∈ F ) + δ

and

Pr(IA(S′ ∖U,∅) ∈ F ) ≤ eε ⋅Pr(IA(S,U) ∈ F ) + δ.

If an unlearning algorithm satisfies Definition 2.3 with ε =
δ = 0, then we say that the algorithm is an exact system-
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aware unlearning algorithm. We further remark that this
definition assumes that the selection of U is oblivious to the
randomness in A, but can depend on S.

The definition above indicates that for any sample S, there
exists a subset S′ that one can think of as being a good rep-
resentative of S because the state-of-system when trained
on S is nearly identical to that when trained on S′. For
all unlearning requests U , the state-of-system IA(S,U) af-
ter processing the set of deletions is statistically similar to
the state-of-system IA(S′ ∖U,∅) when directly training on
S′ ∖ U . Under system-aware unlearning, we take advan-
tage of the fact that the algorithm designer has control over
the information that an attacker could compromise after
unlearning, specifically, the fact that the state-of-system is
mostly determined by the smaller subset S′. Recall that the
traditional unlearning definition does not account for this.

Clearly, taking S′ = S and IA(S,U) = A(S,U) (the state-
of-system to be exactly the unlearned model), we recover
the traditional notion of unlearning from Definition 2.1.
This corresponds to the scenario where the entire remain-
ing dataset S ∖ U can be accessed by the adversary. Thus,
system-aware unlearning strictly generalizes the traditional
definition of unlearning. We point out that the traditional
definition of unlearning does not require indistinguishability
for auxiliary information stored in the system outside of the
unlearned model; thus, the traditional definition does not
account for system-awareness. If we wanted to view tradi-
tional unlearning through the lens of system-awareness, we
would consider Definition 2.3 with the additional require-
ment that S′ = S.

2.1. Why is Considering S′ ∖U , Instead of S ∖U ,
Sufficient to Provide Privacy Guarantees?

Since S′ must be fixed ahead of time for all possible deletion
requests U , S′ depends on S but not on U . If S′ is only a
function of S and has no dependence on U , then intuitively,
S′ ∖ U should not leak any more information about U as
compared to S ∖ U . We formalize this intuition through
mutual information. Mutual information is a common way
to measure the privacy leakage of an algorithm (Mir, 2013;
Cuff & Yu, 2016). Mutual information MI(A;B) quantifies
the amount of information one gains about random variable
A by observing random variable B.

Theorem 2.4. Let dataset S and set of deletions U ⊆ S
come from a stochastic process µ. Then,

sup
µ
(MI(U ;S′ ∖U) −MI(U ;S ∖U)) ≤ 0.

Proof. Since S′ ⊆ S, notice that S ∖U = ((S′ ∖U), ((S ∖
S′) ∖U)). Consider MI(S ∖U ;U), applying chain rule:

MI(S ∖U ;U)
=MI(S′ ∖U ;U) +MI((S ∖ S′) ∖U ;U ∣ S′ ∖U)

≥MI(S′ ∖U ;U),

where the last line holds by non-negativity of mutual infor-
mation.

Thus, S′ ∖U leaks no more information about U than S ∖
U . For recovering the retraining-from-scratch hypothesis
A(S ∖ U,∅) to be a reasonable objective for providing
privacy, traditional unlearning definitions implicitly assume
that the information between the deleted individuals U and
the remaining dataset S ∖U is small. Theorem 2.4 implies
that if the information between U and S ∖ U is small, the
information between U and S′ ∖U is also small. We note
that all of our technical results, including the relative privacy
guarantee from Theorem 2.4, hold without any assumptions
on the mutual information between S and S ∖U .

2.2. When is the Flexibility of S′ ≠ S Helpful?

To understand the power of having S′ to be different from
S, consider the following simple scenario: Suppose the
learning algorithm A allows for S to be compressed into
a small set S′ ⊆ S such that A(S,∅) ≈ A(S′,∅), with
state-of-system IA(S,∅) = S′. In this case, under our new
definition (Definition 2.3), it is straightforward to handle
deletion requests U for which S′ ∩ U = ∅, by not making
any change to the trained model. To see this, observe that
for such a U , A(S′∖U,∅) = A(S′,∅) ≈ A(S,∅), and thus
we will satisfy Definition 2.3 with S′ on the right-hand side.
In other words, the individuals outside of S′ are already
unlearned for free, since the original model output did not
rely on them much to begin with. On the other hand, such
an algorithm will not satisfy the conditions of the classic
unlearning definition in Definition 2.1 for such a U (see
Section 4 for more details and a concrete example).

We can formalize algorithms that only rely on a subset of
the training dataset as core set algorithms.

Definition 2.5 (Core Set Algorithm). A learning algorithm
ACS ∶ Z∗ ↦∆(F) is said to be a core set algorithm if there
exists a mapping C ∶ Z∗ ↦ Z∗ such that for any S ∈ Z∗,
C(S) ⊆ S, and we have

ACS(S) = ACS(C(S)).

We define C(S) ⊆ S to be the core set of S.

Many sample compression-based learning algorithms for
classification tasks, such as SVM or selective sampling, are
core set algorithms (Hanneke & Kontorovich, 2021; Floyd
& Warmuth, 1995). For hard margin SVMs, the core set is
the set of support vectors (Cortes & Vapnik, 1995), and for
selective sampling, the core set is the set of queried points
(see Section 4 for further details). Typically, the number of
samples in C(S) is much smaller than ∣S∣.
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Additional Examples. To further highlight the benefit
of system-awareness in unlearning, consider the following
additional examples:

• Sample Compression. Going back to our motivating
example, an algorithm that first trains a model on a
small compressed set C ⊆ S and then retrains on C ∖
U would be a valid exact unlearning algorithm under
system-aware unlearning with S′ = C.

• Hard Margin SVM. S′ can be taken to be the set of
support vectors. Figure 1 depicts the key differences be-
tween traditional unlearning definitions (Definition 2.1)
and system-aware unlearning (Definition 2.3) on a hard
margin SVM example.1

• Approximate Sample Compression. Let f ∶ Z∗ ↦ F be
the regularized ERM with regularization λ of a sample
and let C ⊆ S be a small compressed set of the sample.
An algorithm that outputs (1−γ) ⋅f(C ∖U)+γ ⋅f(S)+
Lap(2γ/λε) is a ε-system-aware unlearning algorithm.
This follows from differentially private output perturba-
tion (Chaudhuri et al., 2011; Dwork et al., 2014). We
can interpolate between a sample compression scheme
and a private model trained on the full dataset.

Further note that for all of the above examples, we only
need to make an unlearning update when the set of deletions
falls within the small set S′. This automatically gives us a
large deletion capacity; points outside of S′ can always be
deleted for free. Furthermore, the expected deletion time
is small because computation only needs to be performed
for a small number of points at the time of deletion. This
ease of unlearning gives us an incentive to learn models that
depend on a small number of samples. In Section 3, we
exploit the fact that algorithms that rely on fewer samples
while training are easier to unlearn.

3. System-Aware Unlearning Algorithm via
Core-Sets

Various learning algorithms rely on core-sets. In this section,
we show how traditional unlearning algorithms can build on
core-sets to get system-aware unlearning algorithms. Let C
be a mapping that satisfies

C(C(S) ∖U) = C(S) ∖U,

for any S and U ⊆ S. Furthermore, consider any unlearning
algorithm AUN, that induces the state-of-system IAUN

, and sat-
isfies the traditional definition of unlearning (Definition 2.3),
i.e. we have:

Pr(IAUN
(S,U) ∈ F ) ≤ eε ⋅Pr(IAUN

(S ∖U,∅) ∈ F ) + δ,
1As seen in Figure 1, depending on the selection of S′, system-

aware unlearning can lead to very different unlearning objectives
compared to traditional unlearning, some of which may be easier
to satisfy than the restrictive condition of traditional unlearning.

and,

Pr(IAUN
(S ∖U,∅) ∈ F ) ≤ eε ⋅Pr(IAUN

(S,U) ∈ F ) + δ.

Consider the following unlearning algorithm, denoted by
ACS: Given a dataset S and unlearning requests U , return
the hypothesis IAUN

(C(S) ∖U). This procedure enjoys the
following guarantee:

Theorem 3.1. The algorithm ACS (defined above) is
a (ε, δ)-system-aware unlearning algorithm with S′ =
C(S), with the state-of-system defined as: IA(S,U) =
IAUN
(C(S), U).

Particularly, ACS only needs to make unlearning updates
for deletions inside the core set, i.e. when C(S) ∩ U ≠ ∅,
otherwise we just return AUN(C(S),∅). Importantly, for
most points (which are not in C(S)), nothing needs to be
done during unlearning. Furthermore, only C(S) needs to
be stored in the system. Thus, using core set algorithms, we
can unlearn more efficiently in terms of computation time
and memory compared to traditional unlearning.

4. Efficient Unlearning for Linear
Classification via Selective Sampling

Linear classification is not only a fundamental problem
in learning theory, but its use in practice continues to be
widespread. For example, in large foundation models and
generative models, the last layers of these models are often
fine-tuned using linear probing, which trains a linear classi-
fier on representations learned by a deep neural network (Be-
linkov, 2022; Kornblith et al., 2019). As unlearning gains
increasing attention for fine-tuned large-scale ML models,
the need for efficient unlearning algorithms for linear classi-
fication grows significantly. However, Cherapanamjeri et al.
(2025) proved that under traditional unlearning definition,
exact unlearning for linear classification requires storing the
entire dataset. For today’s large datasets, this makes exact
unlearning under the traditional definition impractical, even
for the simple setting of linear classification. Furthermore,
approximate unlearning algorithms, such as the one from
Sekhari et al. (2021), reduce to exact unlearning for linear
classification. Our key insight in this section is that by using
selective sampling as a core set algorithm, we can design an
exact system-aware unlearning algorithm that requires mem-
ory that only scales sublinearly in the number of samples;
recall that this is theoretically impossible under the tradi-
tional unlearning definition Cherapanamjeri et al. (2025).
We also prove that the expected deletion time is significantly
faster than traditional unlearning. Thus, demonstrating that
system-aware unlearning algorithms are more efficient than
traditional unlearning algorithms.

Selective sampling (Cesa-Bianchi et al., 2009; Dekel et al.,
2012; Zhu & Nowak, 2022; Sekhari et al., 2023; Hanneke
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et al., 2014) is the problem of finding a classifier with small
excess risk using the labels of only a few number of points.
It has become particularly important as datasets become
larger and labeling them becomes more expensive. Typi-
cally, selective sampling algorithms query the label of points
whose label they are uncertain of and only update the model
on points that they query. Thus, selective sampling-based
algorithms can be seen as core set algorithms where the
core set is the set of points where the label was queried.
Under mild assumptions, selective sampling can achieve the
optimal excess risk for linear classification with an exponen-
tially small number of samples (Dekel et al., 2012).

Assumptions. We consider the problem of binary lin-
ear classification. Let x ∈ Rd be such that ∥x∥ ≤ 1 and
y ∈ {+1,−1}. Furthermore, we assume that there exists a
u ∈ Rd, ∥u∥ ≤ 1 such that E[yt ∣ xt] = u⊺xt. This is the re-
alizability assumption for binary classification and ensures
that the Bayes optimal predictor for yt is sign(u⊺xt). In the
following sections, let T ∶= ∣S∣ and NT ∶= ∣C(S)∣.
Our goal in linear classification is to find a hypoth-
esis that performs well under 0-1 loss, i.e. we set
ℓ(f(x), y) = 1{f(x) ≠ y}. With this goal in mind, we
define the excess risk for a hypothesis w as E(w) ∶=
E(x,y)∼D [1{sign(w⊺x) ≠ y} − 1{sign(u⊺x) ≠ y}].
We use the selective sampling algorithm BBQSAMPLER
from Cesa-Bianchi et al. (2009) to design our unlearning
algorithm, given in Algorithm 1. In particular, our algorithm
uses BBQSAMPLER to learn a predictor that only depends
on a small number of queried points Q. Let the core set
C(S) be the set of queried points Q when the BBQSAM-
PLER executes on S. The final predictor of Algorithm 1
after learning returns an ERM over C(S) and stores C(S).
Then when unlearning U , Algorithm 1 updates the predictor
to be an ERM over C(S)∖U and removes U from memory.
After unlearning, the model output and everything stored in
memory only rely on C(S) ∖U .

Theorem 4.1. Given the set S and deletion requests U ,
let C(S) denote the subset of points for which the labels
were queried by BBQSAMPLER in Algorithm 1, and let
A(S,U) denote the unlearned model. Then, Algorithm 1
is an exact system-aware unlearning algorithm with S′ =
C(S) and state-of-system IA(S,U) = (A(S,U),C(S)∖U).
In particular, it satisfies Definition 2.3 with ε = δ = 0.

The proof of Theorem 4.1 relies on a key attribute of the
BBQSAMPLER—its query condition is monotonic with re-
spect to deletion. In particular, a monotonic query condition
is one such that for all datasets S whose set of queried points
is Q, and deletions U , the selective sampling algorithm exe-
cuted on Q ∖U queries every point in Q ∖U .

Theorem 4.2. For any dataset S, Algorithm 1 satisfies
C(C(S) ∖U) = C(S) ∖U for all U ⊆ S.

Algorithm 1 System-Aware Unlearning Algorithm for Lin-
ear Classification using Selective Sampling
Require: • Dataset S of size T

• Deletion requests U
• Deletion capacity K > 0
• Sampling parameter 0 ≤ κ ≤ 1

1: Function BBQSAMPLER(S,K,κ)
2: Initialize: λ =K,w0 = 0⃗,A0 = λI, b0 = 0⃗,Q = ∅
3: for each t = 1,2, . . . , T do
4: if x⊺tA

−1
t−1xt > T −κ then

5: Query label yt, and update
6: At ← At−1 + xtx

⊺
t , bt ← bt−1 + ytxt

7: wt ← A−1t bt,Q← Q ∪ {(xt, yt)}
8: else
9: Set At ← At−1, bt ← bt−1, wt ← wt−1

10: return Q,AT , bT ,wT

11: Function DELETIONUPDATE(Q,A, b,w,U)
12: for (x, y) ∈ U such that (x, y) ∈ Q do
13: Update Q← Q ∖ {x}
14: Update A← A−xx⊺, b← b−yx and w ← A−1b

15: return Q,X, b,w

16: // Learn a predictor via selective sampling //
17: Q,A, b,w ← BBQSAMPLER(S,λ, κ)
18: // Update the predictor for core set deletions //
19: Q,A, b,w ← DELETIONUPDATE(Q,A, b,w,U)
20: return sign(w⊺x)

The monotonicity of the query condition of the BBQSAM-
PLER stems from the fact that the query condition is only
x-dependent and does not depend on the labels y at all. We
can interpret the query condition as testing if we have al-
ready queried many points that lie in the same direction as
xt, because if so, we can be fairly confident of the label of
xt. In particular, we have that if x⊺tA

−1
t xt > T −κ for some

t ∈ [T ], then x⊺tA
−1
t∖xj

xt > T −κ for any j ∈ [T ]. Intuitively,
the monotonicity of the query condition follows from the
fact that if a direction was not well queried before deletion,
it will not be well queried after deletion. C(S) ∖ U only
contains queried points, all of which will be re-queried after
deletion. Thus, we do not need to re-execute the BBQSAM-
PLER at the time of unlearning in order to determine the new
set of queried points. We can simply remove the effect of U
from the predictor, and we only need to make an update for
deletion requests in U that are also in C(S).
We note that not every selective sampling algorithm has
C(C(S) ∖ U) = C(S) ∖ U . Various selective sampling
algorithms, such as the ones from Dekel et al. (2012) or
Sekhari et al. (2023), use a query condition that depends
on the labels y. Due to the noise in these y’s, y-dependent
query conditions are not monotonic; points that were queried
before deletion can become unqueried after deletion. This
makes it computationally expensive to compute the core set
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after unlearning. We note that since the BBQSAMPLER
uses a y-independent query condition, the predictor before
unlearning is slightly suboptimal in terms of excess risk.
However, we are willing to tolerate a small increase in
excess risk in order to unlearn efficiently. Additionally, it is
unclear how much the excess risk of y-dependent selective
sampling algorithms would suffer after unlearning.

Algorithm 1 is not a valid unlearning algorithm under
the traditional definition (Definition 2.1). When a queried
point is deleted, an unqueried point could become queried,
therefore, C(S ∖ U) ≠ C(S) ∖ U . Thus, under traditional
unlearning, during DELETIONUPDATE, not only would we
have to remove the effect of U , but we would also have to
add in any unqueried points that would have been queried
if U never existed in S. It is computationally inefficient to
determine which points would have been queried, and it is
unnecessary from a privacy perspective. An attacker could
never have known that such an unqueried point existed and
should have become queried after deletion since it was never
used or stored by the original model. This highlights the
need for having our proposed definition of unlearning.

Theorem 4.3. The memory required by Algorithm 1 is deter-
mined by the number of core set points, which is bounded by
NT = O(dTκ logT ). Furthermore, with probability 1 − δ,
the excess risk of the final predictor sign(w⊺x) returned by
Algorithm 1 satisfies

E(w) = O (NT logT + log(1/δ)
T − Tε̄ −NT

)

after unlearning up to

K = O ( ε̄2 ⋅ Tκ

d logT ⋅ log(1/δ))

many core set deletions, where Tε = ∑T
t=1 1{∣u⊺xt∣ ≤ ε},

and ε̄ > 0 denotes the minimizing ε in the regret bound in
Theorem D.8.

We remark that Tε represents the number of points where
even the Bayes optimal predictor is unsure of the label,
which we expect to be small in realistic scenarios. We give
a proof sketch of the theorem (full proof in Appendix D).

Proof Sketch. The bound on the number of points queried
by BBQSAMPLER is well known and can be derived using
standard analysis for selective sampling algorithms from
Cesa-Bianchi et al. (2009) and Dekel et al. (2012) (see
Theorem D.8 for details). The number of queries made by
the BBQSAMPLER is exactly the size of the core set.

To bound the excess risk, we first show that the final pre-
dictor ŵ = wT from the BBQSAMPLER before unlearning
agrees with the Bayes optimal predictor on the classification
of all the unqueried points outside the Tε̄ margin points. Let

w̃ be the predictor after K core set deletions. We want to
ensure that the signs of ŵ and w̃ remain the same for all
unqueried points. We do so by first demonstrating that ŵ ex-
hibits stability (Bousquet & Elisseeff, 2002; Shalev-Shwartz
et al., 2010) on unqueried points. For any unqueried point
x, ∣ŵ⊺x − w̃⊺x∣ <

√
K ⋅ d logT ⋅ log(1/δ) ⋅ T −κ. Then we

show that ŵ has a ε̄/2 margin on the classification of every
unqueried point. Putting these together, we show that for
up to K ≤ O ( ε̄2⋅Tκ

d logT ⋅log(1/δ)) deletions, we can ensure that
the signs of ŵ and w̃ agree on unqueried points. Thus, after
unlearning, we can maintain correct classification on un-
queried points with respect to the Bayes optimal predictor.

We cannot make any guarantees on the NT queried points
and the Tε̄ margin points, so we assume full classification er-
ror on those points. Finally, using generalization bounds for
sample compression (Kakade & Tewari, 2008), we convert
the empirical classification loss to an excess risk bound.

Memory Required for Unlearning. The memory required
for unlearning is exactly the number of core set points,
O(dTκ logT ), and the size of the model, O(d2), which
is significantly less memory than storing the entirety of S of
size T . Under system-aware unlearning, we obtain the first
exact unlearning algorithm for linear classification requiring
memory sublinear in the size of the dataset.

Deletion Capacity and Excess Risk. Theorem 4.3 bounds
the core set deletion capacity. Since κ is a free parameter,
we can tune it to increase the core set deletion capacity at
the cost of increasing the excess risk after deletion. We are
trading off deletion capacity at the cost of performance.

4.1. Expected Deletion Capacity

Notice that the deletion capacity bound in Theorem 4.1
only applies to core set deletions and does not account
for samples in U that are outside C(S), and these can be
deleted for free. Thus, we have a much larger deletion
capacity than what is implied by the bound in Theorem 4.1.
Assume that deletions are drawn without replacement from
µ ∶ X → [0,1], a probability weight vector over points in S.
This implies that the probability of x requesting for deletion,
i.e. µ(x), only depends on x and not on its index within S or
on other points in S. This assumption is useful for capturing
scenarios where the users make requests for deletion solely
based on their own data and have no knowledge of where
in the sample they appear. Let KTOTAL be the total number
of deletions we can process under µ before exhausting the
core set deletion capacity K.

Theorem 4.4. Consider any core-set algorithm A. Let π de-
note denote a uniformly random permutation of the samples
in S, and let σ be a sequence of deletion requests samples
from µ, without replacement. Further, let KCSD denote the
number of core set deletions within the first KTOTAL deletion
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requests, then for any K ≥ 1,

PrS,π,σ(KCSD >K) ≤
1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ CA(π(S))}]

⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]],

where CA(π(S)) denotes the coreset resulting from running
A on the permuted dataset π(S). Instantiating the above
bound for Algorithm 1, we have

PrS,π,σ(KCSD >K) ≤ KTOTAL ⋅Tκ

K
⋅ES[Ex∼µ[x⊺Mx]],

where M ∶= Eπ[ 1T ∑
T
s=1A

−1
s−1] and κ ∈ (0,1) is the sam-

pling parameter from Algorithm 1.

Given the deletion distribution µ, Theorem 4.4 can be used
to bound the total number of deletions KTOTAL that Algo-
rithm 1 can tolerate while ensuring that the probability of
exhausting the core set deletion capacity K is small. This is
done by bounding ES[Ex∼µ[x⊺Mx]], given µ. For a dele-
tion x drawn from µ, ES[Ex∼µ[x⊺Mx]] can be interpreted
as the expected value of the query condition x⊺A−1t x when
Algorithm 1 encounters x during learning. The bound on
the total number of deletions KTOTAL depends inversely on
ES[Ex∼µ[x⊺Mx]]. When ES[Ex∼µ[x⊺Mx]] is small, x is
unlikely to be queried, and thus, Algorithm 1 can tolerate
a large number of deletions KTOTAL before exhausting its
core set deletion capacity K. Furthermore, the query con-
dition decreases as it encounters and queries more points.
Thus, ES[Ex∼µ[x⊺Mx]] is decreasing as the sample size
T increases, and we would expect it to be small for large T .
x⊺Mx is maximized when x lies in a direction which does
not occur very often. Deletion distributions which place
large weight on uncommon directions in S will maximize
ES[Ex∼µ[x⊺Mx]] and lead to smaller KTOTAL.

Lemma 4.5. Let the deletion distribution µ be the uniform
distribution. In this case, the bound in Theorem 4.4 implies
that we can process a total of KTOTAL = c⋅K⋅T

dTκ logT
deletions

while ensuring that the probability of exhausting the core
set deletion capacity K is at most c.

4.2. Expected Deletion Time

We can make a similar argument for the deletion time. At the
time of unlearning, we only need to make an update when
deleting a core set point. For all other points, there is no
computation time for unlearning. Given KTOTAL, which can
be derived using Theorem 4.4, we can give an expression
for the expected time for deletion.

Theorem 4.6. For a deletion distribution µ, if a core set
algorithm A can tolerate up to KTOTAL deletions before
exhausting the core set deletion capacity K,

E[time per deletion] ≤ K
KTOTAL

× {time per core set deletion}.

Updating the predictor of Algorithm 1 for a core set dele-
tion takes O(d2) time, using the Sherman-Morrison update
(Hager, 1989). Thus, for Algorithm 1, under a uniform dele-
tion distribution, we have E[time per deletion] ≤ d3Tκ logT

T
,

by plugging in KTOTAL from Lemma 4.5. For large T , this is
a significant improvement over an exact traditional unlearn-
ing algorithm that requires O(d2) time for each deletion.

Remark 4.7. For large d, the update time can be replaced by
a quantity that depends on the eigenspectrum of the data’s
Gram matrix. Furthermore, since Algorithm 1 updates an
ERM on C(S) to an ERM on C(S)∖U , we can further speed
up the update time for a core set deletion using gradient
descent, which takes O(d) time per update.

Empirical Evaluation. In Appendix B, we compare the
performance of Algorithm 1 to some common unlearning
procedures, from Bourtoule et al. (2021) and Sekhari et al.
(2021), and exact retraining. Our experiments show that for
linear classification, Algorithm 1 can unlearn significantly
faster with significantly less memory resources compared
to other methods while maintaining comparable accuracy.

5. Extension to Efficient Unlearning for
Classification with General Function Classes

Analyzing the structure of Algorithm 1, we can begin to
identify a general framework for unlearning for classifica-
tion beyond linear functions. We select a core set using a
monotonic selective sampler and perform regression on the
core set to obtain our learned model. Then, during unlearn-
ing, if a core set point is deleted, we perform regression on
the remaining core set points to obtain our unlearned model.

Algorithm 2 System-Aware Unlearning Algorithm for Gen-
eral Classification using Selective Sampling
Require: • Dataset S of size T

• Deletion requests U
• Function class F
• GENERALBBQSAMPLER from Appendix E

1: Function DELETIONUPDATE(Q, U,F)
2: if U ∩Q ≠ ∅ then
3: Update Q← Q ∖U
4: f̂ = argminf∈F ∑(xi,yi)∈Q (

1+yi

2
− f(xi))

2

5: return Q, f̂
6: // Learn a predictor via selective sampling //
7: Q, f̂ ← GENERALBBQSAMPLER(S,F)
8: // Update the predictor for core set deletions //
9: Q, f̂ ← DELETIONUPDATE(Q, U,F)

10: return sign(f̂(x) − 1/2)

Assumptions. We consider the problem of binary clas-
sification with a general model class. Let x ∈ X and
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y ∈ {+1,−1}. We are given a class of models F =
{f ∶ X → [0,1]}, and we assume that there exists
a f∗ ∈ F such that E[yt ∣ xt] = f∗(xt), where the
Bayes optimal predictor is sign(f∗(xt) − 1/2). We de-
fine the excess risk for a hypothesis f̂ according to the
0-1 loss as E(f̂) ∶= E(x,y)∼D[1{sign(f̂(x) − 1

2
) ≠ y}

−1{sign(f∗(x) − 1
2
) ≠ y}].

It turns out that for a general F , we can construct a version
of the BBQSAMPLER, as shown by Gentile et al. (2022).
The GENERALBBQSAMPLER is described in Appendix E.

Theorem 5.1. Given the set S and deletion requests U , let
C(S) denote the subset of points for which the labels were
queried by GENERALBBQSAMPLER in Algorithm 2, and
let A(S,U) denote the unlearned model. Then, Algorithm 2
is an exact system-aware unlearning algorithm with S′ =
C(S) and state-of-system IA(S,U) = (A(S,U),C(S)∖U).

Once again, the proof relies on the monotonicity of the
GENERALBBQSAMPLER.

Theorem 5.2. For any dataset S, Algorithm 2 has the prop-
erty that for all U ⊆ S, C(C(S) ∖U) = C(S) ∖U .

Memory Required for Unlearning. The memory required
by Algorithm 2 is determined by the query complexity of
the GENERALBBQSAMPLER, which depends on an eluder-
dimension-like quantity of F . The dimension D(F , S) of
model class F projected onto sample S is defined as:

D(F , S) = sup
π

T

∑
t=1

sup
f,g∈F

(f(x) − g(x))2

∑t
i=1(f(xπ(i)) − g(xπ(i)))2 + 1

,

where π is a permutation on [T ] (Gentile et al., 2022).

D(F , S) is closely related to the eluder dimension (Russo
& Van Roy, 2013) and the disagreement coefficient (Foster
et al., 2020), two well-studied active learning complexity
measures (see Gentile et al. (2022) for details). The connec-
tion between the memory complexity of unlearning and the
query complexity of active learning has also been demon-
strated in Ghazi et al. (2023); Cherapanamjeri et al. (2025).

Theorem 5.3. Assume that, with probability 1 − δ/T , the
ERM f̂ in Algorithm 2 satisfies the bound ∑T

t=1(f∗(xt) −
f̂(xt))2 ≤ R(T, δ). Then, the memory required by Algo-
rithm 2 is bounded by

NT = O (min
ε
{Tε +

R(T, δ) ⋅D(F , S)
ε2

}) ,

To find bounds on the convergence rate R(T, δ) for the
ERM, one can look into Yang & Barron (1999); Koltchinskii
(2006); Liang et al. (2015). We expect R(T, δ) to be small.
Thus, Theorem 5.3 implies that if a function class has small
dimension D(F , S) (see Russo & Van Roy (2013); Foster

et al. (2020); Gentile et al. (2022) for examples), we have
an efficient algorithm for unlearning. For example, linear
functions have D(F , S) = O(d logT ).
Excess Risk. In general, bounding the excess risk after
deletion for a generic F is hard. However, if the regression
oracle of F is stable, Algorithm 2 maintains small excess
risk after deletion. We formally define stability as follows:

Definition 5.4 (Uniform Stability; Bousquet & Elisseeff
(2002)). Let f̂S ∈ F be the predictor returned by a learning
algorithm A on sample S ∈ Zn and let f̂S∖i ∈ F be the
predictor returned by A on S∖{xi}. The learning algorithm
A satisfies uniform stability with rate β if for all i ∈ [n], for
all z = (x, y) ∈ Z , ∣ℓ(f̂S(x), y) − ℓ(f̂S∖i(x), y)∣ ≤ β(n).

Theorem 5.5. If the regression oracle for F satisfies uni-
form stability under the squared loss with rate β, then with
probability 1 − δ, the excess risk of the final predictor re-
turned by Algorithm 2 satisfies

E(f̂) = O ( 1

T −NT
⋅ (NT logT + log(1/δ)))

after unlearning up to

K = O
⎛
⎝

√
R(T, δ)

√
NT ⋅ β(NT )

⎞
⎠

many core set deletions.

Typically, we have β(NT ) ≈ 1
NT

. Thus, the number of core

set deletions that we can tolerate looks like
√
NT ⋅R(T, δ).

Similarly to the linear case, the proof follows by showing
that the predictor after learning agrees with the classification
of the Bayes optimal predictor on the unqueried points with
some margin and then leveraging uniform stability to ensure
that the predictor before and after unlearning continue to
agree on the classification of the unqueried points.

6. Conclusion
We proposed a new definition for unlearning, called system-
aware unlearning, that provides unlearning guarantees
against an attacker who compromises the system after un-
learning. We proved that system-aware unlearning general-
izes traditional unlearning definitions and demonstrated that
core set algorithms are a natural way to satisfy system-aware
unlearning. By using less information, we expose less infor-
mation to a potential attacker, leading to easier unlearning.
To highlight the power of this viewpoint of unlearning, we
show that selective sampling can be used to design a more
memory and computation-time-efficient exact system-aware
unlearning algorithm for classification. Looking forward, it
would be interesting to explore how approximate system-
aware unlearning (ε, δ ≠ 0) can lead to even faster and more
memory-efficient unlearning algorithms.
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A. Related Work
Beyond the standard definition of machine unlearning from Sekhari et al. (2021); Guo et al. (2019), some other machine
unlearning definitions have been proposed. Gupta et al. (2021) generalizes the machine unlearning definition from Sekhari
et al. (2021); Guo et al. (2019) to handle adaptive requests. Chourasia & Shah (2023) proposes a data deletion definition
under adaptive requesters which does not require indistinguishability from retraining from scratch. They require that the
model after deletion be indistinguishable from a randomized mapping π on S with the deleted individual z replaced. This
definition assumes that the attacker does not have knowledge of the unlearning algorithm itself. If the data deletion requesters
are non-adaptive, then π can be replaced by the unlearning algorithm A, and we recover the standard definition of machine
unlearning. However, in general, system-aware unlearning does not generalize this definition. Compared to system-aware
unlearning, the data deletion definition from Chourasia & Shah (2023) makes the stronger assumption that the attacker
has knowledge of every remaining individual, but the weaker assumption that the attacker does not have knowledge of the
unlearning algorithm.

Neel et al. (2021) proposed a distinction between traditional unlearning and “perfect” unlearning. Under perfect unlearning,
not only must the observable outputs of the unlearning algorithm be indistinguishable from the retrained-from-scratch
model, but the complete internal state of the unlearning algorithm must be indistinguishable from the retrained-from-scratch
state. We note that system-aware unlearning when S′ = S is exactly equivalent to perfect unlearning. Golatkar et al. (2020)
proposed a definition of unlearning that requires the existence of a certificate of forgetting, where the certificate can be any
function that does not depend on the deleted individuals, rather than the fixed certificate of retraining-from-scratch. This
is akin to requiring the existence of a S′ ⊆ S in the definition of system-aware unlearning, rather than fixing S′ = S. We
note that our system-aware algorithm is able to leverage the flexibility in S′ to achieve more efficient unlearning, while the
algorithms in Golatkar et al. (2020) ultimately do attempt to recover a hypothesis close to retraining-from-scratch; however,
we find the connections in the definitions interesting to point out.

Maintaining privacy under system-aware unlearning is closely related to the goal of pan-privacy (Dwork et al., 2010; Amin
et al., 2020; Cheu & Ullman, 2020). In the setting of pan-privacy, user data is processed in a streaming fashion, outputs
are produced in a sequence, and an adversary may compromise the internal state of the algorithm at any point during the
stream. The goal of pan-privacy is provide privacy against an adversary who compromises the internal state at any point in
the stream and has access to the preceding outputs.

Beyond unlearning definitions, there has been much work in the development of certified unlearning algorithms. The
current literature generally falls into two categories: exact unlearning algorithms which exactly reproduce the model from
retraining from scratch on S ∖ U (Ghazi et al., 2023; Cherapanamjeri et al., 2025; Bourtoule et al., 2021; Cao & Yang,
2015; Chowdhury et al., 2024) or approximate unlearning algorithms which use ideas from differential privacy (Dwork
et al., 2014) to probabilistically recover a model that is “essentially indistinguishable” from the model produced from
retraining from scratch on S ∖U (Izzo et al., 2021; Sekhari et al., 2021; Chien et al., 2024; Guo et al., 2019). The exact
unlearning algorithms are typically memory intensive and require the storage of the entire dataset and multiple models,
while the approximate unlearning algorithms tend to be more memory efficient. Certified machine unlearning algorithms
meet provable guarantees of unlearning. However, many of the algorithms are limited to the convex setting.

There are a number of (uncertified) unlearning algorithms which have been shown to work well empirically in the nonconvex
setting (Goel et al., 2023; Kurmanji et al., 2023; Jang et al., 2022). Furthermore, a number of these empirical methods
attempt to unlearn in a “data-free” manner where the remaining individuals are not stored in memory when unlearning
(Foster et al., 2023; Bonato et al., 2024). However, recent work has shown that these empirical methods do not unlearn
properly and do indeed leak the privacy of the unlearned individuals (Hayes et al., 2024; Pawelczyk et al., 2025).

Furthermore, existing lower bounds prove that there exist simple model classes with finite VC and Littlestone dimension
where traditional exact unlearning requires the storage of the entire dataset (Cherapanamjeri et al., 2025). For large datasets,
this makes exact unlearning under the traditional definition impractical. Additionally, Cherapanamjeri et al. (2025) proved
that even approximate algorithms for certain model classes require the storage of the entire dataset for the hypothesis testing
problem after deletion. This provides strong evidence that even approximate learning under the traditional definition requires
storing the entire dataset.
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Figure 2. The test accuracy of each unlearning method over the course 80,000 label dependent deletions.

B. Experimental Evaluation
Our theoretical results provide guarantees for the worst case deletions. We experimentally verify our theory, and we
demonstrate that in practice, Algorithm 1 can maintain small excess error beyond the core set deletion capacities proven in
Theorem 4.1. Furthermore, Algorithm 1 is significantly more memory and computation time efficient compared to other
unlearning methods for linear classification.

We compare the accuracy, memory usage, training time, and unlearning time of Algorithm 1 to the following unlearning
procedures. Algorithm 1 trains a linear model (y = Ax + b) on the core set C(S).

• SISA from Bourtoule et al. (2021): SISA trains models on separate data shards and aggregates them together to produce
a final model. During the initial training process, SISA stores intermediate models in order to speed up retraining at the
time of unlearning. We train a linear model (y = w⊺x) on each shard and aggregate the models using a uniform voting
rule.

• Exact Retraining: We train a linear model (y = w⊺x) on the entire dataset and perform an exact retraining update for
each deletion.

• Unlearning Algorithm from Sekhari et al. (2021): For linear regression (y = w⊺x), this algorithm precisely reduces to
exact retraining.

We compare the results on two different datasets.

• Purchase Dataset: A binary classification dataset on item purchase data curated by Bourtoule et al. (2021) with 249,215
points in dimension d = 600.

• Margin Dataset: A synthetic binary classification dataset with 200,000 points in dimension d = 100 with a hard margin
condition of γ = 0.1 (∣u⊺x∣ > 0.1,∀x for some underlying u ∈ Rd).

For each method, we train an initial linear classifier, and then we process a sequence of 80,000 deletions (around 40%
of the dataset) of points all with class label −1 (we refer to this as a sequence of label dependent deletions). Figure 2
compares the accuracy of the various unlearning methods over the sequence of deletions, and Table 1 and Table 2 compare
the computation time and memory usage of the various methods on the two datasets.

Table 1. Computation and Memory Usage on the Purchase Dataset

Initial training time (secs) Accumulated deletion time (secs) % of data stored in memory

Algorithm 1 186.3 58.3 13.1%
SISA 30.2 1174.3 100%
Exact Retraining 1828.7 579.3 100%

On the Purchase Dataset, first observe that Algorithm 1 can maintain comparable accuracy to exact retraining while
dominating exact retraining in initial training time, deletion time, and memory usage. SISA has the best initial accuracy, but
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Table 2. Computation and Memory Usage on the Margin Dataset

Initial training time (secs) Accumulated deletion time (secs) % of data stored in memory

Algorithm 1 1.3 0.5 0.6%
SISA 20.6 697.1 100%
Exact Retraining 67.8 27.1 100%

Algorithm 1 is able to maintain significantly better accuracy under a longer sequence of label dependent deletions compared
to SISA. The sequence of label dependent deletions creates a distribution shift in the training data. Algorithm 1 is robust to
this shift due to theoretical guarantees, but SISA lacks such theoretical guarantees on its accuracy after unlearning. We
also note that SISA is training a more expressive model compared to Algorithm 1 and exact retraining which could be
contributing to its improved initial accuracy. Furthermore, Algorithm 1 can maintain comparable accuracy with significantly
fewer samples. Algorithm 1 has a longer initial training time, but requires significantly less computation time at the time of
deletion compared to SISA. The use of sample compression leads to more efficient unlearning.

When the dataset allows for a more favorable compression scheme, as the Margin Dataset does, the improvements are
even more pronounced. Algorithm 1 can match the initial accuracy of SISA and exact retraining, despite using much less
data, and Algorithm 1 can maintain significantly better accuracy under a longer sequence of label dependent deletions.
Furthermore, Algorithm 1 requires significantly less memory and significantly less computation time, both at the time of
training and the time of deletion, compared to SISA and exact retraining due to increased sample compression. When the
dataset allows for significant compression, Algorithm 1 dominates SISA and exact retraining in accuracy, memory, and
computation time.
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C. Proofs from Section 3
Theorem 3.1. The algorithm ACS (defined above) is a (ε, δ)-system-aware unlearning algorithm with S′ = C(S), with the
state-of-system defined as: IA(S,U) = IAUN

(C(S), U).

Proof. We have IA(S,U) = IAUN
(C(S), U).

We also have

IA(S′ ∖U,∅) = IA(C(S) ∖U,∅)
= IAUN

(C(C(S) ∖U),∅)
= IAUN

(C(S) ∖U,∅).

By definition, IAUN
(C(S), U) and IAUN

(C(S) ∖U,∅) are (ε, δ)-indistinguishable, so IA(S,U) and IA(S′ ∖U,∅) must be
(ε, δ)-indistinguishable. Thus, A is an (ε, δ)-system-aware unlearning algorithm.

D. Proofs from Section 4
D.1. Notation

• [n] = {1,2, . . . , n}

• AT = λI +∑T
t=1 xtx

⊺
t

• AT∖U = λI +∑T
t=1 xtx

⊺
t −∑xi∈U xix

⊺
i , where U is a set of deletions

• At∖xj =
⎧⎪⎪⎨⎪⎪⎩

λI +∑T
t=1 xtx

⊺
t − xjx

⊺
j when j ≤ t

λI +∑T
t=1 xtx

⊺
t otherwise

,

for some t, j ∈ [T ]

• AS = λI +∑xt∈S xtx
⊺
t , where S is a set of points

• bT = ∑T
t=1 ytxt

• bT = ∑T
t=1 ytxt −∑xi∈U yixi, where U is a set of deletions

• wT = A−1T bT

• wT∖U = A−1T∖UbT∖U , where U is a set of deletions

• ∥u∥X = u⊺Xu, where u ∈ Rd and X ∈ Rd×d

Theorem 4.1. Given the set S and deletion requests U , let C(S) denote the subset of points for which the labels were
queried by BBQSAMPLER in Algorithm 1, and let A(S,U) denote the unlearned model. Then, Algorithm 1 is an exact
system-aware unlearning algorithm with S′ = C(S) and state-of-system IA(S,U) = (A(S,U),C(S) ∖U). In particular, it
satisfies Definition 2.3 with ε = δ = 0.

Proof. Fix any sample S and set of deletions U . Define S′ = C(S) = Q. Clearly, S′ ⊆ S. The core set of the BBQSAMPLER
is exactly the set of points that it queries. Thus, applying Theorem 4.2, we know C(C(S) ∖U) = C(S) ∖U . A(S′ ∖U,∅)
returns a regularized ERM over C(C(S) ∖U), which is exactly C(S) ∖U , and stores that ERM and the set C(S) ∖U . To
process the deletion of U , A(S,U) returns a regularized ERM over C(S) ∖U and stores that ERM and the set C(S) ∖U .
Thus, IA(S,U) = IA(S′ ∖U,∅) for all U ⊆ S.

Theorem 4.2. For any dataset S, Algorithm 1 satisfies C(C(S) ∖U) = C(S) ∖U for all U ⊆ S.
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Proof. Fix any sample S, and consider the deletion of a point xj ∈ U . Consider executing the BBQSAMPLER on the
queried points Q ∖ {xj} compared to executing on S. First, observe that the removal of all of the unqueried points has
no effect on any of the query conditions, x⊺tA

−1
t∖xj

xt = x⊺tA−1t xt > T −κ. Thus, when xj is unqueried, all of the points in
Q ∖ {xj} will be queried when executing the BBQSAMPLER on the queried points Q ∖ {xj}
Next, consider the case that the deleted point xj was queried. Consider a point xt that was queried at time t. We know
x⊺tA

−1
t xt > T −κ. We note that any points after time t do not affect the query condition at time t, so we only focus on

deletions of xj where j < t. We have that

x⊺tA
−1
t∖xj

xt = x⊺t (At − xjx
⊺
j )−1xt

= x⊺tA−1t xt + (
x⊺tA

−1
t xjx

⊺
jA
−1
t xt

1 − x⊺jA−1t xj
)

= x⊺tA−1t xt +
(x⊺tA−1t xj)2
1 − x⊺jA−1t xj

≥ x⊺tA−1t xt

≥ T −κ,

where the second to last line follows because the second term is always positive. Thus, xt remains queried when executing
the BBQSAMPLER on Q ∖ {xj}. We can apply the above argument inductively for each xj ∈ U to conclude that
C(C(S) ∖U) = C(S) ∖U .

Theorem 4.3. The memory required by Algorithm 1 is determined by the number of core set points, which is bounded
by NT = O(dTκ logT ). Furthermore, with probability 1 − δ, the excess risk of the final predictor sign(w⊺x) returned by
Algorithm 1 satisfies

E(w) = O (NT logT + log(1/δ)
T − Tε̄ −NT

)

after unlearning up to

K = O ( ε̄2 ⋅ Tκ

d logT ⋅ log(1/δ))

many core set deletions, where Tε = ∑T
t=1 1{∣u⊺xt∣ ≤ ε}, and ε̄ > 0 denotes the minimizing ε in the regret bound in

Theorem D.8.

Proof. The bound on the number of points queried by the BBQ sampler ∣C(S)∣ is given by Theorem D.8 using standard
analysis for selective sampling algorithms from Cesa-Bianchi et al. (2009); Dekel et al. (2012); Agarwal (2013).

First let’s set all of the Tε̄ margin points aside. Let wT be the last predictor from the BBQSAMPLER.

First we argue that before deletion, w⊺Tx and u⊺x agree on the sign of all unqueried points x (outside of the Tε̄ margin
points). An unqueried point xt must have a margin of ε̄ with respect to u, which means ∣u⊺x∣ > ε̄. For an unqueried point xt,
we also have

∣w⊺Txt − u⊺xt∣ = ∥wT − u∥AT
⋅ ∥xt∥AT

≤ ∥wT − u∥AT
⋅ ∥x∥At (using the monotonicity of the query condition)

≤
√
d logT ⋅ log(1/δ) ⋅ T −κ

(applying Proposition G.1 on the first term and the query condition on the second term)

≤ ε̄

2
. (for sufficiently large T)

Thus, sign(w⊺Tx) = sign(u⊺x), so the final predictor after learning wT and the Bayes optimal predictor u agree on the
classification of all of the unqueried points. Furthermore, all of the unqueried points x have a margin of ε̄

2
with respect to

wT .
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Thus, in order to ensure that wT and wT∖U after ∣U ∣ =K deletions continue to agree on the classification of all unqueried
points, we need to ensure that ∣w⊺Tx −w⊺T∖Ux∣ =∆ < ε̄

2
. Using the upper bound on ∆ derived using a stability analysis in

Theorem D.2 , we get the following deletion capacity on queried points,

∆ ≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT ⋅ log(1/δ) ≤ ε̄

2
(Theorem D.2)

e(K + 1) ⋅ T −κ ⋅ d logT ⋅ log(1/δ) ≤ ε̄2

16

K + 1 ≤ ε̄2 ⋅ Tκ

16e ⋅ d logT ⋅ log(1/δ)

K ≤ ε̄2 ⋅ Tκ

16e ⋅ d logT ⋅ log(1/δ) − 1

K ≤ O( ε̄2 ⋅ Tκ

d logT ⋅ log(1/δ)).

For up to K deletions on queried points, wT and wT∖U are guaranteed to agree on the classification of all unqueried points.
Thus after unlearning up to K queried points, wT∖U and the Bayes optimal predictor u agree on the classification on all
of the unqueried points. Note that wT∖U is a predictor that only used points in Q ∖U during training, and yet, has good
performance on points that it never used during training. In particular, we have that

L̂S∖{Q∖U}(wT∖U) = ∑
(x,y)∈S∖{Q∖U}

1{sign(u⊺x) ≠ sign(w⊺T∖Ux)} ≤ Tε̄ +K,

because outside of the Tε̄ margin points, we showed that u and wT∖U agree on the classification of all of the unqueried
points. Furthermore, u and wT∖U may disagree on the classification of the K deleted queried points.

Through this observation, we can use techniques from generalization for sample compression algorithms (Kakade & Tewari,
2008) to convert the empirical classification loss to an excess risk bound for wT∖U . First, observe that

E(wT∖U) = E(x,y)∼D[1{sign(w⊺T∖Ux) ≠ y} − 1{sign(u⊺x) ≠ y}]
= E(x,y)∼D[∣2∣u⊺x∣ − 1∣ ⋅ 1{sign(w⊺T∖Ux) ≠ sign(u⊺x)}]
≤ E(x,y)∼D[1{sign(w⊺T∖Ux) ≠ sign(u⊺x)}]

Thus, we look to bound the loss of L(wT∖U) = E(x,y)∼D[1{sign(w⊺T∖Ux) ≠ sign(u⊺x)}]. We are interested in the event
that there exists a Q ∖U ⊆ S, ∣Q ∖U ∣ = l such that L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(f̂Q∖U) ≥ ε.

Pr[∃ Q ∖U ⊆ S such that L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε]

≤
T

∑
l=1

Pr[∃ Q ∖U ⊆ S, ∣Q ∖U ∣ = l such that L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε]

≤
T

∑
l=1

∑
Q∖U⊆S,∣Q∖U ∣=l

Pr[L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε]

=
T

∑
l=1

∑
Q∖U⊆S,∣Q∖U ∣=l

E [PrS∖{Q∖U}[L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε ∣ Q ∖U]]

Let ∣Q∣ = NT and let ∣U ∣ =K, where NT −K = l. Now for any fixed Q ∖U , the above probability is just the probability of
having a true risk greater than ε and an empirical risk at most Tε̄ +K on a test set of size T −NT +K. Now for any random
variable z ∈ [0,1], if E[z] ≥ ε then Pr[z = 0] ≤ 1 − ε. Thus, for a given Q ∖U ,

PrS∖{Q∖U}[L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε] ≤ (1 − ε)T−NT−Tε̄

Plugging this in above, we have

Pr[∃ Q ∖U ⊆ S, ∣Q ∖U ∣ = l such that L̂S∖{Q∖U}(wT∖U) ≤ Tε̄ +K and L(wT∖U) ≥ ε]
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≤
T

∑
l=1

∑
Q∖D⊆S,∣Q∖D∣=l

(1 − ε)T−NT−Tε̄

≤
T

∑
l=1

T l ⋅ (1 − ε)T−NT−Tε̄

=
T

∑
l=1

TNT−K ⋅ (1 − ε)T−NT−Tε̄

=
T

∑
l=1

TNT−K ⋅ (1 − ε)T−NT−Tε̄

≤
T

∑
l=1

TNT ⋅ e−ε(T−NT−Tε̄)

= TNT+1 ⋅ e−ε(T−NT−Tε̄)

We want this probability to be at most δ. Setting ε appropriately, we have

ε = 1

T −NT − Tε̄
⋅ ((NT + 1) logT + log(1/δ))

Thus, with probability at least 1 − δ,

L(f̂Q∖D) ≤
1

T −NT − Tε̄
⋅ ((NT + 1) logT + log(1/δ))

This implies that with probability at least 1 − δ,

E(wT∖U) ≤
1

T −NT − Tε̄
⋅ ((NT + 1) logT + log(1/δ)).

Theorem 4.4. Consider any core-set algorithm A. Let π denote denote a uniformly random permutation of the samples in
S, and let σ be a sequence of deletion requests samples from µ, without replacement. Further, let KCSD denote the number
of core set deletions within the first KTOTAL deletion requests, then for any K ≥ 1,

PrS,π,σ(KCSD >K) ≤
1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ CA(π(S))}]

⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]],

where CA(π(S)) denotes the coreset resulting from running A on the permuted dataset π(S). Instantiating the above
bound for Algorithm 1, we have

PrS,π,σ(KCSD >K) ≤ KTOTAL ⋅Tκ

K
⋅ES[Ex∼µ[x⊺Mx]],

where M ∶= Eπ[ 1T ∑
T
s=1A

−1
s−1] and κ ∈ (0,1) is the sampling parameter from Algorithm 1.

Proof. We begin by considering

PrS,π,σ(KCSD >K) ≤
1

K
E[KCSD] (Markov’s Inequality)

= 1

K
ES,π,σ[

T

∑
t=1

1{xt ∈ Cπ} ⋅
KTOTAL

∑
k=1

1{xt = xσk
}]

(Cπ is the resulting core set after executing on π(S))
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= 1

K
ES[

T

∑
t=1

Eπ[1{xt ∈ Cπ}] ⋅
KTOTAL

∑
k=1

Eσ[1{xt = xσk
}]]

= 1

K
ES,σ[

T

∑
t=1

Eπ[1{xt ∈ Cπ}] ⋅
KTOTAL

∑
k=1

1{xt = xσk
}]

= 1

K
ES,σ[

KTOTAL

∑
k=1

Eπ[1{xσk
∈ Cπ}]].

This proves the first half of the theorem.

Next define ν(x) = Eπ[1{x ∈ Cπ}]. Consider the case when the deletion distribution µ satisfies µ(x) > µ(x′) Ô⇒ ν(x) ≥
ν(x′). This is exactly the worst case in terms of deletion capacity: points that have a high probability of being included in
the core set are exactly the points that have a high probability of being deleted.

In this case, we can apply Theorem G.2 to get

PrS,π,σ(X >K) ≤
1

K
ES,σ[

KTOTAL

∑
k=1

Eπ[1{xσk
∈ Cπ}]]

≤ 1

K
ES[Ex∼µ

KTOTAL

∑
k=1
[Eπ[1{x ∈ Cπ}]]] (where x is sampled without replacement from W )

≤ KTOTAL

K
ES[Ex∼µ[Eπ[1{x ∈ Cπ}]]]

≤ KTOTAL

K
ES[Ex∼µ[

Tκ

T

T

∑
s=1

x⊺Eπ[A−1s−1]x]] (plugging in upper bound for Eπ[1{x ∈ Cπ}])

≤ KTOTAL ⋅ Tκ

K ⋅ T ES[Ex∼µ[
T

∑
s=1

x⊺Eπ[A−1s−1]x]]

≤ KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Eπ[

1

T

T

∑
s=1

A−1s−1]x]]

≤ KTOTAL ⋅ Tκ

K
ES[Ex∼µ[x⊺Mx]],

where M = Eπ[ 1T ∑
T
s=1A

−1
s−1] for a given sample S.

Lemma D.1. Let the deletion distribution µ be the uniform distribution. In this case, the bound in Theorem 4.4 implies that
we can process a total of KTOTAL = c⋅K⋅T

dTκ logT
deletions while ensuring that the probability of exhausting the core set deletion

capacity K is at most c.

Proof. First, we consider

ES[Ex∼unif[x⊺Mx]] = ES[
1

T

T

∑
t=1

x⊺tMxt]

≤ d logT

T
. (∑T

t=1 xtA
−1
t−1xt ≤ d logT )

Plugging this into Theorem 4.4 and solving for KTOTAL completes the proof of the lemma.

D.2. Auxiliary Results

Theorem D.2. Let wT be the final predictor after running the BBQSAMPLER from Algorithm 1 with λ =K. Let U be a
sequence of deletions of length K. Let wT∖U be the predictor after the sequence of U deletions have been applied. Let x be
an unqueried point. Then we have

∆ = w⊺T∖Ux −w⊺Tx− ≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT ⋅ log(1/δ)
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= O (
√
K ⋅ T −κ/2 ⋅

√
d logT ⋅ log(1/δ)) ,

with probability at least 1 − δ.

Proof. Let Ui be the set of the first i deletions. Then we have

∆ = w⊺T∖Ux −w⊺Tx

=
K

∑
i=1
(w⊺T∖Ui

x −w⊺T∖Ui−1
x)

=
K

∑
i=1

2
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT ⋅ log(1/δ) (applying Theorem D.3)

≤
2K
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT ⋅ log(1/δ)

≤ 2
√
e(K + 1) ⋅ T −κ/2 ⋅

√
d logT ⋅ log(1/δ).

Theorem D.3. Let λ =K be the regularization parameter. Consider a set U of deletions where ∣U ∣ <K. Let wT∖U be the
predictor after the set of U deletions have been applied and let wT∖(U∪xi) be the predictor after the set of U deletions have
been applied along with an additional deletion of xi. Let x be an unqueried point. Then we have

∆ = w⊺T∖(U∪xi)x −w
⊺
T∖Ux ≤

2
√
e(K + 1)
K

⋅ T −κ/2 ⋅
√
d logT ⋅ log(1/δ),

for λ =K, with probability at least 1 − δ.

Proof. Let AT∖U = AT −∑j∈U xjx
⊺
j and bT∖U = bT −∑j∈U yjxj . Then we have

∆ = w⊺T∖(D∪xi)x −w
⊺
T∖Ux

= (bT∖U − yixi)⊺(AT∖U − xix
⊺
i )−1x − b⊺T∖UA−1T∖Ux

= b⊺T∖U(AT∖U − xix
⊺
i )−1x − yix⊺i (AT∖U − xix

⊺
i )−1x − b⊺T∖UA−1T∖Ux

= b⊺T∖UA−1T∖Ux + (
b⊺T∖UA

−1
T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − b⊺T∖UA−1T∖Ux

(Sherman-Morrison)

= (
b⊺T∖UA

−1
T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

= (
w⊺T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
) − yix⊺iA−1T∖Ux − yi(

x⊺iA
−1
T∖Uxix

⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

= (
w⊺T∖Uxix

⊺
iA
−1
T∖Ux

1 − 1
λ+1

) − yix⊺iA−1T∖Ux − yi(
x⊺iA

−1
T∖Ux

(λ + 1)(1 − 1
λ+1)

) (x⊺iA
−1
T∖Uxi ≤ 1

λ+1 from Lemma D.6)

= 1

1 − 1
λ+1
⋅w⊺T∖Uxi ⋅ x⊺iA−1T∖Ux − yix⊺iA−1T∖Ux −

1

λ
yix
⊺
iA
−1
T∖Ux

= 1

1 − 1
λ+1
⋅w⊺T∖Uxi ⋅ x⊺iA−1T∖Ux − (1 +

1

λ
) yix⊺iA−1T∖Ux

= (1 + 1

λ
)x⊺iA−1T∖Ux ⋅ (w⊺T∖Uxi − yi)

≤ (1 + 1

λ
) (w⊺T∖Uxi − yi) ⋅

√
x⊺iA

−1
T∖Uxi ⋅ x⊺A−1T∖Ux (applying Lemma D.7)

≤ (λ + 1
λ
) (w⊺T∖Uxi − yi) ⋅

√
e

λ + 1 ⋅ T
−κ (applying Lemma D.6 and Corollary D.5)
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=
√
e(λ + 1)
λ

⋅ T −κ/2(w⊺T∖Uxi − yi)

=
√
e(λ + 1)
λ

⋅ T −κ/2(w⊺T∖Uxi − u⊺xi + ζi)

=
√
e(λ + 1)
λ

⋅ T −κ(w⊺T∖Uxi − u⊺xi) +
√
e(λ + 1)
λ

⋅ ζi ⋅ T −κ/2

≤
√
e(λ + 1)
λ

⋅ T −κ/2∥wT∖U − u∥AT∖U
∥xi∥A−1

T∖U
+
√
e(λ + 1)
λ

⋅ ζi ⋅ T −κ/2

≤
√
e(λ + 1)
λ

⋅ T −κ/2∥wT∖U − u∥AT∖U
∥xi∥A−1

T∖U
+
√
e(λ + 1)
λ

⋅ T −κ/2 (ζi < 1)

≤
√
e(λ + 1)
λ

⋅ T −κ/2 ⋅
√
d log(T −K) ⋅ log(1/δ) +

√
e(λ + 1)
λ

⋅ T −κ/2 (Proposition G.1)

≤
2
√
e(λ + 1)
λ

⋅ T −κ/2 ⋅
√
d logT ⋅ log(1/δ).

Lemma D.4. Let λ be the regularization parameter. Let U be a set of deletions such that ∣U ∣ = K. Let AT∖U denote
AT −∑xj∈U xjx

⊺
j . Then we have

x⊺A−1T∖Ux ≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ.

Proof. We prove the claim using induction. First, assume that x⊺A−1T∖Ux ≤ ∑
K
i=0

(K
i
)

λi ⋅T −κ (induction hypothesis). Consider
an additional deletion and the effect on the query condition, x⊺(AT∖U − xixi)−1x. We have

x⊺(AT∖U − xix
⊺
i )−1x = x⊺A−1T∖Ux + (

x⊺A−1T∖Uxix
⊺
iA
−1
T∖Ux

1 − x⊺iA−1T∖Uxi
)

≤ x⊺A−1T∖Ux + (
(x⊺iA−1T∖Ux)2

(1 − 1
λ+1)

) (x⊺iA
−1
T∖(D∖xi)xj ≤ 1

λ+1 from Lemma D.6)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + ((x

⊺
iA
−1
T∖Ux)2

(1 − 1
λ+1)

) (x⊺A−1T∖Ux ≤ ∑
K
i=0

(K
i
)

λi ⋅ T −κ from induction hypothesis)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + (x

⊺
iA
−1
T∖Uxi ⋅ x⊺iA−1T∖Ux
(1 − 1

λ+1)
) (Lemma D.7)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ + ( ∑

K
i=0

(K
i
)

λi ⋅ T −κ

(λ + 1)(1 − 1
λ+1)

) (using induction hypothesis and Lemma D.6)

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ +

K

∑
i=0

(K
i
)

λi+1 ⋅ T
−κ

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ +

K+1
∑
i=1

( K
i−1)
λi
⋅ T −κ

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K
i
)

λi
⋅ T −κ +

K

∑
i=1

( K
i−1)
λi
⋅ T −κ +

(K
K
)

λK+1 ⋅ T
−κ

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K+1
i
)

λi
⋅ T −κ +

(K
K
)

λK+1 ⋅ T
−κ (Pascal’s Identity)

≤
(K
0
)

λ0
⋅ T −κ +

K

∑
i=1

(K+1
i
)

λi
⋅ T −κ +

(K+1
K+1)
λK+1 ⋅ T

−κ

22



System-Aware Unlearning Algorithms

≤
K+1
∑
i=0

(K+1
i
)

λi
⋅ T −κ.

Corollary D.5. Let λ =K be the regularization parameter. Let U be a set of deletions such that ∣U ∣ <K, then x⊺A−1T∖Ux ≤
e ⋅ T −κ

Proof. From Lemma D.4, we have

x⊺A−1T∖Ux ≤
∣U ∣
∑
i=0

(∣U ∣
i
)

λi
⋅ T −κ

≤
K

∑
i=0

(K
i
)

λi
⋅ T −κ

≤
K

∑
i=0

(K
i
)

Ki
⋅ T −κ

= (1 + 1

K
)
K

⋅ T −κ

≤ e ⋅ T −κ.

Lemma D.6. x⊺iA
−1
S xi ≤ 1

λ+1 , for any set of S points such that xi ∈ S, where AS = I +∑xt∈S xtx
⊺
t .

Proof. We want to consider the xi that maximizes x⊺iA
−1
S xi. Let AS∖i = I +∑xt∈S∖{xi} xtx

⊺
t . Then we want to maximize

the following,

x⊺iA
−1
S xi = x⊺i (AS∖i + xix

⊺
i )−1xi

= x⊺iA−1S∖ixi −
x⊺iA

−1
S∖ixix

⊺
iA
−1
S∖ixi

1 + x⊺iA−1S∖ixi
.

Let a = x⊺iA−1S∖ixi. Then we have

x⊺iA
−1
S xi = a −

a2

1 + a =
a

1 + a = 1 −
1

1 + a.

We want to maximize the above expression where 0 ≤ a ≤ 1
λ

(since 0 ≤ x⊺iA−1S∖ixi ≤ 1
λ
). The expression is maximized when

a = 1
λ

. Thus, x⊺iA
−1
T−1xi ≤ 1

λ(1+ 1
λ )
= 1

λ+1 .

Lemma D.7. (x⊺iA−1S x)2 ≤ x⊺iA−1S xi ⋅ x⊺A−1S x, for any set of S points such that xi ∈ S, where AS = λI +∑xt∈S xtx
⊺
t .

Proof. We can decompose the terms as A−1S = ∑
d
i=1 λiuiu

⊺
i , xi = ∑d

i=1 αiui, and x = ∑d
i=1 βiui. Using these decompositions,

we compute the following two terms,

(x⊺iA−1T x)2 = ((
d

∑
i=1

αiu
⊺
i )(

d

∑
i=1

λiuiu
⊺
i )(

d

∑
i=1

βiui))
2

= (
d

∑
i=1

λiαiβi)
2

,

23



System-Aware Unlearning Algorithms

and

x⊺iA
−1
T xi ⋅ x⊺A−1T x = (

d

∑
i=1

αiu
⊺
i )(

d

∑
i=1

λiuiu
⊺
i )(

d

∑
i=1

αiui)(
d

∑
i=1

βiu
⊺
i )(

d

∑
i=1

λiuiu
⊺
i )(

d

∑
i=1

βiui)

= (
d

∑
i=1

λiα
2
i )(

d

∑
i=1

λiβ
2
i ) .

From Jensen’s inequality, we know that (∑d
i=1 pixi)2 ≤ ∑d

i=1 pix
2
i where pi > 0 for all i and ∑d

i=1 pi = 1 since f(x) = x2 is
convex. Let pi = λiα

2
i /(∑d

j=1 λjα
2
j) (note that all λi’s > 0) and let xi = βi/αi. This gives us

(∑d
i=1 λiαiβi)

2

(∑d
i=1 λiα2

i )
2
≤
∑d

i=1 λiα
2
i ⋅

β2
i

α2
i

∑d
i=1 λiα2

i

(
d

∑
i=1

λiαiβi)
2

≤ (
d

∑
i=1

λiα
2
i )(

d

∑
i=1

λiβ
2
i )

This directly implies that (x⊺iA−1T x)2 ≤ x⊺A−1T x ⋅ x⊺iA−1T xi.

Theorem D.8. Let λ = K ≤ T be the regularization parameter and 0 < κ < 1 be the sampling parameter of the
BBQSAMPLER. Then we have the following regret and query complexity bounds on the BBQSAMPLER,

RT =min
ε

εTε +O (
1

ε
(K + d logT + log T

δ
) + 1

ε2/κ
) ,

NT = O(dTκ logT ).

Proof. Adapted from the analysis in Dekel et al. (2012) and Cesa-Bianchi et al. (2009).

Let ∆t = u⊺xt and ∆̂t = w⊺t x. We decompose the regret as follows,

RT ≤ εTε +
T

∑
t=1

Z̄t1{∆t∆̂t < 0,∆2
t > ε2} +

T

∑
t=1

Zt1{∆t∆̂t < 0,∆2
t > ε2}∣∆t∣

= εTε +Uε +Qε. (regret decomposition from Dekel et al. (2012) Lemma 3)

We define an additional term

∆̂′t =
⎧⎪⎪⎨⎪⎪⎩

sign(∆̂t) if ∣∆̂t∣ > 1
∆̂t otherwise

.

Then we have

Qε ≤
1

ε

T

∑
t=1

Zt1{∆̂t∆t < 0}∆2
t

= 1

ε

T

∑
t=1

Zt1{∆̂′t∆t < 0}∆2
t (∆̂t and ∆̂′t have the same sign)

≤ 1

ε

T

∑
t=1

Zt(∆t − ∆̂t)2 (∆̂′t∆t < 0 implies ∆2
t ≤ (∆t − ∆̂′t)2)

≤ 2

ε
(

T

∑
t=1

Zt((∆t − y)2 − (∆̂t − y)2) + 144 log
T

δ
) (Dekel et al. (2012) Lemma 23 (i))

≤ 4

ε
(

T

∑
t=1

Zt(dt−1(w∗,wt−1) − dt(w∗,wt) + 2 log
∣At∣
∣At−1∣

) + 144 log T

δ
)

(Dekel et al. (2012) Lemma 25 (iv) where dt(w∗,w) = 1
2
(w∗ −w)⊺At(w∗ −w))
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≤ 4

ε
(d0(w∗,w0) + log ∣AT ∣ + 144 log

T

δ
)

≤ 2

ε
(λ + d log(λ +NT ) + 144 log

T

δ
) (Dekel et al. (2012) Lemma 24 (iii))

= O(1
ε
(λ + d logT + log T

δ
)).

Let rt = x⊺tA−1t xt. Then we have

Uε ≤
T

∑
t=1

Z̄t 1{∣∆̂t −∆t∣ > ε}

≤ (2 + e)
T

∑
t=1

Z̄t exp( −
ε2

8rt
) (following Cesa-Bianchi et al. (2009) Theorem 1)

= (2 + e)
T

∑
t=1

Z̄t exp( −
ε2Tκ

8
) (when Z̄t = 1, rt < T −κ by the query condition)

≤ (2 + e)
T

∑
t=1

Z̄t exp( −
ε2tκ

8
)

≤ (2 + e)⌈1/κ⌉!( 8

ε2
)
1/κ

(following Cesa-Bianchi et al. (2009) Theorem 1)

≤ O ( 1

ε2/κ
) .

Putting the above terms together completes the proof of regret.

Now for the number of queries. Let rt = x⊺tA−1t xt. Consider the following sum,

T

∑
t=1

Ztrt ≤
T

∑
t=1

Zt ⋅ log
∣At∣
∣At−1∣

(Lemma 24 from Dekel et al. (2012) where ∣ ⋅ ∣ is the determinant)

= log ∣AT ∣
∣A0∣

≤ log ∣AT ∣
≤ d log(λ +NT )
≤ d log(T ).

We use the above sum to bound the number of queries,

NT = ∑
rt>T−κ

1

≤ ∑
rt>T−κ

rt
T −κ

≤ Tκ ∑
rt>T−κ

rt

≤ O(dTκ log(T )). (using the sum above)
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E. Missing Details of GENERALBBQSAMPLER

Define

D2(x; ⟨x1, . . . , xt−1⟩) = sup
f,g∈F

(f(x) − g(x))2

∑t
i=1(f(xi) − g(xi))2 + 1

.

Algorithm 3 GENERALBBQSAMPLER (Slightly Modified Version of Algorithm 2 from Gentile et al. (2022))
Require: • Dataset S of size T

• Confidence level δ ∈ (0,1]
1: Initialize: P0 = S andR0 = S
2: for ℓ = 1,2, . . . do
3: Initialize within stage ℓ: εℓ = 2−ℓ/

√
R(T, δ), t = 0, Qℓ = ∅

4:
5: while Pℓ−1 ∖Qℓ ≠ ∅ and maxx∈Pℓ−1∖Qℓ

D(x,Qℓ) > εℓ do
6: t = t + 1
7: Pick xℓ,t ∈ argmaxx∈Pℓ−1∖Qℓ

D(x,Qℓ)
8: Update Qℓ = Qℓ ∪ {xℓ,t}
9:

10: Set Tℓ = t, the number of queries made in stage ℓ
11: if Qℓ ≠ ∅ then
12: Query the labels yℓ,1, . . . , yℓ,Tℓ

associated with the unlabeled data in Qℓ and compute

f̂Qℓ
= argmin

f∈F

Tℓ

∑
t=1
(1 + yℓ,t

2
− f(xℓ,t))

2

13: Set Cℓ = {x ∈ Pℓ−1 ∖Qℓ ∶ ∣f̂Qℓ
(x) − 1/2∣ > 3 ⋅ 2−ℓ}

14: else f̂ℓ = 1/2,Cℓ = ∅
15:
16: Set Pℓ = Pℓ−1 ∖Qℓ andRℓ =Rℓ−1 ∖ (Cℓ ∪Qℓ)
17: if D(F ,P) ⋅R(T, δ)/2−ℓ+1 > 2−ℓ+1∣Rℓ∣ then
18: Set L = ℓ
19: exit for loop
20:
21: Set Q = ⋃L

ℓ=1Qℓ

22: Compute

f̂Q = argmin
f∈F

∑
(xi,yi)∈Q

(1 + yi
2
− f(xi))

2

return f̂Q, Q

F. Proofs from Section 5
F.1. Notation

• [n] = {1,2, . . . , n}

• f̂S - ERM computed over set S

• f̂S∖i - ERM computed over set S ∖ {xi}

• Qℓ(t) - the set of points queried in stage ℓ up to time t

• εℓ = 2−ℓ/
√
R(T, δ)
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• D2(x; ⟨x1, . . . , xt−1⟩) = supf,g∈F
(f(x)−g(x))2

∑t
i=1(f(xi)−g(xi))2+1

Theorem 5.1. Given the set S and deletion requests U , let C(S) denote the subset of points for which the labels were
queried by GENERALBBQSAMPLER in Algorithm 2, and let A(S,U) denote the unlearned model. Then, Algorithm 2 is an
exact system-aware unlearning algorithm with S′ = C(S) and state-of-system IA(S,U) = (A(S,U),C(S) ∖U).

Proof. Fix any sample S and set of deletions U . Define S′ = C(S) = Q. Clearly, S′ ⊆ S. The core set of the GENERALB-
BQSAMPLER is exactly the set of points that it queries. Thus, applying Theorem 5.2, we know C(C(S) ∖U) = C(S) ∖U .
A(S′ ∖U,∅) returns an ERM over C(C(S) ∖U), which is exactly C(S) ∖U , and stores that ERM and the set C(S) ∖U .
To process the deletion of U , A(S,U) returns an ERM over C(S) ∖U and stores that ERM and the set C(S) ∖U . Thus,
IA(S,U) = IA(S′ ∖U,∅) for all U ⊆ S.

Theorem 5.2. For any dataset S, Algorithm 2 has the property that for all U ⊆ S, C(C(S) ∖U) = C(S) ∖U .

Proof. Consider the deletion of any xj ∈ S. Let Q = ⋃L
ℓ=1Qℓ be the set of queried points after execut-

ing the GENERALBBQSAMPLER on S, and let Q′ = ⋃L
ℓ=1Q′ℓ be the set of queried points after executing the

GENERALBBQSAMPLER onQ∖{xj}. Note that C(S) = Q and C(C(S)∖{xj}) = Q′. We want to show thatQ′ = Q∖{xj}.
First, note that the deletion of any unqueried point has no effect on the query condition of any other point, so the set of
queried points when executing the GENERALBBQSAMPLER on Q is exactly Q. If xj ∉ Q, then clearly Q′ = Q ∖ {xj}.
Thus, we focus on the case where xj ∈ Q.

Next, note that the query condition of points queried before xj only depends on points in Q ∖ {xj}. Thus, all points queried
before xj will still be queried.

Let ℓ∗ be the stage and t∗ be the time at which xj was originally queried. Let Qℓ(t′) be the set of points queried in stage
ℓ before time t′ in the original run of the GENERALBBQSAMPLER. For each point queried at time t′ > t∗, we know
D2(x,Qℓ∗(t′)) > ε2ℓ∗ . Now consider

D2(x,Qℓ∗(t′) ∖ {xj}) = sup
f,g∈F

(f(x) − g(x))2

∑Qℓ∗(t′)∖{xj}(f(xi) − g(xi))2 + 1

≥ sup
f,g∈F

(f(x) − g(x))2

∑Qℓ∗(t′)(f(xi) − g(xi))2 + 1
> ε2ℓ .

Furthermore, observe that

argmax
x∈(Qℓ∗−1∖{xj})∖Qℓ∗(t′)

D2(x,Q′ℓ∗ ∖ {xj}) = argmax
x∈Pℓ∗−1∖Qℓ∗(t′)

D2(x,Qℓ∗(t′)),

where the first term represents what would be queried at time t′ when executing onQ∖ {xj} and the second term represents
what would be queried at time t′ when executing on Q. Thus, we will query the same set of points in both executions after
time t in stage ℓ. Thus, at the end of stage ℓ, when executing on dataset S with xj deleted, we have queried every point in
Qℓ ∖ {xj}.
At the end of stage ℓ in the execution on Q, the set of points remaining in the pool is exactly ⋃L

ℓ=ℓ∗+1Qℓ. Each of the query
conditions in future stages after stage ℓ∗ only depends on the points in ⋃L

ℓ=ℓ∗+1Qℓ. These query conditions are unaffected,
and all points in ⋃L

ℓ=ℓ∗+1Qℓ will be queried.

Thus, the set of queried points after executing the GENERALBBQSAMPLER onQ∖ {xj} is exactlyQ∖ {xj}. We can apply
the above argument inductively for each xj ∈ U to conclude that C(C(S) ∖U) = C(S) ∖U .

Theorem 5.3. Assume that, with probability 1−δ/T , the ERM f̂ in Algorithm 2 satisfies the bound∑T
t=1(f∗(xt)− f̂(xt))2 ≤

R(T, δ). Then, the memory required by Algorithm 2 is bounded by

NT = O (min
ε
{Tε +

R(T, δ) ⋅D(F , S)
ε2

}) ,
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Proof. For points inRL = P∖(⋃L
ℓ=1Qℓ∪⋃L

ℓ=1 Cℓ), we know that ∣f̂QL
(x)−1/2∣ ≤ 3 ⋅2−L by the design of Algorithm 3. We

also know that for all x ∈RL, ∣f∗(x)−f̂Qℓ
(x)∣ ≤ 2−L from Lemma F.1. Thus, for all x ∈RL, ∣f∗(x)−1/2∣ ≤ 4⋅2−L = 2−L+2.

From the design of Algorithm 3, we also know that ∣RL∣ = ∣P ∖ (⋃L
ℓ=1Qℓ ∪⋃L

ℓ=1 Cℓ)∣ ≤ 4L−1 ⋅D(F , S).
Let

Tε =
T

∑
t=1

1{∣sign(f∗(xt)) − 1/2∣ ≤ ε}

When 2−L+2 ≤ ε, we can upper bound ∣RL∣ by Tε. Thus, we have

4L−1 ⋅D(F , S) ⋅R(T, δ) ≤ Tε

Otherwise, when 2−L+2 ≥ ε, we know that

∣RL∣ ≤ 4L−1 ⋅D(F , S) ⋅R(T, δ) (Theorem G.3)

≤ 4

ε2
⋅D(F , S) ⋅R(T, δ) (2L ≤ 4

ε
)

Thus, we have that

4L−1 ⋅D(F , S) ⋅R(T, δ) ≤min
ε
{Tε +

4

ε2
⋅R(T, δ) ⋅D(F , S)} .

From Theorem G.3, we know that

NT ≤ 4L+1 ⋅R(T, δ) ⋅D(F , S) (Theorem G.3)

≤ O (min
ε
{Tε +

64

ε2
⋅R(T, δ) ⋅D(F , S)}) .

Theorem 5.5. If the regression oracle for F satisfies uniform stability under the squared loss with rate β, then with
probability 1 − δ, the excess risk of the final predictor returned by Algorithm 2 satisfies

E(f̂) = O ( 1

T −NT
⋅ (NT logT + log(1/δ)))

after unlearning up to

K = O
⎛
⎝

√
R(T, δ)

√
NT ⋅ β(NT )

⎞
⎠

many core set deletions.

Proof. From Lemma F.3, we know that the regression oracle satisfies the following, such that for all S ∈ Zn, for all i ∈ [n],
for all {x1, . . . , xn}

n

∑
t=1
(f̂S∖i(xt) − f̂S(xt))2 ≤ n ⋅ β(n)2.

Let Q be the set of queried points and let NT be the number of queried points. Let D be a set of K deletions. Let Di be the
set of the first i deletions. Then, we have

∑
Qℓ

(f̂Q∖Di+1(xt) − f̂Q∖Di(xt))2 ≤ NT ⋅ β(NT )2.
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In stage ℓ of Algorithm 3, we know that for all x ∈ Cℓ (the set of unqueried points for which we are confident on the label),
we have

sup
f,g∈F

(f(x) − g(x))2 ≤ ε2ℓ
⎛
⎝∑Qℓ

(f(xi) − g(xi))2 + 1
⎞
⎠
,

due to the query condition of stage ℓ.

Thus,

NT

∑
t=1
(f̂Q∖D(xt) − f̂Q(xt))2 ≤

NT

∑
t=1
(

K

∑
i=1
(f̂Q∖Di(xt) − f̂Q∖Di−1(xt)))

2

≤K2
NT

∑
t=1
( 1

K

K

∑
i=1
(f̂Q∖Di(xt) − f̂Q∖Di−1(xt)))

2

≤K2
NT

∑
t=1

1

K

m

∑
i=1
(f̂Q∖Di(xt) − f̂Q∖Di−1(xt))2 (Jensen’s Inequality)

=K
NT

∑
t=1

K

∑
i=1
(f̂Q∖Di(xt) − f̂Q∖Di−1(xt))2

≤K
K

∑
i=1

NT

∑
t=1
(f̂∖Di(xt) − f̂∖Di−1(xt))2

≤K
K

∑
i=1

NT ⋅ β(NT )2 (applying Lemma F.3)

=K2 ⋅NT ⋅ β(NT )2

Plugging this in, we have

sup
f,g∈F

(f(x) − g(x))2 ≤ ε2ℓ
⎛
⎝∑Qℓ

(f(xi) − g(xi))2 + 1
⎞
⎠

≤ ε2ℓ ⋅K2 ⋅NT ⋅ β(NT )2

for all x ∈ Cℓ.

The above implies that for any x ∈ Cℓ,

(f̂Q∖D(x) − f̂Q(x))2 ≤ ε2ℓ ⋅K2 ⋅NT ⋅ β(NT )2

∣f̂∖D(xt) − f̂(xt))∣ ≤ εℓ ⋅K ⋅
√
NT ⋅ β(NT )

Furthermore, from Lemma F.2, we know that for all stages ℓ, for all x ∈ Cℓ,

∣f̂Q(x) − 1/2∣ > 2−ℓ.

and sign(f̂Q(x) − 1/2) = sign(f∗(x) − 1/2). Thus, f̂Q classifies all of the points in ⋃L
ℓ=1 Cℓ correctly with some margin.

After deletion, f̂Q∖D and f̂Q agree on the sign of x when

εℓ ⋅K ⋅
√
NT ⋅ β(NT ) ≤ 2−ℓ

2−ℓ ⋅ 1√
R(T, δ)

⋅K ⋅
√
NT ⋅ β(NT ) ≤ 2−ℓ (εℓ = 2−ℓ/

√
R(T, δ))

1√
R(T, δ)

⋅K ⋅
√
NT ⋅ β(NT ) ≤ 1
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K ≤
√
R(T, δ)

√
NT ⋅ β(NT )

.

Thus, for up to

K ≤
√
R(T, δ)

√
NT ⋅ β(NT )

deletions, sign(f̂Q∖D(x) − 1/2) = sign(f̂Q(x) − 1/2) = sign(f∗(x) − 1/2) on all of the points in ⋃L
ℓ=1 Cℓ.

For points inRL = P ∖ (⋃L
ℓ=1Qℓ ∪⋃L

ℓ=1 Cℓ), we know that ∣f̂QL
(x) − 1/2∣ ≤ 3 ⋅ 2−L by the design of Algorithm 3. We also

know that for all x ∈RL, ∣f∗(x) − f̂Qℓ
(x)∣ ≤ 2−L from Lemma F.1. Thus, for all x ∈RL, ∣f∗(x) − 1/2∣ ≤ 4 ⋅ 2−L = 2−L+2.

From the design of Algorithm 3, we also know that ∣RL∣ = ∣P ∖ (⋃L
ℓ=1Qℓ ∪⋃L

ℓ=1 Cℓ)∣ ≤ 4L−1 ⋅D(F , S) ⋅R(T, δ).
RL is the set of points which we did not query but we are unsure of the label. We know from Theorem 5.3 that

∣RL∣,NT = O (min
ε
{Tε +

1

ε2
⋅R(T, δ) ⋅D(F , S)}) .

As shown above, for all other unqueried points, f̂Q∖D agrees with the classification of the Bayes optimal classifier, despite
not using these points during training. In particular, we have that

L̂S∖{Q∖D}(f̂Q∖D) = ∑
S∖{Q∖D}

1{sign(f̂Q∖D(x) − 1/2) ≠ sign(f∗(x) − 1/2)} ≤ NT +K,

because f̂Q∖D and f∗(x) may disagree on the classification of the K deleted queried points and the points in NT points in
RL; they must agree on all other unqueried points.

Similarly to the linear case, we can use techniques from generalization for sample compression algorithms (Kakade &
Tewari, 2008) to convert the empirical classification loss to an excess risk bound for f̂Q∖D. First observe that

E(ĥ) = E(x,y)∼D[1{sign(f̂Q∖D(x) − 1/2) ≠ y} − 1{sign(f∗(x) − 1/2) ≠ y}]
= E(x,y)∼D[∣2∣f∗(x) − 1/2∣ − 1∣ ⋅ 1{sign(f̂Q∖D(x) − 1/2) ≠ sign(f∗(x) − 1/2)}]
≤ E(x,y)∼D[1{sign(f̂Q∖D(x) − 1/2) ≠ sign(f∗(x) − 1/2)}]

We look to bound the loss of L(f̂Q∖D) = E(x,y)∼D[1{sign(f̂Q∖D(x) − 1/2) ≠ sign(f∗(x) − 1/2)}]. We are interested in
the event that there exists a Q ∖D ⊆ S, ∣Q ∖D∣ = l such that L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε

Pr[∃ Q ∖D ⊆ S such that L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε]

≤
T

∑
l=1

Pr[∃ Q ∖D ⊆ S, ∣Q ∖D∣ = l such that L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε]

≤
T

∑
l=1

∑
Q∖D⊆S,∣Q∖D∣=l

Pr[L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε]

=
T

∑
l=1

∑
Q∖D⊆S,∣Q∖D∣=l

E [PrS∖{Q∖D}[L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε ∣ Q ∖D]]

Let ∣Q∣ = NT and let ∣D∣ =K, where NT −K = l. Now for any fixed Q ∖D, the above probability is just the probability
of having a true risk greater than ε and an empirical risk at most NT +K on a test set of size T −NT +K. Now for any
random variable z ∈ [0,1], if E[z] ≥ ε then Pr[z = 0] ≤ 1 − ε. Thus, for a given Q ∖D,

PrS∖{Q∖D}[L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε] ≤ (1 − ε)T−2NT
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Plugging this in above, we have

Pr[∃ Q ∖D ⊆ S, ∣Q ∖D∣ = l such that L̂S∖{Q∖D}(f̂Q∖D) ≤ NT +K and L(f̂Q∖D) ≥ ε]

≤
T

∑
l=1

∑
Q∖D⊆S,∣Q∖D∣=l

(1 − ε)T−2NT

≤
T

∑
l=1

T l ⋅ (1 − ε)T−2NT

=
T

∑
l=1

TNT−K ⋅ (1 − ε)T−2NT

=
T

∑
l=1

TNT−K ⋅ (1 − ε)T−2NT

≤
T

∑
l=1

TNT ⋅ e−ε(T−2NT )

= TNT+1 ⋅ e−ε(T−2NT )

We want this probability to be at most δ. Setting ε appropriately, we have

ε = 1

T − 2NT
⋅ ((NT + 1) logT + log(1/δ)).

Thus, with probability at least 1 − δ,

L(f̂Q∖D) ≤
1

T − 2NT
⋅ ((NT + 1) logT + log(1/δ)).

This implies that with probability at least 1 − δ,

E(ĥ) ≤ 1

T − 2NT
⋅ ((NT + 1) logT + log(1/δ)).

F.2. Auxiliary Results

Lemma F.1. With probability at least 1 − δ, for all stages ℓ, for all x ∈ Pℓ−1 ∖Qℓ,

∣f∗(x) − f̂Q(x)∣ ≤ 2−ℓ and ∣f∗(x) − f̂Qℓ
(x)∣ ≤ 2−ℓ

Proof. The following proof is adapted from Gentile et al. (2022, Lemma 16).

For all ℓ, for all x ∈ Pℓ−1 ∖Qℓ,

(f∗(x) − f̂Q(x))2

= (f∗(x) − f̂Q(x))2

∑xt∈Q(f∗(xt) − f̂Q(xt))2 + 1
⎛
⎝ ∑xt∈Q

(f∗(xt) − f̂Q(xt))2 + 1
⎞
⎠

= (f∗(x) − f̂Q(x))2

∑xt∈Qℓ
(f∗(xt) − f̂Q(xt))2 + 1

⎛
⎝ ∑xt∈Q

(f∗(xt) − f̂Q(xt))2 + 1
⎞
⎠

≤ sup
f,g∈F

(f(x) − g(x))2

∑xt∈Qℓ
(f(xt) − g(xt))2 + 1

⎛
⎝ ∑xt∈Q

(f∗(xt) − f̂Q(xt))2 + 1
⎞
⎠

=D2(x;Qℓ)
⎛
⎝ ∑xt∈Q

(f∗(xt) − f̂Q(xt))2 + 1
⎞
⎠
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≤ ε2ℓ ⋅R(δ, T )
= (2−ℓ)2

where the second to last line holds with probability 1 − δ/T .

We also have for all ℓ, for all x ∈ Pℓ−1 ∖Qℓ,

(f∗(x) − f̂Qℓ
(x))2

= (f∗(x) − f̂Qℓ
(x))2

∑xt∈Qℓ
(f∗(xt) − f̂Qℓ

(xt))2 + 1
⎛
⎝ ∑xt∈Qℓ

(f∗(xt) − f̂Qℓ
(xt))2 + 1

⎞
⎠

≤ sup
f,g∈F

(f(x) − g(x))2

∑xt∈Qℓ
(f(xt) − g(xt))2 + 1

⎛
⎝ ∑xt∈Qℓ

(f∗(xt) − f̂Qℓ
(xt))2 + 1

⎞
⎠

=D2(x;Qℓ)
⎛
⎝ ∑xt∈Qℓ

(f∗(xt) − f̂Qℓ
(xt))2 + 1

⎞
⎠

≤ ε2ℓ ⋅R(δ, T )
= (2−ℓ)2

where the second to last line holds with probability 1− δ/T . Summing over the rest over all stages ℓ < T with a union bound
yields the proof.

Lemma F.2. For every ℓ, for every x ∈ Cℓ, sign(f̂Qℓ
(x)) = sign(f̂Q(x)) = sign(f∗(x)) and ∣f̂Q(x) − 1/2∣ > 2ℓ.

Proof. Adapted from Lemma 17 from Gentile et al. (2022).

For every stage ℓ, every x ∈ Cℓ, we know that ∣f̂Qℓ
(x)− 1/2∣ > 3 ⋅ 2ℓ by the design of Algorithm 3. Putting this together with

Lemma F.1, since Cℓ ⊆ Pℓ−1 ∖Qℓ, we must have for every ℓ, for every x ∈ Cℓ, sign(f̂Qℓ
(x)) = sign(f̂Q(x)) = sign(f∗(x)).

Furthermore, we have that ∣f∗(x) − 1/2∣ > 2 ⋅ 2ℓ and ∣f̂Q(x) − 1/2∣ > 2ℓ.

Lemma F.3. Let f̂S ∈ F be the predictor returned by a regression oracle on sample S and let f̂S∖i ∈ F be the predictor
returned by a regression oracle on sample S ∖ {xi}. If the regression oracle satisfies uniform stability under the squared
loss, ℓ(ŷ, y) = (ŷ − y)2, then for all S = Zn, for all i ∈ [n], , for all {x1, . . . , xn},

n

∑
t=1
(f̂S∖i(xt) − f̂S(xt))2 ≤ n ⋅ β(n)2.

Proof. Since the regression oracle satisfies uniform stability under the squared loss, ℓ(ŷ, y) = (ŷ − y)2, we have for all
S ∈ Zn, for all i ∈ [n], for all z = (x, y) ∈ Z ,

∣(f̂S(x) − y)2 − (f̂S∖i(x) − y)2∣ ≤ β(n).

Expanding the left hand side, we have

∣(f̂S(x) − y)2 − (f̂S∖i(x) − y)2∣ = ∣f̂S(x)2 − 2yf̂S(x) − y2 − f̂S∖i(x)2 + 2yf̂S∖i(x) + y2∣
= ∣f̂S(x)2 − f̂S∖i(x)2 + 2y(f̂S∖i(x) − f̂S(x))∣
= ∣f̂S(x)2 − f̂S∖i(x)2∣ + 2∣f̂S∖i(x) − f̂S(x)∣∣

(holds for all y, so set y = {−1,+1} accordingly)

≥ 2∣f̂S∖i(x) − f̂S(x)∣

From uniform stability, we can conclude

∣f̂S∖i(x) − f̂S(x)∣ ≤ β(n).
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Thus,

n

∑
t=1
(f̂S∖i(xt) − f̂S(xt))2 ≤ n ⋅ β(n)2.

G. Helpful Theorems
Proposition G.1 (Agarwal (2013), Proposition 1). With probability at least 1 − δ, for all t ∈ [T ],

∥wt − u∥At ≤ O (
√
d logT ⋅ log(1/δ)) .

Theorem G.2 (Ben-Hamou et al. (2018), Theorem 1). Let X be the cumulative value of sequence of length n ≤ N drawn
from Ω without replacement,

X = ν(I1) +⋯ + ν(In),

and let Y be the cumulative value of sequence of length n ≤ N drawn from Ω with replacement,

Y = ν(J1) +⋯ + ν(Jn).

If the value function ν and the weight vector W follow the property that

ω(i) > ω(j)Ô⇒ ν(i) ≥ ν(j),

then

E[X] ≤ E[Y ].

Theorem G.3 (Gentile et al. (2022), Theorem 19). For any pool realization P , the label complexity NT of Algorithm 3
operating on a pool P of size T is bounded deterministically as

NT ≤ 4L+1 ⋅R(T, δ) ⋅D(F ,P)
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