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ABSTRACT

Flow-based models have shown great success in generative modeling, making
them a promising candidate for solving inverse problems in physical sciences and
allow for sampling and likelihood evaluation with much lower inference times than
traditional methods. We propose to pretrain a neural network via flow matching and
include control signals based on a simulator as an additional input for finetuning via
a lightweight control network. Control signals can include gradients and a problem-
specific cost function if the simulator is differentiable, or they can be fully learned
from the simulator output. We motivate our design choices on several benchmark
problems for simulation-based inference and evaluate flow matching with simulator
feedback against classical MCMC methods for modeling strong gravitational
lens systems, a challenging inverse problem in astronomy. We demonstrate that
including simulator feedback improves the accuracy of reconstructed samples by
53%, making it competitive with traditional techniques while being up to 67x faster
for inference. Upon acceptance, we will make our code publicly available.

1 INTRODUCTION

Acquiring posterior distributions given measurement data is of paramount scientific interest (Cranmer
et al., 2020), with real-world applications ranging from particle physics (Baydin et al., 2019), over
the inference of gravitational waves (Dax et al., 2021) to predictions of dynamical systems such as
weather forecasting (Gneiting & Raftery, 2005). In Bayesian modeling, given an observation xo and
model parameters θ, we are interested in the posterior p(θ|xo). Traditional likelihood-based methods
can be expensive for high-dimensional data, when likelihood evaluations are costly or intractable
and priors are difficult to represent mathematically. Simulation-based inference (Cranmer et al.,
2020, SBI) addresses these challenges by including a learning-based component in the statistical
inference process. In this paper, we focus on neural posterior estimation (NPE), which represents the
posterior as a parametric function q(θ|xo), which is a learnable conditional density estimator that
can be trained purely by simulations x ∼ p(x|θ) alone. By investing an upfront cost for training
the density estimator, we can sample and compute likelihoods from q(θ|xo) much faster than other
methods, thereby amortizing the training cost over many observations. Traditionally, normalizing
flows (Rezende & Mohamed, 2015; Dinh et al., 2017; Papamakarios et al., 2019) have been a popular
class of density estimators used in many areas of science. To compute likelihoods and for sampling,
normalizing flows transform a noise distribution to the target distribution via a bijective mapping.
By conditioning the normalizing flow networks on the observation xo obtained from the simulator,
they can be trained as the conditional density estimator q(θ|xo) for the posterior. The success of
diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Song et al., 2021) has demonstrated that
the mapping between sampling and posterior distribution can be specified by a corruption process
that transforms any data distribution to a normal Gaussian. Diffusion models and normalizing
flows can be linked via the probability flow ODE (Song et al., 2021), which has also influenced a
class of flow-based models that can be trained via flow matching (Lipman et al., 2023) on more
general mappings between sampling and target distribution than considered by diffusion models. The
resulting continuous-time models outperform discrete, classical normalizing flows in many areas, and
training larger models is much more scalable (Wildberger et al., 2023).

Despite the widespread success of flow-based models for generative modeling and density estimation,
there is no direct feedback from the simulator between the model, the observation xo and the sample
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Figure 1: An overview of our proposed framework. We consider a pretrained flow network vϕ and
use the predicted flow for the trajectory point θt at time t to estimate θ̂1. On the right, we show a
gradient-based control signal with a differentiable simulator and cost function C for improving θ̂1.
An additional network learns to combine the predicted flow with feedback via the control signal to
give a new controlled flow. By combining learning-based updates with suitable controls, we avoid
local optima and obtain high-accuracy samples with low inference times.

θ during training, which makes it very difficult to produce highly accurate samples based on learning
alone.

We propose a simple strategy to reintroduce control signals using simulators into the flow network.
We refine an existing pretrained flow-based model with a flexible control signal by aggregating the
learned flow and control signals into a controlled flow, which requires only a minimal amount of
additional parameters. To demonstrate how these refinements affect the accuracy of samples and
the posterior, we consider modeling strong gravitational lens systems (Hezaveh et al., 2017; Cunha
& Herdeiro, 2018; Legin et al., 2021), an inverse problem in astrophysics that is challenging and
requires precise posteriors for accurate modeling of observations. In galaxy-scale strong lenses, light
from a source galaxy is deflected by the gravitational potential of a galaxy between the source and
observer, causing multiple images of the source to be seen. Since these images and their distortions
are sensitive to the distribution of matter on small scales, this can act as a probe for different dark
matter models. With upcoming and current sky surveys (Laureijs et al., 2011) expected to release
large data catalogs in the near future, the number of known lenses will increase dramatically by
several orders of magnitude. Traditional computational approaches require several minutes to many
hours or days to model a single lens system. Therefore, there is an urgent need to reduce the compute
and inference with learning-based methods. In this experiment, we demonstrate that using flow
matching and our proposed control signals with feedback from a simulator, we obtain posterior
distributions for lens modeling that are competitive with the posteriors obtained by MCMC-based
methods but with much faster inference times.

Additionally, we evaluate different related variants of flow matching such as using problem-specific
priors, self-conditioning (Chen et al., 2023) or different loss formulations in the context of SBI
using several benchmark problems. We then analyze our proposed control signals for the Lotka-
Volterra model, a system of coupled ordinary differential equations (ODEs) descriping the population
evolution of predators and prey over time. Our analysis underscores the essential role of simulator
feedback for inference and that high accuracy is very challenging to achieve from scaling up datasets
and model sizes alone.

To summarize, the main contributions of our work are:

• We propose a versatile strategy to improve pretrained flows with control signals based on
feedback from a simulator. Control signals can be based on gradients and a cost function,
if the simulator is differentiable, but they can also be learned directly from the simulator
output.

• We assess different variants of flow matching in the context of SBI and demonstrate with
the Lotka-Volterra model that performance gains due to simulator feedback are substantial
and cannot be achieved by training on larger datasets alone.
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• We demonstrate the efficacy of our proposed finetuning with control signals for inferring the
parameter distributions of strong gravitational lens systems, a challenging inverse problem in
astronomy that is sensitive to sample accuracy. We show that flow matching with simulator
feedback is competitive with MCMC baselines and beats them significantly regarding
inference time.

2 RELATED WORK

Solving inverse problems under a diffusion prior Diffusion models have been proposed to solve
linear inverse problems (Kawar et al., 2021; 2022; Chung et al., 2022; Cardoso et al., 2023), as
well as general inverse problems (Holzschuh et al., 2023; Song et al., 2023; Chung et al., 2023a;b),
via stochastic optimization (Graikos et al., 2022; Mardani et al., 2024) or through amortization by
reinforcement learning (Black et al., 2024; Fan et al., 2023). In most of these works, the diffusion
model learns the prior distribution and sampling from the posterior is achieved through a modified
inference procedure, which guides samples via a conditioning. The conditioning can be based on a
class label, text input (Song et al., 2021; Ho & Salimans, 2022; Saharia et al., 2022; Wu et al., 2023)
or directly on a differentiable measurement operator (Chung et al., 2023a;b). In contrast to these
works, we finetune a pretrained flow and learn an optimal combination of the pretrained flow and
feedback from a simulator via control signals in the broader flow matching context.

Flow matching Our work builds on top of prior work in flow matching (Lipman et al., 2023;
Albergo et al., 2023a; Pooladian et al., 2023; Tong et al., 2023; Albergo et al., 2023b), particularly we
adopt and evaluate conditional optimal transport paths (Lipman et al., 2023), test problem-specific
priors and rectification of flows to produce straighter paths (Liu et al., 2023) for simulation-based
inference. Guiding flows has for example been explored by Zheng et al. (2023); Nisonoff et al. (2024).
We extend the existing literature by adding feedback from a simulator for scientific inverse problems.

Simulation-based inference Our work directly compares to neural posterior estimation approaches
for simulation-based inference (Cranmer et al., 2020; Lueckmann et al., 2021, SBI). Contrary to
static architectures (Dinh et al., 2017; Kingma & Dhariwal, 2018; Papamakarios et al., 2017; Durkan
et al., 2019), our approach extends the continuous-time paradigm (Chen et al., 2018; Grathwohl
et al., 2019). Wildberger et al. (2023) have applied flow matching to neural posterior estimation
and Sharrock et al. (2022) have used conditional diffusion models and Langevin dynamics during
sampling. In contrast to previous work, we include controls signals via problem-specific simulators
and cost functions during training to significantly improve the sampling quality.

Strong lensing and parameter estimation Machine learning has been successfully applied to
estimate parameters of lens and source models (Hezaveh et al., 2017; Levasseur et al., 2017), however,
previous methods are usually restricted to point estimates, use simple variational distributions,
Bayesian Neural Networks (Schuldt et al., 2021; Legin et al., 2021; Poh et al., 2022) that are not well
suited to represent more complicated high-dimensional data distributions. Legin et al. (2023) predict
point estimates for the lensing parameters, which are utilized by mixture density networks to model
their distribution in a likelihood-free inference framework. In this paper, we combine flow matching
with problem-specific simulators to obtain highly accurate samples via feedback from control signals.

3 FLOW MATCHING THEORY

Continuous-time flow models transform samples θ from a sampling distribution p0 to samples of a
target or posterior distribution p1. This mapping can be expressed via the ODE

dθt = vϕ(t,θt)dt, (1)

where vϕ(t,θt) represents a neural network with parameters ϕ. Early works (Chen et al., 2018; Grath-
wohl et al., 2019) optimize vϕ(t,θ) using maximum likelihood training, which is computationally
demanding and difficult to scale to larger networks. Instead, in flow matching the network vϕ(t,θ) is
trained by regressing a vector field u(t,θ) that generates probability paths that map from p0 to p1.

Generating probability paths We say that a smooth1 vector field u : [0, 1] × Rd → Rd, called
velocity, generates the probability paths pt, if it satisfies the continuity equation ∂p

∂t = −∇ · (ptut)

1the vector field u is locally Lipschitz in θ and Bochner integrable in t
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when viewed as a function p : [0, 1]× Rd → R. Informally, this means that we can sample from the
distribution pt by sampling θ0 ∼ p0 and then solving the ODE dθ = u(t,θ)dt with initial condition
θ0. In the following, we will denote u(t,θ) by ut(θ). To regress the velocity field, we define the
flow matching objective

LFM(θ) := Et∼U(0,1),θ∼pt(θ) ||vθ(t,θ)− ut(θ)||2 . (2)

In order to compute this loss, we need to sample from the probability distribution pt(θ) and we need
to know the velocity ut(θ). However, in general ut(θ) is not accessible.

Conditioning variable To solve this problem, we apply a trick by introducing a latent variable z
distributed according to q(z) and define the conditional likelihoods pt(θ|z) that depend on the latent
variable so that pt(θ) =

∫
pt(θ|z)q(z)dz. Interestingly, if the conditional likelihoods are generated

by the velocities ut(θ|z), then the velocity ut(θ) can be written in terms of ut(θ|z) and pt(θ|z)
with ut(θ) := Eq(z)[ut(θ|z)pt(θ|z)/pt(θ)]. We can choose paths pt(θ|z) that are easy to sample
from and for which we know the generating velocities ut(θ|z). Next, we define the conditional flow
matching loss

LCFM(ϕ) := Et,q(z),pt(θ|z) ||vϕ(t,θ)− ut(θ|z)||2 . (3)

In contrast to the flow matching loss eq. 2, this loss is tractable and can be used for optimization.
Now, one can show (Tong et al., 2023) that if pt(θ) > 0 for all θ ∈ Rd, then

∇ϕLFM(ϕ) = ∇ϕLCFM(ϕ). (4)

This means that we can train vθ(θ, t) to regress ut(θ) generating the mapping between p0 and p1 by
optimizing the conditional flow matching loss eq. 3.

Couplings The above framework allows for many degrees of freedom when specifying the mapping
from p0 to p1 via the conditioning variable z and the conditional likelihoods pt. One particularly
intuitive and simple choice is to consider the coupling q(z) = p1(θ), i.e. the conditioning variable z
is identified with the endpoint θ1 (Lipman et al., 2023), together with conditional probability and
generating velocity

pt(θ|θ1) = N (θ| tθ1, (1− (1− σmin)t)I) and ut(θ|θ1) =
θ1 − (1− σmin)θ

1− (1− σmin)t
, (5)

where σmin > 0. Conditioned on θ1, this coupling transports a point θ0 ∼ N (0, I) from the sampling
distribution to the posterior distribution on the linear trajectory tθ1 ending in θ1 but decreasing the
standard deviation from 1 to a smoothing constant σmin. In this case, the transport path coincides
with the optimal transport between two Gaussian distributions.

4 CONTROLS FOR IMPROVED ACCURACY

While flow-based models vϕ(t,θ) gradually transform samples from p0 to p1 in many steps during
inference via solving the ODE eq. 1, there is no direct feedback loop between the underlying
simulator, the current point on the trajectory θt, and the observation xo. A central goal of our work is
to reintroduce this feedback loop into inference and training by incorporating a control signal.

Conditioning of flows Flows vϕ(t,θ) can be conditioned on an observation xo through an addi-
tional input vϕ(t,θ,xo), therefore modeling the conditional densities pt(θ|xo) (Song et al., 2021).
Models can be trained for both conditional and unconditional generation. This is achieved, for
example, in classifier free-guidance (Ho & Salimans, 2022), by randomly dropping the conditioning
and setting it to 0 during training.

A critical shortcoming here is that the conditioning xo is static, whereas we propose to have a
dynamic control mechanism that depends on the trajectory θt, the observation, and an underlying
control signal. The latter should relate θt and observation using a physics-based model represented
through a cost function C. As the accuracy of neural networks is inherently limited by the finite size
of their weights, and smaller networks are attractive from a computational perspective, physics-based
control has the potential to yield high accuracy with lean and efficient neural network models.
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1-step prediction An additional issue is that the current trajectory θt might not be close to a good
estimate of a posterior sample θ1, especially at the beginning of inference, where θ0 is drawn from
the sampling distribution. This issue is alleviated by applying the cost function C to the current
estimate θt, we extrapolate θt forward in time to obtain an estimated θ̂1

θ̂1 = θt + (1− t)vϕ(t,θt,xo). (6)
This estimate is exact, if the trained model perfectly fits the conditional optimal transport paths.

Comparison with likelihood-guidance The 1-step prediction is conceptually related to diffusion
sampling using likelihood-guidance (Chung et al., 2022; Wu et al., 2023). For inference in diffusion
models, sampling is based on the conditional score∇θt

log p(θt|xo), which can be decomposed into
∇θt log p(θt|xo) = ∇θt log p(θt) +∇θt log p(xo|θt). (7)

The first expression can be estimated using a pretrained diffusion model, whereas the latter is usually
intractable, but can be approximated using p(xo|θt) ≈ pxo|θ0

(xo|θ̂(θt)), where the denoising
estimate θ̂(θt) := Eq[θ0|θt] is usually obtained via Tweedie’s formula (Eq[θ0|θt] − θt)/tσ

2. In
practice, the estimate θ̂(θt) is very poor when θt is still noisy, impeding the inference in the early
stages. On the contrary, flows based on linear conditional transportation paths have empirically
been shown to have trajectories with less curvature (Lipman et al., 2023) compared to, for example,
diffusion models, thus enabling inference in fewer steps and providing better estimates for θ̂1.

Controlled flow vCϕ We pretrain the flow network vϕ(t,θ,xo) without any control signals to make
sure that we can realize the best achievable performance possible based on learning alone. Then,
in a second training phase, we introduce the control network vCϕ (t,v, c) with pretrained flow v and
control signal c as input. The control network is much smaller in size than the flow network, making
up ca. 10% of the weights ϕ in our large-scale experiments. We freeze the network weights of
vϕ and train with the conditional flow matching loss eq. 3 for a small number of additional steps.
This reduces training time and compute since we do not need to backpropagate gradients through
vϕ(t,θ,xo). We did not observe that freezing the weights of vϕ affects the performance negatively.
We include algorithms for training in appendix A.

4.1 TYPES OF CONTROL SIGNALS

Controlled 
flow

1-step
prediction

pretrained 
flow time 

CostSimulator

gradient

 observation 
 

(a) Gradient-based control signal

Simulator
stop

gradient

Encoder

Controlled 
flow

1-step
prediction

pretrained 
flow

time 

 observation 
 

(b) Learning-based control signal

Figure 2: Control signals with simulator
feedback.

Aiming for high inference accuracy, we extend self-
conditioning via physics-based control signals to include
an additional feedback loop between the model output and
an underlying physics-based prior. We distinguish between
two types of control signals.

Gradient-based control signal In the first case, there is a
differentiable cost function C and a deterministic differen-
tiable simulator S as shown in fig. 2a. Given an observation
xo and the estimated prediction θ̂1, the control signal re-
lates to how well θ̂1 explains xo via some cost function
C. The cost function can also depend directly on or be
equal to the likelihood p(xo|θ̂1). For a differentiable cost
function C, we define the control signal via

c(θ̂1,xo) := [C(S(θ̂1),xo);∇θ̂1
C(S(θ̂1),xo)]. (8)

We can use any control that depends on θ̂1 and xo and is
informative for the given task.

Learning-based control signal In the second case, the
simulator is non-differentiable. To combine the simulator
output with the observation xo, we introduce a learnable
encoder model Enc with parameters ϕE . The output of
the encoder is small and of size O(dim(θ)). The control
signal is then defined as

c(θ̂1,xo) := Enc(S(θ̂1),xo). (9)
The gradient backpropagation is stopped at the simulator
output, see fig. 2b.
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4.2 ADDITIONAL CONSIDERATIONS FOR SIMULATOR FEEDBACK

Stochastic simulators Many Bayesian inference problems have a stochastic simulator. For sim-
plicity, we assume that all stochasticity within such a simulator can be controlled via a variable
z ∼ N (0, I), which is an additional input. Motivated by the equivalence of exchanging expectation
and gradient

∇θ̂1
Ez∼N (0,1)[C(Sz(θ̂1),xo)] = Ez∼N (0,1)[∇θ̂1

C(Sz(θ̂1),xo)], (10)

when calling the simulator, we draw a random realization of z. During training, we randomly draw z
for each sample and step while during inference we keep the value of z fixed for each trajectory.

Time-dependence If the estimate θ̂1 is bad and the corresponding cost C(θ̂1,xo) is high, gradients
and control signals can become unreliable. In appendix B, we empirically find that the estimates θ̂1
become more reliable for t ≥ 0.8. Therefore, we only train the control network vCϕ in this range,
which allows for focusing on control signals containing the most useful information. For t < 0.8, we
directly output the pretrained flow vϕ(t,θ,xo).

Theoretical correctness Contrary to likelihood-based guidance, which uses an approximation
for∇θt log p(xo|θt) as a guidance term during inference, the approximation θ̂1 only influences the
control signal, which is an input to the controlled flow network vCϕ . In the case of a deterministic
simulator, this makes the control signal a function of θt. The controlled flow network is trained with
the same loss as vanilla flow matching (Lipman et al., 2023). Therefore all theoretical properties
remain preserved.

5 SIMULATION-BASED INFERENCE

This section is organized as follows. First, in section 5.1, we introduce a set of SBI benchmark
tasks and provide a comparison of popular neural posterior estimation (NPE) methods against a
baseline of flow matching without simulator feedback. This comparison uses a similar training
setup for all models and tasks. Then, in section 5.2, we focus on an optimal task-specific network
with training hyperparameters based on an extensive grid search. We evaluate different variants of
flow matching that are related to simulator feedback on the SBI tasks to push the performance as
far as possible. In section 5.3, we pick the most challenging SBI task and improve it further by
introducing simulator feedback via gradient-based and learned control signals. We carefully analyze
the cost-accuracy trade-off for using simulators and show that improvements from simulator feedback
cannot be replicated by increasing the training dataset size alone.

5.1 TASKS AND BASELINES

Table 1: C2ST comparison with identical training
setups and comparable number of network weights
(ca. 300K).

Method LV SLCP SIR TM

CNF 0.99 0.80 0.99 0.60
NSF 0.99 - 0.75 0.54
FFJORD 0.95 0.82 0.78 0.59
Flow-Mat. 0.93 0.79 0.79 0.58

We consider the SBI tasks Lotka Volterra LV,
a coupled ODE for the population dynamics
of interacting species, SIR, an epidemiological
model for the spread of diseases, SLCP and Two
Moons (TM), two synthetic tasks having compli-
cated multimodal posteriors. All tasks are part
of the benchmark collection from Lueckmann
et al. (2021). For each problem, the posterior dis-
tribution for a set of 10 observations is known,
which allows for directly comparing it with the
posterior predicted by the trained model. This is
measured using the C2ST score (Lopez-Paz & Oquab, 2017), which trains a classifier to discriminate
between samples from the true posterior and samples generated from the learned model. If the
classifier cannot discriminate between two sets of samples, its test accuracy will be 0.5, whereas it
increases when they become more dissimilar.

We include the following baseline methods for NPE: Continuous normalizing flows (Chen et al., 2018,
CNF), Neural Spline Flows (Durkan et al., 2019, NSF), and FFJORD (Grathwohl et al., 2019). Since
we propose to include feedback from simulators, here we focus on the largest benchmark budget of
105 simulator calls for generating the training dataset. Table 1 highlights that flow matching yields a
highly competitive performance in this setting. For details on the training setup, see appendix B.
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Figure 3: Evaluation of SBI tasks using different variants of flow matching training. Lower C2ST
scores are better.

Flow matching has also been evaluated for the SBI benchmark tasks by Wildberger et al. (2023),
who performed an extensive hyperparamter search for each task to find optimal hyperparameters.
In the following, we focus on flow matching, and hence use the corresponding sets of optimal
hyperparameters for each task.

5.2 TRAINING VARIANTS

There are several variants of training diffusion models that can be related to simulation feedback
and which we consider promising in the context of SBI. Before we go on to evaluate the simulator
feedback in section 5.3, we test if we can improve the performance using any of them. In particular,
we assess the following modifications:

• Self-conditioning: conditioning a model on something that depends on its own output can be seen
as a form of self-conditioning. We evaluate an adapted version of self-conditioning (Chen et al.,
2023). Instead of providing θt to the flow network, the input is comprised of the concatenated
vector [θt; Dropout(θ̂1)], where θ̂1 is the 1-step prediction eq. 6. For computing θ̂1, we require
one network evaluation with the input [θt; 0] and stop the gradient backpropagation at θ̂1. This
method is similar to our simulator feedback, as it introduces a feedback loop that conditions the
model on its own output, but without any simulator.

• Task-specific priors: it is also possible to couple two non-Gaussian distributions by defining
the coupling as q(z) = p0(θ0)p1(θ1) and setting the conditional probabilities to the linear paths
defined by pt(θ|(θ0,θ1)) = N (θ|tθ1 + (1 − t)θ0, σI) and ut(θ|(θ0,θ1)) = θ1 − θ0 with
bandwidth σ > 0. We can choose p0 as the prior distribution p(θ) which we know in the SBI
setting. Obtaining information in the form of an observation changes our knowledge about θ from
the prior distribution to the posterior, therefore resembling a transformation similar to the noise to
data transformation in diffusion models. This also suggests that the prior distribution can be closer
to the posterior than a noise distribution.

• x-prediction: the reliability of the control signal depends directly on the 1-step estimate θ̂. Instead
of regressing the flow ut(θ), we can directly predict the denoised estimate θ̂ and obtain the velocity
by rearranging eq. 6, giving vϕ(t,θt,xo) = θ̂1/(1− t). We additionally weight the x-prediction
loss with a time-dependent weighting wt := 1/(1 − t) to account for the scaling in eq. 6. The
x-prediction potentially produces better estimates for θ̂, thus allowing for obtaining more reliable
feedback from control signals when t < 0.8.

Evaluation Figure 3 shows an evaluation of the different variants against vanilla flow matching
(Gaussian sampling distribution, no self-conditioning and velocity prediction). Using task-specific
priors produces outliers with better C2ST scores for SLCP but is consistently worse for LV and
SIR. We conclude that normal Gaussian distributions are more suited as sampling distributions for
most low-dimensional problems. Introducing self-conditioning does not show any improvements, so
feedback loops without a simulator alone are not sufficient for better performance in this situation.
Finally, the x-prediction loss consistently performs worse than the velocity prediction. Therefore, a
potential improvement in the 1-step estimate is outweighed by a corresponding deterioration of the
posterior correctness as indicated by the C2ST score.
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5.3 SIMULATOR FEEDBACK: GRADIENT-BASED AND LEARNED

0.75

0.80

0.85

0.90

0.95

1.00

C2
ST

Flow Matching
+ Zero Controls
+ Learned Controls
+ Gradient Controls

Figure 4: Evaluation of simulator feed-
back for LV.
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Figure 5: Different simulator call bud-
gets (training set sizes 105, 106, 107)
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In this section, we focus on the Lotka-Volterra (LV) task
for a more detailed analysis. It has the highest difficulty as
seen by the C2ST score, and we use it to test the different
types of feedback. We reimplement the LV simulator in
JAX (Bradbury et al., 2018) to support differentiability
and evaluate the gradient-based control signal as well as
the learning-based control signal, using a small multilayer
perceptron (MLP). In addition, to make sure that observed
improvements are not due to the increased number of net-
work parameters and finetuning with the control network,
we also evaluate a variant where we finetune with the
control network but set all simulator-dependent inputs to
the control network to 0 (Zero Controls). We show an
evaluation with C2ST in fig. 4. For both the learning and
gradient-based control signals we see clear improvements
with the gradient-based signal clearly ahead. The zero
control signal improves only slightly, showing that the
improvement can be directly attributed to the simulator.

While control signals are most useful for more high-
dimensional problems with less sparse and noisy obser-
vations, this experiment demonstrates that they can also
be used in low-dimensional settings. Moreover, while
differentiable simulators can provide better control sig-
nals, feedback from non-differentiable simulators likewise
shows clear improvements.

5.4 COMPUTATIONAL EFFICIENCY

A critical issue in SBI is that calls to the simulator are potentially expensive. This imposes the
question of whether compute time is better spent on extending the training dataset or training with
feedback from the simulator. We empirically verify that the latter is more efficient for the LV task
in this setup by comparing our method to models with an increased training dataset from a larger
simulator budget. Specifically, we train with dataset sizes of 106 and 107. Training the gradient-based
control signal took ca. 9× 106 simulator calls. See fig. 5 for the evaluation. There is no improvement
in the C2ST for models trained without simulator feedback beyond 105 data points, and the final
train/validation loss for the 107 model indicates that there is no more overfitting. Nonetheless, the
model trained with controls clearly outperforms the model trained with more data, indicating that the
directed feedback of the simulator cannot be replaced by increased amounts of training data.

6 STRONG GRAVITATIONAL LENSING

We present our results for modeling strong gravitational lens systems, a challenging and highly
relevant non-linear problem in astronomy. Strong gravitational lensing is a physical phenomenon
whereby the light rays by a distant object, such as a galaxy, are deflected by an intervening massive
object, such as another galaxy or a galaxy cluster. As a result, one observes multiple distorted images
of the background source. We aim to recover both the lens and source light distribution as well as the
lens mass density distribution with realistic simulated observations for which we know the ground
truths. We evaluate flow matching as an NPE method with gradient-based control signals from a
differentiable simulator with two MCMC methods.

Lens modeling The lens equation relates coordinates on the source plane β and the observed image
plane Θ via the deflection angle α induced by the mass profile or gravitational potential of the lens
galaxy. We use a Singular Isothermal Ellipsoid (SIE) to describe this lens mass and Sérsic profiles for
both the source light and light emitted from the lens galaxy (full details are provided in appendix
C). There are 9 parameters for the lens mass and 7 parameters for each Sérsic profile, giving 23
parameters in total. The likelihood is measured by the χ2-statistic, which is the modeled image plane
Θ minus the observation xo divided by the noise. To solve the lensing equation, we make use of

8
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Figure 6: Reconstruction of observation. Flow matching is purely learning-based and shows notice-
able residuals in the reconstruction. Including simulator feedback removes remaining residuals.

the publicly available raytracing code by (Galan et al., 2022). We want to stress that even small
perturbations of the model parameters can cause the χ2 to increase significantly; see fig. 14 in the
appendix.
Datasets and pretraining Several instrument-specific measurement effects are included when
simulating the observations. We include background and Poisson noise and smoothing by a point-
spread function (PSF). The pixel size corresponds to 0.04 arc seconds. These directly affect the
posterior, as more noise and a stronger PSF will widen the posterior distribution. We generate 250 000
data samples for training and 25 000 for validation. The flow network vϕ consists of a convolutional
feature extraction neural network represented by a shallow CNN whose output is fed into a dense
feed-forward neural network with residual blocks. Full details are in appendix C.

Finetuning with control signals The control network vCϕ is represented by another dense feed-
forward network, which accounts for 11% of all parameters in the combined model. The control
signals are obtained from simulating an observation based on the predicted estimate θ̂1 via ray-tracing
(Galan et al., 2022) based on the parametric models, calculating the χ2-statistic and computing
gradients with respect to the estimate θ̂1. The χ2-statistic itself is also part of the control signal.

Reference posteriors As reference posteriors, we include Hamiltonian Monte Carlo (HMC) with
No-U-Turn sampler (Hoffman et al., 2014, NUTS) and Affine-Invariant Ensemble Sampling (Good-
man & Weare, 2010, AIES), which are both two popular MCMC-methods in astronomy. We adopt
implementations of both methods using numpyro (Phan et al., 2019; Bingham et al., 2019). Addition-
ally, we compare to diffusion posterior sampling (Chung et al., 2023b, DPS), loss-guided diffusion
(Song et al., 2023, LGD-MC) and twisted diffusion sampler (Wu et al., 2023, TDS). Details on all
baseline methods can be found in appendix C. We use Euler integration for both flow matching
variants.

6.1 EVALUATION AND DISCUSSION

Table 2: Evaluation with respect to average χ2 and
inference time for the posterior distribution.

Method Avg. χ2 ↓ Modeling Time ↓

NUTS 1.83 ∼ 56x (564s)
AIES 1.74 ∼ 67x (672s)

DPS 9.98 ∼ 42x (427s)
LGD-MC(5) 21.62 ∼ 160x (1600s)
TDS (k=100) 20.94 ∼ 21x (210s)

Flow-Mat. 1.83 1x (10s)
+ Simulator 1.48 ∼ 2x (19s)

χ2-statistic We show an evaluation of all
methods in table 2. The average χ2 is computed
over 1000 randomly chosen validation systems,
where for each, we draw 1000 samples from the
posterior. If we compute the χ2 for the ground
truth parameters, we obtain a value of 1.17 due
to the noise in the observation. Since we can-
not overfit to noise with the parametric models,
this represents a lower bound for χ2 in this ex-
periment. Including the physics-based control
improves the χ2 from 1.83 to 1.48, represent-
ing an improvement of 53% relative to the best
modeling. The improved χ2 is even better than
the best baseline method, AIES.

Modeling time We define the modeling time
as the average compute time required to produce
1000 credible posterior samples. Both HMC and AIES require significant warmup times before
producing the first samples from the posterior, which we include in the table. However, after warmup,
it is relatively cheap to obtain new samples. On the other hand, flow matching does not require

9
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any warmup time and the modeling time increases linearly with the number of posterior samples.
All methods were implemented in JAX (Bradbury et al., 2018) and used the same hardware. The
measurements in table 2 show that DPS is faster than the classic baselines, but yields a very sub-
optimal performance in terms of its distribution. The performance numbers also highlight that our
method yields an accuracy that surpasses AIES, while being more than 30x faster.

This evaluation demonstrates that flow matching-based methods are highly competitive even in
small to moderate-sized problems where established MCMC methods in terms of accuracy exist,
clearly beating them in terms of inference time. Flow matching with our proposed control signals is
especially interesting because it is not affected as much by the curse of dimensionality as traditional
inference methods and allows for having non-trivial learnable high-dimensional priors. However,
before these methods are widely trusted, they need to demonstrate their competitiveness with classical
methods. Our results show that this is indeed the case, which opens up exciting avenues for applying
and developing approaches targeting similar and adjacent inverse problems in science.

0 500 1000

+ Simulator

Flow Matching

AIES

Figure 7: SBC for xcenter of the
source galaxy.

Simulation-based calibration Acquiring truthful posterior
distributions for Bayesian inference problems is difficult,
which makes it hard to robustly evaluate whether the predicted
posterior distribution is correct. We use simulation-based cal-
ibration (Talts et al., 2018, SBC) as an additional evaluation
tool. The data-averaged posterior obtained from averaging the
posterior distribution over many problem instances has to be
equal to the prior. This can be tested by considering a one-
dimensional function f : θ 7→ R and L samples θ1, ...,θL

drawn from an inference method. If θ∗ are the ground truth
parameters, then the rank statistic

∑L
l=1 1f(θL)<f(θ∗) has to

be uniformly distributed over the integers [0, L]. If the distri-
bution of the rank statistic is plotted as a histogram, systematic
problems in the inference method can be identified visually,
see fig. 7. We set L = 1000 and plot the histograms for all
n = 1000 test problems and visualize the parameter xcenter,
which defines the position of the source in x-direction. The
posteriors without simulator feedback are biased, as can be
seen in the deviation from uniformity in the plots. Including simulator feedback improves the
distribution of the rank statistic. For an extended analysis, see appendix C.4.

6.2 LIMITATIONS

While introducing additional control signals increases the quality of produced samples, it comes at the
cost of slower inference and training times depending on the speed of the simulator. In general, using
non-differentiable control signals is possible but removes the possibility of computing likelihoods via
the instantaneous change of variables formula (Chen et al., 2018). Compared to MCMC approaches,
inference with flow-based models requires a substantial upfront cost for training that needs to be
amortized across many problems. Additionally, priors are encoded in the learned flow networks, so
changing them would require retraining models with adjusted data sets.

7 CONCLUSION

We presented a method for improving flow-based models with simulator feedback using control
signals. This allows us to refine an existing flow with only a few additional weights and little
training time. We thereby efficiently bridge the gap between purely learning-based methods for
simulation-based inference and optimization with hand-crafted cost functions within the framework
of flow matching. This improvement is critical for scientific applications where high accuracy
and trustworthiness in the methods are required. Purely learning-based methods face significant
difficulties in producing very accurate samples, as there is usually no feedback during inference of
how good samples are. In this paper, we demonstrated that we do not need large network sizes or
tremendous amounts of data to train accurate models that are competitive with established MCMC
methods if we include suitable control signals from simulators. We believe this work makes an
important step towards making posterior inference in science more accurate, understandable, and
reliable.
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APPENDIX

A ALGORITHMS

We include algorithms for training using flow matching and control signals, see algorithm 1. For flow
matching with self-conditioning, see algorithm 2.

Algorithm 1 FM with Control Signals

Input: Training distribution q1, pretrained net-
work vϕ, control network vCϕ , σmin

while Training do
(θ1,xo) ∼ q1; z ← N (0, I)
θ ← tθ1 + (1− t)z
v ← stopgrad(vϕ(t,θ,xo))

θ̂1 ← θ + (1− t)v

c← control(θ̂1,xo)
ṽ ← vCϕ (t,v, c) + v

ut(θ|θ1,xo)← θ1−(1−σmin)θ
1−(1−σmin)t

LCFM ← ||ṽ − ut(θ|θ1,xo)||22
θ ← Update(ϕ,∇ϕLCFM(ϕ))

return: vϕ, vCϕ

Algorithm 2 FM with Self-conditioning

Input: Training distribution q1, flow network
vϕ, σmin

while Training do
(θ1,xo) ∼ q1; z ← N (0, I); s← U(0, 1)
θ ← tθ1 + (1− t)z; θ̂1 ← 0

v ← stopgrad(vθ(t, [θ, θ̂1],xo))
if s > 0.5 then

θ̂1 ← θ + (1− t)v

ṽ ← vϕ(t, [θ, θ̂1],xo)

ut(θ|θ1,xo)← θ1−(1−σmin)θ
1−(1−σmin)t

LCFM ← ||ṽ − ut(θ|θ1,xo)||22
θ ← Update(ϕ,∇ϕLCFM(ϕ))

return: vϕ
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B SIMULATION-BASED INFERENCE

Baselines comparison in section 5.1 For a fairer comparison, we set up all baseline methods with
a similar number of network weights and available compute time.

We train all baselines and flow matching with a batch size of 512 on the largest 105 simulation budges
for all tasks. For optimization, we apply Adam (Kingma & Ba, 2015) with default settings and
constant learning rate of 10−4 and weight decay 2× 10−5.

All network architectures are chosen to have a similar number of ca. 3 · 105 parameters. For flow
matching and continuous normalizing flows (CNFs), we use the same architecture based on a dense
feed-forward neural net with skip connections using 8 residual blocks with each 128 neurons and elu
activation. As input, we concatenate time t and θt. For Neural Spline Flow (Durkan et al., 2019) and
FFJORD (Grathwohl et al., 2019), we adopt the released implementation by the authors.

Depending on the time per epoch for each method, we modify the number of epochs and steps per
epoch to allow all methods to train for a similar amount of time, ensuring a sufficient window for
convergence. For NSF, we train for 1 000 epochs, for flow matching for 2 000 epochs, and for
FFJORD and CNF 100 epochs.

Flow matching with optimized hyperparameters For the experiments in section 5.2 and section
5.3, we adopt the hyperparameters and network architecture from Wildberger et al. (2023), which
is based on a hyperparamter grid search. The hyperparameters for each task are listed in table 3.
Otherwise, we follow the implementation as provided by the authors.

Table 3: Hyperparameters for SBI from Wildberger et al. (2023).

Task Time α Batch size Learning rate Residual blocks

LV 1 32 10−3 [32, 64, 128, 256, 5×512, 256, 128, 64, 32]
SLCP -0.5 256 5 · 10−4 [32, 64, 128, 256, 5×512, 256, 128, 64, 32]
SIR 4 256 5 · 10−4 [32, 64, 128, 256, 7×512, 256, 128, 64, 32]
TM 4 64 2 · 10−4 [32, 64, 128, 256, 512, 3×1024, 512, 128, 64, 32]

Analyzing the 1-step estimate We simulate the flow ODE from the sampling distribution at t = 0
until t∗ (x-axis). Then, we compute the posterior in a single step by linearly extrapolating the flow,
see eq. 6, to obtain the estimate θ̂1. Results are shown in fig. 8.

(a) (b)

Figure 8: (a) and (b): C2ST score and MMD for predictive samples θ̂1. The x-axis shows from which
we compute the predictive sample.
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Analyzing step size We analyze the influence of the step size of the ODE solver on the quality of
the posterior distribution as shown in fig. 9.

(a) (b)

Figure 9: (a) and (b): C2ST score and MMD vs. step size during inference.

Additional results for maximum mean discrepancy For the evaluation in section 5.2, we show
additional results for the maximum mean discrepancy (Gretton et al., 2012, MMD) in fig. 10.

SLCPLotka Volterra SIR Two Moons

Gaussian Task-specific prior
10 4

10 2

100

M
M

D

Sampling distribution

False True

Self-conditioning

velocity v x-prediction

Loss

Figure 10: Evaluation of SBI tasks using different variants of flow matching training. Lower MMD
scores are better.

B.1 RECTIFIED FLOWS

The 1-step estimate θ̂1 becomes more accurate and closer to the end point of the trajectory θ1 as paths
become straighter. Rectified flows (Liu et al., 2023) have been proposed to learn a coupling between
two distributions by solving a nonlinear least squares optimization problem. Flows can be recursively
rectified, leading to increasingly straighter paths. We have trained the k-th rectified flow up to k = 3
following Algorithm 1 from Liu et al. (2023) for the Lotka Volterra SBI task. Networks, optimizers
and learning rates are the same as for the flow matching experiments. Results for the rectified flows
are show in table 4. The C2ST score gets worse for the 2- and 3-Rectified flow. We also finetune with
gradient-based control signals. A difference compared to the finetuning experiments in section 5.3 is
that we train the network starting at t ≥ 0, whereas we have used t ≥ 0.8 before. As flows become
straighter, the 1-step estimates should become more reliable. This is why we consider finetuning
with the control signal on the entire trajectory in this experiment, instead of only focusing on the last
part (t ≥ 0.8). When adding the finetuning, the C2ST score becomes better for the 1-Rectified flow
compared to the 2-Rectified flow, indicating that the 2-Rectified flow produces more reliable 1-step
estimates. However, the results for the rectified flows are not as good as the flow matching setup with
t ≥ 0.8 which we have used in section 5.3.

ODE solution + gradient-based controls

1-Rectified Flow 0.94 0.91
2-Rectified Flow 0.98 0.89
3-Rectified Flow 0.98 0.89

Table 4: C2ST score of the Lotka Volterra task for the k-th rectified flow.
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C STRONG GRAVITATIONAL LENSING

We consider the following models:

• For modeling the lens we use an SIE model with 6 parameters: the Einstein radius θE , the
ellipticities e1 and e2 and xcenter and ycenter. There is shear, for which we only consider γ1
and γ2 as free parameters.

• The source is modeled by a Sersic profile with free parameters being the amplitude, the
half-light radius, the Sersic index n, the ellipticities e1 and e2 as well as the positions xcenter

and ycenter.
• The lens light is modeled in the same way as the source, although when generating the

mock data, we fix the position as well as ellipticities to be the same as the lens mass model.
For training and inference, we infer positions for both lens mass and lens light model, so
the model could produce different values for them. The MCMC methods use the same
parameter for both lens light and lens mass position.

We list all priors in table 5, table 6 and table 7. We do not have priors on the ellipticities e1 and e2
directly, but we obtain them from priors on the position angle and axis ratio. Also, we obtain the shear
parameters from γ1 and γ2 from ϕext and γext by converting them polar to cartesian coordinates. For
SBI, we also include the two parameters ra0 and dec0 for the shear, which are always set to 0 when
generating the training data sets, but in general our network could infer other values. Overall, there
are 23 parameters for vθ, which fully describe the simulation setup. However, in our dataset there are
only 17 free parameters. The MCMC methods only infer the reduced set of parameters, making use
of the dependencies between them.

Measurement instruments Observations have 160 times 160 pixels. The pixel size is 0.04 arc
seconds. We use a Gaussian points spread function (PSF) with full width at half maximum (FWHM)
of 0.3. The there is Gaussian background noise with a root mean-squared values of 0.01 and an
exposure time of 1000s.

Setup of MCMC-based methods We setup both baselines methods as follows:

1. Hamiltonian Monte Carlo: we use the No-U-Turn samples with a maximum tree depth of 10
and 5 000 warmup steps.

2. Affine-Invariant Ensemble Sampling: we use DEMove and StretchMove both with probabil-
ity 0.5. There are 400 chains and we warm up for 20 000 steps before starting sampling.

Both methods are implemented in numpyro and optimized with JAX, so their runtimes are comparable
with each other.

Network architectures and training

• Our flow network vϕ comprises a lightweight feature extraction network, representated by
a CNN, which is consists of 6 downsampling blocks with 1 layer each a 32 channels and
kernel size 3. As postprocessing of the output, we apply GroupNorm, silu and an additional
2DConv layer with kernel size 3 and a single channel. We reshape the output and feed it
through a final dense layer. The output of the feature extraction has the same dimensionality
as the parameters θ.

• An additional dense feed-forward neural network receives the concatenated the time t, θt
and extracted features as input. The feed-forward neural neural networks consists of 8
residual blocks with hidden dimension 128 and elu activation.

• The control network vCϕ is represented by a small feed-forward neural network, consisting
of 3 residual blocks with 64 hidden layers and 3 residual blocks with 32 hidden layers.
We condition each block on the time via gated linear units and use a 16 dimensional time
embedding.

For training, we use a batch size of 256 for the flow network vϕ. When training vCϕ , we decrease the
batch size to 16. We use the Adam optimizer with a learning rate of 10−4 and weight decay of 10−5.
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Table 5: Priors for lens mass model parame-
ters

Parameter Prior

xcenter U(−0.2, 0.2)
ycenter U(−0.2, 0.2)
position angle ϕ U(0, 180)
axis ratio q U(0.25, 1)
external shear orientation ϕext U(0, 180)
external shear strength γext U(0, 0.1)
Einstein radius θE U(0.5, 2.0)

Table 6: Priors for the source light

Parameter Prior

amplitude U(5.0, 10.0)
half-light radius U(0.5, 2.0)
Sersic index n U(1.5, 4.0)
position angle ϕ U(0, 180)
axis ratio q U(0.25, 1)
xcenter U(−0.2, 0.2)
ycenter U(−0.2, 0.2)

Table 7: Priors for the lens light

Parameter Prior

amplitude U(5.0, 10.0)
half-light radius U(0.5, 2.0)
Sersic index n U(1.5, 4.0)

Training vϕ was done on a single NVIDIA Ampere A100 GPU for ca. 45 hours. We trained vCϕ for
an additional 24 hours. A lot of the training time was spent on running evaluation metrics, so it can
be substantially improved.
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C.1 DIFFUSION POSTERIOR SAMPLING (DPS)

We setup diffusion posterior sampling Chung et al. (2023a) as an additional baseline. The training
dataset is the same as in 6, however since the diffusion model is unconditional, we drop any
conditioning information.

Network architecture and training The neural network architecture is a multilayer perceptron
MLP with 8 residual blocks and 128 neurons each. The activation function is elu. As optimizer,
we use Adam with weight decay (10−5). We train for 2000 epochs and for each epoch we sample
1000 batches from the dataset using a batch size of 4. We train the network as a denoising diffusion
probabilistic model (DDPM) following Ho et al. (2020).

Unconditional generation Below, in figure 11, we visualize three samples generated by uncondi-
tionally sampling from the model. The observations are created using the lensing simulation code
with the generated samples as input.

Figure 11: Visualization of unconditionally generated lensing systems.

Inference We directly follow Chung et al. (2023a) Algorithm 1 for inference, where the measure-
ment operator A is replaced by the lensing simulation code. The step size in the algorithm is defined
via a hyperparameter ζ, which needs to be finetunes depending on the problem. We empirically test
different values for ζ to find an optimal choice. Our results are shown in table 8. In this evaluation,
we only model a smaller number of systems (n = 25).

ζ 0.0 0.0005 0.001 0.005 0.01 0.05

Avg. χ2 28.15 16.20 9.98 10.07 12.98 12.64
Min. χ2 15.14 3.84 3.07 1.58 1.40 1.53

Table 8: Evaluation of DPS and choosing ζ.

C.2 LOSS-GUIDED DIFFUSION

We consider loss-guided diffusion (LGD) with a Monte Carlo-based estimate of the guidance term
(Song et al., 2023, LGD-MC). LGD-MC can be seen as an extension of DPS, which uses m points
for estimating the guidance term, whereas DPS only uses a single point. We have evaluated LGD-MC
using a different number of points m using 100 steps for each sample. Because multiple points are
used for the calculation of the guidance term at each step, the number of simulator calls grows by a
factor of m. Results are shown in table 9 below. Similar to the DPS evaluation, we only consider a
smaller subset of systems (n = 25). Interestingly, even though LGD can be seen as an extension to
DPS, it performs worse. Ther performance of DPS critically depends on the hyperparameter ζ that
corresponds to the step size and needs to be finetunes. LGD does not have this hyperparameter.

C.3 TWISTED DIFFUSION SAMPLER

Twisted diffusion sampler (TDS) is a sequential Monte Carlo algorithm for asymptotically exact
conditional sampling from diffusion models that has been proposed by Wu et al. (2023). We evaluate
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m 5

Avg. χ2 21.62
Min. χ2 2.52
Modeling time ∼ 1600s

Table 9: Evaluation of LGD-MC for number of points m.

TDS using a different number of particles K with the unconditional diffusion model from section
C.1. We follow Algorithm 1 from Wu et al. (2023) using 100 steps (T = 100). In the paper, the
algorithm is described for a variance exploding (VE) noise schedule. We adjust the algorithm for the
variance preserving (VP) as described in Wu et al. (2023) Appendix A. We give results below in table
10. Similar to the DPS evaluation, we only consider a smaller subset of systems (n = 25).

k 100

Avg. χ2 20.94
Min. χ2 2.47
Modeling time ∼ 210s

Table 10: Evaluation of TDS for number of particles.

C.4 SIMULATION-BASED CALIBRATION

We use simulation-based calibration (Talts et al., 2018, SBC) as an additional evaluation method to
assess the correctness of the posterior distributions. We adopt the SBC implementation from the
Python package sbi. Below, in fig. 12, we show histograms for 8 parameters based on n = 1000 lens
systems with L = 1000 posterior samples each.
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(b) Flow Matching
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(c) Flow Matching + Simulator

Figure 12: Simulation-based calibration histograms for different inference methods.

C.5 TESTS OF ACCURACY WITH RANDOM POINTS

We have included an additional evaluation using sampling-based accuracy testing of posterior estima-
tors (Lemos et al., 2023, TARP), see figure 13. We included HMC initialized with the ground truth
values as a reference, which shows perfect coverage. If not initialized with the ground truth parame-
ters, HMC and AIES produce biased samples. Flow matching more closely covers the posterior and
shows visible improvements when including simulator feedback.
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Figure 13: Evaluation of posterior coverage using TARP based on n = 1000 lens systems with
L = 1000 posterior samples each.
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Figure 14: We show how a small noise σ affects the simulated observation. We add a normal Gaussian
with mean 0 and standard deviation σ to a lens system’s ground truth parameters x. Then, we plot the
simulated observation based on the noised parameters and show the residuals.

D POSTERIORS AND RECONSTRUCTIONS FOR LENS MODELING

We show how small perturbations in the lens system’s parameters affect the simulated observation in
figure 14. We show extended plots of the posteriors in fig. 15 for lens system 1 and fig. 16 for lens
system 6. Additionally, we show reconstructions based on flow matching with and without simulator
feedback of lens systems 1 to 6 in fig. 17
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Figure 15: Posterior plot for system 1.
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Figure 16: Posterior plot for system 6.
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Figure 17: Modeling of different lens systems: system 1 (top) to system 6 (bottom).
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