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Abstract

Measuring the in-context computational effort of language models is a key chal-
lenge, as metrics like next-token loss fail to capture reasoning complexity. Prior
methods based on latent state compressibility can be invasive and unstable. We
propose Multiple Token Divergence (MTD), a simple measure of computational
effort defined as the KL divergence between a model’s full output distribution
and that of a shallow, auxiliary prediction head. MTD can be computed directly
from pre-trained models with multiple prediction heads, requiring no additional
training. Building on this, we introduce Divergence Steering, a novel decoding
method to control the computational character of generated text. We empirically
show that MTD is more effective than prior methods at distinguishing complex
tasks from simple ones. On mathematical reasoning benchmarks, MTD correlates
positively with problem difficulty. Lower MTD is associated with more accurate
reasoning. MTD provides a practical, lightweight tool for analyzing and steering
the computational dynamics of language models.

1 Introduction

To solve unfamiliar and challenging problems, language models must perform sophisticated in-context
computation [Brown et al.|[2020, Lewkowycz et al.|[2022]. Can we tell whether, and to what extent, a
model is making use of its computational capacity at any given moment? Next-token prediction loss
offers little insight [Schmidhuber, [1991alb], as any particular reduction in loss can, in principle, be
arbitrarily difficult to achieve [Bennett, [I988|]. A more promising approach is to quantify meaningful
computation by measuring the entropy, or incompressibility, of a model’s latent representations
[Skean et al.,[2025| [Herrmann et al.| |2025]]. This concept is rooted in the minimum description length
principle [Griinwald} [2007} [Vitanyi, 2006, [EImoznino et al.,[2024]: if the most compact description of
a sequence’s structure, given the training data, is still long, then predicting that sequence is demanding
due to a large search space. Based on this, the Prediction of Hidden States (PHi) loss was proposed
as a measure of in-context computational complexity, quantifying the per-token information gain
in a model’s latent space [Herrmann et al., 2025]. While promising, the PHi framework introduces
significant practical challenges: it requires inserting a noisy information bottleneck that can degrade
model performance, needs further model training which can be unstable, and is highly sensitive to its
precise placement and the weighting of multiple loss terms.

In this work, we propose a simplified and more direct measure, Multiple Token Divergence (MTD),
which quantifies information gain in the model’s output distribution. The core insight is simple:
if a shallow computational shortcut (e.g., a single transformer block) can approximate the full
model’s prediction, then the model is not performing particularly complex computation. If, however,
there is a significant divergence between these two predictions, we can conclude that the model is
leveraging its deeper computational capacity. MTD is straightforward to implement and can even be
computed directly using the Multiple Token Prediction (MTP) modules that some modern pre-trained
models already possess, requiring no additional fine-tuning. In addition to this measure, we present
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Divergence Steering, a novel decoding method that uses the MTD signal to control the computational
character of the generated output. We empirically demonstrate that MTD is more effective than prior
methods at distinguishing complex difficult tasks from simple ones. We also discover intriguing
properties of MTD and Divergence Steering in reasoning and creative generation tasks.

2 Background
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a posterior distribution over a latent  Fijgure 1: Comparison between the architecture of a PHi

variable z;. This distribution is typi- model (left) and of a MTP model (right).
cally a diagonal Gaussian, similar to

variational auto-encoders [Kingma and Welling, 2014, Rezende et al., [2014]. (2) A decoder (a¢)
that reconstructs the hidden state, creating g; from a sample of the latent variable z;. (3) An autore-
gressive prior that predicts the distribution of the current latent z; using only the history of previous
latents, z. This can be implemented with a single Transformer block (1/,,) and two additional linear
transforms: b,;, which maps the inputs to M, to the right dimensionality, and p,., which maps the
output of the transformer to a prior distribution. The Top Layers (7’;) are the remaining Transformer
blocks that process the sequence of reconstructed hidden states ¢’. Finally, we have the standard
token Embedding (E.) and the Output Layer (O,,)

f 1

L E,: Embedding Layer L E,: Embedding Layer

The forward pass processing tokens x1, 2, . .. is described by these equations:
er = Ec(xy) Token embedding
g+ = Bg(e1,...,er) Output from bottom layers
2z~ qy( - |gr) Latent sample from posterior
g, = ag(zt) Reconstruction of hidden state
he =T-(g4, .., 9;) Output from top layers
(- |w<t) = Op(hi—1) Next token prediction from output head
L (t) = —logm(x|x <) Negative Log Likelihood (NLL) loss

The PHi loss (Lpy;) is the KL divergence between the posterior gy, which has access to the current
input x; via g, and the prior p,, which only has access to past latents z;. We assume an initial
latent 2 is given.

¢ = be(ze-1) Linear projection of last latent (1)
di = My(er, ..., ) Output from PHi transformer block
Lpyi(t) = Dxo ((M;( “ge) [ P (- ‘dt)> PHi Loss 2

= D (g (- 21, @) [P 20 21,5 2201))

"Here and in the remainder of the paper, Greek subscript letter indicate learnable neural network parameters.
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The model is trained to jointly minimize both Ly and Lpy;. The PHi loss quantifies the information
gain at each timestep—the amount of new useful information present in the current input token x;
that was not predictable from the history of latent states. It has been shown [Herrmann et al., [ 2025]]
that this value correlates well with the complexity and “interestingness” of tasks.

Multiple Token Prediction (MTP) Multiple Token Prediction (MTP) is a technique used to
improve model performance and enable faster inference via methods like speculative decoding
[Cai et al., 2024} |Gloeckle et al.| 2024} |Liu et al.| 2024} |Xiaomi et al., [2025]]. In this setup, a
computationally cheap auxiliary module is trained to directly predict the main model’s future output
distribution.

First, consider a standard autoregressive model’s forward pass:

er = Ec(xy) Token embedding
h; = F, ¢(61, ceyeq) Output of all main transformer blocks
(- |x<t) = Op(h—1) Next token prediction from output head
Ly (t) = —logm(z|x<y) NLL loss

The goal of MTP is to approximate the main model’s prediction for the token one step further ahead,
Z¢+1. Note that often in MTP, there are additional modules that approximate predictions for tokens
even further ahead, i.e., x4, for n > 1. We will not use them in this work. A separate, smaller MTP
module (e.g., a single Transformer block M,,) generates its own prediction without access to the full
model’s current hidden state h; and is usually trained with a negative log-likelihood loss, which we
call Lyrp. Optionally, the MTP module can be given access to the current token embedding e;, as
indicated by the square brackets.

¢t = be(hi—1], €t]) Input to MTP module (projection of h;_1and possibly ;) (3)
di = M, u(cl, ceyCt) Output from MTP Transformer block
mre( + |Z<t) = Oy (di—1) MTP’s prediction for token 244 1

LMTP(t) = — 10g WMTP(xt|x<t) MTP Loss

In order to predict the next token x + 1, the MTP module has access to the model’s history via h;_;
(and optionally the current embedding e;), but it crucially lacks the result of the main model’s full
computation at step ¢ (i.e., hy).

3 Multiple Token Divergence

Observe the similarity between the PHi framework’s autoregressive prior p, and posterior g, on the
one hand, and the MTP prediction mytp and the full model prediction 7 on the other (Figure : in
both cases, a computationally and informationally constrained module approximates the prediction
from a full model. The key difference is that for PHi, this approximation occurs in a continuous latent
space, whereas MTP operates directly on the discrete token distribution. Based on this analogy, we
propose the Multiple Token Divergence (MTD) as an alternative to the PHi loss. It is defined as the
KL divergence between the full model’s next-token prediction 7 and the MTP module’s prediction

TTMTP-
Lyvro(t) = Dxo (ﬂ'( Nz<e) || e (- \I<t)) @

:DKL(w(- Fy(er, ... rer) || mume (- |F¢(el,...,et_1)[,et])>.

The MTD loss, Lyp, can either be optimized directly in conjunction with the standard next-token
loss Lnpp, or it can be calculated post-hoc using an MTP module trained with Lyp loss (see

Section [4.2)).

On the Difference between PHi and MTD While PHi introduced a powerful conceptual framework
for analyzing a model’s internal processing, its implementation can be complex. The stochasticity
introduced by the variational information bottleneck can interfere with the main sequence prediction
task. In contrast, MTD is significantly simpler to implement as it functions as a non-invasive
auxiliary task; providing a less disruptive method to obtain similar insights into the model’s per-token
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computational effort. One interpretation of the PHi loss is that it measures, at every step, changes
of the ‘latent program’ that the model synthesizes in-context to perform next-token prediction. The
MTPD loss, on the other hand, measures changes directly at the level of the output predictions. This
distinction can lead to significant differences. For instance, a small change in the latent program could
result in a large shift in the output predictions. As an illustrative example, consider a model trained
on two distinct types of sequences: one type consists of uniformly random tokens, while the other is a
specific single, repeated token. To distinguish between these two cases, the latent program only needs
to gain one bit of information. The PHi loss would therefore be low. However, the resulting change in
the output distribution is large—shifting from a uniform distribution to a one-hot distribution. In this
scenario, the MTD can be as high as Dk 1, (one-hot| [uniform) = log,(vocabulary size) bits. In such
cases, we expect Lyrp to be significantly higher than Lpy;, an effect we observe in our experiments in
Section[4.1] Conversely, one can imagine cases where the latent program changes significantly while
the output predictions remain stable. However, the PHi training objective penalizes encoding such
changes, as they do not sufficiently improve downstream predictions and thus represent an inefficient
use of the information bottleneck. Whether the change in the latent program is larger than the one in
the output distributions or not depends on the exact weighting of the PHi loss during training.

Access to the Latest Token Embedding An interesting nuance for both PHi loss and MTD is that
the measured information gain at step ¢ can originate from two distinct sources: (1) novel information
contained within the current token x itself, and (2) complex computation performed by the model’s
main layers (Bg for PHi, Fiy for MTP), which cannot be easily approximated by the simpler prior
or MTP module (M,,). To disentangle these two sources, we can provide the prior/MTP module
with direct access to the latest token embedding e;, which is a common practice in MTP models (see
Equation[3). This effectively isolates the second source of information gain. For the PHi framework,
this modification involves updating Equation [I]to concatenate the previous latent state with the current
embedding: ¢; = b (z¢—1, e;). With this change, the PHi prior has access to the same input token as

the bottom layers, Bg. Consequently, the modified PHi loss, which we denote as ﬁpHi, isolates the
information gain attributable solely to the computation performed by Bg:

Loi(t) = D (a6 (-l o) [y 20,5 201,00))-

A PHi layer modified in this way acts as an information bottleneck that specifically measures
computational effort. Information that the prior can easily extract from the input embedding e;
is allowed to pass freely, while information that is computationally non-trivial for Bg to extract

is quantified by Lpyi. The same logic applies to the MTD module when it is given access to the
latest embedding. Arguably, PHi and MTD loss with access to the latest embedding provide a better
measure of dense in-context computation. This access allows the prior/MTP module to account for
trivial shifts in the predictions—Ilike the ones described in the previous paragraph—thereby reducing
the effective difference between the two metrics. In essence, providing access to the latest embedding
allows us to quantify the information gain per step that is due to significant computational effort,
whether measured in the latent space (PHi) or in the output distribution (MTD).

3.1 Decoding with Divergence Steering

So far, we have presented MTD as a post-hoc analysis tool. However, its formulation as the divergence
between two output distributions provides a mechanism to influence the model’s behavior during
generation. It allows us to steer the decoding process towards or away from tokens that the shallow
MTP module can easily predict. This gives rise to a novel decoding method. The core idea is to
construct a new sampling distribution, s, by interpolating between the full model’s prediction, T,
and the MTP module’s prediction, myp. It is controlled by a single parameter, a: For a = 0, we
recover the original distribution from the full model: so = 7. For a = 1, we use the distribution
from the shallow MTP module: s; = myrp. For a < 0, we extrapolate away from the MTP module’s
prediction. This amplifies the probability of tokens that are considered likely by the full model but
unlikely by the shallow shortcut, effectively creating an ‘anti-speculative’ distribution biased towards
computationally intensive tokens.

To perform this interpolation in a principled way, we travel along the geodesic path between
the two distributions under the Fisher-Rao metric by mapping the distributions onto the pos-
itive orthant of a hypersphere and performing spherical linear interpolation [Miyamoto et al.,
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Figure 2: Normalized PHi or MTD loss of the four different model Figure 3: Partial correlation
types on each of the five tasks. Only in-context language learning of PHi or MTD loss with the
(ICLL) requires sophisticated in-context computation. This is reflected =~ complexity of the modelled
by the scores, with the exception of the MTD model without accessto  PFA, controlling for NLL.
the latest embedding, which assigns high MTD also to the memorized  Also here, MTD without lat-
programs task (see the discussion in Sections[3and[.I). Bootstrapped ~ est embedding access is the
mean with 95% confidence intervals across § runs. outlier.

2024]]. Let p = w and m = myrp be two categorical distributions over a vocabulary of size
K. Their representations on the hypersphere are the square roots of their probabilities, yielding

Py = (/P1,/P2s---,+/PK) and my = (y/m1,/mz,...,/mr). The angle between these two

vectors is © = arccos (3, \/Pr7k) - The geodesic path sy () between pg and my is then given by

sq(a) = Si“(s(ii(_g))g) Py + tﬁf&_)@)) m,. To map this path back to a valid probability distribution s(c),

we square each component of the vector s,(a), i.e., sg(a) = (sg.x ().

This method introduces a new control knob, a, which is complementary to the standard temperature
parameter, 7'. While 7" adjusts the entropy of the output distribution, « adjusts its “computational
character.” Because myrp often has higher entropy than 7, changing « can also affect entropy. To
isolate these effects, we can optionally project the interpolated distribution s(«) to a new distribution
34 such that its entropy matches that of the original distribution, i.e., H(s(«)) = H(r) for all a.
This provides two orthogonal levers for shaping the decoding process: T for entropy and « for
computational density. Visualizations and additional details can be found in Appendix [A] As we will
show, the optimal choice of « is task-dependent (which is also the case for T'): some tasks benefit
from the robust, simpler predictions favored by positive a, while others may require the novel, less
obvious paths uncovered by negative «.

4 Experiments

4.1 MTD and PHi Loss of Sequence Models Trained from Scratch

The considerations from Section 3] leave us with four different model configurations to compare:
PHi and MTD models, each with and without access to the latest token embedding. The PHi model
without this access corresponds to the original method proposed in prior work [Herrmann et al.}, [2023].
To compare these different setups, we train transformer models from scratch on several tasks and
evaluate them in settings similar to those in [Herrmann et al.| [2025]. For details on the exact training
setups, please see Appendix [B.T]

Evaluation on Different Tasks The four model types are trained on five different tasks: (1) reciting
memorized sequences, (2) modeling sequences from a small set of known formal languages (memo-
rized programs), (3) in-context language learning (ICLL), where the formal language is unknown

Akyiirek et al, 2024], (4) modeling random token sequences, and (5) a copying task that involves
modeling random tokens where subsequences appear twice. Of these, only ICLL—which requires
inferring the structure of an unknown probabilistic finite automaton (PFA) in-context—involves
meaningful computation, in the sense that a non-trivial latent program must be synthesized by the
model. Figure [2] shows a comparison of the normalized PHi and MTD losses for each task. The
MTD with latest embedding access shows the clearest distinction between the one complex task and
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the four “boring” ones; note the high value for ICLL and the consistently low values for all other
tasks. For the MTD model without latest embedding access, we see the effect alluded to in Section 3}
the loss is high for both ICLL and the memorized programs. For the memorized programs task, the
actual in-context program required is minimal (only ~ log,(10) bits to identify any one out of the
ten memorized automata). However, the lack of information from the latest token causes a significant
shift in the model’s output distribution, resulting in a high MTD. Finally, giving the PHi layer access
to the latest embedding does not appear to improve its ability to distinguish boring from interesting
tasks.

Task Complexity Focusing on the ICLL task, we investigate the relationship between the models’
PHi or MTD losses and the complexity of the underlying language, as measured by the description
length of the PFA. Figure[3|displays the partial correlation between the mean PHi or MTD loss across
a sequence and the language’s complexity. We control for the mean NLL, as it is positively correlated
with language complexity (r=0.367, 95% CI [0.315, 0.424]). Here again, we find that MTD with
latest embedding access shows the strongest positive correlation (r=0.524 [0.480, 0.565]). In contrast,
MTD without access to the latest embedding is negatively correlated with language complexity when
controlling for NLL, confirming that it is not a reliable measure for this purpose. Further analysis
(Appendix [C) shows that only the original PHi loss (without embedding access) and the MTD loss
with embedding access show a clear, positive token-wise relationship with language complexity after
controlling for NLL.

4.2 Pre-Trained Language Models

To validate our hypotheses on existing large-scale models, we leverage the pre-trained, open-source
MiMo-7B model [Xiaomui et al., |2025]]. We chose this model for two reasons. First, as a modern,
high-quality 7B parameter model, its base pre-training incorporates an MTP objective, providing
the built-in auxiliary prediction heads necessary for calculating the MTD without any post-hoc
modification. Second, its compact size allows for the efficient, large-scale experimentation required
to statistically validate our hypotheses across diverse tasks. We note that, while MiMo-7B was
trained with an MTP objective from the outset, a similar setup could be achieved for other models by
keeping the base model frozen and training an MTP head using standard teacher-student distillation
[Schmidhuber, 1992, |[Hinton et al., 2015]] with a fraction of the original data and compute.

Reasoning Difficulty We employ the MATH dataset [Hendrycks et al.| [2021]], which provides
mathematics problems labeled from Level 1 (easy) to Level 5 (hard), along with detailed reasoning
solutions. We first compute the mean MTD for the provided step-by-step solution for each problem
in the dataset and find that it clearly correlates with the difficulty level (r=0.179, 95% CI [0.152,
0.203]). Interestingly, the NLL loss negatively correlates with problem difficulty (r=-0.249 [-0.274,
-0.224]). This suggests that from the model’s perspective, reasoning chains for difficult problems are
no less plausible or predictable. However, the higher MTD indicates that the model makes increased
use of its full capacity to process and generate them. We also have the model generate ten different
chains-of-thought (CoTs) for each problem and repeat the analysis on these self-generated solutions.
There again, we observe very similar results: the partial correlation between MTD and difficulty level,
controlling for NLL, is r=0.199 [0.189, 0.208], while the correlation between NLL and difficulty is
r=-0.158 [-0.168, -0.149]. These effects hold consistently across most problem categories, as shown
in Figures [I0]and [TT] (Appendix). Since the provided rationales, as well as the generated CoTs, are
longer for more difficult problems, the cumulative NLL also correlates positively with difficulty level
(see Figures[T2]and[I3]in the Appendix).

We track the token-wise values for MTD and NLL across each generated CoT. As seen in Figure[da
the positive correlation between MTD and problem difficulty holds consistently from the first tokens
of the response to the last. Likewise, the negative correlation for NLL persists throughout the
generation, even though not as pronounced (Figure @b). The difference between MTD and NLL in
their correlation with the problem difficulty is notable because, at a global level, MTD and NLL are
positively correlated with each other (r=0.255 [0.246, 0.265]). This highlights that MTD captures a
distinct signal related to computational effort that is not present in the standard NLL loss.

Reasoning Accuracy For the self-generated CoTs, we also investigate the relationship between
MTPD values and the correctness of the final answer. Figure 4c|plots the token-wise MTD, stratified
by whether the rationale was correct or incorrect. We observe that correct responses are consistently
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Figure 4: Token-wise losses against relative positions in self-generated CoT for the MATH test
dataset. MTD shows a clear correlation with difficulty across the full CoT (a), the relationship
between NLL and difficulty is less clear (b). Similarly, correct CoTs show higher MTD over all
relative positions (c), which is not the case for NLL (d).
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Figure 5: For the discovery tasks, positive « leads to higher creativity, whereas for the construction
tasks, negative « leads to higher creativity. Results for geodesic distributions s,.

associated with lower MTD. The relationship between NLL and correctness is less consistent (see
Figure fid). Following the methodology from prior work [Herrmann et all, 2025], we randomly
assemble pairs of one correct and one incorrect CoT for each math problem. The probability of
choosing the correct CoT when picking the one with the lower mean MTD is 67.1% (95% CI: [65.4%,
68.7%]). When selecting the one with the lower NLL, the probability is 73.3% [71.9%, 74.8%]. For
the cases where NLL and MTD are agree, we get 80.4% [78.5%, 81.9%] accuracy. We repeat these
experiments on the GSM-8k dataset [Cobbe et al |2021]], where we find that selecting CoTs with
lower MTD yields 66.0% [62.9%, 69.2%] correct answers, while lower NLL yields 72.2% [69.1%,
75.0%] and combined yields 75.5% [71.7%, 79.2%]. For token-wise curves, please see Appendix[C.1]
These findings stand in contrast to the results for PHi loss, where, for a Llama 3B model, correct
answers are associated with a high PHi loss [Herrmann et al., [2025]. We hypothesize that different
models may have different tendencies to either overly simplify or overly complicate their reasoning
process [Sui et al.} 2025]]. This could determine for a given model architecture or training regime
whether computationally intensive answers are more or less likely to be correct.

4.3 Divergence Steering and Creative Tasks

Having established MTD as an indicator of complex in-context computation, we now investigate
whether we can use it to influence model generation. Specifically, can biasing generation towards
tokens with high MTD lead to more complex or creative outputs? The Divergence Steering method
allows us to test this hypothesis. We adopt the creative algorithmic toy task framework proposed
by [Nagarajan et al.| [2025]], training transformer models on four distinct tasks: sibling discovery,
triangle discovery, circle construction, and line construction (for details, please see Appendix [B.3).
The objective for each task is to generate sequences that are simultaneously valid, novel (i.e., not
memorized from the training set), and unique within a fixed number of attempts. Success is measured
by a creativity score, where 1 indicates perfect performance across all three criteria. All models used
in this experiment are configured with MTP modules that have access to the latest token embedding.
Figure [5] shows the creativity scores across a range of values for temperature and our steering
parameter, . The results reveal a task-dependent effect. For the “discovery” tasks, positive values of



260
261
262
263
264
265

267
268
269

270

271
272
273
274
275
276
277
278
279

281
282
283
284
285

286
287
288

290
291
292
293
294
295

297

298

299
300
301
302
303
304
305
306
307
308

310

a—which bias generation toward the simpler predictions of myp—yield higher creativity scores.
For the “construction” tasks, negative values of a—which create an “anti-speculative” distribution
biased away from myrp—Iead to better performance. A more detailed analysis (Appendix [C.2)
suggests that positive « helps the model avoid memorized solutions (improving novelty), whereas
negative o can encourage the generation of more structurally sound outputs (improving validity).
The optimal strategy, therefore, depends on the specific demands of the task. Crucially, temperature
and « function as largely independent controls over the decoding process: for all four tasks, the
best-performing combination of temperature and « achieves significantly higher creativity scores
than optimizing for temperature alone. The qualitative behavior is similar for both geodesic and
fixed-entropy distributions (see Figure [I6]in the Appendix).

5 Discussion & Future Work

In our experiments, MTD outperforms PHi loss in differentiating “boring” from “interesting” tasks
and simple from complex ones. It successfully isolates the per-token information gain attributable to
non-trivial, or “irreducible” [Wolfram, 2002|], computation by the model. However, the utility of the
MTD signal is contingent on the relative capacities of the main model and the MTP module (M,):
if the MTP module is too powerful, MTD approaches zero, and if it is too weak, MTD offers little
beyond the standard NLL loss. Furthermore, because the shortcut module has fewer parameters, MTD
may entangle genuine computational effort with memorization. Our findings also surface several
intriguing questions. The positive correlation of MTD with problem complexity, in direct contrast to
the negative correlation of NLL, warrants further investigation to determine if this is a general pattern
across models and scales. Similarly, our result that lower MTD is associated with correct reasoning
contrasts with prior findings for PHi loss, suggesting the relationship between computational effort
and correctness is complex and model-dependent. While Divergence Steering enhanced performance
on creative tasks, in preliminary experiments we found no clear improvement in the reasoning of
large pre-trained models, perhaps because significant changes to the decoding strategy interfere with
behaviors learned during post-training.

MTD and Divergence Steering have the potential for many applications in training and inference.
Examples could be Dynamic Compute Allocation: MTD could be monitored in real-time during
generation. A prolonged period of low MTD might trigger early stopping for a simple task, while a
sudden spike in MTD could activate more powerful components (e.g., additional Mixture-of-Experts
layers) for a difficult step. Solution Convergence: The transition from a high-MTD processing
phase to a low-MTD conclusion could act as a signal that the model has “settled” on a solution,
potentially allowing for more efficient decoding. Intrinsic Motivation: In agent-based settings,
MTD could serve as an intrinsic reward. This would encourage an agent to pursue policies that lead
to computationally interesting states (high information gain), fostering the development of more
sophisticated behaviors. Open Endedness: MTD and Divergence steering allows the filtering or
direct generation of “interesting” data. This may help to prevent model collapse when training on
self-generated data and enable more creative, open-ended learning.

6 Conclusion

In this work, we introduce Multiple Token Divergence (MTD), a practical and direct measure for
quantifying the computational effort of language models. By measuring information gain in the
output distribution, MTD serves as a more robust and stable metric than prior methods that rely on
latent state compression. We show that giving the auxiliary prediction module access to the latest
token embedding allows MTD to specifically isolate the information gain attributable to non-trivial
computation. Our findings demonstrate that MTD successfully distinguishes complex in-context
reasoning from simpler tasks and reveals a nuanced relationship between computational effort and
predictive loss. As a non-invasive and easily implemented metric, MTD provides a valuable new
tool for analysis and evaluation. Furthermore, we introduce Divergence Steering, a novel decoding
method that uses the MTD signal to actively steer the generation process towards either more or less
computationally dense sequences. Shaping this “computational character” is complementary to the
standard entropy adjustment using decoding temperature and improves creative generation.
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A Fixed Entropy Projection for Divergence Steering

To project the distribution s,, onto the hypersurface with entropy H (p), we solve the following
optimization problem:
min Dk (3al[sq)

subjectto  H($,) = H(p)

By solving the Lagrangian, we see that this is equivalent to finding a temperature-scaled version of
Sq. This means that §, takes the form:

R log s,
S, = softmax < ?’f >

for some temperature T, such that the entropy constraint H(3,) = H(p) is met. Since entropy is a
smooth monotonic function of the temperature, we can use a fast root-finding algorithm like binary
search to find the correct value for 7. Figures[f] visualizes the interpolation process and the fixed
entropy projection. Figure|/|shows the resulting distributions.

In practice, divergence steering, either with geodesic interpolation or this fixed-entropy projection,
does not meaningfully slow down the generation process. For large vocabularies, however, it might
be sensible use Divergence Steering in combination with top-k sampling and only optimize the
remaining smaller distribution.
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yond, and projection onto distributions with a projected onto the surface with fixed entropy, 5,
fixed entropy of H(p). (bottom).
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B Experiment Details

B.1 Sequence Models Trained from Scratch

We train all models using the Adam optimizer, a batch size of 16 and gradient norm clipping of 1.0.
The learning rate is 0.0003, with a 500 step linear warm-up from zero and no decay. All losses are
weighted equally, for the PHi loss we take the mean of the element-wise KL-Divergence for z, not
the sum. Every model variation is trained 8 times with different random seeds for the initial weights
and the procedurally generated data (which results in different memorized sequences and programs).
The training of a model can be done on a single consumer-grade GPU (e.g., NVIDIA RTX 4090).

The base model is based on the Llama 3.2 architecture [Dubey et al., 2024]).

* Number of layers: 12

* Model dimensionality: 768

e Number of attention heads: 6

¢ MLP intermediate size: 2048

* Embedding layer and output head are tied

PHi models:

To prevent posterior collapse, we employ an additional contrastive self-critic loss [Menon et al.,
2022].

* Training steps: 30, 000

» Placement of the PHi Layer: After the 10th layer

* z dimensionality: 768

* ¢y Linear transform

* a¢: Linear transform

¢ b,.: Linear transform

* M,,: One transformer block like the ones in the rest of the model

* py: Linear transform

MTD models:

* Training steps: 10, 000
¢ b,.: Linear transform
* M,,: One transformer block like the ones in the rest of the model

For generation of training and testing data, we follow |Herrmann et al.| [2025]]. The only difference
is that we do not perturb any tokens during training, and that we use the same models for the task
differentiation and task complexity experiments (Section[d.T).

B.2 Pre-Trained Language Models

For our experiments, we use the SFT version of the MiMo-7B model [Xiaomi et al.l 2025]]. To
calculate the MTD, we use the included MTP head that predicts one token in advance.

All experimental results include bootstrapped 95% confidence intervals.

B.3 Divergence Steering and Creativity Tasks

The MTD models use the architecture and training procedure specified in in Section[B.T] For each
task, a dedicated model is trained for 50, 000 steps. No seed conditioning is used. For task definitions
and evaluation procedure, we refer to|Nagarajan et al.|[2025]).

The creativity score is defined as the fraction of all generated items that are valid, unique, and novel
among. In addition, we define three more scores:

* Validity score: fraction of valid items among all generated items
* Uniqueness score: fraction of unique items among valid generated items
* Novelty score: fraction of novel items among valid unique generated items

These are be used in the additional empirical analysis in section
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Figure 8: Token-wise PHi loss and MTD against binned NLL, for the different modeled PFA
complexities. PHi loss without and MTD with latest embedding access both show a clear correlation
with complexity level, across NLL bins.
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Figure 9: Similar to Figure |8} but normalized for each NLL bin. PHi loss without access to the latest
embedding, and MTD loss with access to the latest embedding both show a clear correlation with
complexity level, across NLL bins.

C Additional Experimental Results

Figure 8] shows the token-wise PHi or MTD loss against binned NLL loss, broken down by PFA
complexity (from 1, simple, to 10, complex). Figure[0]shows the same results normalized across NLL
bins, making it clear to see that PHi without and MTD with access to the latest embedding show the
clearest tokenw-wise relationship with PFA complexity.

C.1 Pre-Trained Language Models

Figure[T0]shows MTD and NLL for the provided step-by-step solutions, broken down by category and
difficulty level. Figure[IT]|shows the same for the self-generated CoTs. The results are qualitatively
similar, even though, although the differences between categories for the CoTs are less pronounced.

Figures [I2]and [[3] use the cumulative instead of the mean losses. Due to the fact that the provided
solutions as well as the generated ones grow in length as the problems become more difficult,
cumulative NLL also correlates positively with difficulty level.

Figure [T4] shows the development of MTD and NLL across self-generated CoTs for the problems
of the GSM-8k test dataset (analogous to Figures [dc|and [4d|for MATH). Correct CoTs clearly have
lower MTD, and lower NLL. Interestingly, for the GSM-8k dataset, the shapes of the NLL curves
differ significantly from the shapes of the MTD, missing the prominent initial bump. Currently, we
have no explanation for this.
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suggesting that the model is making more use of its computational capacity when processing more
challenging problems. NLL loss, on the other hand, goes down with increasing complexity. Figure [TT]
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Figure 11: Mean losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set, grouped by category and difficulty level. Similarly as in Figure[T0] we observe that
MTD clearly grows with difficulty, as the model is making more use of its computational capacity
when generating the solutions to more challenging problems. Also here, the mean NLL goes down

with problem difficulty.
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Figure 12: Cumulative losses of the MiMo model across provided solutions from the MATH test

set. Since more difficult problems have longer solutions, both cumulative MTD and cumulative NLL
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Figure 13: Cumulative losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set. We observe a similar effect as in Figure@
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468 C.2 Divergence Steering and Creative Tasks

60 Figure[I3]|shows the creativity scores for the four tasks, using different values for temperature and cv.
470 In addition, we break down the results into validity, uniqueness and novelty scores. By the nature of
471 the task, sibling and triangle discovery models are at risk of overfitting to the training data. A positive
472« value can help avoiding repeating memorized examples, as can be seen from the increased novelty
473 scores. The models for circle and line construction, on the other hand, are less prone to overfitting,
474 due to the combinatorial nature of the task. The novelty and uniqueness scores are consistently high.
475 For these tasks, negative o appears to help construct increase the validity scores.

76 Figure[I6]shows qualitatively very similar results for fixed entropy distributions.
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improve novelty, negative o can improve validity. Results for geodesic distributions s,,.

16



477

478

479

481

482

483

484

485

486
487
488

489
490

491
492

493

494

1.0

o
©

0.8

0.7

Validity score

Novelty score

Sibling Discovery Triangle Discovery Circle Construction Line Construction
0.45

0.40
0.35
0.30
0.25

1%
%

b\
Creativity score

Creativity score
Creativity score

0.20

0.15

Sibling Discovery
0.45

0.40

M‘M o @ 109
g § 0.35 10 3
088
2 2030 08 g
] 3025 065
2@
- e - 0.4
0.20
0.2
0.15
-1 0 1 0 1 -1 0 1
a a a
Triangle Discovery Circle Construction

Uniqueness score
;
Uniqueness score

Uniqueness score

1.0000
0.9995

0.9990

M 0.9985
0.2

Novelty score
Novelty score
Novelty score

Figure 16: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive o can
improve novelty, negative o can improve validity. Results for fixed entropy distributions 3.

NeurIPS Paper Checklist

1.

2.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All concrete claims are supported by empirical results.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information in the experiments section and the appendix is sufficient to
reproduce all results.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See above, code will be made public upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All experimental results include 95% confidence intervals
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments are relatively small scale and can be run on a single GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: We expect no direct societal impact from this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification:
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12.

13.

14.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The model creates are given proper credit.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: No new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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