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Abstract. Existing event camera simulators primarily focus on the pro-
cess of generating video events and often overlook the entire optical path
in real-world camera systems. To address this limitation, we propose a
novel Physical-based Event Camera Simulator (PECS), which is able
to generate a high-fidelity realistic event stream by directly interfac-
ing with the 3D scene. Our PECS features a lens simulation block for
accurate light-to-sensor chip replication and a multispectral rendering
module for precise photocurrent generation. We present two spatiotem-
poral event metrics to assess the similarity between simulated and actual
camera events. Experimental results demonstrate that our PECS out-
performs four state-of-the-art simulators by a large margin in terms of
event-based signal fidelity. We integrate our PECS into the UE platform
to generate extensive multi-task synthetic datasets and evaluate its ef-
fectiveness in downstream vision tasks (e.g., video reconstruction). Our
open-source code is available at https://github.com/lanpokn/PECS_
trail_version.

Keywords: Event camera simulation - Physics-based vision - Hyper-
spectral data analysis

1 Introduction

Event cameras |7,/43|, namely bio-inspired vision sensors, operate fundamentally
differently from conventional cameras. Instead of capturing intensity images at
a fixed rate, event cameras respond to brightness changes with a stream of asyn-
chronous events. With the advantages of high temporal resolution, high dynamic
range, and low power consumption [33], event cameras have found widespread
use in various computer vision tasks [4,/13,/17,/1821}/22/25}29,/39,/40,/49].
Despite notable advancements in event-based vision, the training of deep
learning-based approaches still demands a substantial amount of synthetic event
data [19/53]. It is worth noting that the high cost [43] and deployment chal-
lenges [6] associated with event cameras in high-speed or low-light scenes limit
the availability of real-world datasets. Thus, several event camera simulators
have attempted to generate a large amount of affordable and reliable event data.
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Fig.1: Event camera simulators. (a) The existing video to events simulators (e.g.,
V2E [12]). (b) Our Physical Event Camera Simulator (PECS) is designed to generate
high-fidelity realistic events by directly interfacing with the 3D scene.

One category refers to optimized-based event camera simulators
, where the objective is to design hand-crafted modules for
generating event data. For example, V2E converts intensity frames into
event data via multiple hand-crafted modules. Note that, these simulators take
three-channel videos as direct inputs, overlooking the complete optical path in
real-world camera systems. It may lead to the loss of optical information, conse-
quently seriously affecting the simulator’s accuracy. While some efforts
support offline rendering in the 3D scene, they often neglect the consideration of
spectrum data in the rendering module. In fact, integrating spectrum informa-
tion into the event camera simulation process has the potential to enhance the
fidelity of synthetic event streams.

Another category is learning-based event camera simulators
that aim to generate event representations, improving the generalization
capabilities of deep learning models directly for the target domain rather than
relying on raw events. For instance, EventGAN is an end-to-end neural
network that directly converts images to event presentations for downstream
computer vision tasks. However, these learning-based simulators, requiring re-
training for diverse usage cases, may have limited generalization across different
scenarios. Moreover, the generated event representations are not in the original
signal domain , posing potential limitations for broader applications. In other
words, physical-based simulators, producing spatiotemporal events, preserve the
inherent characteristics of raw camera data, enhancing their versatility compared
to event representations by learning-based simulators.

To address the aforementioned problems, this paper proposes a novel Physical-
based Event Camera Simulator (PECS), which is able to generate a highly realis-
tic event stream by directly interfacing with the 3D scene (see Fig. . In fact, the
goal of this work is not to optimize hand-crafted event camera simulators (e.g.,
ESIM or V2E). In contrast, we aim at overcoming the following challenges: (i)
How do we model a realistic lens to replicate the light-to-sensor chip process? (ii)
How do we design a multispectral renderer to obtain high-precision photocurrents
rather than three-channel videos? Towards this end, a realistic lens simulation
block using the PBRT renderer [30] is developed to accurately replicate the light-
to-sensor chip process. Then, a novel multispectral rendering module is designed
to generate high-precision photocurrents by quantum efficiency and Monte Carlo
integration. Two asynchronous spatiotemporal event metrics (i.e., Chamfer dis-
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tance and Gaussian distance) are proposed to measure the similarity between
simulated and raw events. Extensive experiments show that our PECS outper-
forms four state-of-the-art simulators by a large margin in terms of event-based
signal fidelity. Moreover, we further deploy real-time versions into the Unreal
Engine (UE) platform to generate extensive multi-task synthetic datasets. Typ-
ical computer vision tasks (i.e., event-based video reconstruction) are conducted
to verify the effectiveness of our PECS.
Overall, the main contributions of this work are summarized as follows:

We propose a novel Physical-based Fvent Camera Simulator (PECS), capa-

ble of generating a high-fidelity realistic event stream by directly interfacing

with the 3D scene, without relying on video-to-event conversion.

— We design a realistic lens simulation block using the PBRT renderer, opti-
mizing pupil sampling to improve the quality and speed of rendering.

— We design a novel multispectral rendering module that generates high-precision

photocurrents through quantum efficiency and Monte Carlo integration.

We present two asynchronous spatiotemporal metrics to assess the similarity

between simulated and raw events. Extensive experiments show that our

PECS outperforms four state-of-the-art simulators in terms of signal fidelity.

To the best of our knowledge, this is the first attempt to explore a physical-
based event camera simulator. We believe that our simulator will provide high-
fidelity realistic large-scale event data for event-based vision tasks and offer proof
of principle for the next generation of neuromorphic cameras.

2 Related Work

This section will review existing event camera simulators from two perspectives
including optimized-based simulators and learning-based simulators.
Optimized-based Event Camera Simulators. The prior optimized-based
simulators include PIX2NVS [5] and ESIM |[831], which convert any image or
video into asynchronous events. A realistic V2E [12] is developed to model the
event camera in low-light or motion blur scenarios. ICNS [14] is presented to
simulate noise and estimate the latency by adding the effects of the arbiter.
VOLT |20] employs the concept of stochastic processes to model the output
process of event data, thereby endowing the simulated event data with good
continuity and probabilistic interpretability. Nevertheless, these event camera
simulators directly consider three-channel videos as the input and overlook the
complete optical path in real-world camera systems. Although Mou et al. [24]
first notice the impact of quantum efficiency on event camera simulators and
implement video-to-spectrum conversion. However, the lossless conversion from
three-channel data to spectral data is nearly impossible. Thus, we design a
novel multispectral rendering module that generates high-precision photocur-
rents through quantum efficiency and Monte Carlo integration.
Learning-based Event Camera Simulators. With the rapid development of
deep learning, some learning-based event camera simulators [2}8,(101/28,34}/52}54]
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Fig. 2: The pipeline of the proposed Physical-based Event Camera Simulator (PECS).
It starts with pupil sampling, precalculating the rays expected to pass through the
lens. Ray tracing calculates light refraction and reflection within the lens and scene,
producing multispectral maps. Incorporating quantum effects, these maps generate
accurate photocurrents. Our PECS then leverages logarithmic differences to generate
events, enabling the measurement of similarity between simulated and raw camera
events in signal fidelity.

are developed to generate event representations in the target domain. For in-
stance, Zhu et al. use the modified GAN model to generate synchronous
event representations without raw events. Gu et al. propose a domain-
adaptive event simulator that can generate both event data and the camera’s
trajectory. Pantho et al. use a neural network to generate event data repre-
sented by regions, which is convenient for use in moving region detection. While
these simulators can enhance overall accuracy to a certain degree, the intrinsic
challenge lies in the limited interpretability of neural networks. Consequently,
these simulators, requiring re-training for diverse usage cases, may have limited
generalization across different scenarios. In other words, simulators that rely on
learning-based approaches are expected to exhibit lower robustness compared
with optimized-based event camera simulators.

3 Methods

3.1 Framework Overview

This work aims at designing a novel Physical-based Event Camera Simulator,
termed PECS, which is able to generate a highly realistic event stream by directly
interfacing with the 3D scene. As illustrated in Fig.[2] our PECS mainly consists
of two modules: a multispectral rendering module and a dynamic event genera-
tion module. In the multispectral rendering module, we employ pupil sampling
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as a pre-processing step to obtain a set of rays originating from the direction
in which the lens may emit. Then, ray tracing is employed to compute the re-
fraction and reflection of light within both the lens and the scene, allowing us
to acquire multispectral maps. Meanwhile, multispectral maps with quantum
effects generate high-precision photocurrent. Particularly, we design a realistic
lens simulation block using the PBRT renderer, which aims at optimizing pupil
sampling to improve the quality and speed of rendering. In the dynamic event
generation module, we leverage the principle of logarithmic differences in the
event camera to generate events. This module tackles the constraints of current
simulation systems by incorporating spectrum data and accounting for quantum
efficiency. This enhancement contributes to improved accuracy in estimating
photocurrent, thereby creating a more realistic depiction of the physical pro-
cesses involved in the conversion of light signals into photocurrent. Finally, two
event metrics (i.e., Chamfer distance and Gaussian distance) are proposed to
measure the distance between simulated and raw events in signal fidelity.

3.2 Realistic Camera Lenses Simulation

Realistic camera lens simulation in computer graphics replicates actual camera
lens behavior [16] by employing ray tracing to accurately simulate light paths
through multiple lens elements. This approach takes into account the intricacies
of the lens system, including refraction at interfaces, and improves image quality
by estimating incident radiance along arbitrary rays.

Our realistic camera lens simulation block models a lens system with various
elements, tracing rays through them with multispectral information. It considers
interactions until rays either exit the optical system or are absorbed by the aper-
ture stop or lens housing. To reduce computational waste, our PECS performs
pupil sampling before conducting the actual simulation. In this study, the pupil’s
definition is a little different from in optics [36]. It refers to all the directions
from which rays emit from the lenses at any specific point on the sensor film, not
just the center point. Let the sensor plane coordinates be denoted as (u, v). The
pupil is a set of feasible directions represented by points (z,y) on the direction
plane. Each point (x,y) in the pupil corresponds to a unique direction. Thus,
the mathematical definition of the pupil can be expressed as:

Pupil(u,v) = {(z,y) | Ray({u, v}, {z,y})), (1)

where Ray({u,v},{z,y}) denotes the ray originating from (u,v) and pointing
towards (x,y) passing through the lenses.

Pupil sampling is the algorithm that identifies the correct pupil for each point
on the sensor film. In the case of lenses commonly used in event cameras (e.g.,
Prophesee Gen4), which are often centrally symmetric with circular apertures,
representing the pupil shape as an ellipse simplifies the pupil sampling process.
Therefore, the pupil can be approximated as follows:

Pupil(u,v) = {(x,y) | (a:,y) € E”i(pva’b)}’ (2)
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where FElli(p,a,b) is an ellipse centered at point p on the direction plane with
semi-major axis length a and semi-minor axis length b.

By uniformly sampling points on the beam direction plane, the exit pupil for
each sampled point on the sensor film is efficiently computed. For other points,
the exit pupil is determined through linear interpolation between the ellipse’s
center and its major and minor axes. Despite potential errors in the elliptical
model for complex lenses, this method still notably decreases the time of ray
tracing within the lens, thereby speeding up the lens system simulation.

3.3 Multispectral Rendering Module

The multispectral rendering module transforms incoming light signals into pho-
tocurrent, adjusting for display convenience [12,/14,/31]. An event camera in-
volves detecting photons at various frequencies, initiating photocurrent through
the photoelectric effect. After filtering and logarithmic conversion, the currents
are converted into photovoltages. The module concentrates on the photon-to-
photocurrent conversion, excluding subsequent electronic circuit model steps.
Most simulation systems estimate photocurrent using the L component of
LUV values, but actual photon receivers don’t convert different frequency lights
into the same number of electrons, as revealed by the Quantum Efficiency (QE)
curve. The definition of absolute quantum efficiency [35] can be described as:

N, R he
QEabsolute()‘) = FZ = 7)\ X ?7 (3)
where N, is the number of electrons, N, is the number of photons, Ry is the
current per unit of incident light power (A/W), A is the wavelength in nm, A is
the Planck constant, ¢ is the speed of light in vacuum, and e is the elementary
charge. The quantum efficiency is generally given as a relative value ranging
from 0 to 1. Its definition can be formulated as follows:

QF psotute(A)
QEreaive >\ = R ’
lat ( ) maX(QEabsolute()‘))

Our PECS overcomes limitations by providing multi-spectral data for precise
photocurrent estimation. Leveraging known spectrum information and quantum
efficiency, PECS directly computes photocurrent as follows:

(4)

i)=C- //\ QBN - L() - ), (5)

where i, is the photocurrent after Photoelectric conversion, which is a key pa-
rameter in subsequent electronic circuits. C is a constant that depends on the
pixel area and units of physical quantities, and L(\) is the input spectrum. If L
is represented by a finite set of discrete channels, the following simple numerical
integration method can be used to achieve the aforementioned integration:

N
ip 2 C Y N QE(M) - L(Ak) - (Aka1 — M), (6)
k=1
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where N is the number of known channels of the spectrum. If N = 3, the
information carried by the spectrum degrades into a common RGB image.

The spectrum representation can be more complex in certain applications,
such as using neural networks for implicit continuous representations. Simple
data integration may lead to insufficient sampling in regions with larger function
values, causing significant errors. To address this, Monte Carlo integration and
importance sampling are commonly employed as:

N

b
= [ fa)de = tim o (1)

where N is the number of samples. p(z) is probability density function, which
generated samples z;. Applying Eq.[7] to Eq. [f] it can be re-written as:

) ~ Iy = N Z Ak - QE Ak) ()\k)’ (8)

where Iy is an approximation. Choosing a well-behaved p(\) is crucial to mini-
mize N while maintaining accuracy. In probability theory, it is equal to make the
variance small. Assuming that different samples are independent and identically
distributed, we can obtain the variance of Iy as:

1 M- QEO) - L) _ ok
Var(Iy) = NE kz ( pOw) ) =Nz 9)

In the optimal condition, 0% = 0, which means p(}) is totally equal to the orig-
inal function except for scale. Thus, we can model p(\) as a piecewise constant
function and estimate it by pre-calculating the original function as:

p(A) = B-X;- QE(X)) - L(\}),j = argmin,,, [\ — A |, (10)

where m is the channel number. For each m, L(\],) is pre-calculated through
the implicit representation of the spectrum. B is a constant that ensures the
integral of p(\) equals 1. Then, the photocurrent can be obtained as follows:

N
~c. 1 Ak QE(A\g) - L(Ak) . ‘
ip~C NkEZIB'Ag‘k'QE(A},C)'L(AQ‘,C),%_argmmm‘)\k AL (11)

Note that, Monte Carlo integration in Eq. [11] and simple numerical integration
in Eq. [f] each have their own advantages and disadvantages. When the spectral
data is represented continuously, Monte Carlo integration produces significantly
smaller errors with a sharp spectral distribution curve compared to simple inte-
gration. However, if the spectrum is only represented by discrete channels, the
lack of original information renders Monte Carlo integration somewhat redun-
dant, and simple numerical integration can be used instead.
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Note that, our PECS estimates photocurrent by considering spectral data
and quantum efficiency, offering more accurate simulations of light signal conver-
sion. Consequently, the accuracy is significantly enhanced compared to the LUV
method. Meanwhile, the quantum efficiency of different cameras often varies and
can generally be provided by the corresponding sensor manufacturers.

3.4 Asyncrhonous Spatiotemporal Event Metric

To measure the similarity between simulated and raw camera events, we present
two asynchronous spatiotemporal event metrics (i.e., Chamfer distance and Gaus-
sian distance), which is similar to the metric part in iterative closest point
tasks [3L|37]. The Chamfer distance metric Cp can be described as:

Cp(R,Q) = ‘R|Zm1ndrq |Q|Zm1ndrq) (12)

where the lower Cp its value, the closer the two events are. R and @ are two
point clouds, r or g is a single point in R or ). Each point can be expressed as a
four-dimensional tuple {z,y, p, ¢} representing the spatial coordinates, polarity,
and temporal information. The distance in the metric can be depicted as:

d(r, q) = [Ir — qll2, (13)

By utilizing KDTREE [9] for acceleration, the time complexity is only O(n log(n)).
Similarly, the Gaussian distance can be formulated as:

Gp(R, ‘R|ng1ndrq |Q‘ng1ndrq)) (14)

where the function g makes Gp(R, Q) still become lower when the two events
get closer while reducing the impact of outliers, and it can be described as:

oto) = 1 - exp (1212}, (15)

g

where o is a hyperparameter used to adjust the sensitivity range of the original
metric. In this study, we set 0.4 as the default.

In fact, these two metrics describe the attributes of asynchronous events from
different dimensions and can be necessary to assess the similarity between raw
and simulated data. The Gaussian distance exhibits relative stability against
outliers compared to the Chamfer distance, making it more robust to noise.
Nevertheless, its measurement results have a narrower range of variation, making
it less distinctive in simultaneous evaluations of multiple simulators.

Note that, the units of x, y, p, and t in the original data are different, and the
range of values for t often far exceeds that of the other components, resulting in
Eq.[13]and Eq. [I4] almost do not consider information beyond t. To address this



Physical-Based Event Camera Simulator 9

issue, it is necessary to normalize the original measurements first to resolve this
scaling problem as follows:

L’.[i] — min L/
Lyfi] = (2l ~ min L

max L —minL%—i—e)*a7 (16)
where L’ﬁ is the original measurements, 5 can be z, y, p and ¢ element. Lg is the
corresponding processed data. ¢ is the i’th event of the raw data, which means
R[i] = {Lg[d], Ly[d], Lpli], Le[d]}. € is a small number that is to avoid dividing
zero, and « is a hyperparameter. In this work, we choose o = 100 for space x, y
and polarity p, and choose a = 1000 for time ¢.

4 Experiments

4.1 Experimental Setting

Real-to-Sim Scenario Construction. Spatiotemporal synchronization is es-
sential for quantitatively evaluating, we record the real-world event data us-
ing a Prophesee Gen4 camera in a professional optical laboratory. We capture
six sequences including rotating disk and translating checkerboards with light
changes and various motion speeds. For example, T 0.6 H means translating
checkerboards, 0.6 meter-per-seconds, and high light. R_360 L means rotat-
ing disk, 360 rpm, and low light. To ensure consistency between the simulated
and real-world scenes, we utilize the blender for high-fidelity 3D modeling. We
export the scenes to PBRT and simulate a naturally calibrated camera using
real lenses [26,42]. This approach enables us to acquire temporally and spatially
aligned rendering results for use in subsequent sensor modules. More details of
spatiotemporal alignment can be found in the supplementary material. In other
methods, as regular RGB cameras struggle to capture clear images in these
scenes, we use Blender’s rendered RGB video as input. By manually calibrating
pinhole camera parameters, we ensure temporally and spatially consistent clear
images for simulation inputs, enabling the proper functioning of these simulators.
Implementation Details. All experiments are conducted on a GeForce RTX
3050 Ti and 11th Gen Intel(R) Core(TM) i7-11800H CPU. We compare our
PECS with four open-source event camera simulators (i.e., ESIM [31], VOLT |20],
V2E [12], and ICNS [14]). In our PECS, the hyperparameters in Eq. and Eq. |§|
are set to C = 100 and N = 31 to make an accuracy-speed trade-off. Regard-
ing the ESIM method, we extract its core code from its original ties to Unreal
Engine (UE) and replace UE output with video output. For the V2E method,
given the clarity and compactness of Blender-generated images, we disable the
network interpolation module to prevent extremely slow simulation speed. In
the ICNS method, all parameters have been adjusted to achieve optimal results.
In the VOLT method, we select a set of parameters for the best performance.
We present two event metrics (i.e., Chamfer distance and Gaussian distance)
to quantitatively evaluate the similarity between raw events and synthetic data.
Besides, we select three representative sequences of the HS-ERGB dataset [45]
in the event-based video reconstruction task.
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Table 1: Comparison with state-of-the-art simulators on our six recording sequences.
Note that, our Physical Event Camera Simulator (PECS) shows superior performance
on both metrics across a diverse range of movement speeds and lighting conditions.

Scene l Gaussian distance | Chamfer distance |
[ESIM VOLT V2E ICNS PECS|ESIM VOLT V2E ICNS PECS

Rotate 360 High | 1.995 1.923 1.671 1.558 0.960 |45.512 22.086 6.356 3.816 2.010
Rotate 360 Low | 1.965 1.931 1.831 1.681 1.631 |35.082 25.391 7.729 4.131 3.708
Rotate 60 High 1.995 1.911 1.816 1.574 1.504 |39.425 20.814 9.297 4.237 3.459
Trans 1mps High | 1.963 1.655 1.827 1.806 1.667 |62.206 10.573 15.450 9.453 3.975
Trans 06mps High | 1.967 1.723 1.839 1.837 1.798 |63.939 10.198 18.154 9.588 4.169
Trans Imps Low | 1.987 1.814 1.700 1.663 1.710 |68.115 10.952 14.071 9.182 4.467
Average ‘ 1.979 1.826 1.781 1.687 1.545 ‘ 52.380 16.669 11.843 6.735 3.631

4.2 Effective Test

Quantitative Evaluation. To quantitatively evaluate the effectiveness of our
PECS, we conduct a comparison with four open-source event camera simulators
(i.e., ESIM [31], VOLT |20], V2E |12], and ICNS [14]) on six recording sequences
(see Table . Note that, our PECS outperforms four state-of-the-art simulators
in both two event metrics. More precisely, in terms of the Gaussian distance, our
PECS reduces the average by 0.434, 0.281, 0.236, and 0.142 when compared to
ESIM, VOLT, V2E, and ICNS, respectively. Meanwhile, in the Chamfer distance,
our simulator exhibits an average decrease of 48.749, 13.038, 8.212, and 3.104
compared to ESIM, VOLT, V2E, and ICNS, respectively.

Visualization Evaluation. Some representative visualization results on two
motion scenarios (i.e., translating checkerboards and rotation disks) recorded in
a professional optical laboratory are illustrated in Fig. [J]and Fig. [d Obviously,
our PECS achieves the best performance against four state-of-the-art simula-
tors including ESIM, VOLT, V2E, and ICNS. We can find that V2E and ESIM
simulators are too primitive, resulting in concentrated data distribution in 3D
space and a lack of continuity. The event data of ESIM is entirely concentrated
at the timestamp of the input frame, lacking continuity, which is the main rea-
son for its poor performance. VOLT performs well in terms of the continuity of
event output, but its noise model suffers from significant distortion. Addition-
ally, VOLT simply converts three-channel video to grayscale as photocurrent,
without considering quantum efficiency and spectrum. Although the ICNS has
an advanced sensor model and supports scene input, the lack of algorithms in
the section leads to less accurate event data generation.

4.3 Ablation Study

Influence of the Sampling Number N. To analyze the sampling number NV
of numerical integration in our PECS, we set the multispectral rendering module
with various values of N, and set C' as 100. As described in Table 2] we find that
the Chamfer distance and Caussian distance decrease with the increase of N.
More precisely, Comparing N=31 and N=6, the Chamfer distance and Gaussian
distance decrease by 6.58 and 0.619, respectively. Overall, this results show that
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Fig. 3: Representative examples of translating checkerboards with various motion
speed and light conditions. In each scenario, the first row is a 2D visualization schematic
of the event data, and the second row is a 3D visualization schematic of the event data.

Table 2: The influence of the sampling number N of Monte-Carlo integration in the
multispectral rendering module. It’s worth noting that our PECS exhibits improved
performance with an increase in V.

N |1 3 4 6 7 11 16 31

Chamfer distance | | 13.96 8.826 16.28 8.588 8.466 2.869 2.476 2.008
Gaussian distance | | 1.597 1.624 1.569 1.583 1.582 1.176 1.091 0.964

the larger the N, the closer the final simulation data is to the real data. Of course,
an increase in IV also entails a rise in time complexity. Thus, there is often a
consideration of the trade-off between accuracy and computational speed.

Influence of the Hyperparameter C. To analyze the effect of the hyperpa-
rameter C' of numerical integration on the final performance, we set the mul-
tispectral rendering module with various values of C, and set N as 31. From
Table [3] we can find that there is no simple correlation between the hyperpa-
rameter C and the final performance. The distances of the two metrics gradually
decrease with an increase in C' until they start to increase at nearly 100. Essen-
tially speaking, the hyperparameter C' is introduced to align the standard unit
system with the unit system used in the actual code. Theoretical analysis indi-
cates the existence of an optimal value, a notion supported by ablation experi-
ment results. The optimal value is observed to be around 100, and the distances
of the two metrics decrease as the value of C' deviates from this optimal point.
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Fig. 4: Representative visualization results of rotation disks with various motion
speed and light conditions. In each scenario, the first row is a 2D visualization schematic
of the event data, and the second row is a 3D visualization schematic of the event data.

Table 3: The influence of the hyperparameter C of Monte-Carlo integration in the
multispectral rendering module. The distances gradually decrease with an increase in
C' until they start to increase at nearly 100.

C ‘ 10 30 60 80 100 120 140 160

Chamfer distance | | 6.493 7.445 2.508 5.066 2.008 2.011 2.264 2.396
Gaussian distance | | 1.342 1.488 1.106 1.408 0.964 0.986 1.050 1.076

5 Downstream Applications

In this section, we integrate our PECS with the Unreal Engine (UE) platform
to generate extensive event-based vision datasets that support multiple tasks.
We then proceed to validate the simulator’s performance on the event-based
video reconstruction task. In contrast to existing simulators, the representative
algorithm trained on our synthetic events performs favorably on real event data.
Extensive Multi-task Synthetic Datasets. To seamlessly link our PECS
with downstream computer vision tasks, we incorporate it into the widely used
UE platform, a popular tool for virtual environments. Our PECS, excluding the
lens simulation module, is deployed on the UE platform to achieve real-time
generation of multi-modal datasets (e.g., RGB frames and events). To facilitate
various visual tasks, we also develop an automatic label annotation tool on the
UE platform, providing bounding boxes for object detection and scene distance
values for depth estimation. As depicted in Fig. we present the synthetic
data of a stereo hybrid camera on a drone platform, which mainly includes
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Fig. 5: Representative examples of multi-task synthetic datasets. We integrate our
PECS into the UE platform to generate extensive synthetic datasets supporting mul-
tiple tasks, such as video reconstruction, object detection, and depth estimation.

Table 4: Performance comparison on event-based video reconstruction. The E2VID
network trains on synthetic data from each event camera simulator and tests on
three representative sequences of the real-world HS-ERGB dataset .

PSNR? SSIMT LPIPS|

Sequences

ESIM V2E PECS

ESIM V2E PECS

ESIM V2E PECS

spinning umbrella
fountain bellevue2
bridge lake 03

8.756 8.437 9.236
6.139 5.867 6.564

11.770 12.686 13.243

0.472 0.471 0.480
0.213 0.211 0.218
0.541 0.560 0.563

0.451 0.449 0.430
0.675 0.670 0.662
0.332 0.274 0.250

Mean

8.889 8.997 9.678

0.409 0.414 0.420

0.486 0.464 0.447

RGB images, event streams, object detection labels, and scene depth values.
Notably, our PECS can generate comprehensive synthetic datasets using both
monocular and stereo cameras, supporting a variety of vision tasks, including
video reconstruction, object detection, monocular depth estimation, binocular
depth estimation, and more. Besides, we also adjust the speed of motion cameras
and scene light intensity, generating diverse datasets with high-speed motion and
low-light conditions, showcasing the advantages of event cameras.

Validation on Event-based Video Reconstruction. Event-based video re-
construction is a typical task that effectively validates the effectiveness of
synthetic data from various simulators. Specifically, we first use our PECS and
two competitive simulators (e.g, ESIM and V2E ) to generate large-scale
synthetic datasets in the UE platform. Then, we select a representative events-
to-video reconstruction algorithm (i.e., E2VID [32]) to be trained on these sim-
ulated datasets respectively. The training details align with those suggested in
E2VID . Finally, we test various trained models on the real-world HS-ERGB
dataset [45]. We use three metrics (i.e., PSNR, SSIM [46], and LPIPS [51]) to
measure the performance of event-based video reconstruction (see Table [4). Ob-
viously, our PECS shows superior generalization capability compared to the top
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Scene Event image Our PECS

Fig. 6: Visual comparisons on event-based video reconstruction. The E2VID net-
work trains on simulated event data from each simulator and tests on the real-world
HS-ERGB dataset recorded by a Prophesee Gen4 camera and a RGB camera.

competitor V2E with an average increase of 0.681 in PSNR, 0.6% improvement
in SSIM, and a 1.7% decrease in LPIPS. Furthermore, we present some visual-
ization results on the real-world HS-ERGB dataset recorded by a Prophesee
Gen4 camera and an RGB camera. As shown in Fig. [6] our PECS-trained net-
work produces visually pleasing images with finer details and fewer artifacts. As
our PECS is designed from a physical-based perspective, it naturally promotes
reconstructed images with natural image statistics. Hence, the utilization of our
simulator proves more effective, enabling the learning of high-quality video re-

construction even with limited or no real training samples.

6 Conclusion

This paper proposes a novel Physical-based Event Camera Simulator (PECS)
that can generate a highly realistic event stream by directly interfacing with
the 3D scene. To the best of our knowledge, our PECS is the first event camera
simulator to design a realistic lens simulation block and a multispectral rendering
module. Experiments demonstrate that Our PECS consistently outperforms four
state-of-the-art simulators in some scenarios with various motion speeds and light
changes, showing that it is currently the most realistic event camera simulator.
Besides, integrating our PECS into the Unreal Engine (UE) platform allows the
generation of extensive multi-task datasets, showcasing its utility in downstream
vision tasks. We also believe that our PECS provides a proof-of-principle tool
for the next generation of neuromorphic cameras.
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