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Abstract
Latent space interpolations are a powerful tool
for navigating deep generative models in applied
settings. An example is single-cell RNA sequenc-
ing, where existing methods model cellular state
transitions as latent space interpolations with vari-
ational autoencoders, often assuming linear shifts
and Euclidean geometry. However, unless explic-
itly enforced, linear interpolations in the latent
space may not correspond to geodesic paths on
the data manifold, limiting methods that assume
Euclidean geometry in the data representations.
We introduce FlatVI, a novel training framework
that regularises the latent manifold of discrete-
likelihood variational autoencoders towards
Euclidean geometry, specifically tailored for
modelling single-cell count data. By encouraging
straight lines in the latent space to approximate
geodesic interpolations on the decoded single-cell
manifold, FlatVI enhances compatibility with
downstream approaches that assume Euclidean
latent geometry. Experiments on synthetic data
support the theoretical soundness of our approach,
while applications to time-resolved single-cell
RNA sequencing data demonstrate improved tra-
jectory reconstruction and manifold interpolation.

1. Introduction
Generative models for representation learning, such as
Variational Autoencoders (VAEs), have influenced compu-
tational sciences across multiple fields (Zhong & Meidani,
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2023; Lopez et al., 2018; Griffiths & Hernández-Lobato,
2020). One reason is that real-world experimental data
often poses significant modelling challenges as it is
inherently noisy, high-dimensional, and complex (Sarker,
2021). As a solution, learning a compressed and dense
latent representation of the data has gained traction in
applied machine learning. For example, interpolations
in well-behaved, low-dimensional data embeddings are
useful for modelling the dynamics of complex systems,
allowing insights into sample evolution over time (Džeroski
& Todorovski, 2003; Bunne et al., 2022).

In particular, VAEs have shown great promise in repre-
senting both continuous and discrete data, as the decoder
parameterises a flexible likelihood model. This flexibil-
ity has demonstrated unprecedented potential in cellular
data (Lopez et al., 2018), particularly in gene expression,
which is measured in counts that reflect the number of RNA
molecules produced by individual genes and is collected
through single-cell RNA sequencing (scRNA-seq) (Haque
et al., 2017). Such a technique allows the measurement
of thousands of genes in parallel, and the resulting vector
describes the state of a cell across diverse biological settings
(Regev et al., 2017). Leveraging latent interpolations within
single-cell VAEs can provide insights into cellular state tran-
sitions, capturing dynamic changes in gene expression that
reveal underlying biological processes.

The representation learnt by VAEs is tightly connected to
Riemannian geometry, as one can see the latent space as a
parametrisation of a low-dimensional manifold (Arvanitidis
et al., 2021). When modelling latent cellular dynamics on
single-cell data, popular approaches still rely on assuming
Euclidean geometry in the representation space, for example
by modelling cellular transitions through linear-cost Opti-
mal Transport (OT) (Peyré et al., 2019; Klein et al., 2025;
Tong et al., 2020). However, building linear latent trajec-
tories using the Euclidean assumption is sub-optimal when
the data lies on a non-Euclidean manifold, as straight la-
tent lines do not necessarily reflect geodesic paths on the
manifold induced by the decoder.

To learn effective interpolations on a single-cell manifold,
we establish the following desiderata: (i) Approximate
trajectories on intractable data manifolds via interpolations
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Figure 1. Visual conceptualisation of the FlatVI approach. The decoder of a single-cell VAE maps to the parameter space of a negative
binomial statistical manifold of probability distributions. In standard VAE settings, straight latent paths are not guaranteed to map to
meaningful statistical manifold interpolations through the decoder. By regularising the pullback metric of the stochastic decoder, FlatVI
induces correspondence between straight paths in the latent space and geodesic interpolations along the manifold of the decoded space.

on a simpler latent manifold with a tractable geometry. (ii)
Design a decoding scheme that encourages straight paths
in the latent manifold to map to approximate geodesics in
the decoded space. (iii) Formalise the geodesic matching
framework in a way that supports a flexible choice of the de-
coder’s likelihood. To achieve (i) and (ii), existing methods
regularise the latent representation of Gaussian AEs using
Euclidean geometry (Chen et al., 2020; Yonghyeon et al.,
2021), but limit their application to continuous data by
neglecting the decoder’s general likelihood model support.
Other works explore the connection between stochastic de-
coders’ geometry and the latent space manifold (Arvanitidis
et al., 2022), even for discrete data, but do not address regu-
larising the latent manifold to a simple, traversable geometry
while preserving geodesic paths on the decoded manifold.

In this work, we close this gap and introduce FlatVI—Flat
Variational Inference—a theoretically principled approach
pushing straight paths in the latent space of VAEs to
approximate geodesic paths along the manifold of the
decoded data. Our focus is on statistical manifolds, whose
points are probability distributions of a pre-defined family.
This enables us to draw connections to the theory of VAEs
and information geometry. When trained as a likelihood
model, a VAE’s decoder image maps latent codes to a
statistical manifold’s parameter space. This formulation
finds direct application in scRNA-seq, where individual
gene counts are assumed to follow a negative binomial
distribution, reflecting relevant data properties such as
discreteness and overdispersion (Zhou et al., 2011).

Crucially, FlatVI regularises the latent space through a flat-
tening loss that pushes the pullback metric from a stochastic
VAE decoder towards a spatially-uniform, scaled identity
matrix, thereby regularising towards a locally Euclidean
latent geometry (Figure 1). In a controlled simulation set-
ting, we demonstrate that our regularisation successfully
constrains the latent manifold to exhibit an approximate

Euclidean geometry, while enabling likelihood parameter
reconstruction on par with standard VAEs. Our method
finds direct applications to single-cell representation learn-
ing and trajectory inference, which we demonstrate across
multiple biological settings by providing an improved data
representation for OT-based modelling of cellular popula-
tion dynamics and latent interpolation. In summary, we
make the following contributions:

• We introduce a regularisation technique for discrete-
likelihood VAEs to encourage straight latent interpola-
tions to approximate geodesic paths on the statistical
manifold induced by the decoder.

• We provide an explicit formulation of the flattening loss
for the negative binomial case, which directly impacts
modelling high-dimensional scRNA-seq data.

• We empirically validate our model on simulated data
and latent geodesic interpolations.

• We show that our method offers a better representation
space for existing OT-based trajectory inference tools
than existing VAE-based approaches on real data.

2. Related Work
Geometry and AEs. Prior work by Arvanitidis et al. (2021)
introduced optimal latent paths reflecting observation space
geometry in deterministic and Gaussian stochastic decoders,
extended by Arvanitidis et al. (2022) to VAEs with arbi-
trary likelihoods. Meanwhile, Chen et al. (2020) explored
representation learning benefits by modelling latent spaces
of deterministic AEs as flat manifolds, while other studies
incorporate data geometry via isometric (Yonghyeon et al.,
2021) and Jacobian (Nazari et al., 2023) regularisations.

Geometry in single-cell representations. Latent variable
models for scRNA-seq data are established (Lopez et al.,
2018; Eraslan et al., 2019), and geometric regularisations
for continuous approximations of high-dimensional cellular
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data have been proposed before for deterministic AEs
(Duque et al., 2020; Sun et al., 2025). Combining single-cell
representations and geometry, diffusion-based manifold
learning (Moon et al., 2019; Huguet et al., 2024; Fasina et al.,
2023) offers insights into geometry-aware low-dimensional
representations. Investigating single-cell geometry extends
to gene expression data (Korem et al., 2015; Qiu et al.,
2022) and dynamic settings (Rifkin & Kim, 2002).

Modelling single-cell state transitions in low-dimensional
spaces. Reconstructing cellular state transitions in a biolog-
ically meaningful low-dimensional space is a key challenge
in single-cell transcriptomics. Various approaches address
this, including applications to drug perturbation prediction
(Bunne et al., 2023; Lotfollahi et al., 2023; Hetzel et al.,
2022) and multi-modal trajectory inference (Klein et al.,
2025). Several works focus on learning continuous gene ex-
pression trajectories in latent spaces for modelling cellular
dynamics. Our work is tightly linked to Huguet et al. (2022),
where the authors employ a Geodesic Autoencoder (GAE)
where distances in the latent space approximate geodesic
distances in single-cell data, while Haviv et al. (2024) intro-
duce a framework regularising autoencoders’ latent spaces
to approximate Wasserstein distances, with applications
in spatial transcriptomics. Flow Matching (Lipman et al.,
2023; Albergo & Vanden-Eijnden, 2023), a generative mod-
elling approach, has also been explored for reconstruct-
ing manifold-aware cellular trajectories in low-dimensional
spaces (Kapusniak et al., 2024), with OT-based formulations
showing promise in this context (Tong et al., 2024a).

3. Background
3.1. Discrete VAEs for Single-Cell RNA-seq

In this work, we deal with discrete count data, formally
collected in a high-dimensional matrix X ∈ NN×G

0 , where
N represents the number of observations and G the number
of features. We assume that individual sample features xng
are independent realisations of a discrete random variable
Xng ∼ P(·|φng) with observation-specific real parameters
φng . Let x ∈ X = NG0 be a single realisation vector.

We consider a joint latent variable model describing the
probability of an observation x and its associated latent vari-
able z. The model factorizes as pϕ(x, z) = pϕ(x|z)p(z),
where z ∈ Z = Rd is a d-dimensional latent variable with
d < G, z ∼ p(z), and p(z) = N (0, Id). Here, Id is the
squared identity matrix with dimension d.

The factor pϕ defines a likelihood model following a dis-
crete distribution from a pre-defined family, with parameters
expressed as a function of the latent variable z as:

pϕ(x|z) = P(x|hϕ(z)) . (1)

In deep latent variable models, hϕ is a deep neural network

termed decoder. VAEs additionally include an encoder
network fψ : X → Z optimized jointly with hϕ through
the Evidence Lower Bound Objective (ELBO) (Kingma
& Welling, 2014). Overall, as long as one can select a
parametric family of distributions as a reasonable noise
model for the dataset properties, the likelihood of the data
can be modelled by the decoder of a VAE.

In the field of scRNA-seq, biological and technical vari-
ability causes sparsity and overdispersion properties in the
expression counts, making the negative binomial likelihood
a natural choice for modelling gene expression. Sparsity
arises from technical limitations in detecting gene transcripts
or from unexpressed genes in specific conditions. Overdis-
persion refers to genes having higher variance than the mean,
deviating from a Poisson model. This is influenced by tech-
nical factors and modelled by the inverse dispersion pa-
rameter of a negative binomial distribution (Heumos et al.,
2023). Thus, we assume that genes follow a negative bino-
mial noise model NB(µng, θg), where µng and θg represent
the cell-gene-specific mean and the gene-specific inverse
dispersion parameters, respectively. In the VAE setting,
given a gene-expression vector x, we define the following
parameterizations (Lopez et al., 2018):

z = fψ(x), µ = hϕ(z, l) = l softmax(ρϕ(z)) , (2)

where ρϕ : Rd → RG models expression proportions of
individual genes and l is the observed cell-specific size
factor directly derived from the data as a cell’s total number
of counts l =

∑G
g=1 xg . The encoder fψ already takes into

account the reparametrisation trick (Kingma & Welling,
2014). Assuming global, gene-specific technical effects, θg
is treated as a free parameter independent of the cell’s state.

3.2. The Geometry of Autoencoders

Continuous deterministic AEs. A possible assumption
is that continuous data lies near a low-dimensional
Riemannian manifold MX , with X = RG, associated
with a d-dimensional latent space Z . The decoder h of
a deterministic AE model can be seen as an immersion
h : Rd → RG of the latent space Z into the embedded
Riemannian manifoldMX equipped with a metric tensor
M and defined as follows:
Definition 3.1. A Riemannian manifold is a smooth man-
ifold MX endowed with a Riemannian metric M(x) for
x ∈ MX . M(x) is a positive-definite matrix that changes
smoothly and defines a local inner product on the tangent
space TxMX as ⟨u,v⟩MX = uTM(x)v, with v,u ∈
TxMX (Do Carmo & Flaherty Francis, 1992).

From Definition 3.1, it follows that a Riemannian manifold
in the decoded space has Euclidean geometry if M(x) = IG
everywhere, as the dot product between tangent vectors
reduces to a linear product.
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In this setting, one can define a Riemannian manifold in the
latent space, calledMZ , whose geometry is directly linked
to the geometry of the decoded manifold by the pullback
metric M(z):

M(z) = Jh(z)TM(h(z))Jh(z) , (3)

where Jh(z) is the Jacobian matrix of h(z). Here, the
decoder h is assumed to be a diffeomorphism between the
latent space and its image, such that Jh(z) is full rank for
all z. The relationship between latent and decoded metric
tensors in Equation (3) enables us to connect distances on
the latent manifold with quantities measured in the data
space. For example, Equation (3) allows to define the
shortest curve γ(t) connecting pairs of latent codes z1 and
z2 as the one minimising the distance between their images
h(z1) and h(z2) onMX . More formally:

dlatent(z1, z2) = inf
γ(t)

∫ 1

0

∥ḣ(γ(t))∥dt (4)

= inf
γ(t)

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (5)

where γ(0) = z1, γ(1) = z2 .

Here, γ(t) : R → Z is a curve in the latent space with
boundary conditions γ(0) = z1 and γ(1) = z2, and
γ̇(t) its derivative along the manifold (more details in
Appendix C.1). Importantly, when the metric tensor
satisfies M(z) = Id for all z, the curve γ⋆(t) minimising
Equation (4) is the straight line between latent codes, and
the geodesics coincide with Euclidean lines in latent space.

Stochastic decoders. While in AEs one deals with deter-
ministic manifolds, in VAEs the decoder function h maps a
latent code z ∈ Z to the parameter configuration φ ∈ H of
the data likelihood. If the likelihood has continuous parame-
ters,H = RG represents the parameter space. As such, the
image of the decoder lies on a statistical manifold, which is
a smooth manifold of probability distributions. Such mani-
folds have a natural metric tensor called Fisher Information
Metric (FIM) (Nielsen, 2020; Arvanitidis et al., 2022). The
FIM defines the local geometry of the statistical manifold
and can be used to build the pullback metric for arbitrary
decoders. For a statistical manifoldMH with parameters
φ ∈ H, the FIM is formulated as

M(φ) = Ep(x|φ)

[
∇φ log p(x|φ)∇φ log p(x|φ)T] , (6)

where φ = h(z) and the metric tensor M(φ) ∈ RG×G.
Analogous to deterministic AEs, one can combine Equa-
tion (6) and Equation (3) to formulate the pullback metric
for an arbitrary statistical manifold, with the difference that
the metric tensor is defined based on the parameter space
H. Thus, the latent space of a VAE is endowed with the
pullback metric for a statistical manifold.

M(z) = Jh(z)TM(φ)Jh(z) , (7)

where M(z) ∈ Rd×d. Note that the calculation of the FIM is
specific for the chosen likelihood type and depends on initial
assumptions on the data distribution (see in Appendix C.2).

4. The FlatVI Model
4.1. Latent Euclidean Assumption in Single-Cell Biology

Modelling high-dimensional cellular processes from
discrete count data poses significant challenges. A common
approach is to study variations in cell states as latent interpo-
lations using the continuous latent representation learned by
negative binomial VAEs. In applications like perturbation
modelling (Hetzel et al., 2022; Lotfollahi et al., 2023) or
gene expression distance quantification (Luecken et al.,
2021), it is a common assumption to model state transitions
as linear shifts in the latent space. This also applies to trajec-
tory inference for modelling continuous population dynam-
ics, where the trajectory of single cells is learnt by matching
subsequent cellular snapshots collected over time using dy-
namic OT in Euclidean spaces (Tong et al., 2020; Koshizuka
& Sato, 2023; Tong et al., 2024b; Neklyudov et al., 2023).
In all the above cases, the standard assumption is that linear
interpolations of the latent manifold reflect optimal trajec-
tories on the decoded single-cell manifold. However, the
standard negative binomial VAE formulation does not nat-
urally enforce such a correspondence, violating modelling
assumptions and potentially leading to sub-optimal decoded
cell-state trajectories and latent distance estimations.

To address this issue and complement existing methods
with representations meeting their assumptions, we propose
to regularise the latent space of a single-cell VAE in such a
way that the latent manifoldMZ has an approximately Eu-
clidean geometry. In other words, our goal is to encourage
correspondence between straight paths in the latent space
and geodesic interpolations along the statistical manifold.
When this condition is satisfied, decoded trajectories
generated using linear interpolations in the latent space of
the VAE respect the geometry of the data manifold.

4.2. Assumptions

Before describing our regularisation approach, we state two
assumptions about the geometry of the single-cell manifold
induced by the negative binomial decoder:

1. Geodesic convexity: The manifold is assumed to be
geodesically convex; that is, any two points on the
manifold are connected by a unique geodesic.

2. Local-to-global approximation: The manifold is suf-
ficiently sampled such that enforcing local geometric
constraints via the pullback metric at observed points
yields a good approximation of the global geometry.

Assumption (1) is appropriate for acyclic biological pro-
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cesses, such as differentiation or perturbation responses,
where cellular transitions follow smooth and directed pro-
gressions. Assumption (2) aligns with standard practice in
single-cell manifold learning, where local neighbourhood
structure is leveraged to infer global geometry under the
assumption of smooth state transitions.

4.3. Flattening Loss

To ensure that straight latent paths approximate geodesics
on the decoded statistical manifold, we introduce a regular-
isation term in the VAE objective that introduces a locally
Euclidean geometry in the latent manifoldMZ .

As shown in Section 3.2, the local geometry of a VAE’s
latent space is determined by the metric in Equation (7).
This metric is a function of the Fisher information of the
decoder’s likelihood, which depends on the decoded pa-
rameters φ ∈ H. From Equation (4) we also know that if
M(z) = Id, then the geodesic distance between each pair
of latent points is given by the straight line between them.
Therefore, regularising the product Jh(z)TM(φ)Jh(z) to-
wards Id forces a VAE to model locally Euclidean latent
geometry. Crucially, the non-linear decoder is still trained to
reconstruct the original data space under the likelihood opti-
misation task in the ELBO, preserving the local geometry
of the decoded statistical manifold described by M(φ).

In summary, we introduce a flattening loss, Lflat, which
encourages locally Euclidean latent geometry in VAEs with
flexible decoders. This loss is combined with the ELBO to
form the full FlatVI objective:

Lflat(ϕ, ψ, α) = Eqψ(z|x) ∥M(z)− αId∥2F . (8)

Here, ϕ and ψ are the VAE’s parameters, q the approximate
posterior on the latent space learnt by the encoder, and
M(z) is calculated by Equation (7). Meanwhile, α is a
trainable parameter offering some flexibility on the scale of
the diagonal constraint while preserving straight geodesics.
The Frobenius norm encourages each local pullback metric
to be close to a scaled identity. In VAEs, the loss of FlatVI
is combined with the ELBO:

LFlatVI(ϕ, ψ, α) = LELBO(ϕ, ψ) + λLflat(ϕ, ψ, α) , (9)

where λ controls the strength of the flattening regularisation.
We summarise the procedure used to train FlatVI in
Algorithm 1.

4.4. FlatVI on a Negative Binomial Single-Cell Manifold

In this work, we model cellular trajectories to study the
evolution of biological processes through interpolations on
a statistically grounded manifold. As outlined in Section 3.1,
single-cell counts are modelled with a negative binomial
decoder with the following univariate point mass function

for each gene g independently:

pNB(xg|µg, θg) = C
( θg
θg + µg

)θg( µg
θg + µg

)xg
, (10)

where C =
Γ(θg + xg)

xg!Γ(θg)
, µ, θ > 0

with xg ∈ N0 and µg = hg(z). Notably, since the decoder
h produces cell-specific means, each cell is deemed as an
individual probability distribution. Consequently, we as-
sume that the single-cell data lies on a statistical manifold
parameterised by the decoder in the space of negative bino-
mial distributions. According to Equation (7), we pull back
the FIM of the statistical manifold of the negative binomial
probability distribution to the latent manifoldMZ .

Proposition 4.1. The pullback metric at a latent point
z ∈ Z of the statistical manifold of negative binomial
distributions, parameterised by a decoder h and fixed
inverse dispersion θ, is given by:

M(z) =
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) ,

(11)
where⊗ is the outer product of vectors, g indexes individual
decoded dimensions, and hg(z) denotes the decoded mean
for gene g.

We provide the derivation of Proposition 4.1 in Appendix B.
Note that we only take the gradient of the mean decoder h
since the inverse dispersion parameter is not a function of
the latent space in single-cell VAEs (see Section 3.1). This
expression for M(z) is then used in the flattening loss (Equa-
tion (8)) to train a geometry-regularised single-cell VAE.

5. Experiments
We evaluate FlatVI on both simulated and real single-cell
scenarios. We begin in Section 5.1 by demonstrating that
our regularisation improves the approximation of constant
Euclidean geometry in the latent manifold while preserving
the reconstruction of likelihood parameters on synthetic
data. For real-world validation, we focus on modelling
single-cell population dynamics using linear dynamic OT.
We investigate whether enforcing Euclidean geometry in the
latent space improves both latent and gene-wise trajectory
reconstruction. These results are presented in Section 5.2
and Section 5.3. Finally, in Section 5.4 and Section 5.5, we
explore the representations learned by FlatVI and evaluate
the effectiveness of linear latent interpolations for modelling
developmental processes.

5.1. Simulated Data

Task and datasets. To assess the effect of FlatVI on latent
geometry, we evaluate its performance on a synthetic dataset
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Table 1. Comparison between FlatVI and an unregularised NB-
VAE (λ = 0) in terms of MSE for µ and θ, and the 3-NN overlap
between Euclidean and geodesic neighbourhoods.

Reg. strength λ MSE (µ) (↓) MSE (θ) (↓) 3-NN overlap (↑)
λ = 0 15.52 ± 0.94 3.10 ± 0.19 0.66 ± 0.00

λ = 1 16.34 ± 0.46 5.67 ± 0.88 0.63 ± 0.00

λ = 3 16.35 ± 0.53 3.09 ± 0.31 0.77 ± 0.00

λ = 5 14.75 ± 0.12 3.20 ± 0.20 0.67 ± 0.01

λ = 7 15.47 ± 0.20 3.38 ± 0.09 0.72 ± 0.01

λ = 10 15.41 ± 0.07 3.08 ± 0.13 0.80 ± 0.03

generated from a multivariate negative binomial distribution.
We aim to induce Euclidean latent geometry in a 2D space
while maintaining faithful data reconstruction.

We simulate 1000 observations from a 10-dimensional nega-
tive binomial distribution with known mean (µ) and inverse
dispersion (θ). Each observation represents a simulated cell,
uniformly assigned to one of three categories mimicking
biological cell types (see Figure 6). For each type, the mean
vectors are sampled from normal distributions centred at
−1, 0, and 1, respectively, with a standard deviation of 1,
and exponentiated to ensure positivity. Gene-specific in-
verse dispersion parameters are sampled from a Gamma
distribution (concentration 2, rate 1) and made positive. To
comply with assumptions in real single-cell data, all data
points share the same dispersion values. We provide further
details on the simulation setup in Appendix I.2.

Evaluation. For λ ∈ {0, 1, 3, 5, 7, 10}, we assess: (i) The
MSE in reconstructing the true µ and θ from decoded latent
variables; and (ii) the 3-Nearest-Neighbour (3-NN) overlap
between neighbourhoods defined by Euclidean and pullback
geodesic distances in the latent space (see Appendix L.1.3
for results using more neighbours). Geodesics are approxi-
mated by parameterised cubic splines minimising the length
under the pullback metric defined in Equation (7) (see Equa-
tion (4)). In our setting, a successful regularisation recovers
the true parameters of the data-generating process while
imposing a similar neighbourhood structure between latent
Euclidean and pullback geodesic distances.

We also visually assess Riemannian characteristics of the
latent space: The variance of the Riemannian metric (VoR)
and the condition number (CN), following Chen et al. (2020)
and Yonghyeon et al. (2021). VoR quantifies how much the
metric deviates from its spatial average M̄ = Ez∼pz [M(z)].
A VoR of 0 implies a globally uniform metric, and we esti-
mate its value using batches of 256 latent encodings. CN,
defined as the ratio of the largest to the smallest eigenvalue
of M(z), approaches 1 when the metric resembles the iden-
tity. Low VoR and CN values indicate a well-flattened latent
space. See Appendix I.1 for definitions.

Results. In our simulation setting, results in Table 1 show

ca b

Figure 2. Comparison of latent geometries for NB-VAE (top) and
FlatVI with λ = 7 (bottom) using: (a) Variance of the Riemannian
metric (VoR), (b) Condition Number (CN), and (c) Straightness of
geodesics between high VoR regions.

that our regularisation forces geodesic distances under the
pullback metric to better approximate Euclidean topology in
the latent space compared to an unregularised Negative Bino-
mial VAE (NB-VAE) with λ = 0. In other words, increasing
λ improves the correspondence between the neighbourhood
structures induced by pullback geodesic and Euclidean dis-
tances (see Appendix L.1.3 for additional metrics). Mean-
while, the capabilities of our model to reconstruct the mean
(µ) and inverse dispersion (σ) parameters do not degrade
when the regularisation strength is increased.

The plots in Figure 2 serve as additional proof of the flat-
tening mechanism. Inducing Euclidean geometry into the
latent space ensures a more uniform local geometry, as the
latent manifold of FlatVI does not exhibit as many regions
of systematically high VoR or CN as in the standard NB-
VAE setting (see Figure 2a-b). Despite the flattening, some
limited regions with high CN and VoR remain in the FlatVI
embedding. We qualitatively investigate the cause for high
VoR and CN values in Appendix L.1.4.

In Figure 2c we sample 10 couples of points from re-
gions of high VoR in the NB-VAE latent space and plot
geodesic paths approximated according to Equation (4) on
both FlatVI and the unregularised model. FlatVI achieves
straight paths, while pullback-based geodesic interpolations
in the standard NB-VAE bottleneck show a curvature (see
Figure 7 for comparison with a Euclidean manifold). These
findings support our objective of ensuring that pullback-
driven geodesics exhibit linear behaviour in the latent space.

5.2. Reconstruction of scRNA-seq Trajectories

Task and dataset. Our core hypothesis is that FlatVI’s
latent space provides a better embedding for cell-state
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Table 2. Comparison of cellular trajectory reconstruction on held-out time points using different representation models. Latent trajectories
are learnt with OT-CFM, leaving out intermediate time points and using them as ground truth for evaluating the interpolation of the
cellular dynamics. Distribution matching metrics are evaluated to compare real held-out points and reconstructions thereof in both the
decoded and latent space across three seeds.

EB MEF

Latent Decoded Latent Decoded
2-Wasserstein (↓) L2 (↓) 2-Wasserstein (↓) MMD (↓) 2-Wasserstein (↓) L2 (↓) 2-Wasserstein (↓) MMD (↓)

GAE 2.16 ± 0.14 0.40 ± 0.06 70.29 ± 0.00 0.14 ± 0.04 2.49 ± 0.22 0.57 ± 0.07 106.83 ± 0.01 0.38 ± 0.01

NB-VAE 2.07 ± 0.07 0.30 ± 0.02 43.36 ± 0.19 0.09 ± 0.01 2.07 ± 0.12 0.40 ± 0.05 103.29 ± 0.01 0.19 ± 0.01

FlatVI 1.54 ± 0.09 0.27 ± 0.03 41.99 ± 0.04 0.07 ± 0.01 1.64 ± 0.13 0.36 ± 0.05 97.12 ± 0.01 0.16 ± 0.01

interpolation methods that assume Euclidean geometry,
as our flattening loss encourages the VAE to approximate
local Euclidean geometry in the latent manifold. We
demonstrate the benefits of using FlatVI’s representation
space in combination with Euclidean, continuous OT to
map single-cell trajectories over time. As a dynamic OT
algorithm, we use the OT Conditional Flow Matching
(OT-CFM) model (Tong et al., 2024a), which leverages
straight-line interpolation between samples to learn a
velocity field transporting cells across time (Appendix D).

We evaluate using two real-world datasets: (i) The Embryoid
Body (EB) dataset (Moon et al., 2019), comprising 18,203
differentiating human embryoid cells over five time points
and spanning four lineages; and (ii) the MEF reprogram-
ming dataset (Schiebinger et al., 2019), containing 165,892
cells across 39 time points, tracing the reprogramming of
mouse embryonic fibroblasts into induced pluripotent stem
cells. Full dataset details are provided in Appendix J.1.

Baselines. We compare FlatVI with a standard NB-VAE
trained without regularisation (Lopez et al., 2018) as a
representation model for continuous OT. Additionally,
we evaluate latent OT on embeddings produced by the
GAE model from Huguet et al. (2022), described in
Section 2. This model is trained on log-normalised gene
expression to compensate for the absence of a discrete
probabilistic decoder. Differences between FlatVI and GAE
are discussed in Appendix E.1.2. All three approaches are
used to generate latent embeddings of time-resolved gene
expression datasets. These embeddings are then used to
train an OT-CFM model that learns latent trajectories from
unpaired observations at consecutive time points.

Evaluation. Following Tong et al. (2020), we leave out
intermediate time points during training and assess the
model’s ability to reconstruct them via OT. The accuracy of
reconstructing an unseen time point t from t−1 reflects the
model’s interpolation ability along the data manifold. We
use this paradigm to compare different representation spaces.
For quantitative evaluation, we compute the 2-Wasserstein
and mean L2 distances between real and reconstructed latent
cells at each time point. We also assess decoded gene expres-

sion quality using linear-kernel Maximum Mean Discrep-
ancy (MMD) (Borgwardt et al., 2006) and 2-Wasserstein
distance.

We set FlatVI’s regularisation strength to λ=1 for the EB
dataset and λ=0.1 for the MEF dataset. We tune the hyper-
parameter based on the value that leads to the best repre-
sentation for OT-based trajectory reconstruction on training
data (see Appendix H for more details).

Results. Table 2 reports reconstruction metrics between
true and interpolated latent cells. Across all datasets and
metrics, trajectories in FlatVI’s Euclidean latent space
result in better time point reconstruction compared to
the baseline models, highlighting the effectiveness of our
regularisation. Furthermore, FlatVI improves the quality of
decoded gene expression trajectories, as reflected in lower
MMD and Wasserstein distances. Table 6 additionally
provides biological validation via improved reconstruction
of lineage marker trajectories using FlatVI.

5.3. Latent Vector Field and Lineage Mapping

Task and dataset. We evaluate the capacity of continuous
OT to identify a biologically meaningful cell velocity field
using the representation spaces computed by FlatVI, the
unregularised NB-VAE and the GAE model. We hypoth-
esise that applying dynamic OT with Euclidean cost to a
flat representation space is beneficial. As a dataset for the
analysis, we employ the pancreatic endocrinogenesis (here
shortly denoted as Pancreas) by Bastidas-Ponce et al. (2019),
which measures 16,206 cells and spans embryonic days
14.5 to 15.5, revealing multipotent cell differentiation into
endocrine and non-endocrine lineages. More specifically,
we train the compared representation learning frameworks
on the dataset and learn separate vector fields for all models’
embeddings, matching days 14.5 to 15.5 with OT-CFM.
The learnt vector field represents the directionality of the
observations on the cellular development manifold.

Evaluation. Using the CellRank model (Lange et al.,
2022; Weiler et al., 2024), we build random walks on a
cell graph based on the directionality of latent velocities
learnt by OT-CFM in the different representation spaces.
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Figure 3. Learning terminal states from OT-CFM’s cell velocities
in the Pancreas dataset. (a) Terminal states found by CellRank
using different representation models. (b) Latent velocity consis-
tency computed for cells across different latent space sizes.

Walks converge to macrostates representing the endpoints
of the biological process if the learnt velocity field points to
biologically meaningful directions. We quantify the quality
of vector fields learnt by OT in different latent spaces based
on (i) the number of macrostates identified by random walks,
and (ii) the velocity consistency, measured as the correlation
of the latent velocity field of single datapoints with that
of the neighbouring cells (Gayoso et al., 2024). Higher
consistency indicates smoother transitions in the vector field,
suggesting that the representation space facilitates more
coherent and biologically meaningful dynamics, making it
a suitable space for learning trajectories (see Appendix I.1).

Results. Figure 3a summarises the number of terminal cell
states identified by following the velocity graph. From prior
biological knowledge, it is known that the dataset contains
six terminal states, which are all identified on the represen-
tation computed by our FlatVI (λ = 1). In contrast, on
the GAE and NB-VAE’s representations, CellRank only
captures four and five terminal states, respectively. In Fig-
ure 3b, we further evaluate the velocity consistency within
neighbourhoods of cells as a function of latent dimensional-
ity. In line with previous results, OT on the approximately
Euclidean latent space computed by FlatVI yields a more
consistent velocity field across latent space sizes.

5.4. Single-Cell Data Representations

We visualise single-cell latent representations on the previ-
ously introduced datasets computed using the FlatVI, NB-
VAE, and GAE models. For FlatVI, the value of λ is set to
1 for EB and Pancreas and 0.1 for the MEF dataset, in line
with previous settings. In Figure 4, we compare the Princi-
pal Component (PC) embeddings of FlatVI’s latent space
with competing models, highlighting initial and terminal
cellular states. Despite the regularisation, FlatVI represents
the biological structure in the latent space better or on par
with the baselines, as illustrated by the separation between
initial and terminal states. This is particularly evident in
the MEF dataset, where FlatVI provides a clearer division

Figure 4. 2D PCA plots of the latent spaces computed by GAE,
NB-VAE and FlatVI. Marked are initial, intermediate and terminal
cell states along the biological trajectory.

between initial and terminal cell types. In Table 8 we show
that such a separation is more pronounced than competing
models, also on the Pancreatic dataset based on quantitative
clustering metrics. Moreover, the higher variance explained
by individual PCs in FlatVI’s latent space suggests that our
model captures the main sources of variation (the biological
trajectories) more efficiently, reducing latent space dimen-
sionality and enhancing information compression while pre-
serving or even improving biological fidelity. Consequently,
FlatVI is well-suited for smaller latent spaces, making it a
promising input for trajectory inference methods.

5.5. Decoded Geodesic Interpolations

Task and evaluation. We qualitatively evaluate whether
linear interpolations in the latent space of FlatVI yield bio-
logically meaningful trajectories when decoded into gene
expression space. Given two cells at different stages along a
developmental lineage, we linearly interpolate between their
latent representations and decode the intermediate points.
We then inspect whether the expression of known marker
genes along these decoded paths evolves consistently with
expected biological progression. If so, this suggests that
linear paths in FlatVI’s latent space approximate geodesics
aligned with the underlying developmental manifold.

Baseline. As a baseline, we use GAGA (Sun et al., 2025),
which explicitly enforces alignment between the latent ge-
ometry and data structure using neighbour-based regulari-
sation. Unlike FlatVI, GAGA does not assume a tractable
latent manifold. Instead, it learns a data-driven representa-
tion where geodesics are approximated via a neural ODE. In
contrast, FlatVI enables efficient approximations of latent
geodesics through simple linear interpolation.
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Figure 5. Decoded marker trajectories from latent interpolations on the Pancreas dataset, comparing FlatVI and GAGA. We sample 100
pairs of multipotent and mature cells from each terminal state, encode their gene expression profiles, and perform latent interpolations
(linearly in FlatVI and using a neural ODE in GAGA). Intermediate states along these trajectories are decoded, and the resulting marker
gene expression is visualised alongside the real expression along the lineage (dark grey points). Each trajectory is shown as a low-opacity
line, while the solid line denotes the mean trajectory. We show three examples (a, b, and c) from the Beta and Delta lineages.

Dataset. We use the pancreas endocrinogenesis dataset
described in Section 5.3, focusing on the endocrine devel-
opmental trajectory. We randomly sample batches of 100
multipotent progenitor cells and 100 terminal-stage cells
from each of the endocrine branch lineages. Pairs of mul-
tipotent and mature cells are randomly matched, and their
decoded interpolation paths are analysed for marker gene
expression dynamics.

Results. While both approaches produce reasonable results
on average (see Figure 13), in Figure 5 we highlight some
recurrent sub-optimal patterns in GAGA’s performance that
do not arise in FlatVI. Specifically, in Figure 5 we present
examples of unstable optimisation (Figure 5a), underestima-
tion of the marker expression (Figure 5b) and overestimation
of intermediate expression patterns (Figure 5c). In contrast,
FlatVI’s latent space consistently produces decoded marker
dynamics that faithfully recapitulate the expected fate-
specific trajectories. Reasonably, interpolations computed
with FlatVI are less computationally expensive (Figure 14).

These findings highlight the effectiveness of FlatVI as a
straightforward and reliable method for exploring cellular
manifolds, without requiring a parameterised interpolant.

6. Conclusion
We addressed the problem of modelling cellular trajectories
in scRNA-seq data by introducing FlatVI, a VAE training
strategy that enforces a locally Euclidean geometry in the la-
tent space by regularising the pullback metric of the stochas-
tic decoder. This regularisation encourages straight latent
paths to approximate geodesic interpolations in the decoded
data space. Experiments on synthetic data demonstrate that
FlatVI successfully induces a latent Euclidean geometry
while preserving accurate parameter reconstruction. When
combined with dynamic OT, FlatVI improves trajectory pre-
diction performance and yields more consistent vector fields

on cellular manifolds. Furthermore, linear interpolations
between latent cellular states offer interpretable insights into
the progression of cell states, providing a straightforward
approach to exploring dynamical biological processes. Col-
lectively, these improvements enhance core tasks in cellular
development, such as fate mapping and the reconstruction
of differentiation pathways, establishing FlatVI as a useful
tool for trajectory inference in single-cell transcriptomics.

Limitations and future work. To improve FlatVI’s
applicability to real-world datasets, we aim to enhance
its robustness to reconstruction loss on biological data,
reducing potential trade-offs between flattening and
reconstruction likelihood. As discussed in Section 4,
enforcing a locally Euclidean latent geometry imposes
strong assumptions that may not hold for all datasets (e.g.,
those dominated by cyclic processes such as the cell cycle).
Future work will investigate alternative latent geometries
to better capture diverse biological structures. We also plan
to extend FlatVI to a broader class of statistical manifolds
and single-cell tasks, including Poisson-based modelling
of chromatin accessibility, evaluation in batch correction
settings, and OT-mediated perturbation modelling.

Impact Statement
The presented work deals with fundamental characteristics
of scRNA-seq data and studies how efficient representa-
tions of complex high-dimensional cellular data can help to
address key biological questions. We envision the release
of FlatVI as a user-friendly, open-source tool to enable its
widespread use as an option for single-cell analysis. Deal-
ing with biological data, FlatVI could be used in sensitive
settings involving clinical information and patient data.
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A. Code and Datasets
We have made our code publicly available at https://github.com/theislab/FlatVI. All datasets used in this
study are open source, and their associated publications are cited in the manuscript.

B. Derivation of the Fisher Information Metric for the Negative Binomial Distribution
We first show that the Fisher information of a univariate Negative Binomial (NB) distribution parameterised by the mean µ
and inverse dispersion θ with respect to µ is

M(µ) =
θ

µ(µ+ θ)
. (12)

We then move on with the derivation of the pullback metric in Proposition 4.1.

Fisher information of the NB distribution. The univariate NB probability distribution parameterised by mean µ and
inverse dispersion θ is

pNB(x | µ, θ) =
Γ(θ + x)

x!Γ(θ)

( θ

θ + µ

)θ( µ

θ + µ

)x
. (13)

The Fisher information of the distribution can be computed with respect to µ as:

M(µ) = −Ep(x|µ,θ)
[
∂2

∂µ2
log pNB(x | µ, θ)

]
, (14)

where
log pNB(x | µ, θ) = C + θ [log(θ)− log(θ + µ)] + x [log(µ)− log(θ + µ)] , (15)

with C = log(Γ(θ + x))− log(x!)− log(Γ(θ)). Then, it can be shown that

∂2

∂µ2
log pNB(x | µ, θ) =

θ + x

(θ + µ)2
− x

µ2
. (16)

Using the fact that the parameterisation involving the mean µ and inverse dispersion θ implies that

Ep(x|µ,θ) [x] = µ , (17)

we can expand Equation (14) as follows

M(µ) = −Ep(x|µ,θ)
[
θ + x

(θ + µ)2
− x

µ2

]
= − 1

(θ + µ)2
Ep(x|µ,θ) [θ + x] +

1

µ2
Ep(x|µ,θ) [x] (18)

=
θ

µ(µ+ θ)
.

Derivation of the Fisher information metric. We here consider the NB-VAE case, where the likelihood is parameterised
by µg = hg(z) and θg independently for each gene g.

When h is a continuously differentiable function of z, the pullback metric Mg(z) of the output g w.r.t z by the reparameteri-
sation property (Lehmann & Casella, 2006) is

Mg(z) = ∇zhg(z)M(hg(z))∇zhg(z)
T

=
θg

hg(z)(hg(z) + θg)
∇zhg(z)⊗∇zhg(z) , (19)

where ⊗ is the outer product of vectors, and the gradients are column vectors.
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By the chain rule, the joint Fisher information of independent random variables equals the sum of the Fisher information
values of each variable (Zamir, 1998). As all xg are independent given z in the NB-VAE, the resulting Fisher Information
Metric (FIM) is

M(z) =
∑
g

Mg(z)

=
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) . (20)

C. The Geometry of AEs
We deal with the assumption that the observed data lies near a Riemannian manifoldMX embedded in the ambient space
X = RG. The manifoldMX is defined as follows:

Definition C.1. A Riemannian manifold is a smooth manifoldMX endowed with a Riemannian metric M(x) for x ∈MX .
M(x) changes smoothly and identifies an inner product on the tangent space TxMX at a point x ∈MX as ⟨u,v⟩MX =
uTM(x)v, with v,u ∈ TxMX .

For an embedded manifoldMX with intrinsic dimension d, we can assume the existence of an invertible global chart map
ξ :MX → Rd mapping the manifoldMX to its intrinsic coordinates. A vector vx ∈ TxMX on the tangent space of
MX can be expressed as a pushforward vx = Jξ−1(z)vz of a tangent vector vz ∈ Rd at z = ξ(x), where J indicates the
Jacobian. Therefore, Jξ−1 maps vectors vz ∈ Rd into the tangent space of the embedded manifoldMX . The ambient
metric M(x) can be related to the metric M(z) defined in terms of intrinsic coordinates via:

M(z) = Jξ−1(z)TM(ξ−1(z))Jξ−1(z) . (21)

In other words, we can use the metric M(z) to compute quantities on the manifold, such as geodesic paths. However, for
an embedded manifoldMX , the chart map ξ is usually not known. A workaround is to define the geometry ofMX on
another Riemannian manifoldMZ with a trivial chart map ξ(z) = z for z ∈ MZ , which can be mapped toMX via a
smooth immersion h. In the next section, we elaborate on the connection between manifold learning and autoencoders.

C.1. Deterministic AEs

We assume the decoder h : Z = Rd → X = RG of a deterministic autoencoder is an immersion of a latent manifold with
trivial chart map into a Riemannian manifoldMX embedded in X and with metric M. This is valid if one also assumes that
d is the intrinsic dimension ofMX . As explained before, the Jacobian of the decoder maps tangent vectors vz ∈ TzMZ to
tangent vectors vx=h(z) ∈ TxMX . The decoder induces a metric into the latent space following Equation (21) as

M(z) = Jh(z)TM(h(z))Jh(z) , (22)

called pullback metric. The pullback metric defines the geometry of the latent manifold MZ compared to that of the
manifoldMX . The metric tensor M(z) regulates the inner product of tangent vectors uz and vz on the tangent space
TzMZ :

⟨uz,vz⟩MZ = uTz M(z)vz . (23)

To enhance latent representation learning, distances in the latent space Z can be optimised according to quantities of interest
in the observation space X , following the geometry ofMX . For instance, we can define the length of a curve γ : [0, 1]→ Z
in the latent space by measuring its length on the manifoldMX :

L(γ) =

∫ 1

0

∥∥∥ḣ(γ(t))∥∥∥ dt

=

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (24)

where the equality is derived by applying the chain rule of differentiation.
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C.2. Pulling Back the Information Geometry

In machine learning, exploring latent spaces is crucial, particularly in generative models such as VAEs. One challenge is
defining meaningful distances in the latent space Z , which often depends on the properties of stochastic decoders and their
alignment with the observation space. Injecting the geometry of the decoded space of a VAE into the latent space requires a
different theoretical framework, where the data is assumed to lie near a statistical manifold.

VAEs can model various data types by utilising the decoder function as a non-linear likelihood parameter estimation model.
We consider the decoder’s output space as a parameter spaceH for a probability density function. Depending on the data
type, we express a likelihood function p(x | φ) with parameters φ ∈ H, reformulated as p(x | z) through a mapping
h : Z → H. We aim to define a natural distance measure in Z for infinitesimally close points z1 and z2 = z1 + δz when
seen fromH. One can show that such a distance corresponds to the Kullback-Leibler (KL) divergence:

dist2(z1, z2) = KL(p(x | z1), p(x | z2)) . (25)

To define the geometry of the statistical manifold, one can resort to information geometry, which studies probabilistic
densities represented by parameters φ ∈ H. In this framework,H becomes a statistical manifold equipped with a FIM:

M(φ) =

∫
X
[∇φ log p(x | φ)][∇φ log p(x | φ)]T p(x | φ) dx . (26)

The FIM locally approximates the KL divergence. For a univariate density p, parameterised by φ, it is known that

KL(p(x | φ), p(x | φ+ δφ)) ≈ 1

2
δφ⊤M(φ)δφ+ o(δφ2) . (27)

In the VAE setting, we view the decoder not as a mapping to the observation space X but as a transformation to the parameter
space H. This perspective allows us to naturally incorporate the FIM into the latent space Z . Consequently, the VAE’s
decoder can be seen as spanning a manifoldMH inH, withMZ inheriting the metric in Equation (26) via the Riemannian
pullback. Based on this, we define a statistical manifold.

Definition C.2. A statistical manifold is represented by a parameter spaceH of a distribution p(x | φ) and is endowed with
the FIM as the Riemannian metric.

The Riemannian pullback metric is derived as in Equation (22). Having defined the Riemannian pullback metric for VAEs
with arbitrary likelihoods, one can extend the measurement of curve lengths in Z when mapped toH through h as displayed
by Equation (24). This approach allows flexibility in the choice of the decoder, as long as the FIM of the chosen distribution
type is tractable.

D. Learning Population Dynamics with Optimal Transport
The complexity of learning trajectories in high-dimensional data can be prevented by interpolating latent representations
and decoding intermediate results to the data space for inspection. Here, we deal with learning population dynamics, which
consists of modelling the temporal evolution of a dynamical system from unpaired samples of observations through time.
As such, the task is naturally formulated as a distribution matching problem, and dynamic Optimal Transport (OT) has
been a popular avenue for population dynamics.

Let the data be defined on a continuous space X = Rd. OT computes the most efficient mapping for transporting mass
from one measure ν to another η, defined on X . Relevant to dynamical systems, Benamou & Brenier (2000) introduced a
continuous formulation of the OT problem. In this setting, let pt be a time-varying density over Rd constrained by p0 = ν
and p1 = η. Dynamic OT learns a time-dependent marginal vector field u : [0, 1]×Rd → Rd, where ut(x) = u(t,x). Such
a field is associated with an Ordinary Differential Equation (ODE), dx = ut(x)dt, whose solution matches the source with
the target distribution. Therefore, one can use dynamic OT to learn a system’s dynamics from snapshots of data collected
over time.

An efficient simulation-free formulation of dynamic OT comes from the OT Conditional Flow Matching (OT-CFM) model
by Tong et al. (2024a) and Pooladian et al. (2023), who demonstrated that the time-resolved marginal vector field ut(x)
has the same minimiser as the data-conditioned vector field ut(x|x0,x1), where (x0,x1) ∼ π are tuples of points sampled
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from the static OT coupling π between source and target batches. Assuming Gaussian marginals pt and x0 and x1 to be
connected by Gaussian flows, both pt(x|x0,x1) and ut(x |x0,x1) become tractable:

pt(x |x0,x1) = N (tx1 + (1− t)x0, σ
2) (28)

ut(x |x0,x1) = x1 − x0 , (29)

where the value of σ2 is a small pre-defined constant. Accordingly, the OT-CFM loss is

LOT-CFM(ξ) = Et∼U(0,1),π(x0,x1),pt(x|x0,x1)

[
∥vξ(t,x)− ut(x|x0,x1)∥2

]
, with t ∼ U(0, 1). (30)

Here, vξ(t,x) is a neural network approximating the marginal vector field ut(x).

Given this formulation of dynamic OT, we highlight three aspects:

1. Dynamic OT only applies to continuous spaces.
2. OT-CFM benefits from low-dimensional representations since the OT-coupling is optimised from distances in the state

space.
3. Based on Equation (28), OT-CFM uses straight lines to optimise the conditional vector field, thus assuming Euclidean

geometry.

In the presence of discrete data like scRNA-seq counts modelled with VAEs, one can tackle (1) and (2) by learning dynamics
in a low-dimensional representation of the state space, the latent space of a VAE with a discrete-likelihood decoder. Note,
however, that (3) is still a shortcoming, since straight lines in the latent space of a VAE do not reflect geodesic paths on
the decoded data manifold unless enforced otherwise, see Figure 1. In this work, we address this remaining limitation by
regularising the VAE’s latent space to induce locally Euclidean geometry, ensuring that straight lines in latent space better
approximate geodesics on the decoded data manifold.

E. Baseline Description
E.1. GAE

E.1.1. THE MODEL

Here, we describe the Geodesic Autoencoder (GAE) from Huguet et al. (2022). For more details on the theoretical
framework, we refer to the original publication. The GAE works by matching Euclidean distances between latent codes
with the diffusion geodesic distance, which is an approximation of the diffusion ground distance in the observation space.

Briefly, the authors compute a graph with an affinity matrix based on distances between observations i and j using a
Gaussian kernel as:

(Kϵ)ij = kϵ(xi,xj) , (31)

with scale parameter ϵ, where xi,xj ∈ X and X is the observation space. The affinity is then density-normalised by
Mϵ = Q−1KϵQ

−1, where Q is a diagonal matrix such that Qii =
∑
j(Kϵ)ij . To compute the diffusion geodesic distance,

the authors additionally calculate the diffusion matrix Pϵ = D−1Mϵ, with Dii =
∑n
j=1(Mϵ)ij and stationary distribution

πi = Dii/
∑
jDjj . The diffusion geodesic distance between observations xi and xj is

Gα(xi,xj) =

K∑
k=0

2−(K−k)α∥(Pϵ)
2k

i: − (Pϵ)
2k

j: ∥1 + 2−(K+1)/2∥πi − πj∥1 , (32)

with α ∈ (0, 1/2). The running value of k in Equation (32) defines the scales at which similarity between the random walks
starting at xi and xj are computed.

Given the diffusion geodesic distance Gα defined in Equation (32), the GAE model is trained such that the pairwise
Euclidean distances between latent codes approximate the diffusion geodesic distances in the observation space X , in a
batch of size B. Given an encoder fψ : RG → Rd, the reconstruction loss is optimised alongside a geodesic loss

Lgeodesic(ψ) =
2

B

N∑
i=1

∑
j>i

(∥fψ(xi)− fψ(xj)∥2 −Gα(xi,xj))2 . (33)
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E.1.2. ADDITIONAL COMPARISON BETWEEN FLATVI AND GAE

Although related in scope, FlatVI significantly differs from the Geodesic Autoencoder (GAE) proposed by Huguet et al.
(2022). Firstly, GAE is a deterministic autoencoder optimised for reconstruction based on a Mean Squared Error (MSE)
loss. As such, the model is not tailored to simulate gene counts. On the contrary, FlatVI’s decoder parameterises a Negative
Binomial likelihood, allowing realistic generation of count data through sampling. This aspect has two advantages. By
focusing on learning continuous parameters of a discrete likelihood, FlatVI explicitly models distributional properties
of single-cell transcriptomics data, such as overdispersion, sparsity and discreteness. In contrast, a fully connected
Gaussian decoder produces dense and continuous cells, failing to preserve the characteristics of the data. Moreover, the
GAE regularises the latent space by approximating geodesic distances via a k-nearest-neighbour graph constructed in the
observation space. This method requires the computation of pairwise Euclidean distances in the observation space. As
suggested previously, gene expression is high-dimensional and, therefore, deceiving due to the curse of dimensionality. On
the contrary, leveraging only the Jacobian and the output of the decoder to enforce latent space Euclideanicity, FlatVI is
more suitable for larger datasets and eludes computing distances in high dimensions.

E.2. Geometry-Aware Generative Autoencoder (GAGA)

E.2.1. THE MODEL

GAGA (Sun et al., 2025) is an AE model trained such that latent distances approximate those on the data manifold, as
estimated via PHATE (Moon et al., 2019). This estimation in data space enables the imposition of a pullback Riemannian
metric in the latent space via the encoder, thereby aligning the geometries of the latent space and the data manifold. In
addition, GAGA introduces a warping approach, wherein large distances are assigned to points outside the data manifold.
The off-manifold status is determined using an auxiliary dimension in the latent space, which is trained adversarially.

The defined latent geometry supports various tasks, including (i) uniform sampling of the manifold, (ii) interpolation, and
(iii) generation. In our experiments, we compare GAGA with FlatVI on task (ii). Specifically, on-manifold interpolations
are achieved by training a neural ODE that minimises the curve length connecting two points on the manifold, based on the
encoder’s pullback metric. In other words, GAGA requires a parameterised neural network to define latent interpolations
constrained to the manifold.

E.2.2. COMPARISON BETWEEN FLATVI AND GAGA

GAGA and FlatVI share a common objective: To learn a latent geometry amenable to interpolation and manifold exploration.
GAGA does so by learning distances on the manifold through a local neighbourhood approach, whereas FlatVI performs
local manifold regularisation by assuming a metric defined on the statistical manifold spanned by the decoder of a discrete
single-cell VAE. Consequently, FlatVI avoids the computation of pairwise distances for metric regularisation, relying on
the assumption that aligning the pullback metric with an Euclidean geometry locally induces globally consistent manifold
flattening, especially under dense sampling conditions.

In this context, FlatVI is explicitly designed for latent manifold regularisation in high-dimensional, over-dispersed count
data, while GAGA assumes a continuous approximation of the gene expression space. Moreover, FlatVI encourages a
simple and tractable latent geometry, whereas GAGA combines manifold regularisation with a parameterised neural network
that approximates the shortest curve between pairs of points.

F. Additional Notes on the Novelty of the Contribution
In VAE-based approaches, the decoder often parameterises a statistical manifold over the space of probability distributions.
In our work, we explicitly model decoded single-cell profiles as points on the statistical manifold of negative NB distributions
defined by the NB-VAE decoder. To the best of our knowledge, this is the first systematic approach to manifold learning in
single-cell analysis that leverages the geometry of this specific statistical family.

This perspective is particularly impactful for scRNA-seq tasks that rely on interpolations in a latent or reduced space, such
as trajectory inference and cellular fate mapping. Instead of interpolating in an arbitrary Euclidean latent space, we ask
whether these transitions can be aligned with the intrinsic geometry of the NB statistical manifold. Since the NB distribution
is widely accepted as the most accurate noise model for scRNA-seq data, enforcing such geometric consistency has the
potential to produce more biologically meaningful trajectories.
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G. Complexity and Implementation
G.1. Computational Complexity of the FIM Computation

We provide a breakdown of the computational complexity involved in evaluating the pullback FIM, as defined in Equa-
tion (20).

• We begin by analyzing the complexity of Equation (7), which generalizes Equation (20):

M(z) = Jh(z)⊤M(φ)Jh(z) ,

where Jh(z) is the Jacobian of the decoder with respect to the latent variable z.
• Let G be the number of genes and d the latent dimensionality, with G≫ d. The decoded mean parameter φ ∈ RG

yields one value per gene, and the Jacobian Jh(z) ∈ RG×d.
• The Fisher information matrix M(φ) ∈ RG×G encodes the second-order structure of the negative binomial likelihood

with respect to the mean parameters.
• The product Jh(z)⊤M(φ) costs O(dG2) and yields a d×G matrix. Multiplying this with Jh(z) gives a final cost of
O(d2G). Since G≫ d, the total complexity is dominated by O(dG2).

• An equivalent result is obtained if one directly evaluates the sum of outer product matrices from Equation (20), as both
forms represent the pullback metric.

Note that this analysis only reflects the cost of evaluating the pullback metric itself. In practice, computing Jh(z) requires
evaluating the decoder h, which may be expensive.

G.2. Implementation via the Jacobian-Vector Product

To compute the pullback metric efficiently, we use the Jacobian-vector product (JVP) instead of forming the full Jacobian.
JVP is applied along each standard basis vector, dynamically assembling the necessary components while reducing memory
and computational overhead. Our models, MLPs with one to three nonlinear layers, remain efficient despite the added
cost. Notably, this approach scales better than GAE (Table 7), which requires pairwise distance computations for geodesic
estimation.

H. Model Setup
Experimental details for Autoencoder models. The Geodesic AE, NB-VAE, and FlatVI models are trained using shallow
2-layer neural networks with hidden dimensions [256, 10]. Batch normalisation is applied between layers, as we
observed that it improves reconstruction loss. Non-linearities are introduced using the ELU activation function. All models
are trained for 1000 epochs with early stopping based on the VAE loss and a patience value of 20 epochs. The default
learning rate is set to 1e-3. For VAE-based models, we linearly anneal the KL divergence weight from 0 to 1 over the
course of training.

NB-VAE and FlatVI models use a batch size of 32, while Geodesic AE is trained with a batch size of 256, selected after
evaluating {64, 100, 256} based on validation loss. Notably, Geodesic AE is trained to reconstruct log-normalised counts, in
contrast to NB-VAE and FlatVI, which model raw counts via a negative binomial decoder. To ensure training stability, all
encoders receive inputs transformed via log(1 + x).

A summary of hyperparameter sweeps for FlatVI, along with selected values based on validation loss, is shown in Table 3.

Table 3. Hyperparameter sweeps for training FlatVI. The Hidden dims column excludes the final latent layer, which is fixed at dimension
10. Selected values used for main results are shown in bold.

Batch size Hidden dims λ

EB 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10
Pancreas 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10

MEF 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10
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Experimental details for OT-CFM. To parameterise the velocity field in OT-CFM, we use a 3-layer MLP with 64 hidden
units per layer and SELU activations. The learning rate is fixed at 1e-3. The network receives a concatenation of the latent
vector and a scalar time value as input, as required for conditional velocity estimation. Following recommendations from
the official OT-CFM repository1, we sample batches that include cells from all time points in each epoch. The variance
hyperparameter σ is set to 0.1 by default.

The choice of the hyperparameter λ. The hyperparameter λ controls the strength of latent flatness regularisation in
FlatVI (Table 1). While increasing λ flattens the latent geometry (i.e., reduces curvature and variation of reconstruction), an
overly large value can harm data fidelity and lower the model likelihood. A higher λ leads to a more uniform (lower VoR)
and flatter (lower CN) latent space.

We select λ by evaluating the quality of trajectories inferred by OT-CFM on top of FlatVI embeddings. In practice, we
increase λ until trajectory reconstruction quality no longer improves. For most real datasets, increasing λ from 0.1 to
1 enhances reconstruction performance. However, further increasing it to 10 offers no additional benefit. For the more
complex MEF dataset, performance was best at λ = 0.1, so we retained that setting.

I. Evaluation
I.1. Metric Description

Condition number. Given a metric tensor M(z), let Smin and Smax be its lowest and highest eigenvalues, respectively.
The condition number (CN) is defined as the ratio

CN(M(z)) =
Smax

Smin
. (34)

Notably, an identity matrix has a CN equal to 1. The CN is an indicator of the stability of the metric tensor. A well-
conditioned metric with a CN close to 1 suggests that the lengths and angles induced by the metric are stable. A large
condition number means that the distances are more stretched in some directions than others. On an Euclidean manifold
with a scaled diagonal metric tensor, distances are preserved in all directions.

Variance of the Riemannian metric. In assessing the Riemannian metric, we introduce a key evaluation called the
Variance of the Riemannian Metric (VoR) (Pennec et al., 2006). VoR is defined as the mean square distance between the
Riemannian metric M(z) and its mean M̄ = Ez∼pz [M(z)]. As suggested in Yonghyeon et al. (2021), we compute the VoR
employing an affine-invariant Riemannian distance metric d, expressed as:

d2(A,B) =

m∑
i=1

(
logSi(B

−1A)
)2
, (35)

where Si(B−1A) indicates the ith eigenvalue of the matrix B−1A. VoR provides insights into how much the Riemannian
metric varies spatially across different z values. When VoR is close to zero, it indicates that the metric remains constant
throughout. This evaluation procedure focuses solely on the spatial variability of the Riemannian metric and is an essential
aspect of assessing the manifolds. Note that the expected value in Equation (35) is estimated using batches of latent
observations with size 256.

Velocity Consistency. (Gayoso et al., 2024) This metric quantifies the average Pearson correlation between the velocity
v(xj) of a reference cell xj and the velocities of its neighbouring cells within the k-nearest-neighbour graph. It is
mathematically expressed as:

cj =
1

k

∑
x∈Nk(xj)

corr(v(xj), v(x)) . (36)

Here, cj represents the velocity consistency, k denotes the number of nearest neighbours considered in the k-nearest-
neighbour graph, xj is the reference cell, Nk(xj) represents the set of neighbouring cells. The value corr(v(xj), v(x)) is
the Pearson correlation between the velocity of the reference cell v(xj) and the velocity of each neighbouring cell v(x).
Higher values of cj indicate greater local consistency in velocity across the cell manifold.

1https://github.com/atong01/conditional-flow-matching
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I.2. Experiment Description

Simulation details. We simulate 10-dimensional negative binomial data from three distinct categories parameterised by
means following distinct distributions and the same inverse dispersion. The negative binomial means µ are drawn from
10-dimensional Gaussian distributions with category-specific means -1, 0 and 1. The inverse dispersion parameters θ
are again random and drawn from the same distribution across the different classes, namely a Gamma distribution with
concentration equal to 2 and rate equal to 1. We exponentiate the means and take the absolute value of inverse dispersions to
make them strictly positive. Note that we do not use size factors in the simulation experiment. Overall, we simulate 1000
observations drawn uniformly from different categories.

Estimating latent pullback geodesics to generate Table 1 and Table 4. We evaluate FlatVI trained with varying strengths
of flattening regularisation, controlled via the hyperparameter λ. To assess the model’s reconstruction performance, we
consider how accurately FlatVI recovers the mean (µ) and inverse dispersion (θ) parameters used to simulate individual cells.

As an additional evaluation, we assess how well Euclidean distances in the latent space approximate geodesic distances on
the latent manifold. To evaluate this similarity, we proceed in the following way:

• We sample pairs of simulated cells, encode them using FlatVI (under different λ values) and obtain their latent
representations z1 and z2.

• For each pair, we compute:

1. The Euclidean distance between z1 and z2 in latent space.

2. The pullback geodesic distance dlatent(z1, z2) on the statistical manifoldMZ .

Geodesic distances are computed using the StochMan software2, which approximates the shortest curve connecting two
points on a manifold defined by a metric tensor. Specifically, we define the geodesic length via the KL divergence between
infinitesimally close conditional distributions, leveraging the link between the Fisher information metric and the KL
divergence of nearby decoded points (Equation (14), Equation (27)). The geodesic distance is thus formulated as:

dlatent(z1, z2) = inf
γ(t)

∫ 1

0

KL (p(x | h(γ(t))), p(x | h(γ(t+ dt)))) dt, (37)

where γ(0) = z1, γ(1) = z2.

Here, h(γ(t)) denotes the decoder output at interpolated latent point γ(t), and p(x | h(γ(t))) represents a negative binomial
likelihood conditioned on those decoded parameters. In practice, we parameterise γ(t) as a cubic spline γ̂(t) over 100
interpolation steps and optimise it to minimise the objective in Equation (37).

This procedure yields two vectors of pairwise distances (Euclidean and geodesic), which we compare in terms of their
induced neighbourhoods and MSE.

Spearman correlation between Euclidean and geodesic distances, and neighbourhood overlap metrics (Table 4). We
assess how closely the Euclidean and latent geodesic distances agree in terms of both correlation and local neighbourhood
structure. Specifically, for VAEs trained with varying levels of regularisation, we perform the following procedure over 10
random repetitions:

• In each repetition, we randomly sample 50 simulated observations and encode them into the latent space.
• For all pairs of encoded points, we compute:

1. The geodesic distances using the KL-based formulation in Equation (37).
2. The Euclidean distances in the latent space.

Due to the computational cost of evaluating Equation (37), we limit the analysis to 50 observations per repetition. Once both
pairwise distance matrices are obtained, we compute the following metrics:

• Spearman correlation: For each data point, we calculate the Spearman rank correlation between its Euclidean and
geodesic distances to all other points and report the average across all data points and repetitions.

• Neighbourhood overlap: Using the Euclidean and geodesic distance matrices, we extract the k-nearest neighbours
(k = 3 and k = 5) for each point and compute the average proportion of neighbours shared across both metrics. A

2https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry
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higher overlap indicates greater agreement between the local structures induced by Euclidean and pullback geodesic
distances.

• Euclidean matrix distance: To quantify the overall similarity between the geodesic and Euclidean distances, we compute
the MSE between the two full pairwise distance matrices. Lower values indicate better global agreement between the
metrics.

Riemannian metrics and path visualisation. Riemannian metrics only take the metric tensor at individual latent codes as
input (see Appendix I.1). The metric tensor for individual observations is calculated following Equation (11). The geodesic
paths in Figure 2c are again approximated by cubic splines optimising the task in Equation (37). We compute such paths for
10 randomly drawn pairs in the region exhibiting high VoR in the unregularised VAE model for demonstration purposes.

Trajectory reconstruction experiments. In Table 2, we explore the performance of OT on different embeddings based on
the reconstruction of held-out time points. For the EB dataset, we evaluate the leave-out performance on all intermediate
time points. Conversely, on the MEF reprogramming dataset (Schiebinger et al., 2019) we conduct our evaluation holding
out time points 2, 5, 10, 15, 20, 25 and 30 to limit the computational burden of the experiment. Note that the Pancreas
dataset used for Figure 3 could not be used for this analysis, since it only has two time points: An initial and a terminal one.

After training OT-CFM excluding the hold-out time point t, we collect the latent representations of cells at t−1 and simulate
their trajectory until time t, where we compare the generated cells with the ground truth via distribution matching metrics
both in the latent and in the decoded space (mean L2 and 2-Wasserstein distance in the latent space, 2- Wasserstein distance
and MMD in the decoded space). Note that we replaced the L2 distance with the MMD in the decoded space, as the former
behaved uniformly across models in higher dimensions. For the latent reconstruction quantification, generated latent cell
distributions at time t are standardised with the mean and standard deviation of the latent codes of real cells at time t to
make the results comparable across embedding models. Results in Table 2 are averaged across three seeds.

Fate mapping with CellRank. We first train representation learning models on the Pancreas dataset. Then, following
the setting proposed by Eyring et al. (2022), we learn a velocity field over the latent representations of cells by matching
time points 14.5 to 15.5 with OT-CFM and input the velocities to CellRank (Lange et al., 2022; Weiler et al., 2024).
Using the function g.compute macrostates(n states, cluster key) of the GPPCA estimator for macrostate
identification (Reuter et al., 2019), we look for 10 to 20 macrostates. If OT-CFM cannot find one of the 6 terminal states
within 20 macrostates for a certain representation, we mark the terminal state as missed (see Figure 3). Terminal states are
computed with the function compute terminal states(method, n states). Velocity consistency is estimated
using the scVelo package (Bergen et al., 2020) through the function scv.tl.velocity confidence. The value is
then averaged across cells.

Latent interpolation comparison with GAGA. We train both GAGA and FlatVI on the pancreas dataset. For FlatVI, we use
the same parameters as in Table 3. For GAGA, we choose hyperparameters to reflect the FlatVI setting, but make the neural
network deeper, as it produced better results. Below we list the final array of hyperparameters used to train the GAGA model:

• batch size: 256.
• latent space dim: 10.
• activation function: ReLU.
• learning rate: 0.001.
• dist reconstr weights: [0.9, 0.1, 0.0].

Once we optimise the models, we draw 100 pairs of multipotent cells and mature cells (a batch for each lineage). Pairing
is done randomly. Then, we encode both multipotent and mature cells using both FlatVI and GAGA and interpolate the
latent spaces of paired cells. For FlatVI, we interpolate linearly. For GAGA, we perform geodesic interpolations by training
an energy-minimising neural ODE as explained in Sun et al. (2025) and Appendix E.2 over 200 epochs with a learning rate
of 0.01. Intermediate results for both models are decoded with the respective decoder network, and the predicted expression
is compared with the real gene expression distribution of lineage-specific markers.
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J. Data
J.1. Data Description

Embryoid Body (EB). Moon et al. (2019) measured the expression of 18,203 differentiating human embryoid single cells
across 5 time points. From an initial population of stem cells, approximately four lineages emerged, including Neural
Crest, Mesoderm, Neuroectoderm and Endoderm cells. Here, we resort to a reduced feature space of 1241 highly variable
genes. OT has been readily applied to the embryoid body datasets in multiple scenarios (Tong et al., 2020; 2024a), making
it a solid benchmark for time-resolved single-cell trajectory inference. The data is split into 80% training and 20% test sets.

Pancreatic Endocrinogenesis (Pancreas). We consider 16,206 cells from Bastidas-Ponce et al. (2019) measured across
2 time points corresponding to embryonic days 14.5 and 15.5. In the dataset, multipotent cells differentiate branching
into endocrine and non-endocrine lineages until reaching 6 terminal states. Challenges concerning such a dataset include
bifurcation and unbalancedness of cell state distributions across time points (Eyring et al., 2022). The data is split into 80%
training and 20% test sets.

Reprogramming Dataset (MEF). We consider the dataset introduced in Schiebinger et al. (2019), which studies the
reprogramming of Mouse Embryonic Fibroblasts (MEF) into induced Pluripotent Stem Cells (iPSC). The dataset consists of
165,892 cells profiled across 39 time points and 7 cell states. For this dataset, we keep 1479 highly variable genes. Due to its
number of cells, such a dataset is the most complicated to model among the considered. The data was split into 80% training
and 20% test sets.

J.2. Data Preprocessing

We use the Scanpy (Wolf et al., 2018) package for single-cell data preprocessing. The general pipeline involves normalisa-
tion via sc.pp.normalize total, log-transformation via sc.pp.log1p and highly-variable gene selection using
sc.pp.highly variable genes. 50-dimensional embeddings are then computed via PCA through sc.pp.pca.
We then use the PCA representation to compute the 30-nearest-neighbour graphs around single observations and use them for
learning 2D UMAP embeddings of the data. For the latter steps, we employ the Scanpy functions sc.pp.neighbours
and sc.tl.umap. Raw counts are preserved in adata.layers["X counts"] to train FlatVI.

J.3. Details about Computational Resources

Our model is implemented in Python 3.10, and for deep learning models, we used PyTorch 2.0. For the implementation of
neural-ODE-based simulations, we use the torchdyn package. Our experiments ran on different GPU servers with varying
specifications: GPU: 16x Tesla V100 GPUs (32GB RAM per card) / GPU: 2x Tesla V100 GPUs (16GB RAM per card) /
GPU: 8x A100-SXM4 GPUs (40GB RAM per card).
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K. Algorithms
Train FlatVI. Below, we provide a training algorithm for FlatVI.

Algorithm 1 Train FlatVI

Require: Data matrix X ∈ NN×G
0 , batch size B, maximum iterations nmax, encoder fψ , decoder hϕ, flatness loss scale λ

Ensure: Trained encoder fψ , decoder hϕ, and inverse dispersion parameter θ
Randomly initialize gene-wise inverse dispersion θ
Randomly initialize the identity matrix scale α as a trainable parameter
for i = 1 to nmax do

Sample batch Xb ← {x1, ...,xB} from X
lb ← compute size factor(Xb)
Zb ← fψ(1 + logXb)
µ← hϕ(Z

b, lb)
LKL ← compute kl loss(Zb)
Lrecon ← compute nb likelihood(Xb,µ,θ)
M(Zb)← Equation (20)
Lflat ← MSE(M(Zb), αId)
L = Lrecon + LKL + λLflat
Update parameters via gradient descent

end for

Train OT-CFM on latent representations. For time-resolved scRNA-seq data, cells are collected in T unpaired distribu-
tions {νt}Tt=0. Individual time points correspond to separate snapshot datasets {Xt}Tt=0, each with Nt observations. Every
snapshot is mapped to tuples {(Zt, lt)}Tt=0 of latent representations Zt ∈ RNt×d and size factors lt ∈ NNt0 following the
setting described in Section 3.1. We wish to learn the dynamics of the system through a parameterised function in the latent
space Z of a VAE, taking advantage of its continuity and lower dimensionality properties.

Algorithm 2 Train latent OT-CFM with FlatVI
Require: Datasets {Xt}Tt=0, variance σ, batch size B, initial velocity function vξ, maximum iterations nmax, trained

encoder fψ
Ensure: Trained velocity function vξ
{Zt}Tt=0 ← fψ({1 + logXt}Tt=0)
{lt}Tt=0 ← compute log size factor({Xt}Tt=0)
{St}Tt=0 ← timewise concatenate({Zt}Tt=0, {lt}Tt=0)
for i = 1 to nmax do

Initialize empty array of velocity predictions V
Initialise empty array of velocity ground truth U
for ttraj = 0 to T − 1 do

Randomly sample batches with B observations Sbttraj , S
b
ttraj+1

π ← OT(Sbttraj , S
b
ttraj+1)

(Sbttraj , S
b
ttraj+1) ∼ π

t ∼ U(0, 1)
Sb ← N ((1− t)Sbttraj + tSbttraj+1, σ

2Id)
Append vξ(t+ ttraj,S

b) to V
Append (Sbttraj+1 − Sbttraj) to U

end for
LOT−CFM ← ∥V −U∥2
Update parameters via gradient descent

end for

23



Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation

Size factor treatment. Since the size factors lt, required for decoding, are observed variables derived from single-cell
counts in the dataset, their values are not available when simulating novel cell trajectories from t = 0, hindering the use
of the decoder to recover individual gene evolution. Assuming that the size factor is a real number and related to the cell
state, we include log lt in the latent dynamics and infer its trajectory together with the latent state representation zt. The
log is taken for training stability. Therefore, we use OT-CFM to learn a velocity field vξ : [0, 1]× Rd+1 → Rd+1 on the
concatenated state st = [zt, log lt]. The time-resolved vector field vξ is modelled by matching subsequent pairs of cell
distributions.

Gene expression trajectories. If the latent space Z can be mapped to the parameter manifold H, trajectories in Z
correspond to walks across the continuous parameter space via the stochastic decoder h. The temporal trajectory of the
likelihood parameter vector µt is given by

µt = h

(
s0 +

∫ t

0

vξ(t
′, st′) dt′

)
, (38)

where µ0 = h(s0) and we express the decoder function h(zt, lt) from Equation (2) as h(st) for simplicity. Then, assuming
a gene-wise constant inverse dispersion θg , discrete trajectories of gene counts follow the noise model xt ∼ NB(µt,θ).

24



Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation

L. Additional Results
L.1. Simulation Data

L.1.1. SIMULATED DATA VISUALISATION

Figure 6. The PC dimensionality reduction plot of the simulated data coloured by category.

L.1.2. COMPARISON WITH EUCLIDEAN SPACE METRICS

In Figure 7 we provide an extension to Figure 2 where we add how the VoR, CN and geodesic paths should appear in the
Euclidean space. Notably, both CN and VoR are uniform, equating to 1 and 0, respectively. Furthermore, while some
points in the simulated data exhibit high values for VoR and CN, the representation from FlatVI is more compatible with
the expected one under Euclidean geometry than a normal NB-VAE. Additionally, path straightness is better preserved in
FlatVI’s latent geodesics compared to the counterpart, validating the purpose of our model.

ca b

Figure 7. Comparison between the latent geometries of the NB-VAE (top row), FlatVI trained with λ = 7 (middle row) and an example
Euclidean space of 1000 points evaluated in terms of (a) Variance of the Riemannian metric (VoR), (b) Condition Number (CN) and (c)
straightness of the geodesic paths connecting pairs of latent points. The Euclidean panels are simulated as uniformly sampled points on a
regular grid.
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L.1.3. ADDITIONAL METRICS

In addition to the metrics reported in Table 1, in Table 4 we provide further results that justify the usage of our flattening loss
in the simulated data setting. The metrics are described in Appendix I.2. Such values represent how much the latent pullback
geodesic and Euclidean distances and the neighbourhood structures deriving from them correspond. As can be inferred
from the table, adding the regularisation promotes an overall improvement of the metrics. While Spearman correlation does
not drastically separate results, adding the flattening regularisation marks an improvement in neighbourhood preservation
metrics of up to 18% when considering 5 neighbours and 14% when using 3-point neighbourhoods. In other words, the
pullback geodesics are better reflected by the Euclidean distance when applying our regularisation, which provides evidence
of the working principles of our flattening loss.

Table 4. Comparison between FlatVI and the unregularised NB-VAE (λ = 0). Spearman (Geo-Euc) represents the Spearman correlation
between latent Euclidean and pullback geodesic distances. Neighbourhood metrics measure the proportion of shared nearest neighbours
(5-NN and 3-NN) across distance types. MSE (Geo-Euc) quantifies the absolute discrepancy between Euclidean and geodesic distances
across 1000 pairs.

λ Spearman (Geo-Euc) (↑) 5-NN overlap (↑) 3-NN overlap (↑) MSE (Geo-Euc) (↓)
λ = 0 0.94 ± 0.00 0.50 ± 0.01 0.66 ± 0.00 47.75 ± 2.80

λ = 1 0.95 ± 0.00 0.57 ± 0.01 0.63 ± 0.00 46.34 ± 6.45

λ = 3 0.96 ± 0.01 0.68 ± 0.03 0.77 ± 0.00 16.74 ± 2.32

λ = 5 0.97 ± 0.01 0.58 ± 0.01 0.67 ± 0.01 8.65 ± 1.68

λ = 7 0.97 ± 0.01 0.60 ± 0.01 0.72 ± 0.01 8.02 ± 0.67

λ = 10 0.97 ± 0.00 0.68 ± 0.02 0.80 ± 0.03 11.80 ± 1.04

L.1.4. ANALYSIS OF SUB-OPTIMALLY FLATTENED REGIONS

In Figure 2, we show that introducing our flattening loss component in the VAE model training ensures a lower and more
uniform Riemannian metric throughout the space, as well as lower CN. However, some points of our simulation dataset still
display high decoding distortion and variance in the Riemannian metric as signals of insufficient flattening. In Figure 8, we
show that latent paths between points of high VoR and their neighbours do display some curvature, indicating regions of the
manifold with sub-optimal Euclideanisation. We investigated what causes points to exhibit a high VoR in both FlatVI (λ=7)
and the regular NB-VAE. First, we found that regions of high VoR and CN in FlatVI tend to overlap, while in NB-VAE they
are less correlated (see Figure 9a). Hence, while for most of the observations, flattening applies, the pullback metric from
the decoder violates uniformity and preservation of angles and distances in some portion of the space.

We check the label annotation of the insufficiently flattened regions by overlaying their VoR and CN values onto the UMAP
plot of the real data (see Figure 9b-c). By this analysis, we note that the high VoR and CN data points are concentrated at
the inter-class boundaries in FlatVI’s latent space (see Figure 10). In other words, observations in regions of the manifold
enriched by different classes representing state transitions are more likely to fail to flatten. The fact that high VoR and CN
are concentrated in regions of class heterogeneity may suggest that FlatVI fails to unfold some fast-changing manifold areas
at the intersection between classes, and the decoder needs to violate the correspondence between the Euclidean latent space
and the statistical manifold to ensure a proper reconstruction.
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VoR = 51.96

VoR = 40.76

VoR = 51.63

VoR = 48.10

VoR = 40.03

VoR = 41.23

Figure 8. Geodesic paths between regions with high VoR and CN in the FlatVI embeddings with λ = 7. Every row represents a point with
high VoR and CN. The columns are five randomly sampled neighbours in the dataset. Every plot represents the geodesic path between the
point with high VoR and CN and the associated neighbour. As a representation of high VoR and CN, we select points with the VoR value
larger than 30.

a

b

c
r = 0.58r = 0.21

c

Figure 9. (a) The scatter plot and correlation values between VoR and CN in the embeddings computed by NB-VAE and FlatVI. (b-c) The
UMAP plots of the real data coloured by class and CN and VoR values from the NB-VAE and FlatVI embeddings.
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Figure 10. The UMAP plots computed on the simulated count data coloured by the CN from the FlatVI embeddings. Highlighted are
regions with high VoR and CN. External boxes represent the label compositions of the highlighted regions (for a label-specific colour
legend, see Figure 9b).

L.2. Velocity Estimation

We compared our whole pipeline involving the combination of FlatVI and OT-CFM with the scVelo (Bergen et al., 2020)
and veloVI (Gayoso et al., 2024) models for RNA velocity analysis. Figure 11 and Table 5 show examples of how our
approach favourably compares with velocity estimation methods, namely inferring a proper velocity field in Acinar cells and
detecting all terminal states with high velocity consistency in the Pancreas dataset.

Pancreas - Velocity field Acinar branch

scVelo veloVI FlatVI+OT-CFM

UMAP1

 U
M

AP
2

Figure 11. Comparison between the vector field learnt on the Acinar branch of the Pancreas dataset by using OT-CFM in combination
with FlatVI and standard RNA velocity algorithms.

Table 5. Number of terminal states computed by CellRank and velocity consistency using the representations and velocities learnt by
FlatVI+OT-CFM and standard RNA velocity algorithms.

Method Terminal states Consistency

FlatVI + OT-CFM 6 0.94
veloVI 5 0.92
scVelo 4 0.80
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L.3. Trajectory Visualisation of Real Data

Figure 12. Prediction of scRNA-seq in time. (a) Overlap between real and simulated latent samples in the EB dataset. WD indicates the
2-Wasserstein distance between real and generated latent cell representations. (b) 2D UMAP plots of real and predicted cell counts from
the cardiac and neural crest lineages of the EB dataset, comparing FlatVI and GAE as representations for OT-CFM. Colours indicate the
predicted log gene expression of the reported lineage drivers GYPC and HAND1. Under each UMAP plot, we calculate the percentage of
unexpressed marker instances along the trajectory.

L.4. Additional Tables

Table 6. Univariate 2-Wasserstein distance between simulated and real marker gene expression for different lineage branches of the EB
dataset across models. A lower value indicates that the model better approximates marker gene trajectories along the branch.

2-Wasserstein real-simulated markers (↓)
Cardiac Neural Crest Endoderm Neuronal

GATA6 HAND1 TNN2 NGFR GYPC PDGFRB SOX17 GATA3 CDX2 LMX1A ISL1 CXCR4
GAE 0.17 0.28 0.23 0.05 0.24 0.07 0.24 0.14 0.11 0.04 0.04 0.18

NB-VAE 0.03 0.24 0.07 0.07 0.09 0.04 0.08 0.07 0.02 0.02 0.06 0.07
FlatVI 0.02 0.09 0.03 0.02 0.05 0.03 0.08 0.02 0.02 0.01 0.02 0.03

Table 7. Runtime, in seconds, evaluated over a single forward pass considering different batch sizes for each compared model. The
runtime is tested over 10 repetitions using random inputs with 2k dimensions.

Runtime (s)
Batch size GAE NB-VAE FlatVI

8 0.119 ± 0.012 0.000 ± .000 0.009 ± 0.004

16 0.095 ± 0.012 0.001 ± 0.000 0.007 ± 0.002

32 0.115 ± 0.012 0.001 ± 0.000 0.004 ± 0.003

64 0.099 ± 0.002 0.001 ± 0.000 0.005 ± 0.000

128 0.116 ± 0.007 0.002 ± 0.000 0.009 ± 0.004

256 0.218 ± 0.017 0.002 ± 0.000 0.009 ± 0.002

512 0.513 ± 0.021 0.002 ± 0.000 0.015 ± 0.004

1024 1.522 ± 0.013 0.003 ± 0.000 0.015 ± 0.001

Table 8. Separation between initial and terminal lineage states evaluated in terms of clustering metrics in the latent spaces of the distinct
models. Different representation spaces are compared on how well they unroll developmental trajectories.

Silhouette Score (↑) Calinski-Harabasz (↑) Davies-Bouldin (↓)
EB Pancreas MEF EB Pancreas MEF EB Pancreas MEF

GAE 0.28 0.15 0.09 1608.56 1723.13 11232.84 1.03 1.50 2.99
NB-VAE 0.19 0.26 0.21 940.87 2191.48 19440.38 1.28 1.56 2.35

FlatVI 0.21 0.50 0.31 983.41 6986.31 45372.75 1.18 0.73 1.50
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L.5. Additional comparison with GAGA

Figure 13. Decoded marker trajectories from latent interpolations on the pancreas dataset across multiple lineages, comparing FlatVI
and GAGA. We draw 100 pairs of multipotent and mature cells from a terminal state, encode their gene expression and perform latent
interpolation (linearly for FlatVI and with a neural ODE in GAGA). The intermediate states are decoded, and their marker gene expression
is visualised together with the real marker expression distribution along the lineage (dark grey points). The individual trajectories are
represented as low-opacity lines, while the centre solid line is the mean trajectory.
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Figure 14. Scaling behaviour as a function of different numbers of interpolation samples for GAGA and FlatVI. On the y-axis, the
execution time in seconds is presented on a log scale.
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