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Abstract
State-of-the-art deep learning models for tabu-
lar data have recently achieved acceptable per-
formance to be deployed in industrial settings.
Contrary to computer vision, there is to date no
efficient constrained whitebox attack to evaluate
the adversarial robustness of deep tabular models
due to intrinsic properties of tabular data such as
categorical features, immutability, and feature re-
lationship constraints. To fill this gap, we propose
CAPGD, the first efficient evasion attack for con-
strained tabular deep learning models. CAPGD
is an iterative parameter-free attack to generate
adversarial examples under constraints. We evalu-
ate CAPGD across four critical use cases: credit
scoring, phishing, botnet attacks, and ICU sur-
vival prediction. Our empirical study covers 5
modern tabular deep learning architectures and
demonstrates the effectiveness of our attack which
improves over the most effective constrained at-
tack by 81% points.

1. Introduction
Evasion attack is the process of slightly altering an origi-
nal input into an adversarial example designed to force a
machine learning (ML) model to output a wrong decision.
Robustness to adversarial examples is a problem of growing
concern among the secure ML community, with over 10,000
publications on the subject since 2014 (Carlini et al., 2019).
Recent studies also report real-world occurrences of evasion
attacks, which demonstrate the importance of studying and
defending against this phenomenon (Grosse et al., 2024).

While research has studied the robustness of deep learning
models in Computer Vision (CV) and Natural Language Pro-
cessing (NLP) tasks, many real-world applications instead
deal with tabular data, including in critical fields like fi-
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nance, energy, and healthcare. If classical “shallow” models
(e.g. random forests) have been the go-to solution to learn
from tabular data (Hancock & Khoshgoftaar, 2020), deep
learning models are becoming competitive (Borisov et al.,
2022). This raises anew the need to study the robustness of
these models.

However, robustness assessment for tabular deep learning
models brings a number of new challenges that previous
solutions — because they were originally designed for CV
or NLP tasks — do not consider. One such challenge is
the fact that tabular data exhibit complex relationships and
constraints across features. The satisfaction of these feature
constraints can be a non-convex or even non-differentiable
problem; this implies that established evasion attack algo-
rithms relying on gradient computation do not create valid
adversarial examples (i.e., constraint satisfying) (Ghamizi
et al., 2020). Meanwhile, attacks designed for tabular data
also ignore feature type constraints (Ballet et al., 2019) or, in
the best case, consider categorical features without feature
relationships (Wang et al., 2020; Xu et al., 2023; Bao et al.,
2023) and are evaluated on datasets that exclusively con-
tain such features. This restricts their application to other
domains that present heterogeneous feature types.

The only published evasion attacks that support feature
constraints are Constrained Projected Gradient Descent
(CPGD) and Multi-Objective Evolutionary Adversarial At-
tack (MOEVA) (Simonetto et al., 2021). CPGD is an exten-
sion of the classical gradient-based PGD attack with a new
loss function that encodes how far the generated examples
are from satisfying the constraints. Although theoretically
elegant and practically efficient, this attack suffers from a
low success rate due to its difficulty to converge toward both
model classification and constraint satisfaction (Simonetto
et al., 2021). Conversely, MOEVA is based on genetic al-
gorithms. It offers an outstanding success rate compared
to CPGD and works on shallow and deep learning mod-
els. However, it is computationally expensive and requires
numerous hyper-parameters to be tuned (population size,
mutation rate, generations, etc.). This prevents this attack
from scaling to larger models and datasets.

Overall, research on adversarial robustness for tabular ma-
chine learning in general (and tabular deep learning in par-
ticular) is still in its infancy. This is in stark contrast to the
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abundant literature on adversarial robustness in CV (Long
et al., 2022) and NLP tasks (Dyrmishi et al., 2023). Given
this limited state of knowledge, the objective of this paper
is to propose novel and effective attack methods for tabular
models subject to feature constraints.

Our first hypothesis is that gradient-based algorithms have
been insufficiently explored in (Simonetto et al., 2021) and
that the introduction of dedicated adaptive mechanisms can
outperform CPGD. To verify this, we design a new adap-
tive attack, named Constrained Adaptive PGD (CAPGD),
whose only free parameter is the number of iterations and
that does not require additional parameter tuning (Section
4). We demonstrate that the different mechanisms we intro-
duced in CAGPD contribute to improving the success rate
of this attack compared to CPGD, by 81% points. Across all
our datasets, the set of adversarial examples that CAPGD
generates subsumes all of the examples generated by any
other gradient-based method.

Our contributions can be summarized as follows:

1. We design a new parameter-free attack, CAPGD that
introduces momentum and adaptive steps to effectively
evade DL models while enforcing the domain con-
straints.

2. We evaluate CAPGD in a large-scale evaluation over
four datasets, five architectures. Our results show that
CAPGD outperforms the other gradient-based attacks
in terms of capability to generate valid (constraint-
satisfying) adversarial examples. CAPGD improves
over the most effective constrained attack by up to 81%
points.

2. Related work
2.1. Tabular Deep Learning

Tabular data remains the most commonly used form of
data (Shwartz-Ziv & Armon, 2021), especially in critical
applications such as medical diagnosis (Ulmer et al., 2020;
Somani et al., 2021), financial applications (Ghamizi et al.,
2020; Clements et al., 2020; Cartella et al., 2021), user
recommendation systems (Zhang et al., 2019), cybersecu-
rity (Chernikova & Oprea, 2019; Aghakhani et al., 2020),
and more. Improving the performance and robustness of
tabular machine learning models for these applications is
becoming critical as more ML-based solutions are cleared
to be deployed in critical settings.

Borisov et al. (2022) showed that traditional deep neural
networks tend to yield less favorable results in handling tab-
ular data when compared to more shallow machine learning
methods, such as XGBoost. However, recent approaches
like RLN (Shavitt & Segal, 2018) and TabNet (Arik & Pfis-

ter, 2021) are catching up and even outperforming shallow
models in some settings. We argue that DNNs for Tabular
Data are sufficiently mature and competitive with shallow
models and require therefore a thorough investigation of
their safety and robustness. Our work is the first exhaustive
study of these critical properties.

2.2. Realistic Adversarial Examples

Initially applied to computer vision, adversarial examples
have also been adapted and evaluated on tabular data. Bal-
let et al. (2019) considered feature importance to craft the
attacks, Mathov et al. (2022) considered mutability, type,
boundary, and data distribution constraints, Kireev et al.
(2022) suggested considering both the cost and benefit of
perturbing each feature, and Simonetto et al. (2021) intro-
duced domain-constraints (relations between features) as a
critical element of the attack. This last approach is closest
to the trend in adversarial machine learning in critical sce-
narios such as malware and finance (Pierazzi et al., 2020;
Dyrmishi et al., 2022).

Our work follows this last hypothesis and focuses on con-
strained feature-space attacks to realistically assess the ro-
bustness of deep tabular learning models.

While domain constraints satisfaction is essential for suc-
cessful attacks, research on robustness for industrial set-
tings (eg Ghamizi et al. (2020) with a major bank) also
demonstrated that imperceptibility remains important for
critical systems with human-in-the-loop mechanisms, which
could deflect attacks with manual checks from human op-
erators. Imperceptibility is domain-specific, and multiple
approaches have been suggested (Ballet et al., 2019; Kireev
et al., 2022; Dyrmishi et al., 2022). None of these ap-
proaches was confronted with human assessments or com-
pared with each other, and in our study we decided to use
the most established L2 norm.

Overall, except the work from Simonetto et al. (2021), none
of the existing attacks for tabular machine learning sup-
ports the feature relationships inherent to realistic tabular
datasets, as summarized in Table 1. Nevertheless, in our
empirical study we evaluate all the approaches that support
continuous values and where a public implementation is
available to confirm our claims: LowProFool, BF*, CPGD,
and MOEVA.

3. Problem formulation
We formulate in the following the problem of evasion attacks
under constraints. We assume the attack to be untargeted
(i.e. it aims to force misclassification in any incorrect class);
the formulation for targeted attacks is similar.

We denote by x ∈ Rd an input example and by y ∈
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Table 1. Recent literature on evasion attacks for tabular machine learning models. In bold the attacks where a public implementation is
disclosed.

Attack Supported features Supported constraints
Categorical Discrete Relations

LowProFool (LPF) (Ballet et al., 2019) Continuous No No No
Cartella et al. (2021) Continous, Discrete, Categorical Yes Yes No
Gressel et al. (2021) Continous, Discrete, Categorical Yes Yes No
Xu et al. (2023) Categorical Yes No No
Wang et al. (2020) Categorical Yes No No
Bao et al. (2023) Categorical Yes No No
BF*/BFS (Kulynych et al., 2018; Kireev et al., 2023) Continous, Discrete, Categorical Yes Yes No
Mathov et al. (2022) Continous, Discrete, Categorical Yes Yes No
CPGD, MOEVA (Simonetto et al., 2021) Continous, Discrete, Categorical Yes Yes Yes
CAPGD, CAA (OURS) Continous, Discrete, Categorical Yes Yes Yes

{1, . . . , C} its correct label. Let h : Rd → RC be a clas-
sifier and hck(x) the classification score that h outputs for
input x to be in class ck. Let ∆ ⊆ Rd be the space of
allowed perturbations. Then, the objective of an evasion
attack is to find a δ ∈ ∆ such that

argmaxc∈{1,...,C}hc(x+ δ) ̸= y. (1)

In image classification, the set ∆ is typically chosen as the
perturbations within some lp-ball around x, i.e. ∆p = {δ ∈
Rd, ||δ||p ≤ ϵ} for a maximum perturbation threshold ϵ.
This restriction aims at preserving the semantics of the orig-
inal input by assuming that small enough perturbations will
yield images that humans perceive the same as the original
images and would therefore classify the perturbed input into
the same class (while the classifier predicts another class).
This also guarantees that the example remains meaningful,
that is, x+ δ is not an image with random noise.

Tabular data are by nature different from images. They
typically represent objects of the considered application
domain (e.g. botnet traffic (Chernikova & Oprea, 2022),
financial transaction (Ghamizi et al., 2020)). We denote by
φ : Z → Rd the feature mapping function that maps objects
of the problem space Z to a d-dimensional feature space
defined by the feature set F = {f1, f2, ...fd}. Each object
z ∈ Z must inherently respect some natural condition to
be valid (to be able to exist in reality). In the feature space,
these conditions translate into a set of constraints on the
feature values, which we denote by Ω. By construction,
any input example x obtained from a real-world object z
satisfies Ω, noted x |= Ω.

Thus, in the case of tabular data, we additionally require
the perturbation δ applied to x to yield a valid example
x + δ satisfying Ω, that is, ∆p(x) = {δ ∈ Rd : ||δ||p ≤
ϵ ∧ x+ δ |= Ω}.

To define the constraint language expressing Ω, we consider
the four types of constraint introduced by Simonetto et
al. (Simonetto et al., 2021), which we found to be sufficient

for the constraints related to the datasets we used in our
experiments. Hence, immutability defines what features
cannot be changed by an attacker; boundaries define upper /
lower bounds for feature values; type specifies a feature to
take continuous, discrete, or categorical values; and feature
relationships capture numerical relations between features.
These four types of constraints can be encoded using the
following grammar:

ω := ω1 ∧ ω2 | ω1 ∨ ω2 | ψ1 ⪰ ψ2 | f ∈ {ψ1 . . . ψk} (2)
ψ := c | f | ψ1 ⊕ ψ2 | xi (3)

where f ∈ F is a feature, c is a constant, ω, ω1, ω2 are
constraint formulae, ⪰∈ {<,≤,=, ̸=,≥, >} is a com-
parison operator, ψ,ψ1, . . . , ψk are numeric expressions,
⊕ ∈ {+,−, ∗, /} is a numerical operator, and xi is the
value of the i-th feature of the original input x.

3.1. Constrained Projected Gradient Descent

Constrained Projected Gradient Descent (CPGD) Simon-
etto et al. (2021) is an extension of the well-established
PGD attack (Madry et al., 2017) to generate adversarial
examples satisfying constraints in tabular machine learning.
Its key principle is to integrate constraint satisfaction into
the loss function that PGD optimizes. This is achieved by
translating each constraint ω into a differentiable function
penalty(x, ω) that values to zero if x |= ω; otherwise, the
(positive) value of the function for x represents how far x is
from satisfying ω. Table 2 shows how each construct of the
constraint grammar translates into a penalty function.

Based on this, CPGD produces adversarial examples from
an initial sample xorig classified as y by iteratively comput-
ing:

x(k+1) = RΩ(PS(x
(k) + η(k)∇L(x(k), y, h,Ω)))) (4)

where x0 = xorig (the original input), PS is a projection
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Table 2. Translation from constraint formulae to penalty functions.
τ is an infinitesimal value. ω a constraint and ψ a numerical value.

ID Constraints formulae Penalty function

∧ ω1 ∧ ω2 ω1 + ω2

∨ ω1 ∨ ω2 min(ω1, ω2)
∈ ψ ∈ Ψ = {ψ1, . . . ψk} min({ψi ∈ Ψ :| ψ − ψi |})
≤ ψ1 ≤ ψ2 max(0, ψ1 − ψ2)
< ψ1 < ψ2 max(0, ψ1 − ψ2 + τ)
= ψ1 = ψ2 | ψ1 − ψ2 |

onto S = {x ∈ Rd, ||x− xorig||p ≤ ϵ}, ∇L is the gradient
of loss function L, defined as

L(x, y, h,Ω) = l(h(x), y)−
∑
ωi∈Ω

penalty(x, ωi). (5)

In the original CPGD implementation (Simonetto et al.,
2021), the step size η(k) follows a predefined decay sched-
ule, η(k) = ϵ × 10−(1+⌊k/⌊K/M⌋⌋), with M = 7, and
K = max(k). L′(x) abbreviates L(x, y, h,Ω).

3.2. Experimental settings

Our experiments are driven by the following datasets, mod-
els, and attack parameters.

Datasets. To conduct our study, we selected tabular
datasets that present feature relations based on domain
constraints. URL (Hannousse & Yahiouche, 2021) is a
dataset of legitimate and phishing URLs. With only 14 lin-
ear domain constraints and 63 features, it is the simplest of
our benchmark. LCLD (George, 2018) is a credit-scoring
dataset with non-linear constraints. The WiDS (Lee et al.,
2020) dataset contains medical data on the survival of pa-
tients admitted to the ICU. It has only 30 linear domain
constraints. The CTU (Chernikova & Oprea, 2022) dataset
reports legitimate and botnet traffic from CTU University.
The challenge of this dataset lies in its large number of linear
domain constraints (360).

Architectures. We evaluate five top-performing architec-
tures from a recent survey on tabular ML (Borisov et al.,
2022): TabTransformer (Huang et al., 2020) and Tab-
Net (Arik & Pfister, 2021) are transformer-based models.
RLN (Shavitt & Segal, 2018) uses a regularization coeffi-
cient to minimize a counterfactual loss. STG (Yamada et al.,
2020) optimizes feature selection with stochastic gates, and
VIME (Yoon et al., 2020) relies on self-supervised learning.
These deep learning architectures achieve equivalent per-
formance to XGBoost, the best shallow machine learning
model for our use cases.

Perturbation parameters. We use L2-norm to measure
distance between original and perturbed input, because this

norm is suitable for both numerical and categorical features.
We set ϵ to 0.5 for all datasets. Each of these datasets
has a critical (negative) class, respectively phishing URLs,
rejected loans, botnets, and not surviving patients. Hence,
we only attack clean examples from the critical class that are
not already misclassified by the model. In these settings, the
relevant success metric is robust accuracy, which enables
cross-model comparisons.

4. Our Constrained Adaptive PGD
The relative lack of effectiveness of CPGD as reported in
its original publication Simonetto et al. (2021) leads us to
investigate the cause of these weaknesses. We investigate
four factors that may affect the success rate of the attack:
(1) because the choice of the step size is known to largely
impact the effectiveness of gradient-based attacks (Mosbach
et al., 2018), we conjecture that the fixed step size and
predefined decay in CPGD might be suboptimal; (2) the
algorithm is unaware of the trend, i.e. it does not consider
whether the optimization is evolving successfully and is
not able to react to it; (3) CPGD does not check constraint
satisfaction between the iterations, which could “lock” the
algorithm into a part of the invalid data space; (4) CPGD
starts with the original example, whereas classical gradient-
based attacks often benefit from random initialization.

4.1. CAPGD components

We propose Constrained Adaptive PGD (CAPGD), a new
constraint-aware gradient-based attack that aims to over-
come the limitations of CPGD and improve its effectiveness.

Step size selection We introduce a step-size adaptation.
We follow the exploration-exploitation principle by gradu-
ally reducing the gradient step (Croce & Hein, 2020). How-
ever, unlike CPGD, this reduction does not follow a fixed
schedule but is determined by the optimization trend. If
the value of the loss function grows, we keep the same step
size; otherwise, we halve it. That is, we start with a step
η(0) = 2ϵ, and we identify checkpoints w0 = 0, w1, ..., wn

at which we decide whether it is necessary to halve the size
of the current step. We halve the step size if any of the
following two conditions holds. First, we count how many
cases since the last checkpoint wj−1 the update step has
successfully increased L′. The condition holds if the loss
has increased for at least a fraction of ρ steps (we set ρ =
0.75)

wj−1∑
i=wj−1

1L′(x(i+1))>L′(x(i)) < ρ · (wj − wj−1)
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Second, the step has not been reduced at the last checkpoint
and the loss is less or equal to the loss of the last checkpoint:

η(wj−1) ≡ η(wj) ∧ L(wj−1)
max ≡ L(wj)

max

where L(wj)
max is the highest objective value in the first j + 1

iterations.

Repair operator We also introduce a new “repair” opera-
tor denoted RΩ that projects back the example produced at
each iteration into the valid data space. The idea is to force
the value of any feature f that occurs in constraints of the
form f = ψ (see Equation 3) to be ψ valued based on all
other feature values in the example.

Initial state As for initialization, we apply the attack from
two initial states: the original example xorig and a random
example sampled from S (the Lp-ball around xorig). The
goal behind this second initialization is to reduce the risk of
being immediately locked into local optima that encompass
only invalid examples.

Gradient step Finally, we introduce in CAPGD a momen-
tum (Dong et al., 2018)

. Let η(k) be the step size at iteration k, then we first com-
pute z(k+1) before the updated example x(k+1).

z(k+1) = PS(x
(k) + η(k)(∇L′(x(k))) (6)

x(k+1) = RΩ(PS(x
(k) + α · (z(k+1) − x(k)) (7)

+ (1− α) · (x(k) − x(k+1)))

where α ∈ [0, 1] (we use α = 0.75 following (Croce &
Hein, 2020)) regulates the influence of the previous update
on the current, and PS is the projection onto S = {x ∈
Rd, ||x− xorig||p ≤ ϵ}.

4.2. Comparison of CAPGD to gradient-based attacks

To evaluate the benefits of CAPGD, we compare it with
CPGD as well as LowProFool, the only other public gradient
attack for tabular models that can be extended to support all
feature types.

CAPGD is more successful than existing gradient attacks.
We compare the robust accuracy across our five datasets and
five architectures against CPGD, LowProFool, and CAPGD,
and report the results in Table 3. CAPGD significantly
outperforms CPGD and LowProFool. It decreases the robust
accuracy on URL, LCLD, and WIDS datasets to as low as
10.9%, 0.2%, and 10.2% respectively.

CAPGD subsumes all gradient attacks. We analyze in
detail the original examples from which attacks could gen-
erate valid and successful adversarial examples. For each

Table 3. Robust accuracy for CAPGD and SOTA gradient attacks.
A lower robust accuracy means a more effective attack. The lowest
robust accuracy is in bold.

Dataset Model Clean LPF CPGD CAPGD

URL

TabTr. 93.6 93.6 91.9 10.9
RLN 94.4 94.4 92.8 12.6
VIME 92.5 92.5 90.7 56.3
STG 93.3 93.3 93.3 72.6
TabNet 93.4 93.4 88.5 19.3

LCLD

TabTr. 69.5 69.2 69.5 27.1
RLN 68.3 68.3 68.3 0.2
VIME 67.0 67.0 67.0 2.6
STG 66.4 66.4 66.4 55.5
TabNet 67.4 67.4 67.4 6.3

CTU

TabTr. 95.3 95.3 95.3 95.3
RLN 97.8 97.8 97.8 97.8
VIME 95.1 95.1 95.1 95.1
STG 95.3 95.3 95.3 95.3
TabNet 96.1 96.1 96.1 96.1

WIDS

TabTr. 75.5 75.5 75.2 48.0
RLN 77.5 77.5 77.3 61.8
VIME 72.3 72.3 71.5 51.4
STG 77.6 77.6 77.5 65.1
TabNet 79.7 79.7 76.0 10.2

LowProFool

CAPGD

CPGD 6597
132 3

Figure 1. Complementarity of CAPGD, CPGD and LowProFool
with the number of successful adversarial examples.

attack, we take the union of the sets of clean examples
across 5 seeds. We generate the Venn diagram for CPGD,
LowProFool, and CAPGD, for all datasets and model archi-
tectures. We sum the partition values in Figure 1. CAPGD
generates adversarial examples for 6597 original examples
from which none of the other gradient attacks could produce
adversarial examples. In contrast, all successful adversar-
ial examples by CPGD (132) and LowProFool (3) are also
generated by CAPGD.
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Conclusion
In this work, we first propose CAPGD, a new parameter-
free gradient attack for constrained tabular machine learning.
We evaluate our attack over four datasets and five architec-
tures and demonstrated that our new attack outperforms all
previous attacks in terms of effectiveness and efficiency.
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