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Abstract
We consider the problem of adaptive Model
Predictive Control (MPC) for uncertain linear-
systems with additive disturbances and with state
and input constraints. We present STT-MPC (Self-
Tuning Tube-based Model Predictive Control),
an online algorithm that combines the certainty-
equivalence principle and polytopic tubes. Specif-
ically, at any given step, STT-MPC infers the sys-
tem dynamics using the Least Squares Estimator
(LSE), and applies a controller obtained by solv-
ing an MPC problem using these estimates. The
use of polytopic tubes is so that, despite the uncer-
tainties, state and input constraints are satisfied,
and recursive-feasibility and asymptotic stability
hold. In this work, we analyze the regret of the
algorithm, when compared to an oracle algorithm
initially aware of the system dynamics. We es-
tablish that STT-MPC expected regret does not
exceed O(T 1/2+ϵ), where ϵ ∈ (0, 1) is a design
parameter tuning the persistent excitation com-
ponent of the algorithm. Our result relies on a
recently proposed exponential decay of sensitiv-
ity property and, to the best of our knowledge, is
the first of its kind in this setting. We illustrate
the performance of our algorithm using a simple
numerical example.

1. Introduction
The problem of optimal decision making for uncertain dy-
namical systems has been studied in both the control and
the learning communities, and is referred to as stochastic
optimal control, adaptive control, or reinforcement learn-
ing. A fundamental special case of this problem is the on-
line (or adaptive) Linear Quadratic Regulator (LQR) which
deals with the optimal control of systems with linear dy-
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namics (Recht, 2019). Early efforts in the control com-
munity yielded algorithms with asymptotic performance
and stability guarantees (Åström & Wittenmark, 1973; Lai,
1986). Over the last decade, the problem has been revisited
in the learning community (see e.g. (Abbasi-Yadkori &
Szepesvári, 2011; Mania et al., 2019; Goel & Hassibi, 2022;
Jedra & Proutiere, 2022) and references therein), with the
aim of devising algorithms with finite-time guarantees on
the regret, defined as the difference between the cumulative
cost of the learning algorithm and that of an oracle which
has perfect knowledge of the system.

All aforementioned studies deal with the simple LQR prob-
lem and cannot account for constraints on the system state
and input. These constraints are important in applications
as they capture both the inherent limitations (e.g position,
velocity, and actuator limits) as well as limitations imposed
due to safety or the cost of operating the system. Unfortu-
nately, it is well known that directly solving a constrained
LQR problem is in general intractable because of the in-
finite time horizon (Scokaert & Rawlings, 1998). A way
to circumvent this issue is to use Model Predictive Control
(MPC) which solves a finite-time constrained optimization
problem in a receding horizon manner.

Early work in the control community led to a better under-
standing of the connection between MPC and LQR and to
algorithms with recursive feasibility and asymptotic stability
guarantees (Mayne et al., 2000). In parallel, the tube MPC
framework was developed to achieve the robust satisfac-
tion of constraints in the presence of uncertainties (Mayne
et al., 2005). Recently, online MPC algorithms, combining
tube MPC and adaptive strategies (to cope with the system
uncertainty), have been proposed and shown to ensure re-
cursive feasibility and asymptotic stability (Lorenzen et al.,
2017; Lu & Cannon, 2019; Lu et al., 2021), and (Tranos
et al., 2022). The learning community has also begun to
investigate MPC, again with the aim of providing finite-time
regret guarantees (Li et al., 2019; Yu et al., 2020; Zhang
et al., 2021; Lin et al., 2021; 2022). A key limitation of
these analyses is that they are valid only in the absence of
constraints which goes against the main motivation of MPC
(Bitmead et al., 1990). Furthermore, most of these works
assume to have access to (often perfect) system dynamics
predictions. And those not making this assumption yield
regret bounds having the cost of the oracle as an additive
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term. In turn, this term may scale linearly with time in the
presence of constraints and additive disturbances.

In this work, we present STT-MPC, an adaptive MPC algo-
rithm originally proposed in (Tranos et al., 2022). Inspired
by the analysis pipeline of (Lin et al., 2022), we leverage
the exponential decay of sensitivity property of the under-
lying finite-time optimization problem (Shin et al., 2022)
to provide upper bounds of the expected regret of the algo-
rithm. Specifically, we show that this regret scales at most
as T 1/2+ϵ where ϵ ∈ (0, 1) is a design parameter tuning the
persitent excitation component of the algorithm.

Notation. For a time dependent vector xt, we denote by
xk|t its prediction at time k + t given information at time
t. For any two sets A and B, we define their Minkowski
sum as the set A ⊕ B := {a + b : a ∈ A, b ∈ B}. We
also define, for any constant λ ≥ 0, the scaled set λA :=
{λa, a ∈ A}. For any d ∈ N, x ∈ Rd, and ϵ > 0, let
B(x, ϵ) = {y : ∥y − x∥ ≤ ϵ}. Let B = B(0, 1). For any
set S, and any ε > 0, there exists a polytope P that is an
outer approximation of S, i.e., S ⊂ P ⊕ εB. We refer to
this polytope as the outer polyhedral approximation of S.
Unless stated otherwise, we use ∥·∥ to denote the Euclidean
norm for vectors and the Frobenius norm for matrices.

2. Problem Setting
We consider the following discrete time, linear, time-
invariant system:

xt+1 = A(θ⋆)xt +B(θ⋆)ut + wt, (1)

where xt, wt ∈ Rdx and ut ∈ Rdu . The state transition
and state-action transition matrices A(θ⋆) and B(θ⋆) are
initially unknown. The set of possible such matrices is
parameterized by θ ∈ Rdθ (here θ could well parameterize
each entry of the matrices, in which case dθ = dx(dx+du)).
To simplify the notation, for two possible parameters θ1, θ2,
we define ∥θ1 − θ2∥ := max(∥A(θ1)−A(θ2)∥, ∥B(θ1)−
B(θ2)∥). We make the following assumptions.

Assumption 2.1 (Parameter uncertainty). The decision
maker does not know θ⋆, but knows that θ⋆ ∈ Θ0 where Θ0

is a convex polytope. Moreover, there exists ϵ0 > 0 such
that B(θ∗, ϵ0) ⊂ Θ0.

Assumption 2.2 (Additive disturbance). The sequence
(wt)t≥0 is i.i.d, and for each t ≥ 0, wt is zero-mean,
isotropic, with support in the ball B(0, 3σ). Hence, wt

is σ2-sub-gaussian. Further defineW , a convex polytope
providing a conservative approximation of B(0, 3σ), i.e.,
B(0, 3σ) ⊂ W .

Assumption 2.3 (State and input constraints). The set

C = {(x, u) ∈ Rdx × Rdu : Fx+Gu ≤ 1}.

is compact and contains the origin in its interior. Here,
F ∈ Rdc×dx and G ∈ Rdc×du define the state and in-
put constraints respectively. The above inequality holds
component-wise, and 1 is the vector with all components
equal to 1.

Assumption 2.4 (Stabilizing Controller). There exists a
known, robustly stabilizing feedback gain K such that
A(θ) + B(θ)K is stable (i.e., ρ(A(θ) + B(θ)K) < 1) for
all θ ∈ Θ0.

3. Model Predictive Control
We wish to minimize the long-term cost defined
as lim supT→∞

1
T

∑T−1
t=0 E

[
x⊤
t Qxt + u⊤

t Rut

]
, through

some positive semi-definite matrices Q,R. To this aim,
we use MPC, with a receding horizon N . Specifically, at
time t, given the current system state xt and the past obser-
vations used to derive an estimator θt of θ⋆, we will identify
a control policy (uk|t)k=0,...,N−1 minimizing the cost along
a predicted system trajectory (xk|t)k=0,...,N . We use the
well-known dual mode prediction paradigm (Kouvaritakis
& Cannon, 2016) with the following predicted control se-
quence,

uk|t =

{
Kxk|t + vk|t ∀k ∈ {0, . . . , N − 1},
Kxk|t ∀k ≥ N,

where {v0|t, . . . vN−1|t} are the optimization variables to be
determined by the MPC. The resulting prediction dynamics
will be for k ∈ {0, . . . , N − 1},

x0|t = xt,

xk+1|t = Φ(θt)xk|t +B(θt)vk|t,

where Φ(θ) := A(θ) +B(θ)K for any θ ∈ Θ0.

3.1. LSE and persistent excitation

Our algorithm starts with an initial parameter θ0 ∈ Θ0,
which is then updated using the LSE. We let θ1 = θ0. For
t ≥ 2, the LSE enjoys the following explicit expression:

θ̂t =

(
t−2∑
k=0

xk+1

[
xk

uk

]⊤)(t−2∑
k=0

[
xk

uk

] [
xk

uk

]⊤)†

.

For t ≥ t⋆(δ) (to be defined later), we align our predic-
tion parameter θt to θ̂t. As shown in (Jedra & Proutiere,
2022), a finite-time analysis of the performance of the LSE
is rather intricate but possible even if the feedback con-
troller varies over time. The performance is tightly related
to the minimal eigenvalue of the cumulative covariate matrix

λmin(
∑t−2

s=0 ysy
⊤
s ) where ys =

[
xs

us

]
. More precisely, for

the LSE to lead to a good approximation of θ⋆, we need to
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ensure that this eigenvalue grows with time. To this aim,
we add an isotropic and bounded noise to the control input.
This noise is represented by the random vector ζt taken to
be the projection of ξt on B(0, 3σt), where ξt is i.i.d. ac-
cording to a normal distribution, i.e., ξt ∼ N (0, σ2

t Idu
).

The choice of σt directly impacts the performance of the
LSE but also the overall performance of the controller (a
higher σt means higher excitation and hence better LSE,
but at the expense of a worse overall controller). Here we
set σ2

t =
√
dxσ

2t−α for some α ∈ (0, 1). This ensures
that (i) the LSE θt converges to θ⋆ and (ii) the controller
converges to that obtained through a classical tube-based
MPC framework with known θ⋆. In (Tranos et al., 2022),
we have shown that the following good event G holds with
probability at least 1− δ:

G =
(
∥θ̂t − θ⋆∥ ≤ ϵt, ∀t ≥ t⋆(δ)

)
,

where t⋆(δ) = c1+ c2 log(1/δ) and ϵ2t = c3 log(t/δ)/t
1−α

for some positive constants c1, c2, c3. Next, we define ∆t

as an outer polyhedral approximation of B(θt, 2ϵt). We
further recursively define the uncertainty sets as follows:
Θt = Θt−1 ∩ ∆t for all t ≥ t⋆(δ) and Θt = Θ0 for
t < t⋆(δ). By construction, the true parameter θ⋆ belongs
to the interior of Θt with high probability in the following
sense:

Lemma 3.1. Under event G, B(θ⋆, ϵt) ⊂ Θt for all t ≥ 1.

Proof. For t < t⋆(δ) we have Θt = Θ0 and the result
holds by Assumption 2.1. Let t ≥ t⋆(δ). We show that
B(θ∗, ϵt) ⊂ ∆t and B(θ∗, ϵt) ⊂ Θt−1. For the first, we
have for all θ ∈ B(θ∗, ϵt), using the triangle inequality:
∥θ − θt∥ ≤ ∥θ − θ∗∥ + ∥θt − θ∗∥ ≤ 2ϵt, where the sec-
ond inequality holds under G. Thus θ ∈ B(θt, 2ϵt) and so
B(θ∗, ϵt) ⊂ B(θt, 2ϵt) ⊂ ∆t. We prove B(θ∗, ϵt) ⊂ Θt−1

by induction. Assume that B(θ∗, ϵt) ⊂ Θt−1. Then we
show that B(θ∗, ϵt+1) ⊂ Θt. Let θ such that ∥θ − θ⋆∥ ≤
ϵt+1. Then ∥θ − θt∥ ≤ ∥θ − θ∗∥+ ∥θt − θ∗∥ ≤ ϵt+1 + ϵt.
This implies that θ ∈ ∆t. In addition, θ ∈ Θt−1. Indeed,
∥θ− θ⋆∥ ≤ ϵt+1 ≤ ϵt, and we conclude using the induction
assumption. Hence θ ∈ Θt. □

3.2. Polytopic tubes and associated linear constraints

With the considered control inputs, the system can be
rewriten as

xt+1 = Φ(θ⋆)xt +B(θ⋆)(v0|t + ζt) + wt.

We apply a tube-based approach, and at time t, we build a
polytopic tube based on:

(i) Θt, encoding the uncertainty about θ⋆. We denote
by m the number of vertices of Θt, and the vertices
themselves by θ

(j)
t , j = 1, . . . ,m.

Algorithm 1 STT-MPC
Input: Initial state x0; confidence δ; estimate θ0; uncer-
tain parameter set Θ0

Find stabilizing matrix K for all θ ∈ Θ0

Compute matrices T and Hc

for t = 1, . . . , T do
if t < t⋆(δ) then

Set θt ← θt−1 and Θt ← Θt−1

else
Update θt ← θ̂t
Compute ∆t and set Θt ← Θt−1 ∩∆t

end if
Compute matrices H(j)

t

Solve PN (xt, θρ(t)) and obtain vπ0|t
Apply ut = Kxt + vπ0|t + ζt

end for

(ii) A polytope W̄t, handling the uncertainty due to the
noise B(θ⋆)ζt+wt, including that due to the persistent
excitation. To define W̄t, let B̄t = maxθ∈Θt∥B(θ)∥2.
We define Zt as the outer polyhedral approximation to
B(0, 3σt), and W̄t =W ⊕ B̄tZt.

We define the state tube cross sections as the sets: for k =
0, . . . , N ,

Xk|t = {x : Tx ≤ αk|t},

where the matrix T ∈ Rdα×dx is chosen such that, for
some λ ∈ [0, 1), the set {x : Tx ≤ 1} is λ-contractive
with respect to the system xt+1 = Φ(θ)xt for all θ ∈ Θ0.
This property is needed to ensure the robust positive in-
variance of XN |t (see Lemma 5.7 in (Kouvaritakis & Can-
non, 2016)). To derive the associated linear constraints,
we apply a standard result to ensure inclusion of polyhe-
dra (see Proposition 3.31 in (Blanchini & Miani, 2008)).
More precisely, for any j = 1, . . . ,m, we have Xk|t ⊆ {x :

Φ(θ
(j)
t )x + B(θ

(j)
t )vk|t + w ∈ Xk+1|t} for all w ∈ W̄t if

there exists H(j)
t ≥ 0 such that:

H
(j)
t T = TΦ(θ

(j)
t ),

H
(j)
t αk|t + TB(θ

(j)
t )vk|t + w̄t ≤ αk+1|t,

where w̄t is such that [w̄t]i = maxw∈W̄t
[Tw]i for i ∈

{1, . . . , dα}. Similarly, we have Xk|t ⊆ {x : (F +GK)x+
G(vk|t + ζ) ≤ 1} for all ζ ∈ Zt, if there exists Hc ≥ 0,
such that:

HcT = F +GK

Hcαk|t +Gvk|t + ζ̄t ≤ 1,

where ζ̄t is such that [ζ̄t]i = maxζ∈Zt [Gζ]i for i ∈
{1, . . . , dc}.
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Remark 3.2. For simplicity, we have chosen w̄t and ζ̄t so
as to be conservative with respect to the noise we apply.
However, notice that we could well pre-sample the noise
sequence (ζt)t≥0 and use it as part of our predictions.

The matrices H
(j)
t , and Hc are chosen such that for all

i ∈ {1, . . . , dα} and for all j ∈ {1, . . . ,m},(
H

(j)
t

)
i
= argmin

h
{1⊤h : h⊤T = (T )iΦ(θ

(j)
t ), h ≥ 0},

and for all i ∈ {1, . . . , dc},(
Hc

)
i
= argmin

h
{1⊤h : h⊤T = (F +GK)i, h ≥ 0}.

Finally, we have the terminal conditions

H
(j)
t αN + w̄t ≤ αN ,

HcαN + ζ̄t ≤ 1.

3.3. The tube MPC problem

Let vt = {v0|t, . . . , vN−1|t} and αt = {α0|t, . . . , αN |t}.
The resulting tube MPC problem, denoted as PN (xt, θ) for
any parameter θ is:

minimize
vt,αt

N−1∑
k=0

(
x⊤
k|tQxk|t + v⊤k|tRvk|t

)
+ x⊤

N |tP (θ)xN |t

subject to, for all j = 1, . . . ,m, and k = 0, . . . , N − 1 :

initial constraints:
x0|t = xt, (6)
Tx0|t ≤ α0|t, (7)

system constraints,
xk+1|t = Φ(θ)xk|t +B(θ)vk|t, (8)

tube constraints,

H
(j)
t αk|t + TB(θ(j))vk|t + w̄t ≤ αk+1|t, (9)

Hcαk|t +Gvk|t + ζ̄t ≤ 1, (10)
terminal constraints:

H
(j)
t αN |t + w̄t ≤ αN |t, (11)

HcαN |t + ζ̄t ≤ 1. (12)

where P (θ) is obtained by solving the Lyapunov equation:

P (θ)− Φ(θ)⊤P (θ)Φ(θ) = Q+K⊤RK (13)

Remark 3.3. The oracle tube-MPC problem PN (xt, θ
⋆) is

similarly defined by setting θ = θ⋆, w̄t = w̄⋆
t (with [w̄⋆

t ]i =
maxw∈W [Tw]i, for i ∈ {1, . . . , dα}), and m = 1. The
later can be achieved by Algorithm 1 by removing redundant
constraints at every iteration by solving a linear program or
one of the methods outlined in (Paulraj et al., 2010).

The feasibility of the above problem depends on whether
θ⋆ ∈ Θt, i.e., on the event G. However, for the sake of
the analysis, we would like to ensure that the problem the
algorithm solves in each step is always feasible (with proba-
bility 1). This is necessary for establishing that G holds with
probability at least 1−δ (Theorem 1 of (Tranos et al., 2022))
as well as for our regret analysis. To ensure that the tube
MPC problem is always feasible, i.e., even when G does
not occur, we instead solve PN (xt, θρ(t))

1 in Algorithm 1
where,

ρ(t) := max{τ ≤ t : PN (xt, θτ ) is feasible}.

Essentially, in the unlikely event that PN (xt, θt) is not fea-
sible, we instead solve PN (xt, θτ ) using the latest estimates
θτ and Θτ for which the problem is feasible. This mod-
ification is of little practical consequence as we can (and
typically do) choose δ to be very small.

With this, we may state the recursive feasibility property of
STT-MPC (Theorem 2 in (Tranos et al., 2022)):

Theorem 3.4. If the optimization problem PN (x0, θ0) is
feasible for initial state x0 ∈ Rdx and parameter θ0 ∈ Θ0,
then, for all t > 0,
(i) under event G, the problem PN (xt, θt) is feasible;
(ii) the problem PN (xt, θρ(t)) is feasible.

4. Regret Analysis
In this section, we present our main result, an upper bound
on the expected regret of STT-MPC. To state our main theo-
rem, we introduce the following notation. Let Π be the set
of all tube-MPC algorithms (which are parameterized by
θ). For an algorithm π ∈ Π, define (xπ

0 , u
π
0 , . . . , x

π
t , u

π
t ) as

the sequence of states and control inputs generated under
π, with xπ

0 = x0. We also define by vπt (x, θ) := vπ0|t(x, θ),
the first element of the solution of the optimization problem
PN (x, θ). We denote by zπt (x) the state of the system (1)
at time t under algorithm π given initial state x, and we
denote by yπt (x), the associated output of π. Let π⋆ ∈ Π be
the oracle tube-MPC problem PN (x, θ⋆). We simplify the
notation by replacing π⋆ by ⋆, e.g., x⋆

t , v⋆t and so on. We
define the regret RT (π) of an algorithm π as:

RT (π) =

T−1∑
t=0

(∥xπ
t ∥2Q + ∥uπ

t ∥2R)−
T−1∑
t=0

(∥x⋆
t ∥2Q + ∥u⋆

t ∥2R).

Theorem 4.1. The regret of π = STT-MPC with confidence δ
and persistent excitation parameter α := 2ϵ, with ϵ ∈ (0, 1)
satisfies for all T ≥ 1, with probability at least 1− δ,

RT (π) ≤ C
(
(log(T/δ)1/2 + 1)T 1/2+ϵ + log(1/δ) + 1

)
,

1More precisely, the problem is obtained by replacing θt by
θρ(t), H

(j)
t by H

(j)

ρ(t) for all j in PN (xt, θt).
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for some universal constant C > 0. Now when the confi-
dence is set to 1/T 2, we get

E[RT (π) ≤ C ′ log(T )1/2T 1/2+ϵ,

where C ′ is a universal constant.

Proof. We first express the regret as the sum of differences
between the states and inputs,

RT (π) =

T−1∑
t=0

(
xπ
t
⊤Q(xπ

t − x⋆
t ) + (xπ

t − x⋆
t )

⊤Qx⋆
t

)
+

T−1∑
t=0

(
uπ
t
⊤R(uπ

t − u⋆
t ) + (uπ

t − u⋆
t )

⊤Ru⋆
t

)
≤

T−1∑
t=0

(∥xπ
t ∥+ ∥x⋆

t ∥)∥Q∥∥xπ
t − x⋆

t ∥

+

T−1∑
t=0

(∥uπ
t ∥+ ∥u⋆

t ∥)∥R∥∥uπ
t − u⋆

t ∥

=Q̄

T−1∑
t=0

∥xπ
t − x⋆

t ∥+ R̄

T−1∑
t=0

∥uπ
t − u⋆

t ∥,

where the first inequality follows from Cauchy-Schwartz
inequality, and the second by defining Q̄ := 2∥Q∥x̄ and
R̄ := 2∥R∥ū with x̄ = max(x,u)∈C{∥x∥} and ū =
max(x,u)∈C{∥u∥}. Note that Q̄ and R̄ are well defined
since the constraint set C is compact by Assumption 2.3.
Further note that (xt, ut) ∈ C is guaranteed by the recursive
feasibility of STT-MPC (Theorem 3.4).

We seek to upper bound the quantities ∥xπ
t −x⋆

t ∥ and ∥uπ
t −

u⋆
t ∥ in terms of ∥θt − θ⋆∥. To this end, we make use of the

following theorem, presented originally in (Shin et al., 2022)
(Theorem 4.5) for graph-structured nonlinear optimization
problems, and specialized to constrained nonlinear systems
by (Lin et al., 2022) (Theorem H.1.).

Theorem 4.2. For any tube-MPC algorithm π ∈ Π, there
exists R > 0 such that, for xi, x

′
i ∈ B(x⋆

i , R), where i ∈
{0, . . . , t}, the following perturbation bounds hold:

∥zπt (xi, θ)− zπt (x
′
i, θ)∥ ≤ q1(t− i)∥xi − x′

i∥, (14)

and

∥vπt (xi, θ)− vπt (xi, θ
′)∥ ≤ q2(t− i)∥θ − θ′∥, (15)

where, for j ∈ {1, 2}, qj(t) is a function such that
limt→∞ lim qj(t) = 0 and

∑∞
t=0 qj(t) ≤ Cj , for some

constant Cj ≥ 1.

The bound (15) can be applied directly to the input er-
ror (along the trajectory induced by π) et := ∥vπt −
v⋆t (x

π
t )∥, provided that xπ

t ∈ B(x⋆
t , R). Therefore, we

show inductively that if et ≤ R/(∥B(θ⋆)∥C2
1 ) then xπ

t ∈
B(x⋆

t , R/C1). First, observe that

∥xπ
t − z⋆t (x

π
t−1)∥ = ∥B(θ⋆)(vπt−1 − v⋆t−1(x

π
t−1))∥

≤ ∥B(θ⋆)∥et−1, (16)

and so the condition holds for the base case of t = 0, since
xπ
0 = x⋆

0. Let our induction hypothesis be that it holds for
0, . . . , t− 1. We will have

∥xπ
t − x⋆

t ∥
= ∥xπ

t − z⋆t (x0)∥

≤ ∥xπ
t − z⋆t (xt−1)∥+

t−1∑
i=1

∥z⋆t (xt−i)− z⋆t (xt−i−1)∥

= ∥xπ
t − z⋆t (xt−1)∥+

t−1∑
i=1

∥z⋆t (xt−i)− z⋆t (z
⋆
t−1(xt−i−1))∥

≤ ∥xπ
t − z⋆t (xt−1)∥+

t−1∑
i=1

q(i)∥xt−i − z⋆t−i(xt−i−1)∥

≤
t−1∑
i=0

q1(i)∥xt−i − z⋆t−i(xt−i−1)∥

≤ ∥B(θ⋆)∥
t−1∑
i=0

q1(t)et−i−1,

where the first inequality is a straightforward application
of the triangle inequality, the second equality follows by
the definition of z⋆t , and the third inequality is a direct ap-
plication of (14) (noting that xπ

t−i ∈ B(x⋆
t−i, R/C1) by

the induction hypothesis). The last inequality follows from
(16).

Now if we substitute et−i ≤ R/(∥B(θ⋆)∥C2
1 ), we obtain

∥xπ
t − x⋆

t ∥ ≤ ∥B(θ⋆)∥ R

∥B(θ⋆)∥C2
1

t−1∑
i=0

q1(t) ≤
R

C1
,

which proves the induction step.

Proceeding similarly, we obtain the following bound,

∥vπt − v⋆t ∥
= ∥vπt − y⋆t (x0)∥

≤ ∥vπt − y⋆t (xt−1)∥+
t−1∑
i=0

∥v⋆t (xt−i)− y⋆t (xt−i−1)∥

≤ ∥vπt − v⋆t (xt−1)∥+
t−1∑
i=0

q1(i)∥xt−i − z⋆t−i(xt−i−1)∥

≤ et + ∥B(θ⋆)∥
t−1∑
i=0

q1(t)et−i−1,
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where again, we have used the triangle inequality for the
first inequality, and the bound (14) for the second. Finally,
we have

∥uπ
t − u⋆

t ∥ = ∥vπt + ζt − v⋆t ∥
≤ ∥vπt − v⋆t ∥+ ∥ζt∥.

With these bounds in hand, we first account for the regret
up to time t⋆(δ) while the event G holds. Note that a crude
bound is sufficient to show that it is finite:

Rt⋆(δ)(π)G ≤ Q̄

t⋆(δ)∑
t=0

∥xπ
t − x⋆

t ∥+ R̄

t⋆(δ)∑
t=0

∥uπ
t − u⋆

t ∥

≤ (2Q̄x̄+ 2R̄ū)t⋆(δ)

≤ C̄2 + C̄3 log(1/δ).

Where C̄2 = (2Q̄x̄+ 2R̄ū)c2 and C̄3 = (2Q̄x̄+ 2R̄ū)c3.

We then bound the regret from t⋆(δ) onward under the event
G:

(RT (π)−Rt⋆(δ)(π))G

≤ Q̄

T−1∑
t=t⋆(δ)

∥xπ
t − x⋆

t ∥+ R̄

T−1∑
t=t⋆(δ)

∥uπ
t − u⋆

t ∥

≤ Q̄

T−1∑
t=0

∥xπ
t − x⋆

t ∥+ R̄

T−1∑
t=0

∥vπt − v⋆t ∥+ ∥ζt∥

≤ Q̄

T−1∑
t=0

∥B(θ⋆)∥et−1

+ R̄

T−1∑
t=0

(et + ∥B(θ⋆)∥
t−1∑
i=0

q1(t)et−i−1) + 3σt

≤ (Q̄+ R̄C1)∥B(θ⋆)∥
T−1∑
t=0

et + 3σt

≤ (Q̄+ R̄C1)∥B(θ⋆)∥
T−1∑
t=0

q2(0)∥θt − θ⋆∥+ 3σt

≤ C̄

T−1∑
t=0

ϵt + 3σt

≤ C̄
√
c3

T−1∑
t=0

log(t/δ)1/2t−(1−α)/2 + 3d1/4x σ

T−1∑
t=0

t−α/2

≤
2C̄
√
c3

α+ 1
log(T/δ)1/2T (α+1)/2 +

6d
1/4
x

α+ 1
σT (α+1)/2,

with C̄ = (Q̄+ R̄C1)∥B(θ⋆)∥C1.

Putting it together, we have under the event G:

RT (π)G =(RT (π)−Rt⋆(δ)(π))G +Rt⋆(δ)(π)G

≤
2C̄
√
c3

α+ 1
log(T/δ)1/2T (α+1)/2

+
2d

1/4
x

α+ 1
σT (α+1)/2 + C̄2 log(1/δ) + C̄1.

To obtain a bound on the expected regret, first note that

E[RT (π)] = (1− δ)RT (π)G + δRT (π)¬G

where RT (π)¬G is the regret when the event G does not hold
and can be taken to be linear in time with some constant
c. This follows again from the recursive feasibility of STT-
MPC (Theorem 3.4), which ensures that xπ

t and uπ
t are

bounded in the set C. Letting δ = 1/T 2 leads to

E[RT (π)] = (1− δ)RT (π)G + δRT (π)¬G

= RT (π)G +
1

T 2
RT (π)G +

c

T

≲
2
√
3C̄
√
c3

α+ 1
log(T )1/2T (α+1)/2.

Here, the notation ≲ hides the universal constant such that
the inequality holds. □

5. Numerical Example
We illustrate the performance of STT-MPC using the fol-
lowing second-order linear system:

A =

[
0.6 0.2
−0.1 0.4

]
, B =

[
1
0.6

]
, σ = 0.01, (17)

The initial state is x0 = (6, 3), and we consider
Θ0 to be a 6-dimensional hypercube centered on
θ0 =

[
0.57 0.17 −0.12 0.42 0.95 0.65

]
with side

length 0.14. Consequently, the resulting stabilizing feed-
back gain is K =

[
−0.426 −0.290

]
. We consider the fol-

lowing state and input constraints: [xt]1 ≥ −0.15, [xt]2 ≥
−1.1 and ut ≤ 0.5. We inject a persistent excitation signal
with a standard deviation of σt =

√
2σ(t+ 1)−α.

The matrix T is computed according to the relation (5.98)
in (Kouvaritakis & Cannon, 2016), with λ = 0.999. We
consider Q = Idx , R = Idu , and, for simplicity, we let the
worst case noise realization be w̄t = w̄0, for all t ≥ 1. All
the simulations were performed in Python 3.9, using the
CVXPY library (Diamond & Boyd, 2016) and the MOSEK
solver.

In Figure 1, we present the regret of STT-MPC versus the
oracle tube-MPC algorithm the cases where α is 0.01, 0.5,
and 0.99. For all three cases, the scaling is logarithmic and
is thus over-estimated by the bound of Theorem 4.1. Note
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Figure 1. Regret vs. time of STT-MPC averaged over 100 runs
(the shaded area corresponds to the standard error of the mean).
Each curve corresponds to a different decay rate of the persistent
excitation signal ζt.

the lower the value of α, the slower the decay rate of the
excitation, which improves the transient estimation accuracy
but negatively impacts the performance of the controller.
The result suggests that the LSE converges very quickly
to the true parameter (already before t = 5) even for high
values of α, and so the performance of the controller (rather,
the decay rate of the excitation signal) dominates the regret.

Overall the logarithmic scaling is surprising as it is better
than the

√
T bound shown both theoretically and experi-

mentally by (Jedra & Proutiere, 2022) in the case of the
LQR. We conjecture that the presence of constraints has a
benign property on the regret and that it should be possible
to tighten our upper bound to also scale as log(T ).

6. Conclusions
We proposed STT-MPC which combines least-squares es-
timaton with a polytopic tube-based MPC method to en-
sure robust constraint satisfaction while learning the system
dynamics. Persistent excitation is ensured by injecting a
truncated noise signal which decays at a rate t−α, with
α > 0 controlling the trade-off between (transient) esti-
mation accuracy and controller performance. Importantly,
we asymptotically recover the performance of the oracle
tube-based MPC which has full knowledge of the dynamics.

We provided guarantees on the expected regret of our pro-
posed algorithm by leveraging performance bounds on the
LSE, the exponential decay of sensitivity property of the
optimization problem, and the recursive feasibility of our
algorithm. We show theoretically that the expected regret
of STT-MPC scales at a rate of T 1/2+ϵ with ϵ ∈ (0, 1) and

also demonstrated its performance via a numerical example.

The logarithmic rate demonstrated in simulation suggests
that our bound can be further tightened, and we will investi-
gate this further in future work.
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