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Abstract

Measuring the in-context computational effort of language models is a key chal-1

lenge, as metrics like next-token loss fail to capture reasoning complexity. Prior2

methods based on latent state compressibility can be invasive and unstable. We3

propose Multiple Token Divergence (MTD), a simple measure of computational4

effort defined as the KL divergence between a model’s full output distribution5

and that of a shallow, auxiliary prediction head. MTD can be computed directly6

from pre-trained models with multiple prediction heads, requiring no additional7

training. Building on this, we introduce Divergence Steering, a novel decoding8

method to control the computational character of generated text. We empirically9

show that MTD is more effective than prior methods at distinguishing complex10

tasks from simple ones. On mathematical reasoning benchmarks, MTD correlates11

positively with problem difficulty. Lower MTD is associated with more accurate12

reasoning. MTD provides a practical, lightweight tool for analyzing and steering13

the computational dynamics of language models.14

1 Introduction15

To solve unfamiliar and challenging problems, language models must perform sophisticated in-context16

computation [Brown et al., 2020, Lewkowycz et al., 2022]. Can we tell whether, and to what extent, a17

model is making use of its computational capacity at any given moment? Next-token prediction loss18

offers little insight [Schmidhuber, 1991a,b], as any particular reduction in loss can, in principle, be19

arbitrarily difficult to achieve [Bennett, 1988]. A more promising approach is to quantify meaningful20

computation by measuring the entropy, or incompressibility, of a model’s latent representations21

[Skean et al., 2025, Herrmann et al., 2025]. This concept is rooted in the minimum description length22

principle [Grünwald, 2007, Vitányi, 2006, Elmoznino et al., 2024]: if the most compact description of23

a sequence’s structure, given the training data, is still long, then predicting that sequence is demanding24

due to a large search space. Based on this, the Prediction of Hidden States (PHi) loss was proposed25

as a measure of in-context computational complexity, quantifying the per-token information gain26

in a model’s latent space [Herrmann et al., 2025]. While promising, the PHi framework introduces27

significant practical challenges: it requires inserting a noisy information bottleneck that can degrade28

model performance, needs further model training which can be unstable, and is highly sensitive to its29

precise placement and the weighting of multiple loss terms.30

In this work, we propose a simplified and more direct measure, Multiple Token Divergence (MTD),31

which quantifies information gain in the model’s output distribution. The core insight is simple:32

if a shallow computational shortcut (e.g., a single transformer block) can approximate the full33

model’s prediction, then the model is not performing particularly complex computation. If, however,34

there is a significant divergence between these two predictions, we can conclude that the model is35

leveraging its deeper computational capacity. MTD is straightforward to implement and can even be36

computed directly using the Multiple Token Prediction (MTP) modules that some modern pre-trained37

models already possess, requiring no additional fine-tuning. In addition to this measure, we present38
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Divergence Steering, a novel decoding method that uses the MTD signal to control the computational39

character of the generated output. We empirically demonstrate that MTD is more effective than prior40

methods at distinguishing complex difficult tasks from simple ones. We also discover intriguing41

properties of MTD and Divergence Steering in reasoning and creative generation tasks.42

2 Background43
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Figure 1: Comparison between the architecture of a PHi
model (left) and of a MTP model (right).

Prediction of Hidden States (PHi)44

The PHi method, introduced by Her-45

rmann et al. [2025], creates an in-46

formation bottleneck [Tishby and Za-47

slavsky, 2015] within a sequence48

model in order to measure the com-49

plexity of its in-context computation.50

A PHi layer is inserted between a51

model’s “bottom” and “top” layers.52

The model consists of the following53

modules: The Bottom Layers (Bβ)54

are the initial Transformer blocks that55

process the input sequence embed-56

dings. The PHi Layer contains three57

key components: (1) An encoder (qψ)58

that, at time step t, maps the hidden59

state gt from the bottom layers to60

a posterior distribution over a latent61

variable zt. This distribution is typi-62

cally a diagonal Gaussian, similar to63

variational auto-encoders [Kingma and Welling, 2014, Rezende et al., 2014]. (2) A decoder (aξ)64

that reconstructs the hidden state, creating g′t from a sample of the latent variable zt. (3) An autore-65

gressive prior that predicts the distribution of the current latent zt using only the history of previous66

latents, z<t. This can be implemented with a single Transformer block (Mµ) and two additional linear67

transforms: bκ, which maps the inputs to Mµ to the right dimensionality, and pχ, which maps the68

output of the transformer to a prior distribution. The Top Layers (Tτ ) are the remaining Transformer69

blocks that process the sequence of reconstructed hidden states g′. Finally, we have the standard70

token Embedding (Eϵ) and the Output Layer (Oω) 1.71

The forward pass processing tokens x1, x2, . . . is described by these equations:72

et = Eϵ(xt) Token embedding

gt = Bβ(e1, . . . , et) Output from bottom layers

zt ∼ qψ( · |gt) Latent sample from posterior

g′t = aξ(zt) Reconstruction of hidden state

ht = Tτ (g
′
1, . . . , g

′
t) Output from top layers

π( · |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) Negative Log Likelihood (NLL) loss

The PHi loss (LPHi) is the KL divergence between the posterior qψ, which has access to the current
input xt via gt, and the prior pχ, which only has access to past latents z<t. We assume an initial
latent z0 is given.73

ct = bκ(zt−1) Linear projection of last latent (1)
dt = Mµ(c1, . . . , ct) Output from PHi transformer block

LPHi(t) = DKL

(
qψ( · |gt) || pχ( · |dt)

)
PHi Loss (2)

= DKL

(
qψ( · |x1, . . . , xt) || pχ( · |z0, z1, . . . , zt−1)

)
1Here and in the remainder of the paper, Greek subscript letter indicate learnable neural network parameters.
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The model is trained to jointly minimize both LNLL and LPHi. The PHi loss quantifies the information74

gain at each timestep—the amount of new useful information present in the current input token xt75

that was not predictable from the history of latent states. It has been shown [Herrmann et al., 2025]76

that this value correlates well with the complexity and “interestingness” of tasks.77

Multiple Token Prediction (MTP) Multiple Token Prediction (MTP) is a technique used to78

improve model performance and enable faster inference via methods like speculative decoding79

[Cai et al., 2024, Gloeckle et al., 2024, Liu et al., 2024, Xiaomi et al., 2025]. In this setup, a80

computationally cheap auxiliary module is trained to directly predict the main model’s future output81

distribution.82

First, consider a standard autoregressive model’s forward pass:83

et = Eϵ(xt) Token embedding

ht = Fϕ(e1, . . . , et) Output of all main transformer blocks

π( · |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) NLL loss

The goal of MTP is to approximate the main model’s prediction for the token one step further ahead,
xt+1. Note that often in MTP, there are additional modules that approximate predictions for tokens
even further ahead, i.e., xt+n for n > 1. We will not use them in this work. A separate, smaller MTP
module (e.g., a single Transformer block Mµ) generates its own prediction without access to the full
model’s current hidden state ht and is usually trained with a negative log-likelihood loss, which we
call LMTP. Optionally, the MTP module can be given access to the current token embedding et, as
indicated by the square brackets.84

ct = bκ(ht−1[, et]) Input to MTP module (projection of ht−1and possibly et) (3)
dt = Mµ(c1, . . . , ct) Output from MTP Transformer block

πMTP( · |x<t) = Oω(dt−1) MTP’s prediction for token xt+1

LMTP(t) = − log πMTP(xt|x<t) MTP Loss

In order to predict the next token x+ 1, the MTP module has access to the model’s history via ht−185

(and optionally the current embedding et), but it crucially lacks the result of the main model’s full86

computation at step t (i.e., ht).87

3 Multiple Token Divergence88

Observe the similarity between the PHi framework’s autoregressive prior pχ and posterior qψ on the89

one hand, and the MTP prediction πMTP and the full model prediction π on the other (Figure 1): in90

both cases, a computationally and informationally constrained module approximates the prediction91

from a full model. The key difference is that for PHi, this approximation occurs in a continuous latent92

space, whereas MTP operates directly on the discrete token distribution. Based on this analogy, we93

propose the Multiple Token Divergence (MTD) as an alternative to the PHi loss. It is defined as the94

KL divergence between the full model’s next-token prediction π and the MTP module’s prediction95

πMTP:96

LMTD(t) = DKL

(
π( · |x≤t) || πMTP( · |x<t)

)
(4)

= DKL

(
π
(
· |Fϕ(e1, . . . , et)

)
|| πMTP

(
· |Fϕ(e1, . . . , et−1)[, et]

))
.

The MTD loss, LMTD, can either be optimized directly in conjunction with the standard next-token97

loss LNLL, or it can be calculated post-hoc using an MTP module trained with LMTP loss (see98

Section 4.2).99

On the Difference between PHi and MTD While PHi introduced a powerful conceptual framework100

for analyzing a model’s internal processing, its implementation can be complex. The stochasticity101

introduced by the variational information bottleneck can interfere with the main sequence prediction102

task. In contrast, MTD is significantly simpler to implement as it functions as a non-invasive103

auxiliary task; providing a less disruptive method to obtain similar insights into the model’s per-token104
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computational effort. One interpretation of the PHi loss is that it measures, at every step, changes105

of the ‘latent program’ that the model synthesizes in-context to perform next-token prediction. The106

MTD loss, on the other hand, measures changes directly at the level of the output predictions. This107

distinction can lead to significant differences. For instance, a small change in the latent program could108

result in a large shift in the output predictions. As an illustrative example, consider a model trained109

on two distinct types of sequences: one type consists of uniformly random tokens, while the other is a110

specific single, repeated token. To distinguish between these two cases, the latent program only needs111

to gain one bit of information. The PHi loss would therefore be low. However, the resulting change in112

the output distribution is large—shifting from a uniform distribution to a one-hot distribution. In this113

scenario, the MTD can be as high as DKL(one-hot||uniform) = log2(vocabulary size) bits. In such114

cases, we expect LMTD to be significantly higher than LPHi, an effect we observe in our experiments in115

Section 4.1. Conversely, one can imagine cases where the latent program changes significantly while116

the output predictions remain stable. However, the PHi training objective penalizes encoding such117

changes, as they do not sufficiently improve downstream predictions and thus represent an inefficient118

use of the information bottleneck. Whether the change in the latent program is larger than the one in119

the output distributions or not depends on the exact weighting of the PHi loss during training.120

Access to the Latest Token Embedding An interesting nuance for both PHi loss and MTD is that
the measured information gain at step t can originate from two distinct sources: (1) novel information
contained within the current token xt itself, and (2) complex computation performed by the model’s
main layers (Bβ for PHi, Fϕ for MTP), which cannot be easily approximated by the simpler prior
or MTP module (Mµ). To disentangle these two sources, we can provide the prior/MTP module
with direct access to the latest token embedding et, which is a common practice in MTP models (see
Equation 3). This effectively isolates the second source of information gain. For the PHi framework,
this modification involves updating Equation 1 to concatenate the previous latent state with the current
embedding: ct = bκ(zt−1, et). With this change, the PHi prior has access to the same input token as
the bottom layers, Bβ . Consequently, the modified PHi loss, which we denote as L̂PHi, isolates the
information gain attributable solely to the computation performed by Bβ :

L̂PHi(t) = DKL

(
qψ( · |x1, . . . , xt) || pχ( · |z0, . . . , zt−1, et)

)
.

A PHi layer modified in this way acts as an information bottleneck that specifically measures121

computational effort. Information that the prior can easily extract from the input embedding et122

is allowed to pass freely, while information that is computationally non-trivial for Bβ to extract123

is quantified by L̂PHi. The same logic applies to the MTD module when it is given access to the124

latest embedding. Arguably, PHi and MTD loss with access to the latest embedding provide a better125

measure of dense in-context computation. This access allows the prior/MTP module to account for126

trivial shifts in the predictions—like the ones described in the previous paragraph—thereby reducing127

the effective difference between the two metrics. In essence, providing access to the latest embedding128

allows us to quantify the information gain per step that is due to significant computational effort,129

whether measured in the latent space (PHi) or in the output distribution (MTD).130

3.1 Decoding with Divergence Steering131

So far, we have presented MTD as a post-hoc analysis tool. However, its formulation as the divergence132

between two output distributions provides a mechanism to influence the model’s behavior during133

generation. It allows us to steer the decoding process towards or away from tokens that the shallow134

MTP module can easily predict. This gives rise to a novel decoding method. The core idea is to135

construct a new sampling distribution, sα, by interpolating between the full model’s prediction, π,136

and the MTP module’s prediction, πMTP. It is controlled by a single parameter, α: For α = 0, we137

recover the original distribution from the full model: s0 = π. For α = 1, we use the distribution138

from the shallow MTP module: s1 = πMTP. For α < 0, we extrapolate away from the MTP module’s139

prediction. This amplifies the probability of tokens that are considered likely by the full model but140

unlikely by the shallow shortcut, effectively creating an ‘anti-speculative’ distribution biased towards141

computationally intensive tokens.142

To perform this interpolation in a principled way, we travel along the geodesic path between143

the two distributions under the Fisher-Rao metric by mapping the distributions onto the pos-144

itive orthant of a hypersphere and performing spherical linear interpolation [Miyamoto et al.,145

4



Mem. Seq. Mem. Prog. ICLL Random Copy

-1 std

mean

+1 std

+2 std

No
rm

al
ize

d 
PH

i/M
TD

 lo
ss

Model
PHi without latest embedding
PHi with latest embedding
MTD without latest embedding
MTD with latest embedding

Figure 2: Normalized PHi or MTD loss of the four different model
types on each of the five tasks. Only in-context language learning
(ICLL) requires sophisticated in-context computation. This is reflected
by the scores, with the exception of the MTD model without access to
the latest embedding, which assigns high MTD also to the memorized
programs task (see the discussion in Sections 3 and 4.1). Bootstrapped
mean with 95% confidence intervals across 8 runs.

PFA Complexity PC

0.25

0.00

0.25

0.50

Pa
rti

al
 c

or
re

la
tio

n 
be

tw
ee

n
PH

i/M
TD

 lo
ss

 a
nd

 c
om

pl
ex

ity
 le

ve
l

(c
on

tro
llin

g 
fo

r N
LL

 lo
ss

)

Figure 3: Partial correlation
of PHi or MTD loss with the
complexity of the modelled
PFA, controlling for NLL.
Also here, MTD without lat-
est embedding access is the
outlier.

2024]. Let p = π and m = πMTP be two categorical distributions over a vocabulary of size146

K. Their representations on the hypersphere are the square roots of their probabilities, yielding147

pg = (
√
p1,

√
p2, . . . ,

√
pK) and mg = (

√
m1,

√
m2, . . . ,

√
mK). The angle between these two148

vectors is Θ = arccos
(∑

k

√
pkmk

)
. The geodesic path sg(α) between pg and mg is then given by149

sg(α) =
sin((1−α)Θ)

sin(Θ) pg +
sin(αΘ)
sin(Θ) mg . To map this path back to a valid probability distribution s(α),150

we square each component of the vector sg(α), i.e., sk(α) = (sg,k(α))
2.151

This method introduces a new control knob, α, which is complementary to the standard temperature152

parameter, T . While T adjusts the entropy of the output distribution, α adjusts its “computational153

character.” Because πMTP often has higher entropy than π, changing α can also affect entropy. To154

isolate these effects, we can optionally project the interpolated distribution s(α) to a new distribution155

ŝα such that its entropy matches that of the original distribution, i.e., H(s(α)) = H(π) for all α.156

This provides two orthogonal levers for shaping the decoding process: T for entropy and α for157

computational density. Visualizations and additional details can be found in Appendix A. As we will158

show, the optimal choice of α is task-dependent (which is also the case for T ): some tasks benefit159

from the robust, simpler predictions favored by positive α, while others may require the novel, less160

obvious paths uncovered by negative α.161

4 Experiments162

4.1 MTD and PHi Loss of Sequence Models Trained from Scratch163

The considerations from Section 3 leave us with four different model configurations to compare:164

PHi and MTD models, each with and without access to the latest token embedding. The PHi model165

without this access corresponds to the original method proposed in prior work [Herrmann et al., 2025].166

To compare these different setups, we train transformer models from scratch on several tasks and167

evaluate them in settings similar to those in Herrmann et al. [2025]. For details on the exact training168

setups, please see Appendix B.1.169

Evaluation on Different Tasks The four model types are trained on five different tasks: (1) reciting170

memorized sequences, (2) modeling sequences from a small set of known formal languages (memo-171

rized programs), (3) in-context language learning (ICLL), where the formal language is unknown172

[Akyürek et al., 2024], (4) modeling random token sequences, and (5) a copying task that involves173

modeling random tokens where subsequences appear twice. Of these, only ICLL—which requires174

inferring the structure of an unknown probabilistic finite automaton (PFA) in-context—involves175

meaningful computation, in the sense that a non-trivial latent program must be synthesized by the176

model. Figure 2 shows a comparison of the normalized PHi and MTD losses for each task. The177

MTD with latest embedding access shows the clearest distinction between the one complex task and178
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the four “boring” ones; note the high value for ICLL and the consistently low values for all other179

tasks. For the MTD model without latest embedding access, we see the effect alluded to in Section 3:180

the loss is high for both ICLL and the memorized programs. For the memorized programs task, the181

actual in-context program required is minimal (only ∼ log2(10) bits to identify any one out of the182

ten memorized automata). However, the lack of information from the latest token causes a significant183

shift in the model’s output distribution, resulting in a high MTD. Finally, giving the PHi layer access184

to the latest embedding does not appear to improve its ability to distinguish boring from interesting185

tasks.186

Task Complexity Focusing on the ICLL task, we investigate the relationship between the models’187

PHi or MTD losses and the complexity of the underlying language, as measured by the description188

length of the PFA. Figure 3 displays the partial correlation between the mean PHi or MTD loss across189

a sequence and the language’s complexity. We control for the mean NLL, as it is positively correlated190

with language complexity (r=0.367, 95% CI [0.315, 0.424]). Here again, we find that MTD with191

latest embedding access shows the strongest positive correlation (r=0.524 [0.480, 0.565]). In contrast,192

MTD without access to the latest embedding is negatively correlated with language complexity when193

controlling for NLL, confirming that it is not a reliable measure for this purpose. Further analysis194

(Appendix C) shows that only the original PHi loss (without embedding access) and the MTD loss195

with embedding access show a clear, positive token-wise relationship with language complexity after196

controlling for NLL.197

4.2 Pre-Trained Language Models198

To validate our hypotheses on existing large-scale models, we leverage the pre-trained, open-source199

MiMo-7B model [Xiaomi et al., 2025]. We chose this model for two reasons. First, as a modern,200

high-quality 7B parameter model, its base pre-training incorporates an MTP objective, providing201

the built-in auxiliary prediction heads necessary for calculating the MTD without any post-hoc202

modification. Second, its compact size allows for the efficient, large-scale experimentation required203

to statistically validate our hypotheses across diverse tasks. We note that, while MiMo-7B was204

trained with an MTP objective from the outset, a similar setup could be achieved for other models by205

keeping the base model frozen and training an MTP head using standard teacher-student distillation206

[Schmidhuber, 1992, Hinton et al., 2015] with a fraction of the original data and compute.207

Reasoning Difficulty We employ the MATH dataset [Hendrycks et al., 2021], which provides208

mathematics problems labeled from Level 1 (easy) to Level 5 (hard), along with detailed reasoning209

solutions. We first compute the mean MTD for the provided step-by-step solution for each problem210

in the dataset and find that it clearly correlates with the difficulty level (r=0.179, 95% CI [0.152,211

0.203]). Interestingly, the NLL loss negatively correlates with problem difficulty (r=-0.249 [-0.274,212

-0.224]). This suggests that from the model’s perspective, reasoning chains for difficult problems are213

no less plausible or predictable. However, the higher MTD indicates that the model makes increased214

use of its full capacity to process and generate them. We also have the model generate ten different215

chains-of-thought (CoTs) for each problem and repeat the analysis on these self-generated solutions.216

There again, we observe very similar results: the partial correlation between MTD and difficulty level,217

controlling for NLL, is r=0.199 [0.189, 0.208], while the correlation between NLL and difficulty is218

r=-0.158 [-0.168, -0.149]. These effects hold consistently across most problem categories, as shown219

in Figures 10 and 11 (Appendix). Since the provided rationales, as well as the generated CoTs, are220

longer for more difficult problems, the cumulative NLL also correlates positively with difficulty level221

(see Figures 12 and 13 in the Appendix).222

We track the token-wise values for MTD and NLL across each generated CoT. As seen in Figure 4a,223

the positive correlation between MTD and problem difficulty holds consistently from the first tokens224

of the response to the last. Likewise, the negative correlation for NLL persists throughout the225

generation, even though not as pronounced (Figure 4b). The difference between MTD and NLL in226

their correlation with the problem difficulty is notable because, at a global level, MTD and NLL are227

positively correlated with each other (r=0.255 [0.246, 0.265]). This highlights that MTD captures a228

distinct signal related to computational effort that is not present in the standard NLL loss.229

Reasoning Accuracy For the self-generated CoTs, we also investigate the relationship between230

MTD values and the correctness of the final answer. Figure 4c plots the token-wise MTD, stratified231

by whether the rationale was correct or incorrect. We observe that correct responses are consistently232
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Figure 4: Token-wise losses against relative positions in self-generated CoT for the MATH test
dataset. MTD shows a clear correlation with difficulty across the full CoT (a), the relationship
between NLL and difficulty is less clear (b). Similarly, correct CoTs show higher MTD over all
relative positions (c), which is not the case for NLL (d).
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associated with lower MTD. The relationship between NLL and correctness is less consistent (see233

Figure 4d). Following the methodology from prior work [Herrmann et al., 2025], we randomly234

assemble pairs of one correct and one incorrect CoT for each math problem. The probability of235

choosing the correct CoT when picking the one with the lower mean MTD is 67.1% (95% CI: [65.4%,236

68.7%]). When selecting the one with the lower NLL, the probability is 73.3% [71.9%, 74.8%]. For237

the cases where NLL and MTD are agree, we get 80.4% [78.5%, 81.9%] accuracy. We repeat these238

experiments on the GSM-8k dataset [Cobbe et al., 2021], where we find that selecting CoTs with239

lower MTD yields 66.0% [62.9%, 69.2%] correct answers, while lower NLL yields 72.2% [69.1%,240

75.0%] and combined yields 75.5% [71.7%, 79.2%]. For token-wise curves, please see Appendix C.1.241

These findings stand in contrast to the results for PHi loss, where, for a Llama 3B model, correct242

answers are associated with a high PHi loss [Herrmann et al., 2025]. We hypothesize that different243

models may have different tendencies to either overly simplify or overly complicate their reasoning244

process [Sui et al., 2025]. This could determine for a given model architecture or training regime245

whether computationally intensive answers are more or less likely to be correct.246

4.3 Divergence Steering and Creative Tasks247

Having established MTD as an indicator of complex in-context computation, we now investigate248

whether we can use it to influence model generation. Specifically, can biasing generation towards249

tokens with high MTD lead to more complex or creative outputs? The Divergence Steering method250

allows us to test this hypothesis. We adopt the creative algorithmic toy task framework proposed251

by Nagarajan et al. [2025], training transformer models on four distinct tasks: sibling discovery,252

triangle discovery, circle construction, and line construction (for details, please see Appendix B.3).253

The objective for each task is to generate sequences that are simultaneously valid, novel (i.e., not254

memorized from the training set), and unique within a fixed number of attempts. Success is measured255

by a creativity score, where 1 indicates perfect performance across all three criteria. All models used256

in this experiment are configured with MTP modules that have access to the latest token embedding.257

Figure 5 shows the creativity scores across a range of values for temperature and our steering258

parameter, α. The results reveal a task-dependent effect. For the “discovery” tasks, positive values of259

7



α—which bias generation toward the simpler predictions of πMTP—yield higher creativity scores.260

For the “construction” tasks, negative values of α—which create an “anti-speculative” distribution261

biased away from πMTP—lead to better performance. A more detailed analysis (Appendix C.2)262

suggests that positive α helps the model avoid memorized solutions (improving novelty), whereas263

negative α can encourage the generation of more structurally sound outputs (improving validity).264

The optimal strategy, therefore, depends on the specific demands of the task. Crucially, temperature265

and α function as largely independent controls over the decoding process: for all four tasks, the266

best-performing combination of temperature and α achieves significantly higher creativity scores267

than optimizing for temperature alone. The qualitative behavior is similar for both geodesic and268

fixed-entropy distributions (see Figure 16 in the Appendix).269

5 Discussion & Future Work270

In our experiments, MTD outperforms PHi loss in differentiating “boring” from “interesting” tasks271

and simple from complex ones. It successfully isolates the per-token information gain attributable to272

non-trivial, or “irreducible” [Wolfram, 2002], computation by the model. However, the utility of the273

MTD signal is contingent on the relative capacities of the main model and the MTP module (Mµ):274

if the MTP module is too powerful, MTD approaches zero, and if it is too weak, MTD offers little275

beyond the standard NLL loss. Furthermore, because the shortcut module has fewer parameters, MTD276

may entangle genuine computational effort with memorization. Our findings also surface several277

intriguing questions. The positive correlation of MTD with problem complexity, in direct contrast to278

the negative correlation of NLL, warrants further investigation to determine if this is a general pattern279

across models and scales. Similarly, our result that lower MTD is associated with correct reasoning280

contrasts with prior findings for PHi loss, suggesting the relationship between computational effort281

and correctness is complex and model-dependent. While Divergence Steering enhanced performance282

on creative tasks, in preliminary experiments we found no clear improvement in the reasoning of283

large pre-trained models, perhaps because significant changes to the decoding strategy interfere with284

behaviors learned during post-training.285

MTD and Divergence Steering have the potential for many applications in training and inference.286

Examples could be Dynamic Compute Allocation: MTD could be monitored in real-time during287

generation. A prolonged period of low MTD might trigger early stopping for a simple task, while a288

sudden spike in MTD could activate more powerful components (e.g., additional Mixture-of-Experts289

layers) for a difficult step. Solution Convergence: The transition from a high-MTD processing290

phase to a low-MTD conclusion could act as a signal that the model has “settled” on a solution,291

potentially allowing for more efficient decoding. Intrinsic Motivation: In agent-based settings,292

MTD could serve as an intrinsic reward. This would encourage an agent to pursue policies that lead293

to computationally interesting states (high information gain), fostering the development of more294

sophisticated behaviors. Open Endedness: MTD and Divergence steering allows the filtering or295

direct generation of “interesting” data. This may help to prevent model collapse when training on296

self-generated data and enable more creative, open-ended learning.297

6 Conclusion298

In this work, we introduce Multiple Token Divergence (MTD), a practical and direct measure for299

quantifying the computational effort of language models. By measuring information gain in the300

output distribution, MTD serves as a more robust and stable metric than prior methods that rely on301

latent state compression. We show that giving the auxiliary prediction module access to the latest302

token embedding allows MTD to specifically isolate the information gain attributable to non-trivial303

computation. Our findings demonstrate that MTD successfully distinguishes complex in-context304

reasoning from simpler tasks and reveals a nuanced relationship between computational effort and305

predictive loss. As a non-invasive and easily implemented metric, MTD provides a valuable new306

tool for analysis and evaluation. Furthermore, we introduce Divergence Steering, a novel decoding307

method that uses the MTD signal to actively steer the generation process towards either more or less308

computationally dense sequences. Shaping this “computational character” is complementary to the309

standard entropy adjustment using decoding temperature and improves creative generation.310

8



References311

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architectures and312

algorithms. In Proc. Int. Conf. on Machine Learning (ICML), Vienna, Austria, July 2024.313

C. H. Bennett. Logical depth and physical complexity. In The Universal Turing Machine: A Half Century314

Survey, pages 227–258. Oxford University Press, 1988.315

Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural Information Processing316

Systems (NeurIPS), Virtual only, December 2020.317

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. Medusa:318

Simple llm inference acceleration framework with multiple decoding heads. arXiv preprint arXiv: 2401.10774,319

2024.320

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,321

Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to322

solve math word problems. ArXiv, abs/2110.14168, 2021.323

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil324

Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra,325

Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen326

Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,327

Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang328

Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle329

Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,330

Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip331

Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire332

Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan333

Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan334

Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny335

Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,336

Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,337

Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of338

models. CoRR, abs/2407.21783, 2024. URL https://doi.org/10.48550/arXiv.2407.21783.339

Eric Elmoznino, Tom Marty, Tejas Kasetty, Léo Gagnon, Sarthak Mittal, Mahan Fathi, Dhanya Sridhar, and340

Guillaume Lajoie. In-context learning and occam’s razor. ArXiv, abs/2410.14086, 2024.341

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve. Better &342

faster large language models via multi-token prediction. In Ruslan Salakhutdinov, Zico Kolter, Katherine343

Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st344

International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,345

pages 15706–15734. PMLR, 21–27 Jul 2024.346

Peter D. Grünwald. The Minimum Description Length Principle. Springer, 2007.347

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob348

Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021.349

Vincent Herrmann, Róbert Csordás, and Jürgen Schmidhuber. Measuring in-context computation complexity via350

hidden state prediction. In Forty-second International Conference on Machine Learning, 2025.351

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat, 1050:9, 2015.352

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Int. Conf. on Learning Representa-353

tions (ICLR), Banff, AB, Canada, April 2014.354

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V. Ramasesh,355

Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari,356

and Vedant Misra. Solving quantitative reasoning problems with language models. In Proc. Advances in357

Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, November 2022.358

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,359

Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.360

Sachit Menon, David Blei, and Carl Vondrick. Forget-me-not! Contrastive critics for mitigating posterior361

collapse. In Uncertainty in Artificial Intelligence, pages 1360–1370. PMLR, 2022.362

9

https://doi.org/10.48550/arXiv.2407.21783


Henrique K Miyamoto, Fábio CC Meneghetti, Julianna Pinele, and Sueli IR Costa. On closed-form expressions363

for the fisher–rao distance. Information Geometry, 7(2):311–354, 2024.364

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice & look before you365

leap: Going beyond the creative limits of next-token prediction. In Forty-second International Conference on366

Machine Learning, 2025.367

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate368

inference in deep generative models. In Proc. Int. Conf. on Machine Learning (ICML), volume 32, pages369

1278–1286, Beijing, China, June 2014.370

Jürgen Schmidhuber. Curious model-building control systems. In Proc. Int. Joint Conf. on Neural Networks,371

pages 1458–1463, 1991a.372

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural controllers.373

In Proc. Int. Conf. on Simulation of Adaptive Behavior: From Animals to Animats, pages 222–227, 1991b.374

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural375

Computation, 4(2):234–242, 1992. doi: 10.1162/neco.1992.4.2.234.376

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-377

Ziv. Layer by layer: Uncovering hidden representations in language models. In Forty-second International378

Conference on Machine Learning, 2025.379

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen,380

Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning for large language models.381

arXiv preprint arXiv:2503.16419, 2025.382

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. 2015 IEEE383

Information Theory Workshop (ITW), 2015.384

Paul M Vitányi. Meaningful information. IEEE Transactions on Information Theory, 52(10), 2006.385

Stephen Wolfram. A new kind of science. 2002.386

LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang,387

Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua Yu, Shimao Chen, Weikun388

Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan Jiang, Bowen Ye, Can Cai, Chenhong He,389

Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian, Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan390

Bao, Kai Fang, Kang Zhou, Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu,391

Shicheng Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin392

Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan Tian,393

Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, and Zihao Yue. Mimo: Unlocking the reasoning potential394

of language model – from pretraining to posttraining, 2025. URL https://arxiv.org/abs/2505.07608.395

10

https://arxiv.org/abs/2505.07608


A Fixed Entropy Projection for Divergence Steering396

To project the distribution sα onto the hypersurface with entropy H(p), we solve the following
optimization problem:

min
ŝα

DKL(ŝα||sα)

subject to H(ŝα) = H(p)∑
i

ŝα,i = 1

By solving the Lagrangian, we see that this is equivalent to finding a temperature-scaled version of
sα. This means that ŝα takes the form:

ŝα = softmax
(
log sα
T

)
for some temperature T, such that the entropy constraint H(ŝα) = H(p) is met. Since entropy is a397

smooth monotonic function of the temperature, we can use a fast root-finding algorithm like binary398

search to find the correct value for T . Figures 6 visualizes the interpolation process and the fixed399

entropy projection. Figure 7 shows the resulting distributions.400

In practice, divergence steering, either with geodesic interpolation or this fixed-entropy projection,401

does not meaningfully slow down the generation process. For large vocabularies, however, it might402

be sensible use Divergence Steering in combination with top-k sampling and only optimize the403

remaining smaller distribution.404

Figure 6: Divergence Steering on a K=3 sim-
plex with temperature curve for p, geodesic
interpolation between from m to p and be-
yond, and projection onto distributions with a
fixed entropy of H(p).
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B Experiment Details405

B.1 Sequence Models Trained from Scratch406

We train all models using the Adam optimizer, a batch size of 16 and gradient norm clipping of 1.0.407

The learning rate is 0.0003, with a 500 step linear warm-up from zero and no decay. All losses are408

weighted equally, for the PHi loss we take the mean of the element-wise KL-Divergence for z, not409

the sum. Every model variation is trained 8 times with different random seeds for the initial weights410

and the procedurally generated data (which results in different memorized sequences and programs).411

The training of a model can be done on a single consumer-grade GPU (e.g., NVIDIA RTX 4090).412

The base model is based on the Llama 3.2 architecture [Dubey et al., 2024].413

• Number of layers: 12414

• Model dimensionality: 768415

• Number of attention heads: 6416

• MLP intermediate size: 2048417

• Embedding layer and output head are tied418

PHi models:419

To prevent posterior collapse, we employ an additional contrastive self-critic loss [Menon et al.,420

2022].421

• Training steps: 30, 000422

• Placement of the PHi Layer: After the 10th layer423

• z dimensionality: 768424

• qψ: Linear transform425

• aξ: Linear transform426

• bκ: Linear transform427

• Mµ: One transformer block like the ones in the rest of the model428

• pψ: Linear transform429

MTD models:430

• Training steps: 10, 000431

• bκ: Linear transform432

• Mµ: One transformer block like the ones in the rest of the model433

For generation of training and testing data, we follow Herrmann et al. [2025]. The only difference434

is that we do not perturb any tokens during training, and that we use the same models for the task435

differentiation and task complexity experiments (Section 4.1).436

B.2 Pre-Trained Language Models437

For our experiments, we use the SFT version of the MiMo-7B model [Xiaomi et al., 2025]. To438

calculate the MTD, we use the included MTP head that predicts one token in advance.439

All experimental results include bootstrapped 95% confidence intervals.440

B.3 Divergence Steering and Creativity Tasks441

The MTD models use the architecture and training procedure specified in in Section B.1. For each442

task, a dedicated model is trained for 50, 000 steps. No seed conditioning is used. For task definitions443

and evaluation procedure, we refer to Nagarajan et al. [2025].444

The creativity score is defined as the fraction of all generated items that are valid, unique, and novel445

among. In addition, we define three more scores:446

• Validity score: fraction of valid items among all generated items447

• Uniqueness score: fraction of unique items among valid generated items448

• Novelty score: fraction of novel items among valid unique generated items449

These are be used in the additional empirical analysis in section C.2.450
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Figure 8: Token-wise PHi loss and MTD against binned NLL, for the different modeled PFA
complexities. PHi loss without and MTD with latest embedding access both show a clear correlation
with complexity level, across NLL bins.
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Figure 9: Similar to Figure 8, but normalized for each NLL bin. PHi loss without access to the latest
embedding, and MTD loss with access to the latest embedding both show a clear correlation with
complexity level, across NLL bins.

C Additional Experimental Results451

Figure 8 shows the token-wise PHi or MTD loss against binned NLL loss, broken down by PFA452

complexity (from 1, simple, to 10, complex). Figure 9 shows the same results normalized across NLL453

bins, making it clear to see that PHi without and MTD with access to the latest embedding show the454

clearest tokenw-wise relationship with PFA complexity.455

C.1 Pre-Trained Language Models456

Figure 10 shows MTD and NLL for the provided step-by-step solutions, broken down by category and457

difficulty level. Figure 11 shows the same for the self-generated CoTs. The results are qualitatively458

similar, even though, although the differences between categories for the CoTs are less pronounced.459

Figures 12 and 13 use the cumulative instead of the mean losses. Due to the fact that the provided460

solutions as well as the generated ones grow in length as the problems become more difficult,461

cumulative NLL also correlates positively with difficulty level.462

Figure 14 shows the development of MTD and NLL across self-generated CoTs for the problems463

of the GSM-8k test dataset (analogous to Figures 4c and 4d for MATH). Correct CoTs clearly have464

lower MTD, and lower NLL. Interestingly, for the GSM-8k dataset, the shapes of the NLL curves465

differ significantly from the shapes of the MTD, missing the prominent initial bump. Currently, we466

have no explanation for this.467
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(b) Mean NLL Loss

Figure 10: Mean losses of the MiMo model across the provided step-by-step solutions to the problems
of the MATH test set, grouped by category and difficulty level. MTD clearly grows with difficulty,
suggesting that the model is making more use of its computational capacity when processing more
challenging problems. NLL loss, on the other hand, goes down with increasing complexity. Figure 11
shows similar results for self-generated chains of thought.
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(b) Mean NLL Loss

Figure 11: Mean losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set, grouped by category and difficulty level. Similarly as in Figure 10, we observe that
MTD clearly grows with difficulty, as the model is making more use of its computational capacity
when generating the solutions to more challenging problems. Also here, the mean NLL goes down
with problem difficulty.
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(a) Cumulative MTD Loss

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e 

NL
L

Difficulty
1
2
3
4
5

(b) Cumulative NLL Loss

Figure 12: Cumulative losses of the MiMo model across provided solutions from the MATH test
set. Since more difficult problems have longer solutions, both cumulative MTD and cumulative NLL
correlate with problem difficulty.

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

200

400

600

800

1000

1200

1400

1600

Cu
m

ul
at

iv
e 

M
TD

Difficulty
1
2
3
4
5

(a) Cumulative MTD Loss
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(b) Cumulative NLL Loss

Figure 13: Cumulative losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set. We observe a similar effect as in Figure 12.
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Figure 14: Token-wise losses against relative positions in self-generated CoTs for the GSM-8k test
dataset. Lower MTD and lower NLL are both associated with more correct reasoning.
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C.2 Divergence Steering and Creative Tasks468

Figure 15 shows the creativity scores for the four tasks, using different values for temperature and α.469

In addition, we break down the results into validity, uniqueness and novelty scores. By the nature of470

the task, sibling and triangle discovery models are at risk of overfitting to the training data. A positive471

α value can help avoiding repeating memorized examples, as can be seen from the increased novelty472

scores. The models for circle and line construction, on the other hand, are less prone to overfitting,473

due to the combinatorial nature of the task. The novelty and uniqueness scores are consistently high.474

For these tasks, negative α appears to help construct increase the validity scores.475

Figure 16 shows qualitatively very similar results for fixed entropy distributions.476
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Figure 15: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for geodesic distributions sα.
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Figure 16: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for fixed entropy distributions ŝα.
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